1
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025:10.1007/s12264-024-01342-8. [PMID: 39754628 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Mikkelsen ACD, Kjærgaard K, Schapira AHV, Mookerjee RP, Thomsen KL. The liver-brain axis in metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 2024:S2468-1253(24)00320-0. [PMID: 39701123 DOI: 10.1016/s2468-1253(24)00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 12/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects around 30% of the global population. Studies suggest that MASLD is associated with compromised brain health and cognitive dysfunction, initiating a growing interest in exploring the liver-brain axis mechanistically within MASLD pathophysiology. With the prevalence of MASLD increasing at an alarming rate, leaving a large proportion of people potentially at risk, cognitive dysfunction in MASLD is a health challenge that requires careful consideration and awareness. This Review summarises the current literature on cognitive function in people with MASLD and discusses plausible causes for its impairment. It is likely that a multifaceted spectrum of factors works collectively to affect cognition in patients with MASLD. We describe the role of inflammation, vascular disease, and brain ageing and neurodegeneration as possible key players. This Review also highlights the need for future studies to identify the optimal test for diagnosing cognitive dysfunction in patients with MASLD, to examine the correlation between MASLD progression and the severity of cognitive dysfunction, and to evaluate whether new MASLD-targeted therapies also improve brain dysfunction.
Collapse
Affiliation(s)
- Anne Catrine Daugaard Mikkelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Rajeshwar P Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Institute for Liver and Digestive Health, University College London, London, UK
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
4
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
5
|
Chmiela T, Jarosz-Chobot P, Gorzkowska A. Glucose Metabolism Disorders and Parkinson's Disease: Coincidence or Indicator of Dysautonomia? Healthcare (Basel) 2024; 12:2462. [PMID: 39685083 DOI: 10.3390/healthcare12232462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM) are both age-related diseases. Evidence from recent studies suggests a link between them. The existence of an interaction between autonomic nervous system dysfunction and the dysregulation of glucose metabolism is one of the proposed mechanisms to explain the complicated relationship between these diseases. The aims of this study are to assess the incidence of glycemic dysregulation in people with PD and to identify clinical factors that may predispose patients with PD to the occurrence of metabolic disturbances. Methods: In total, 35 individuals diagnosed with PD and 20 healthy control subjects matched in terms of age and gender participated in a study consisting of clinical and biometric assessments along with 14 days of continuous glucose monitoring (CGM) using the Freestyle Libre system. In the group of patients with PD, a comparative analysis was performed between patients with and without autonomic dysfunction. The severity of autonomic dysfunction was assessed using the SCOPA-AUT. Results: Participants diagnosed with PD demonstrated a trend toward lower morning glucose levels compared to the control group. PD patients with autonomic symptoms had greater glucose variability and a deeper trend toward lower glucose levels in the mornings. The presence of autonomic dysfunction, especially orthostatic hypotension and micturition disturbance, and the severity of autonomic symptoms were associated with greater glycemic variability. Conclusions: The occurrence of autonomic disorders in the course of Parkinson's disease predisposes patients to more profound glycemic dysregulation.
Collapse
Affiliation(s)
- Tomasz Chmiela
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Przemysława Jarosz-Chobot
- Department of Children's Diabetology and Lifestyle Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Agnieszka Gorzkowska
- Department of Neurology, School of Health Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
6
|
González-Blanco C, Lockwood ÁC, Jiménez B, Iglesias-Fortes S, Marqués P, García G, García-Aguilar A, Benito M, Guillén C. Resveratrol protects pancreatic beta cell and hippocampal cells from the aggregate-prone capacity of hIAPP. Sci Rep 2024; 14:27523. [PMID: 39528771 PMCID: PMC11555266 DOI: 10.1038/s41598-024-78967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus and Alzheimer's disease, are two closely related pathological situations that are connected at the molecular level. In recent years, amylin, which is co-secreted with insulin, has been proposed for being a main actor in this context due to its capacity to form aggregates in a β-sheet-like structure. In a diabetic milieu, there is an increase in the production and secretion of insulin and amylin. We have analysed the role of resveratrol on aggregate formation and in the production of extracellular vesicles with amylin in its interior and in pancreatic β cells overexpressing human amylin (INS1E-hIAPP). Furthermore, we have explored the consequences of the exposition of the conditioned medium derived from INS1E-hIAPP in the hippocampal cell line HT-22 and the role of resveratrol in this cell line. Hippocampal cells were exposed to conditioned media obtained from rat insulinoma 1E overexpressing human amylin in the presence or in the absence of resveratrol. When we exposed HT-22 cells to the conditioned media of INS1E-hIAPP we observed amylin-aggregates inside HT-22 cells. Resveratrol was able to alleviate this effect not only in HT-22 but also in pancreatic β cells. Furthermore, resveratrol decreased the average exosome size produced by the INS1E-hIAPP stimulated with high glucose, diminishing the toxic effect of these exosomes in HT-22 cells. We have uncovered that resveratrol inhibits the aggregation capacity of amylin and it can diminish the deleterious spreading of the toxic protein, to other cell types such as the hippocampal neuron cells, HT-22.
Collapse
Affiliation(s)
- Carlos González-Blanco
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Ángela Cristina Lockwood
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Beatriz Jiménez
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
| | - Gema García
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Manuel Benito
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Carlos Guillén
- CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
8
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
9
|
Li Y, Vaughan KL, Wang Y, Yu SJ, Bae EK, Tamargo IA, Kopp KO, Tweedie D, Chiang CC, Schmidt KT, Lahiri DK, Tones MA, Zaleska MM, Hoffer BJ, Mattison JA, Greig NH. Sitagliptin elevates plasma and CSF incretin levels following oral administration to nonhuman primates: relevance for neurodegenerative disorders. GeroScience 2024; 46:4397-4414. [PMID: 38532069 PMCID: PMC11335710 DOI: 10.1007/s11357-024-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Ian A Tamargo
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Katherine O Kopp
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cheng-Chuan Chiang
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keith T Schmidt
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
10
|
Tan S, Chi H, Wang P, Zhao R, Zhang Q, Gao Z, Xue H, Tang Q, Li G. Protein tyrosine phosphatase receptor type O serves as a key regulator of insulin resistance-induced α-synuclein aggregation in Parkinson's disease. Cell Mol Life Sci 2024; 81:403. [PMID: 39276174 PMCID: PMC11401831 DOI: 10.1007/s00018-024-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Insulin resistance (IR) was found to be a critical element in the pathogenesis of Parkinson's disease (PD), facilitating abnormal α-synuclein (α-Syn) aggregation in neurons and thus promoting PD development. However, how IR contributes to abnormal α-Syn aggregation remains ill-defined. Here, we analyzed six PD postmortem brain transcriptome datasets to reveal module genes implicated in IR-mediated α-Syn aggregation. In addition, we induced IR in cultured dopaminergic (DA) neurons overexpressing α-Syn to identify IR-modulated differentially expressed genes (DEGs). Integrated analysis of data from PD patients and cultured neurons revealed 226 genes involved in α-Syn aggregation under IR conditions, of which 53 exhibited differential expression between PD patients and controls. Subsequently, we conducted an integrated analysis of the 53 IR-modulated genes employing transcriptome data from PD patients with different Braak stages and DA neuron subclasses with varying α-Syn aggregation scores. Protein tyrosine phosphatase receptor type O (PTPRO) was identified to be closely associated with PD progression and α-Syn aggregation. Experimental validation in a cultured PD cell model confirmed that both mRNA and protein of PTPRO were reduced under IR conditions, and the downregulation of PTPRO significantly facilitated α-Syn aggregation and cell death. Collectively, our findings identified PTPRO as a key regulator in IR-mediated α-Syn aggregation and uncovered its prospective utility as a therapeutic target in PD patients with IR.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qinran Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| |
Collapse
|
11
|
Cheng Y, Chao H, Liu J, Liu J. Nontargeted metabolomic profiling analysis of patients with type 2 diabetes mellitus undergoing corn silk treatment. Medicine (Baltimore) 2024; 103:e39396. [PMID: 39151489 PMCID: PMC11332781 DOI: 10.1097/md.0000000000039396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
To explore the corn silk's effect and possible mechanism on patients with type 2 diabetes mellitus (T2DM) by untargeted metabolomics. Newly diagnosed patients with T2DM admitted to the endocrinology department of the author's hospital from March 2020 to September 2021 were chosen and then allocated to either the intervention or the control group (NC) randomly. Patients in the intervention group were administered corn silk in the same way as the patients in the NC were given a placebo. A hypoglycemic effect was observed, and an untargeted metabolomics study was done on patients of both groups. Compared with the NC, the glycosylated hemoglobin and fasting blood glucose of patients in the intervention group significantly decreased after 3 months of treatment (P < .05), identified using tandem mass spectrometry, and analyzed by orthogonal partial least squares-discriminant analysis. A total of 73 differential metabolites were screened under the conditions of variable important in projection value >1.0 and P < .05. Differential metabolites are mainly enriched in signaling pathways such as oxidative phosphorylation, purine metabolism, and endocrine resistance. Through untargeted metabolomic analysis, it is found that corn silk water extract may reduce blood glucose in patients with T2DM through multiple pathways, including oxidative phosphorylation and purine metabolism.
Collapse
Affiliation(s)
- Yu Cheng
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hong Chao
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jinghua Liu
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
12
|
Grotewold N, Albin RL. Update: Protective and risk factors for Parkinson disease. Parkinsonism Relat Disord 2024; 125:107026. [PMID: 38879999 DOI: 10.1016/j.parkreldis.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
We review the epidemiologic literature on potential protective and risk factors in Parkinson's Disease (PD). Prior research identified numerous possible protective and risk factors. Potential protective factors include tobacco abuse, physical activity, urate levels, NSAID use, calcium channel blocker use, statin use, and use of some α1-adrenergic antagonists. Some potential protective factors could be products of reverse causation, including increased serum urate, tobacco abuse, and coffee-tea-caffeine consumption. Potential risk factors include traumatic brain injury, pesticide exposure, organic solvent exposure, lead exposure, air pollution, Type 2 Diabetes, some dairy products, cardiovascular disease, and some infections including Hepatitis C, H. pylori, and COVID-19. Potential non-environmental risk factors include bipolar disorder, essential tremor, bullous pemphigoid, and inflammatory bowel disease. There is an inverse relationship with PD and risk of most cancers. Though many potential protective and risk factors for PD were identified, research has not yet led to unique, rigorous prevention trials or successful disease-modifying interventions. While efforts to reduce exposure to some industrial toxicants are well justified, PD incidence might be most effectively reduced by mitigation of risks, such as Type 2 Diabetes, air pollution, traumatic brain injury, or physical inactivity, that are general public health intervention targets.
Collapse
Affiliation(s)
- Nikolas Grotewold
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger L Albin
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, 48105, USA; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, 48109, USA; University of Michigan Parkinson's Foundation Research Center of Excellence, USA.
| |
Collapse
|
13
|
Hölscher C. Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson's and Alzheimer's disease clinical trials: A revolution in the making? Neuropharmacology 2024; 253:109952. [PMID: 38677445 DOI: 10.1016/j.neuropharm.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Parkinson's disease (PD) is a complex syndrome for which there is no disease-modifying treatment on the market. However, a group of drugs from the Glucagon-like peptide-1 (GLP-1) class have shown impressive improvements in clinical phase II trials. Exendin-4 (Bydureon), Liraglutide (Victoza, Saxenda) and Lixisenatide (Adlyxin), drugs that are on the market as treatments for diabetes, have shown clear effects in improving motor activity in patients with PD in phase II clinical trials. In addition, Liraglutide has shown improvement in cognition and brain shrinkage in a phase II trial in patients with Alzheimer disease (AD). Two phase III trials testing the GLP-1 drug semaglutide (Wegovy, Ozempic, Rybelsus) are ongoing. This perspective article will summarize the clinical results obtained so far in this novel research area. We are at a crossroads where GLP-1 class drugs are emerging as a new treatment strategy for PD and for AD. Newer drugs that have been designed to enter the brain easier are being developed already show improved effects in preclinical studies compared with the older GLP-1 class drugs that had been developed to treat diabetes. The future looks bright for new treatments for AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Henan Academy of Innovations in Medical Science, Neurodegeneration Research Group, 451100 Xinzheng, Henan province, China.
| |
Collapse
|
14
|
Aguirre-Vidal Y, Montes S, Mota-López AC, Navarrete-Vázquez G. Antidiabetic drugs in Parkinson's disease. Clin Park Relat Disord 2024; 11:100265. [PMID: 39149559 PMCID: PMC11325349 DOI: 10.1016/j.prdoa.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/04/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
This review explores the intricate connections between type 2 diabetes (T2D) and Parkinson's disease (PD), both prevalent chronic conditions that primarily affect the aging population. These diseases share common early biochemical pathways that contribute to tissue damage. This manuscript also systematically compiles potential shared cellular mechanisms between T2D and PD and discusses the literature on the utilization of antidiabetic drugs as potential therapeutic options for PD. This review encompasses studies investigating the experimental and clinical efficacy of antidiabetic drugs in the treatment of Parkinson's disease, along with the proposed mechanisms of action. The exploration of the benefits of antidiabetic drugs in PD presents a promising avenue for the treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Yoshajandith Aguirre-Vidal
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A.C. (INECOL), Xalapa, 91073 Veracruz, Mexico
| | - Sergio Montes
- Unidad Académica Multidisciplinaria, Reynosa-Aztlan, Reynosa 88740, Tamaulipas, Mexico
| | - Ana Carolina Mota-López
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A.C. (INECOL), Xalapa, 91073 Veracruz, Mexico
| | | |
Collapse
|
15
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
16
|
Gadgaard NR, Veres K, Henderson VW, Pedersen AB. Frozen Shoulder and the Risk of Parkinson's Disease: A Danish Registry-Based Cohort Study. Clin Epidemiol 2024; 16:447-459. [PMID: 38952571 PMCID: PMC11216321 DOI: 10.2147/clep.s463571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Background Frozen shoulder may be an early preclinical symptom of Parkinson's disease (PD). Objective To examine PD risk after frozen shoulder diagnosis and to evaluate this disorder as a possible manifestation of parkinsonism preceding the clinical recognition of PD and possible target for screening. Methods Danish population-based medical registries were used to identify patients aged ≥40 years with a first-time frozen shoulder diagnosis (1995-2016). A comparison cohort was randomly selected from the general population matched on age and sex. To address detection bias and the specificity of frozen shoulder diagnosis, we performed a sensitivity analysis, using similar matching criteria to select a cohort of patients with back pain diagnosis. The outcome was incident PD. Cumulative incidences and adjusted hazard ratios (HRs) were estimated with 95% confidence intervals (CIs). Results We identified 37,041 individuals with frozen shoulder, 370,410 general population comparators, and 111,101 back pain comparators. The cumulative incidence of PD at 0-22 years follow-up was 1.51% in the frozen shoulder cohort, 1.03% in the general population cohort, and 1.32% in the back pain cohort. For frozen shoulder versus general population, adjusted HRs were 1.94 (CI: 1.20-3.13) at 0-1 years and 1.45 (CI: 1.24-1.70) at 0-22 years follow-up. For frozen shoulder versus back pain, adjusted HRs were 0.89 (CI: 0.54-1.46) and 1.01 (CI: 0.84-1.21), respectively. Conclusion Patients with frozen shoulder had an increased PD risk compared with the general population, although the absolute risks were low. Frozen shoulder might sometimes represent early manifestations of PD. Detection bias probably cannot account for the increased PD risk during the long-term follow-up.
Collapse
Affiliation(s)
- Nadia R Gadgaard
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Katalin Veres
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Victor W Henderson
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alma B Pedersen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Ren Q, Fu J, Duan X, Sun L, Mu Z, Liang W, Li Y, Wang Z, Xiu S. The Effects of Ketogenic Diet on Brain Gene Expressions in Type 2 Diabetes Background. Neuroscience 2024; 549:101-109. [PMID: 38734303 DOI: 10.1016/j.neuroscience.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major risk factor of a number of neurodegenerative diseases (NDDs). Ketogenic diet (KD) has significant beneficial effects on glycemic control and may act effectively against NDDs, but the mechanism remains unclear. In this study, we aimed to investigate the potential effects of KD on gene expressions in the brains of T2DM model mice. Male db/db mice at the age of 9 weeks were fed with KD or normal diet to the age of 6 months, and the whole brains were subjected to mRNA-seq analysis for differentially expressed genes. KD significantly lowered fasting glucose and body weights in db/db mice (P < 0.05), and the expression of 189 genes in the brain were significantly changed (P < 0.05, |log2| > 1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed genes upon KD are involved in inflammatory responses and the functions of biosynthesis. In inflammatory responses, NF-κB signaling pathway, viral protein interaction with cytokine and cytokine receptor, and cytokine-cytokine receptor interaction pathways were enriched, and in biosynthesis pathways, genes functioning in lipid and amino acid metabolism, protein synthesis, and energy metabolism were enriched. Moreover, consistent with the gene set enrichment analysis results, proteasomal activity measured biochemically were enhanced in KD-fed T2DM mice. These data may facilitate the understanding of how KD can be protective to the brain in T2DM background. KD could be a new strategy for the prevention of NDDs in T2DM patients.
Collapse
Affiliation(s)
- Qianxu Ren
- The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junling Fu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lina Sun
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhijing Mu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Shuangling Xiu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
18
|
Shi Y, Zhang X, Feng Y, Yue Z. Association of metabolic syndrome and its components with Parkinson's disease: a cross-sectional study. BMC Endocr Disord 2024; 24:92. [PMID: 38890672 PMCID: PMC11186221 DOI: 10.1186/s12902-024-01623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The interrelation between metabolic syndrome (MetS) and Parkinson's disease (PD) likely arises from shared pathological mechanisms. This study thus aims to examine the impact of MetS and its components on PD. METHODS This study utilized data extracted from the National Health and Nutrition Examination Survey database spanning 1999 to 2020. The random forest algorithm was applied to fill in the missing data. Propensity score optimal full matching was conducted. The data were adjusted by total weights derived from both sampling and matching weights. The weighted data were utilized to create multifactor logistic regression models. Odds ratios (ORs) and average marginal effects, along with their corresponding 95% confidence intervals (CIs), were calculated. RESULTS MetS did not significantly affect the risk of PD (OR: 1.01; 95% CI: 0.77, 1.34; P = 0.92). Hypertension elevated the risk of PD (OR: 1.33; 95% CI: 1.01, 1.76; P = 0.045), accompanied by a 0.26% increased probability of PD occurrence (95% CI: 0.01%, 0.52%; P = 0.04). Diabetes mellitus (DM) had a 1.38 times greater likelihood of developing PD (OR:1.38; 95% CI: 1.004, 1.89; P = 0.046), corresponding to a 0.32% increased probability of PD occurrence (95% CI: -0.03%, 0.67%; P = 0.07). Nevertheless, no correlation was observed between hyperlipidemia, waist circumference and PD. CONCLUSION MetS does not affect PD; however, hypertension and DM significantly increase the risk of PD.
Collapse
Affiliation(s)
- Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - XueYi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - ZongXiang Yue
- Meishan Hospital of Traditional Chinese Medicine, Meishan, China.
| |
Collapse
|
19
|
Komici K, Pansini A, Bencivenga L, Rengo G, Pagano G, Guerra G. Frailty and Parkinson's disease: the role of diabetes mellitus. Front Med (Lausanne) 2024; 11:1377975. [PMID: 38882667 PMCID: PMC11177766 DOI: 10.3389/fmed.2024.1377975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease associated with a progressive loss of dopaminergic neurons, clinically characterized by motor and non-motor signs. Frailty is a clinical condition of increased vulnerability and negative health outcomes due to the loss of multiple physiological reserves. Chronic hyperglycemia and insulin resistance, which characterize diabetes mellitus (DM), have been reported to alter dopaminergic activity, increase the risk of PD, and influence the development of frailty. Even though diabetes may facilitate the development of frailty in patients with PD, this relationship is not established and a revision of the current knowledge is necessary. Furthermore, the synergy between DM, PD, and frailty may drive clinical complexity, worse outcomes, and under-representation of these populations in the research. In this review, we aimed to discuss the role of diabetes in the development of frailty among patients with PD. We summarized the clinical characteristics and outcomes of patients with concomitant DM, PD, and frailty. Finally, interventions to prevent frailty in this population are discussed.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS-Scientific Institute of Telese Terme, Telese Terme, BN, Italy
| | - Gennaro Pagano
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
- University of Exeter Medical School, London, United Kingdom
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
20
|
Lewitt MS, Boyd GW. Role of the Insulin-like Growth Factor System in Neurodegenerative Disease. Int J Mol Sci 2024; 25:4512. [PMID: 38674097 PMCID: PMC11049992 DOI: 10.3390/ijms25084512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
21
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
23
|
Reynoso A, Torricelli R, Jacobs BM, Shi J, Aslibekyan S, Norcliffe-Kaufmann L, Noyce AJ, Heilbron K. Gene-Environment Interactions for Parkinson's Disease. Ann Neurol 2024; 95:677-687. [PMID: 38113326 DOI: 10.1002/ana.26852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.
Collapse
Affiliation(s)
| | - Roberta Torricelli
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin Meir Jacobs
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Alastair J Noyce
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
24
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, Batiha GES. Metformin role in Parkinson's disease: a double-sword effect. Mol Cell Biochem 2024; 479:975-991. [PMID: 37266747 DOI: 10.1007/s11010-023-04771-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease developed due to the degeneration of dopaminergic neurons in the substantia nigra. There is no single effective treatment in the management of PD. Therefore, repurposing effective and approved drugs like metformin could be an effective strategy for managing PD. However, the mechanistic role of metformin in PD neuropathology was not fully elucidated. Metformin is an insulin-sensitizing agent used as a first-line therapy in the management of type 2 diabetes mellitus (T2DM) and has the ability to reduce insulin resistance (IR). Metformin may have a beneficial effect on PD neuropathology. The neuroprotective effect of metformin is mainly mediated by activating adenosine monophosphate protein kinase (AMPK), which reduces mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation. As well, metformin mitigates brain IR a hallmark of PD and other neurodegenerative diseases. However, metformin may harm PD neuropathology by inducing hyperhomocysteinemia and deficiency of folate and B12. Therefore, this review aimed to find the potential role of metformin regarding its protective and detrimental effects on the pathogenesis of PD. The mechanistic role of metformin in PD neuropathology was not fully elucidated. Most studies regarding metformin and its effectiveness in PD neuropathology were observed in preclinical studies, which are not fully translated into clinical settings. In addition, metformin effect on PD neuropathology was previously clarified in T2DM, potentially linked to an increasing PD risk. These limitations hinder the conclusion concerning the therapeutic efficacy of metformin and its beneficial and detrimental role in PD. Therefore, as metformin does not cause hypoglycemia and is a safe drug, it should be evaluated in non-diabetic patients concerning PD risk.
Collapse
Affiliation(s)
- Mohamed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Majid S Jabir
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
25
|
Wang Q, Cai B, Zhong L, Intirach J, Chen T. Causal relationship between diabetes mellitus, glycemic traits and Parkinson's disease: a multivariable mendelian randomization analysis. Diabetol Metab Syndr 2024; 16:59. [PMID: 38438892 PMCID: PMC10913216 DOI: 10.1186/s13098-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, and the occurrence of Parkinson's disease (PD). However, the complex interactions between these factors and the presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship between diabetes, glycemic traits, and PD onset, risk, and progression. METHOD We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a series of sensitivity analyses. RESULTS In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and metformin use. CONCLUSION Our MR study confirms a potential protective causal relationship between genetically predicted type 1 diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Jitrawadee Intirach
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, 570100, Haikou, China.
| |
Collapse
|
26
|
Marras C, Fereshtehnejad SM, Berg D, Bohnen NI, Dujardin K, Erro R, Espay AJ, Halliday G, Van Hilten JJ, Hu MT, Jeon B, Klein C, Leentjens AFG, Mollenhauer B, Postuma RB, Rodríguez-Violante M, Simuni T, Weintraub D, Lawton M, Mestre TA. Transitioning from Subtyping to Precision Medicine in Parkinson's Disease: A Purpose-Driven Approach. Mov Disord 2024; 39:462-471. [PMID: 38243775 DOI: 10.1002/mds.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The International Parkinson and Movement Disorder Society (MDS) created a task force (TF) to provide a critical overview of the Parkinson's disease (PD) subtyping field and develop a guidance on future research in PD subtypes. Based on a literature review, we previously concluded that PD subtyping requires an ultimate alignment with principles of precision medicine, and consequently novel approaches were needed to describe heterogeneity at the individual patient level. In this manuscript, we present a novel purpose-driven framework for subtype research as a guidance to clinicians and researchers when proposing to develop, evaluate, or use PD subtypes. Using a formal consensus methodology, we determined that the key purposes of PD subtyping are: (1) to predict disease progression, for both the development of therapies (use in clinical trials) and prognosis counseling, (2) to predict response to treatments, and (3) to identify therapeutic targets for disease modification. For each purpose, we describe the desired product and the research required for its development. Given the current state of knowledge and data resources, we see purpose-driven subtyping as a pragmatic and necessary step on the way to precision medicine. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Nicolaas I Bohnen
- Departments of Radiology & Neurology, University of Michigan, University of Michigan Udall Center, Ann Arbor, Michigan, USA
| | - Kathy Dujardin
- Center of Excellence for Parkinson's Disease, CHU Lille, Univ Lille, Inserm, Lille Neuroscience & Cognition, Lille, France
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jacobus J Van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Oxford University and John Radcliffe Hospital, West Wing, Neurology Department, Level 3, Oxford, United Kingdom
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Department of Neurology, University Medical Center Goettingen, Kassel, Germany
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania; Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tiago A Mestre
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa Brain and Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Tatenhorst L, Maass F, Paul H, Dambeck V, Bähr M, Dono R, Lingor P. Glypican-4 serum levels are associated with cognitive dysfunction and vascular risk factors in Parkinson's disease. Sci Rep 2024; 14:5005. [PMID: 38424123 PMCID: PMC10904781 DOI: 10.1038/s41598-024-54800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Glypicans are biomarkers for various pathologies, including cardiovascular disease, cancer and diabetes. Increasing evidence suggests that glypicans also play a role in the context of neurodegenerative disorders. Initially described as supporting functionality of synapses via glutamate receptors during CNS development, Glypican 4 (GPC-4) also plays a role in the context of dementia via tau hyperphosphorylation in Alzheimer's disease, which is also a co-pathology in Parkinson's disease dementia. However, clinical evidence of circulating GPC-4 in Parkinson's disease (PD) is missing so far. We therefore investigated GPC-4 in biofluids of PD patients. We analyzed GPC-4 levels in cerebrospinal fluid (CSF, n = 140), serum (n = 80), and tear fluid samples (n = 70) of PD patients and control subjects in a similar age range by ELISA (serum, CSF) and western blot (tear fluid). Expression of circulating GPC-4 was confirmed in all three biofluids, with highest levels in serum. Interestingly, GPC-4 levels were age-dependent, and multiple regression analysis revealed a significant association between GPC-4 serum levels and MoCA score, suggesting an involvement of GPC-4 in PD-associated cognitive decline. Furthermore, stratification of PD patients for vascular risk factors revealed a significant increase of GPC-4 serum levels in PD patients with vascular risk factors. Our results suggest GPC-4 as a clinical biomarker for vascular risk stratification in order to identify PD patients with increased risk of developing dementia.
Collapse
Affiliation(s)
- Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hannah Paul
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, 13288, Marseille, France
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany.
- Clinical Department of Neurology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81679, Munich, Germany.
| |
Collapse
|
28
|
Kang SH, Choi Y, Chung SJ, Moon SJ, Kim CK, Kim JH, Oh K, Yoon JS, Seo SW, Cho GJ, Koh SB. Fasting glucose variability and risk of dementia in Parkinson's disease: a 9-year longitudinal follow-up study of a nationwide cohort. Front Aging Neurosci 2024; 15:1292524. [PMID: 38235038 PMCID: PMC10791804 DOI: 10.3389/fnagi.2023.1292524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Background Diabetes is associated with an increased risk of Parkinson's disease dementia (PDD); however, it is unknown whether this association is dependent on continuous hyperglycemia, hypoglycemic events, or glycemic variability. We aimed to investigate the relationship between visit-to-visit fasting glucose variability and PDD development in patients with Parkinson's disease (PD). Methods Using data from the Korean National Health Insurance Service, we examined 9,264 patients aged ≥40 years with de novo Parkinson's disease (PD) who underwent ≥3 health examinations and were followed up until December 2019. Glucose variability was measured using the coefficient of variation, variability independent of the mean, and average real variability. Fine and Gray competing regression analysis was performed to determine the effect of glucose variability on incident PDD. Results During the 9.5-year follow-up period, 1,757 of 9,264 (19.0%) patients developed PDD. Patients with a higher visit-to-visit glucose variability had a higher risk of future PDD. In the multivariable adjusted model, patients with PD in the highest quartile (subdistribution hazard ratio [SHR] = 1.50, 95% CI 1.19 to 1.88), quartile 3 (SHR = 1.29, 95% CI 1.02 to 1.62), and quartile 2 (SHR = 1.30, 95% CI 1.04 to 1.63) were independently associated with a higher risk of PDD than those in the lowest quartile. Conclusion We highlighted the effect of long-term glucose variability on the development of PDD in patients with PD. Furthermore, our findings suggest that preventive measures for constant glucose control may be necessary to prevent PDD.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yunjin Choi
- Biomedical Research Institute, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Chung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Seok-Joo Moon
- Smart Healthcare Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Shik Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
König A, Outeiro TF. Diabetes and Parkinson's Disease: Understanding Shared Molecular Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:917-924. [PMID: 38995799 PMCID: PMC11307096 DOI: 10.3233/jpd-230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 07/14/2024]
Abstract
Aging is a major risk factor for Parkinson's disease (PD). Genetic mutations account for a small percentage of cases and the majority appears to be sporadic, with yet unclear causes. However, various environmental factors have been linked to an increased risk of developing PD and, therefore, understanding the complex interplay between genetic and environmental factors is crucial for developing effective disease-modifying therapies. Several studies identified a connection between type 2 diabetes (T2DM) and PD. T2DM is characterized by insulin resistance and failure of β-cells to compensate, leading to hyperglycemia and serious comorbidities. Both PD and T2DM share misregulated processes, including mitochondrial dysfunction, oxidative stress, chronic inflammation, altered proteostasis, protein aggregation, and misregulation of glucose metabolism. Chronic or recurring hyperglycemia is a T2DM hallmark and can lead to increased methylglyoxal (MGO) production, which is responsible for protein glycation. Glycation of alpha-synuclein (aSyn), a central player in PD pathogenesis, accelerates the deleterious aSyn effects. Interestingly, MGO blood plasma levels and aSyn glycation are significantly elevated in T2DM patients, suggesting a molecular mechanism underlying the T2DM - PD link. Compared to high constant glucose levels, glycemic variability (fluctuations in blood glucose levels), can be more detrimental for diabetic patients, causing oxidative stress, inflammation, and endothelial damage. Accordingly, it is imperative for future research to prioritize the exploration of glucose variability's influence on PD development and progression. This involves moving beyond the binary classification of patients as diabetic or non-diabetic, aiming to pave the way for the development of enhanced therapeutic interventions.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
30
|
Walker L, Attems J. Prevalence of Concomitant Pathologies in Parkinson's Disease: Implications for Prognosis, Diagnosis, and Insights into Common Pathogenic Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:35-52. [PMID: 38143370 PMCID: PMC10836576 DOI: 10.3233/jpd-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/26/2023]
Abstract
Pathologies characteristic of Alzheimer's disease (i.e., hyperphosphorylated tau and amyloid-β (Aβ) plaques), cardiovascular disease, and limbic predominant TDP-43 encephalopathy (LATE) often co-exist in patients with Parkinson's disease (PD), in addition to Lewy body pathology (α-synuclein). Numerous studies point to a putative synergistic relationship between hyperphosphorylation tau, Aβ, cardiovascular lesions, and TDP-43 with α-synuclein, which may alter the stereotypical pattern of pathological progression and accelerate cognitive decline. Here we discuss the prevalence and relationships between common concomitant pathologies observed in PD. In addition, we highlight shared genetic risk factors and developing biomarkers that may provide better diagnostic accuracy for patients with PD that have co-existing pathologies. The tremendous heterogeneity observed across the PD spectrum is most likely caused by the complex interplay between pathogenic, genetic, and environmental factors, and increasing our understanding of how these relate to idiopathic PD will drive research into finding accurate diagnostic tools and disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
31
|
Zolin A, Zhang C, Ooi H, Sarva H, Kamel H, Parikh NS. Association of liver fibrosis with cognitive decline in Parkinson's disease. J Clin Neurosci 2024; 119:10-16. [PMID: 37976909 PMCID: PMC11198872 DOI: 10.1016/j.jocn.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cognitive decline is a common but variable non-motor manifestation of Parkinson's disease. Chronic liver disease contributes to dementia, but its impact on cognitive performance in Parkinson's disease is unknown. We assessed the effect of liver fibrosis on cognition in Parkinson's disease. METHODS We conducted a retrospective cohort study using data from the Parkinson's Progression Markers Initiative. Our exposure was liver fibrosis at baseline, based on the validated Fibrosis-4 score. Our primary outcome was the Montreal Cognitive Assessment, and additional outcome measures were the Symbol Digit Modalities Test, the Benton Judgement of Line Orientation, the Letter-Number Sequencing Test, and the Modified Semantic Fluency Test. We used linear regression models to assess the relationship between liver fibrosis and scores on cognitive assessments at baseline and linear mixed models to evaluate the association between baseline Fibrosis-4 score with changes in each cognitive test over five years. Models were adjusted for demographics, comorbidities, and alcohol use. RESULTS We included 409 participants (mean age 61, 40 % women). There was no significant association between liver fibrosis and baseline performance on any of the cognitive assessments in adjusted models. However, over the subsequent five year period, liver fibrosis was associated with more rapid decline in scores on the Montreal Cognitive Assessment (interaction coefficient, -0.07; 95 % CI, -0.12, -0.02), the Symbol Digit Modalities Test, the Benton Judgement of Line Orientation, and the Modified Semantic Fluency Test. CONCLUSION In people with Parkinson's disease, the presence of comorbid liver fibrosis was associated with more rapid decline across multiple cognitive domains.
Collapse
Affiliation(s)
- Aryeh Zolin
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cenai Zhang
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hwai Ooi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Harini Sarva
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Neal S Parikh
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Li Z, Jiang X, Yang M, Pan Y. Association between falls and nonmotor symptoms in patients with Parkinson's disease. J Clin Neurosci 2023; 118:143-146. [PMID: 37939511 DOI: 10.1016/j.jocn.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a chronic neurodegenerative disorder. Falls are common in patients with PD and can lead to disability, bedridden status, and death. The mechanisms of falls induced by symptoms of PD have not been fully clarified. We investigated the association between falls and nonmotor symptoms in PD patients. METHODS A total of 361 patients with Parkinson's disease were included. Whether the patients had fallen in the past half a year was recorded. Nonmotor symptoms were assessed by 30 items from the nonmotor symptom questionnaire (NMS Quest), Parkinson's Disease Sleep Scale (PDSS), Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), and Montreal Cognitive Assessment Scale (MOCA). RESULTS A total of 63 patients experienced falls in the past six months, with an incidence of 17.5%. The patients with falls were elderly, had severe motor symptoms and disease severity, and the proportion of diabetic patients who experienced falls was higher. Adjusted for the above factors, the results showed that patients with falls had higher PD-NMS, HAMD and HAMA scores, but there was no significant difference in the total score and subscores of the MoCA scale between the two groups. The risk factors related to falling included age, history of diabetes, depression (HAMD), HAMD cognitive impairment, NMS urinary tract and NMS postural hypotension. CONCLUSIONS Falls were a common symptom in patients with PD and were not only related to motor symptoms but also closely related to nonmotor symptoms. urinary tract symptoms, postural hypotension, depression and HAMD cognitive impairment were risk factors related to falling in patients with PD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xu Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minggang Yang
- Department of Neurology, Xuyi People's Hospital, Xuyi, Jiangsu 211700, China
| | - Yang Pan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
33
|
Lee HJ, Han K, Kim YW, Yang SN, Yoon SY. Association between lipid levels and the risk of Parkinson's disease in individuals with diabetes mellitus: A nationwide population-based cohort study. Parkinsonism Relat Disord 2023; 117:105881. [PMID: 37951145 DOI: 10.1016/j.parkreldis.2023.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Many studies have examined the positive association between diabetes mellitus (DM) and the risk of Parkinson's disease (PD). Dyslipidemia has been reported to be prevalent in patients with diabetes; thus, lipid levels and the drugs for dyslipidemia could influence the development of PD in patients with DM. This study aimed to examine the association between lipid levels and the risk of PD in individuals with DM and evaluate whether the association changes with the use of statins. METHODS This nationwide population-based retrospective cohort study included individuals with DM according to the International Classification of Diseases between 2009 and 2012. Among the 2,361,633 patients with DM followed up for up to 9 years, 17,046 were newly diagnosed with PD. Patients with DM were categorized into quartile groups of total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels. RESULTS There was an inverse association between lipid levels and PD development in the unadjusted model; however, this relationship became less significant after adjusting the use of statins in triglyceride and total cholesterol. In the analysis stratified by statin use, total cholesterol level was associated with decreased PD risk in non-statin users with DM; however, there was no significant association between total cholesterol level and PD risk in statin users. CONCLUSION We found an inverse relationship between lipid levels and PD risk in patients with DM, which was influenced by statin use. Future studies about optimal target lipid levels relevant to PD risk considering statin dose in DM patients are needed.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Seongnam-si, Republic of Korea
| | - Kyungdo Han
- Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Nam Yang
- Department of Physical Medicine & Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seo Yeon Yoon
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Ma X, Li S, Liu F, Du Y, Chen H, Su W. Glycated hemoglobin A1c, cerebral small vessel disease burden, and disease severity in Parkinson's disease. Ann Clin Transl Neurol 2023; 10:2276-2284. [PMID: 37750198 PMCID: PMC10723236 DOI: 10.1002/acn3.51913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Our study aimed to investigate the glucose levels in PD and controls. We also examine whether glucose control is associated with PD severity regardless of diabetic status, and test whether the correlation is mediated by cerebral small vessel disease (CSVD) burden. METHODS A total of 100 patients with idiopathic PD and 100 age- and sex-matched controls who underwent brain magnetic resonance imaging (MRI) were enrolled in this study. We collected the clinical data and blood parameters, including fasting blood glucose (FBG), glycated hemoglobin A1c (HbA1c), and blood lipid. Patients with PD were divided into early (n = 61) and advanced (n = 39) subgroups, based on Hoehn and Yahr (H&Y) stages. Differences between the PD and controls, PD with and without diabetes, and between two PD subgroups were compared. CSVD markers were assessed, including lacunes, white matter hyperintensities, enlarged perivascular spaces, and cerebral microbleeds. Multivariable logistic regressions were used to test the association between HbA1c and H&Y stages. Interaction between HbA1c and CSVD burden in relation to H&Y stages was also analyzed. RESULTS PD group exhibited higher HbA1c (p < 0.001), lower high-density lipoprotein cholesterol (p < 0.001) and triglyceride (p = 0.049) than controls. Advanced PD patients showed higher HbA1c than early PD group (p = 0.022). Increasing HbA1c (OR = 1.54, 95% CI 1.03-2.32, p = 0.036) along with longer disease duration (OR = 1.14, 95% CI 1.01-1.27, p = 0.028) and higher UPDRS III score (OR = 1.07, 95% CI 1.02-1.11, p = 0.002) increased the risk of belonging to the higher H&Y stage. However, interaction between HbA1c and CSVD burden in relation to H&Y stages was not significant. INTERPRETATION HbA1c is independently associated with H&Y stages in PD, and this correlation may not be mediated by CSVD burden.
Collapse
Affiliation(s)
- Xinxin Ma
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| | - Shuhua Li
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| | - Fengzhi Liu
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| | - Yu Du
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| | - Haibo Chen
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| | - Wen Su
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesNo. 1 Da HuaRoad, DongDanBeijing100730P.R. China
| |
Collapse
|
35
|
Ogaki K, Fujita H, Nozawa N, Shiina T, Sakuramoto H, Suzuki K. Impact of diabetes and glycated hemoglobin level on the clinical manifestations of Parkinson's disease. J Neurol Sci 2023; 454:120851. [PMID: 37931442 DOI: 10.1016/j.jns.2023.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The coexistence of diabetes mellitus (DM) has been suggested to accelerate the progression of Parkinson's disease (PD) and make the phenotype more severe. In this study, we investigated whether DM or glycated hemoglobin (HbA1c) levels affect the differences in motor and nonmotor symptoms. METHODS We conducted a cross-sectional study including 140 consecutive Japanese patients with PD for whom medical history and serum HbA1c records were available. The PD patients with a DM diagnosis were classified into the diabetes-complicated group (PD-DM) and the nondiabetes-complicated group (PD-no DM). Next, patients were classified based on a median HbA1c value of 5.7, and clinical parameters were compared. The correlations between HbA1c levels and other clinical variables were analyzed. RESULTS Of 140 patients, 23 patients (16%) had DM. Compared to PD-no DM patients, PD-DM patients showed lower MMSE scores. Compared to the lower HbA1c group, the higher HbA1c group showed a higher MDS-UPDRS part III score and a lower metaiodobenzylguanidine (MIBG) scintigraphy heart-to-mediastinum (H/M) ratio. HbA1c levels were positively correlated with age and the MDS-UPDRS part III score and negatively correlated with the MMSE score and H/M ratio on cardiac MIBG scintigraphy. Binary logistic regression analysis, which included age, sex, disease duration, and MMSE and MDS-UPDRS part III scores as independent variables, revealed that a lower MMSE score was an independent contributor to PD-DM and PD with high HbA1c levels. CONCLUSIONS DM complications and high HbA1c levels may affect cognitive function in patients with PD.
Collapse
Affiliation(s)
- Keitaro Ogaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | - Narihiro Nozawa
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Tomohiko Shiina
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | | | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
36
|
Ren Z, Xu Y, Sun J, Han Y, An L, Liu J. Chronic diseases and multimorbidity patterns, their recent onset, and risk of new-onset Parkinson's disease and related functional degeneration in older adults: a prospective cohort study. EClinicalMedicine 2023; 65:102265. [PMID: 37855021 PMCID: PMC10579290 DOI: 10.1016/j.eclinm.2023.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Background Certain chronic diseases contribute to increased risks of Parkinson's disease (PD), but the association between time-varying multimorbidity patterns and new-onset PD remains underexplored. Methods Data were from the Survey of Health, Ageing and Retirement in Europe (SHARE) waves 5-8 conducted between January 2013 and March 2020. Eleven chronic diseases were included, with ≥2 denoting multimorbidity. Three multimorbidity patterns were further defined: somatic multimorbidity (SMM), neuropsychiatric multimorbidity (NPM), and cardiometabolic multimorbidity (CMM). PD-related function degeneration included functional limitations, mobility limitations, depressive symptoms, and cognitive decline. Time-dependent analyses, competing-risk analyses, and mixed-effect models were utilised. Findings In this prospective cohort study, 557 developed new-onset PD during follow-ups among 64,273 participants included at baseline, as defined by participants' self-reported physician diagnoses. Participants with (vs. without) multimorbidity, SMM, NPM, and CMM were at 1.40-2.70 times higher PD risk after considering the competing role of all-cause death, which remained significant in all sensitivity analyses and were more pronounced in lower-income participants (P for interaction <0.05). Similarly, they tended to develop functional degeneration faster than those without these multimorbidity patterns (P < 0.05). Participants with recent-onset (newly diagnosed in 2015) multimorbidity patterns were at 1.45-3.72 times higher risk of PD than those never diagnosed. Interestingly, they were at comparable or even higher (though P values for >0.05) PD risk compared to participants with multimorbidity patterns diagnosed in 2013 or before. Furthermore, recent-onset (vs. prior diagnosed) NPM exhibited faster functional deterioration and cognitive decline (P for difference <0.05). Interpretation Our findings suggest that promoting early prevention of multimorbidity, especially recent-onset multimorbidity and NPM, could prevent some subsequent cases of PD and related functional degeneration among older adults. However, further studies are needed to confirm this association. Funding The National Key Research and Development Program, Ministry of Science and Technology, China; Zhongnanshan Medical Foundation of Guangdong Province; Major Project of the National Social Science Fund of China; Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Ziyang Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yunhan Xu
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Jinfang Sun
- Office of Epidemiology, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yanqing Han
- Department of Neurology, Cardiovascular Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Lin An
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
37
|
Sanz FJ, Martínez-Carrión G, Solana-Manrique C, Paricio N. Evaluation of type 1 diabetes mellitus as a risk factor of Parkinson's disease in a Drosophila model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:697-705. [PMID: 37381093 DOI: 10.1002/jez.2726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels, resulting from insulin dysregulation. Parkinson's disease (PD) is the most common neurodegenerative motor disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. DM and PD are both age-associated diseases that are turning into epidemics worldwide. Previous studies have indicated that type 2 DM might be a risk factor of developing PD. However, scarce information about the link between type 1 DM (T1DM) and PD does exist. In this work, we have generated a Drosophila model of T1DM based on insulin deficiency to evaluate if T1DM could be a risk factor to trigger PD onset. As expected, model flies exhibited T1DM-related phenotypes such as insulin deficiency, increased content of carbohydrates and glycogen, and reduced activity of insulin signaling. Interestingly, our results also demonstrated that T1DM model flies presented locomotor defects as well as reduced levels of tyrosine hydroxylase (a marker of DA neurons) in brains, which are typical PD-related phenotypes. In addition, T1DM model flies showed elevated oxidative stress levels, which could be causative of DA neurodegeneration. Therefore, our results indicate that T1DM might be a risk factor of developing PD, and encourage further studies to shed light into the exact link between both diseases.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
38
|
Zhang Z, Shi M, Li Z, Ling Y, Zhai L, Yuan Y, Ma H, Hao L, Li Z, Zhang Z, Hölscher C. A Dual GLP-1/GIP Receptor Agonist Is More Effective than Liraglutide in the A53T Mouse Model of Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:7427136. [PMID: 37791037 PMCID: PMC10545468 DOI: 10.1155/2023/7427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is a complex syndrome with many elements, such as chronic inflammation, oxidative stress, mitochondrial dysfunction, loss of dopaminergic neurons, build-up of alpha-synuclein (α-syn) in cells, and energy depletion in neurons, that drive the disease. We and others have shown that treatment with mimetics of the growth factor glucagon-like peptide 1 (GLP-1) can normalize energy utilization, neuronal survival, and dopamine levels and reduce inflammation. Liraglutide is a GLP-1 analogue that recently showed protective effects in phase 2 clinical trials in PD patients and in Alzheimer disease patients. We have developed a novel dual GLP-1/GIP receptor agonist that can cross the blood-brain barrier and showed good protective effects in animal models of PD. Here, we test liraglutide against the dual GLP-1/GIP agonist DA5-CH (KP405) in the A53T tg mouse model of PD which expresses a human-mutated gene of α-synuclein. Drug treatment reduced impairments in three different motor tests, reduced levels of α-syn in the substantia nigra, reduced the inflammation response and proinflammatory cytokine levels in the substantia nigra and striatum, and normalized biomarker levels of autophagy and mitochondrial activities in A53T mice. DA5-CH was superior in almost all parameters measured and therefore may be a better drug treatment for PD than liraglutide.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ming Shi
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhengmin Li
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yuan Ling
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Luke Zhai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
39
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
40
|
Gialluisi A, De Bartolo MI, Costanzo S, Belvisi D, Falciglia S, Ricci M, Di Castelnuovo A, Panzera T, Donati MB, Fabbrini G, de Gaetano G, Berardelli A, Iacoviello L. Risk and protective factors in Parkinson's disease: a simultaneous and prospective study with classical statistical and novel machine learning models. J Neurol 2023; 270:4487-4497. [PMID: 37294324 DOI: 10.1007/s00415-023-11803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Several environmental/lifestyle factors have been individually investigated in previous Parkinson's disease (PD) studies with controversial results. No study has prospectively and simultaneously investigated potential risk/protective factors of PD using both classical statistical and novel machine learning analyses. The latter may reveal more complex associations and new factors that are undetected by merely linear models. To fill this gap, we simultaneously investigated potential risk/protective factors involved in PD in a large prospective population study using both approaches. METHODS Participants in the Moli-sani study were enrolled between 2005 and 2010 and followed up until December 2018. Incident PD cases were identified by individual-level record linkage to regional hospital discharge forms, the Italian death registry, and the regional prescription register. Exposure to potential risk/protective factors was assessed at baseline. Multivariable Cox Proportional Hazards (PH) regression models and survival random forests (SRF) were built to identify the most influential factors. RESULTS We identified 213 incident PD cases out of 23,901 subjects. Cox PH models revealed that age, sex, dysthyroidism and diabetes were associated with an increased risk of PD. Both hyper and hypothyroidism were independently associated with PD risk. SRF showed that age was the most influential factor in PD risk, followed by coffee intake, daily physical activity, and hypertension. CONCLUSION This study sheds light on the role of dysthyroidism, diabetes and hypertension in PD onset, characterized to date by an uncertain relationship with PD, and also confirms the relevance of most factors (age, sex, coffee intake, daily physical activity) reportedly shown be associated with PD. Further methodological developments in SRF models will allow to untangle the nature of the potential non-linear relationships identified.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Daniele Belvisi
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Stefania Falciglia
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Moreno Ricci
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | | | - Teresa Panzera
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Giovanni Fabbrini
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| |
Collapse
|
41
|
Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson's disease. Brain 2023; 146:3587-3597. [PMID: 37183455 PMCID: PMC10473562 DOI: 10.1093/brain/awad150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
The critical role of alpha-synuclein in Parkinson's disease represents a pivotal discovery. Some progress has been made over recent years in identifying disease-modifying therapies for Parkinson's disease that target alpha-synuclein. However, these treatments have not yet shown clear efficacy in slowing the progression of this disease. Several explanations exist for this issue. The pathogenesis of Parkinson's disease is complex and not yet fully clarified and the heterogeneity of the disease, with diverse genetic susceptibility and risk factors and different clinical courses, adds further complexity. Thus, a deep understanding of alpha-synuclein physiological and pathophysiological functions is crucial. In this review, we first describe the cellular and animal models developed over recent years to study the physiological and pathological roles of this protein, including transgenic techniques, use of viral vectors and intracerebral injections of alpha-synuclein fibrils. We then provide evidence that these tools are crucial for modelling Parkinson's disease pathogenesis, causing protein misfolding and aggregation, synaptic dysfunction, brain plasticity impairment and cell-to-cell spreading of alpha-synuclein species. In particular, we focus on the possibility of dissecting the pre- and postsynaptic effects of alpha-synuclein in both physiological and pathological conditions. Finally, we show how vulnerability of specific neuronal cell types may facilitate systemic dysfunctions leading to multiple network alterations. These functional alterations underlie diverse motor and non-motor manifestations of Parkinson's disease that occur before overt neurodegeneration. However, we now understand that therapeutic targeting of alpha-synuclein in Parkinson's disease patients requires caution, since this protein exerts important physiological synaptic functions. Moreover, the interactions of alpha-synuclein with other molecules may induce synergistic detrimental effects. Thus, targeting only alpha-synuclein might not be enough. Combined therapies should be considered in the future.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Human Sciences and Promotion of the Quality of Life, Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
42
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
43
|
Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GES. DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship. Pharmacol Rep 2023:10.1007/s43440-023-00500-5. [PMID: 37269487 DOI: 10.1007/s43440-023-00500-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Parkinson's disease (PD) usually occurs due to the degeneration of dopaminergic neurons in the substantia nigra (SN). Management of PD is restricted to symptomatic improvement. Consequently, a novel treatment for managing motor and non-motor symptoms in PD is necessary. Abundant findings support the protection of dipeptidyl peptidase 4 (DPP-4) inhibitors in PD. Consequently, this study aims to reveal the mechanism of DPP-4 inhibitors in managing PD. DPP-4 inhibitors are oral anti-diabetic agents approved for managing type 2 diabetes mellitus (T2DM). T2DM is linked with an increased chance of the occurrence of PD. Extended usage of DPP-4 inhibitors in T2DM patients may attenuate the development of PD by inhibiting inflammatory and apoptotic pathways. Thus, DPP-4 inhibitors like sitagliptin could be a promising treatment against PD neuropathology via anti-inflammatory, antioxidant, and anti-apoptotic impacts. DPP-4 inhibitors, by increasing endogenous GLP-1, can also reduce memory impairment in PD. In conclusion, the direct effects of DPP-4 inhibitors or indirect effects through increasing circulating GLP-1 levels could be an effective therapeutic strategy in treating PD patients through modulation of neuroinflammation, oxidative stress, mitochondrial dysfunction, and neurogenesis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
44
|
Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57-63. [PMID: 36590246 PMCID: PMC9800261 DOI: 10.1016/j.ibneur.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20-70% of people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin function are thought to play important roles. In this review, we have tried to summarize the effect of hyperglycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
45
|
Carús-Cadavieco M, Berenguer López I, Montoro Canelo A, Serrano-Lope MA, González-de la Fuente S, Aguado B, Fernández-Rodrigo A, Saido TC, Frank García A, Venero C, Esteban JA, Guix F, Dotti CG. Cognitive decline in diabetic mice predisposed to Alzheimer's disease is greater than in wild type. Life Sci Alliance 2023; 6:e202201789. [PMID: 37059474 PMCID: PMC10105330 DOI: 10.26508/lsa.202201789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aβ or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.
Collapse
Affiliation(s)
- Marta Carús-Cadavieco
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Inés Berenguer López
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Alba Montoro Canelo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Escuela Técnica Superior (E.T.S) de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Miguel A Serrano-Lope
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | | | - Begoña Aguado
- Genomics and NGS Facility, Centro de Biología Molecular Severo Ochoa(CBM) CSIC-UAM, Madrid, Spain
| | - Alba Fernández-Rodrigo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ana Frank García
- Department of Neurology, Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - José A Esteban
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Francesc Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS) - Universitat Ramón Llull (URL), Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| |
Collapse
|
46
|
Aune D, Schlesinger S, Mahamat-Saleh Y, Zheng B, Udeh-Momoh CT, Middleton LT. Diabetes mellitus, prediabetes and the risk of Parkinson's disease: a systematic review and meta-analysis of 15 cohort studies with 29.9 million participants and 86,345 cases. Eur J Epidemiol 2023; 38:591-604. [PMID: 37185794 PMCID: PMC10232631 DOI: 10.1007/s10654-023-00970-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/27/2023] [Indexed: 05/17/2023]
Abstract
A diagnosis of diabetes mellitus and prediabetes has been associated with increased risk of Parkinson's disease (PD) in several studies, but results have not been entirely consistent. We conducted a systematic review and meta-analysis of cohort studies on diabetes mellitus, prediabetes and the risk of PD to provide an up-to-date assessment of the evidence. PubMed and Embase databases were searched for relevant studies up to 6th of February 2022. Cohort studies reporting adjusted relative risk (RR) estimates and 95% confidence intervals (CIs) for the association between diabetes, prediabetes and Parkinson's disease were included. Summary RRs (95% CIs) were calculated using a random effects model. Fifteen cohort studies (29.9 million participants, 86,345 cases) were included in the meta-analysis. The summary RR (95% CI) of PD for persons with diabetes compared to persons without diabetes was 1.27 (1.20-1.35, I2 = 82%). There was no indication of publication bias, based on Egger's test (p = 0.41), Begg's test (p = 0.99), and inspection of the funnel plot. The association was consistent across geographic regions, by sex, and across several other subgroup and sensitivity analyses. There was some suggestion of a stronger association for diabetes patients reporting diabetes complications than for diabetes patients without complications (RR = 1.54, 1.32-1.80 [n = 3] vs. 1.26, 1.16-1.38 [n = 3]), vs. those without diabetes (pheterogeneity=0.18). The summary RR for prediabetes was 1.04 (95% CI: 1.02-1.07, I2 = 0%, n = 2). Our results suggest that patients with diabetes have a 27% increased relative risk of developing PD compared to persons without diabetes, and persons with prediabetes have a 4% increase in RR compared to persons with normal blood glucose. Further studies are warranted to clarify the specific role age of onset or duration of diabetes, diabetic complications, glycaemic level and its long-term variability and management may play in relation to PD risk.
Collapse
Affiliation(s)
- Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, W2 1PG, Paddington, London, UK.
- Department of Nutrition, Oslo New University College, Oslo, Norway.
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Sabrina Schlesinger
- Institute for Biometry and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Chinedu T Udeh-Momoh
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Lefkos T Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College NHS Healthcare Trust, London, UK
| |
Collapse
|
47
|
Chen Y, Yao L, Zhao S, Xu M, Ren S, Xie L, Liu L, Wang Y. The oxidative aging model integrated various risk factors in type 2 diabetes mellitus at system level. Front Endocrinol (Lausanne) 2023; 14:1196293. [PMID: 37293508 PMCID: PMC10244788 DOI: 10.3389/fendo.2023.1196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Senkevich K, Alipour P, Chernyavskaya E, Yu E, Noyce AJ, Gan-Or Z. Potential Protective Link Between Type I Diabetes and Parkinson's Disease Risk and Progression. Mov Disord 2023. [PMID: 37148456 DOI: 10.1002/mds.29424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggested an association between Parkinson's disease (PD) and type 2 diabetes, but less is known about type 1 diabetes (T1D) and PD. OBJECTIVE This study sought to explore the association between T1D and PD. METHODS We used Mendelian randomization, linkage disequilibrium score regression, and multi-tissue transcriptome-wide analysis to examine the association between PD and T1D. RESULTS Mendelian randomization showed a potentially protective role of T1D for PD risk (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.94-0.99; P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88-0.99; P = 0.044) and cognitive progression (OR, 1.50; 95% CI, 1.08-2.09; P = 0.015). We further found a negative genetic correlation between T1D and PD (rg = -0.17; P = 0.016), and we identified eight genes in cross-tissue transcriptome-wide analysis that were associated with both traits. CONCLUSIONS Our results suggest a potential genetic link between T1D and PD risk and progression. Larger comprehensive epidemiological and genetic studies are required to validate our findings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Paria Alipour
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | | | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
49
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Exosomes from Inflamed Macrophages Promote the Progression of Parkinson's Disease by Inducing Neuroinflammation. Mol Neurobiol 2023; 60:1914-1928. [PMID: 36596964 DOI: 10.1007/s12035-022-03179-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
Inflammation is a common feature both for Parkinson's disease (PD) and obesity-associated metabolic syndromes. Inflammation mediated by inflamed macrophages in white adipose tissue plays a pivotal role for the pathogenesis of metabolic syndromes. Exosomes are important carriers connecting peripheral tissues and the central nervous system (CNS). Therefore, we speculate that exosomes derived from inflamed macrophages may be involved in the pathological progression of PD. Here, we prepared exosomes from lipopolysaccharide (LPS) or interferon gamma (IFNγ) treated macrophages (inflamed macrophages) and examined their potential roles in PD. Our data showed that exosomes from inflamed macrophages stimulate proinflammatory cytokine expression in primary microglia and astrocytes. In vivo, inflamed macrophage exosomes induce behavioral defects in mice as evidenced by shortened duration in the rotarod test and prolonged latency in the pole test. The treatment of exosomes also reduces tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and striatum. All these PD-like phenotypes are likely due to the activation of microglia and astrocytes induced by exosomes from inflamed macrophages. Exosome sequencing, together with bioinformatics analysis and functional studies, revealed that exosomal miRNAs such as miR-155-5p are likely a key factor for inducing an inflammatory response in glial cells. These results indicate that exosomes derived from inflamed macrophages are likely a causative factor for developing PD. In this regard, inflamed macrophage exosomes might be a linker transducing the peripheral tissue inflammation into the CNS.
Collapse
|