1
|
Sayyad PW, Park SJ, Ha TJ. Recent advances in biosensors based on metal-oxide semiconductors system-integrated into bioelectronics. Biosens Bioelectron 2024; 259:116407. [PMID: 38776800 DOI: 10.1016/j.bios.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Metal-oxide semiconductors (MOSs) have emerged as pivotal components in technology related to biosensors and bioelectronics. Detecting biomarkers in sweat provides a glimpse into an individual's metabolism without the need for sample preparation or collection steps. The distinctive attributes of this biosensing technology position it as an appealing option for biomedical applications beyond the scope of diagnosis and healthcare monitoring. This review encapsulates ongoing developments of cutting-edge biosensors based on MOSs. Recent advances in MOS-based biosensors for human sweat analyses are reviewed. Also discussed is the progress in sweat-based biosensing technologies to detect and monitor diseases. Next, system integration of biosensors is demonstrated ultimately to ensure the accurate and reliable detection and analysis of target biomarkers beyond individual devices. Finally, the challenges and opportunities related to advanced biosensors and bioelectronics for biomedical applications are discussed.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Joon Park
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Tae-Jun Ha
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
2
|
Beura SK, Panigrahi AR, Yadav P, Palacio I, Casero E, Quintana C, Singh J, Singh MK, Martín Gago JA, Singh SK. Harnessing two-dimensional nanomaterials for diagnosis and therapy in neurodegenerative diseases: Advances, challenges and prospects. Ageing Res Rev 2024; 94:102205. [PMID: 38272267 DOI: 10.1016/j.arr.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are specific brain disorders characterized by the progressive deterioration of different motor activities as well as several cognitive functions. Current conventional therapeutic options for NDDs are limited in addressing underlying causes, delivering drugs to specific neuronal targets, and promoting tissue repair following brain injury. Due to the paucity of plausible theranostic options for NDDs, nanobiotechnology has emerged as a promising field, offering an interdisciplinary approach to create nanomaterials with high diagnostic and therapeutic efficacy for these diseases. Recently, two-dimensional nanomaterials (2D-NMs) have gained significant attention in biomedical and pharmaceutical applications due to their precise drug-loading capabilities, controlled release mechanisms, enhanced stability, improved biodegradability, and reduced cell toxicity. Although various studies have explored the diagnostic and therapeutic potential of different nanomaterials in NDDs, there is a lack of comprehensive review addressing the theranostic applications of 2D-NMs in these neuronal disorders. Therefore, this concise review aims to provide a state-of-the-art understanding of the need for these ultrathin 2D-NMs and their potential applications in biosensing and bioimaging, targeted drug delivery, tissue engineering, and regenerative medicine for NDDs.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Irene Palacio
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Manoj Kumar Singh
- Department of Physics, School of Engineering and Technology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana 123031, India
| | - Jose A Martín Gago
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain.
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Bakr AM, Darwish A, Azab AA, El Awady ME, Hamed AA, Elzwawy A. Structural, dielectric, and antimicrobial evaluation of PMMA/CeO 2 for optoelectronic devices. Sci Rep 2024; 14:2548. [PMID: 38291193 PMCID: PMC11303398 DOI: 10.1038/s41598-024-52840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
In the current report, we have successfully synthesized nanocomposites of PMMA incorporating different doping of CeO2 through a chemical approach. XRD results reflects decent matching for CeO2 nanoparticles with 29 nm crystallite size. FTIR spectroscopy demonstrates the characteristic functional groups validating the successful formation of the composite. The optical study of PMMA and the nanocomposites has proven that the optical properties such as band gap, refractive index, optical permittivity, and loss tangent factor are affected by adding CeO2 to the PMMA matrix.The peak residing around 420 nm by UV measurements is allocated to occurring electrons photoexcitation from the valence to conduction band inherent in CeO2. The dielectric measurements were achieved using broadband dielectric spectroscopy upon a wide span of frequencies (10-1-107 Hz) and within temperatures from - 10 to 80 °C with a step of 10 °C. The permittivity decreases by adding CeO2 and the dielectric parameters are thermally enhanced, however, the temperature influence is based on CeO2 content, the higher the CeO2 amount, the higher the influence of temperature. The results of the nanocomposites revealed antibacterial activity counter to gram-positive bacteria strain (S. aureus, and B. subtilis), and gram-negative bacteria (E. coli, and K. pneumoniae), yeast (C. albicans, as well as fungi (A. niger). Inherently, the change in CeO2 concentration from 0.01 to 0.1 wt% delivers maximum influence against gram-negative bacteria. These PMMA CeO2-doped composites are beneficial for optoelectronic areas and devices.
Collapse
Affiliation(s)
- Ahmed M Bakr
- Spectroscopy Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abdelfattah Darwish
- Microwave Physics and Dielectrics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - A A Azab
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed E El Awady
- Microbial Biotechnology Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre (NRC), 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC), 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Gao F, Hong W, Yang T, Qiao C, Li J, Xiao X, Zhao Z, Zhang C, Tang J. Expanded interlayer spacing of SnO 2 QDs-Decorated MXene for highly selective luteolin detection with Ultra-Low limit of detection. J Colloid Interface Sci 2024; 653:561-569. [PMID: 37734198 DOI: 10.1016/j.jcis.2023.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Although there have been advancements in electrochemical catalysts for luteolin detection, their practical use is constrained by low sensitivity, inadequate selectivity, and unsatisfactory limit of detection. MXene, a class of 2D materials, possesses exceptional physical-chemical properties that make it highly suitable for electrochemical detection. Nevertheless, the self-stacking and limited interlayer spacing of MXene impede its extensive application in electrochemical detection. Herein, a SnO2 QDs-MXene composite is synthesized for selective electrochemical detection of luteolin. Inserting SnO2 QDs between tightly stacked MXene layers expands the d-spacing of MXene, enhancing the specific surface area and enabling abundant active sites for redox reactions. The inclusion of MXene in the modified SnO2 QDs-MXene/GCE electrode significantly enhances electron transfer. As a result, the electrode demonstrates exceptional luteolin detection capabilities, including a wide linear range (0.1-1200 nM), high sensitivity (12.4 μA μM-1), and an ultra-low limit of detection (0.14 nM). Additionally, the SnO2 QDs-MXene/GCE electrode exhibits good repeatability, excellent reproducibility, remarkable stability, and high selectivity, making it suitable for practical sample analysis. This research contributes to advancing ultra-low limit of detection sensors for accurate luteolin detection.
Collapse
Affiliation(s)
- Feng Gao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| | - Weihua Hong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Tao Yang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Chenhui Qiao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Jingjia Li
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Xi Xiao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Ziying Zhao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Chao Zhang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| | - Junyuan Tang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| |
Collapse
|
5
|
Dutta T, Noushin T, Tabassum S, Mishra SK. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6849. [PMID: 37571634 PMCID: PMC10422562 DOI: 10.3390/s23156849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, IIEST Shibpur, Howrah 711103, West Bengal, India;
| | - Tanzila Noushin
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Satyendra K. Mishra
- Danish Offshore Technology Center, Technical University of Denmark, 2800 Lyngby, Denmark
- SRCOM, Centre Technologic de Telecomunicacions de Catalunya, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
6
|
Aydın R, Akkaya A, Kahveci O, Şahin B. Nanostructured CuO Thin-Film-Based Conductometric Sensors for Real-Time Tracking of Sweat Loss. ACS OMEGA 2023; 8:20009-20019. [PMID: 37305318 PMCID: PMC10249139 DOI: 10.1021/acsomega.3c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Enhanced sweat sensors lead to real-time, sustained, noninvasive tracking of sweat loss, ensure insight into individual health conditions at the molecular level, and have obtained prominent interest for their hopeful implementations in customized health tracking. Metal-oxide-based nanostructured electrochemical amperometric sensing materials are the best selection for continuous sweat monitoring devices owing to their high stability, high-sensing capacity, cost-effectiveness, miniaturization, and wide applicability. In this research, CuO thin films have been fabricated by successive ionic layer adsorption and reaction technique (SILAR) with and without the addition of Lawsonia inermis L. (Henna, (LiL)) leaf extract (C10H6O3, 2-hydroxy-1,4-naphthoquinone) with a high-sensitive and rapid response for sweat solution. Despite the pristine film being responsive to the 65.50 mM sweat solution (S = 2.66), the response characteristic improves to 3.95 for the 1.0% LiL-implemented CuO film. Unmodified, 1.0% LiL and 3.0% LiL-substituted thin-film materials assure considerable linearity with linear regression ranges, R2, of 0.989, 0.997, and 0.998, respectively. It is noteworthy here that this research aims to determine an enhanced system that could potentially be implemented in real-life sweat-tracking administrations. Real-time sweat loss tracking capabilities of CuO samples was found to be promising. Derived from these outcomes, we concluded that the fabricated nanostructured CuO-based sensing system is a useful application for the continuous observation of sweat loss as a biological argument and compatibility with other microelectronic technologies.
Collapse
Affiliation(s)
- Raşit Aydın
- Department
of Physics, Faculty of Sciences, Selcuk
University, Konya 42130, Turkey
| | - Abdullah Akkaya
- Mucur
Technical Vocational Schools, Tech. Prog. Department, Kırşehir Ahi Evran University, Kırşehir 40100, Turkey
| | - Osman Kahveci
- Department
of Physics, Faculty of Sciences, Erciyes
University, Kayseri 38039, Turkey
| | - Bünyamin Şahin
- Department
of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
7
|
Vinitha V, Preeyanghaa M, Anbarasu M, Neppolian B, Sivamurugan V. Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27567-0. [PMID: 37217818 DOI: 10.1007/s11356-023-27567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
The waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM. The reaction parameters such as PET-to-catalyst ratio, microwave power and irradiation time, temperature and catalyst recycling have been optimised. The catalyst was found to be more stable and could be recycled up to six times without losing its activity. Both the aminolysis and glycolysis of PES showed 100% conversion and afforded of bis (2-hydroxy ethylene) terephthalamide (BHETA) and bis (2-hydroxy ethylene) terephthalate (BHET), respectively. The depolymerisation of PES wastes using Ag-doped ZnO afforded BHETA and BHET for about 95 and 90%, respectively. The monomers BHET and BHETA confirmed by FT-IR, 1H NMR and mass spectroscopy. According to the findings, 2 mol% Ag-doped ZnO has higher catalytic activity.
Collapse
Affiliation(s)
- Viswanathan Vinitha
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Murugan Anbarasu
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Vajiravelu Sivamurugan
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India.
| |
Collapse
|
8
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
9
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
10
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
11
|
Sypabekova M, Hagemann A, Rho D, Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. BIOSENSORS 2022; 13:bios13010036. [PMID: 36671871 PMCID: PMC9856095 DOI: 10.3390/bios13010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Aidan Hagemann
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Donggee Rho
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
12
|
Senthamil C, Hemalatha J, Nandhabala S, Nivetha A, Sakthivel C, Prabha I. Multifunctionalized Metal Chalcogenides and Their Roles in Catalysis and Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | - Inbaraj Prabha
- Department of Chemistry Bharathiar University Coimbatore 641 046 India
| |
Collapse
|
13
|
Maciulis V, Ramanaviciene A, Plikusiene I. Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244413. [PMID: 36558266 PMCID: PMC9783830 DOI: 10.3390/nano12244413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Nanostructured materials formed from metal oxides offer a number of advantages, such as large surface area, improved mechanical and other physical properties, as well as adjustable electronic properties that are important in the development and application of chemical sensors and biosensor design. Nanostructures are classified using the dimensions of the nanostructure itself and their components. In this review, various types of nanostructures classified as 0D, 1D, 2D, and 3D that were successfully applied in chemical sensors and biosensors, and formed from metal oxides using different synthesis methods, are discussed. In particular, significant attention is paid to detailed analysis and future prospects of the synthesis methods of metal oxide nanostructures and their integration in chemical sensors and biosensor design.
Collapse
Affiliation(s)
- Vincentas Maciulis
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
14
|
Moghadam PR, Lotfi S, Askari N, Beheshti-Marnani A. Concurrent detection of low levels of two important neurotransmitters in real physiological samples by a nano-needle metal oxide hybridized with graphene oxide. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Madhu S, Ramasamy S, Choi J. Recent Developments in Electrochemical Sensors for the Detection of Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15121488. [PMID: 36558939 PMCID: PMC9786047 DOI: 10.3390/ph15121488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The development of efficient point-of-care (POC) diagnostic tools for detecting infectious diseases caused by destructive pathogens plays an important role in clinical and environmental monitoring. Nevertheless, evolving complex and inconsistent antibiotic-resistant species mire their drug efficacy. In this regard, substantial effort has been expended to develop electrochemical sensors, which have gained significant interest for advancing POC testing with rapid and accurate detection of resistant bacteria at a low cost compared to conventional phenotype methods. This review concentrates on the recent developments in electrochemical sensing techniques that have been applied to assess the diverse latent antibiotic resistances of pathogenic bacteria. It deliberates the prominence of biorecognition probes and tailor-made nanomaterials used in electrochemical antibiotic susceptibility testing (AST). In addition, the bimodal functional efficacy of nanomaterials that can serve as potential transducer electrodes and the antimicrobial agent was investigated to meet the current requirements in designing sensor module development. In the final section, we discuss the challenges with contemporary AST sensor techniques and extend the key ideas to meet the demands of the next POC electrochemical sensors and antibiotic design modules in the healthcare sector.
Collapse
|
16
|
Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Saeed M, Upadhye VJ, Kim B. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 2022; 155:113791. [DOI: 10.1016/j.biopha.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022] Open
|
17
|
Ma Q, Mu Y, Gong L, Zhu C, Di S, Cheng M, Gao J, Shi J, Zhang L. Manganese-based nanoadjuvants for enhancement of immune effect of DNA vaccines. Front Bioeng Biotechnol 2022; 10:1053872. [PMID: 36338143 PMCID: PMC9633283 DOI: 10.3389/fbioe.2022.1053872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
As a highly pathogenic avian influenza virus, influenza A (H5N1) has been reported to infect humans, posing a major threat to both poultry industry and public health. It is an urgent need to develop a kind of effective vaccine to prevent death and reduce the incidence rate of H5N1 avian influenza. Compared with traditional inactivated or attenuated vaccines, deoxyribonucleic (DNA) vaccines have the advantages of continuously expressing plasmid-encoded antigens and inducing humoral and cellular immunity. However, the immune effect of DNA vaccines is limited to its poor immunogenicity. Using of nanoadjuvants with DNA vaccines holds a great promise to increase the transfection efficiency and immunogenicity of DNA vaccines. In this study, we developed a nano co-delivery system with a manganese-based liposome as adjuvant for delivery of a DNA vaccine. This system has been found to protect DNA vaccine, enhance phagocytosis as well as promote activation of antigen-presenting cells (APCs) and immune cells in draining lymph nodes. In addition, the effect of this nanovaccine has been evaluated in mouse models, where it induces highly potent hemagglutination inhibitory antibody (HI) and IgG antibodies, while activating both humoral and cellular immunity in the host. Overall, this strategy opens up a new prospect for manganese nanoadjuvants in increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Science, Northwest A & F University, Xianyang, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shiming Di
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinming Gao
- College of Chemistry and Pharmacy, Northwest A & F University, Xianyang, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Jihai Shi
- Department of Dermatology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| |
Collapse
|
18
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
19
|
Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS OMEGA 2022; 7:22073-22088. [PMID: 35811879 PMCID: PMC9260923 DOI: 10.1021/acsomega.2c01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 10/04/2023]
Abstract
Advances in nanotechnology over the past decade have emerged as a substitute for conventional therapies and have facilitated the development of economically viable biosensors. Next-generation biosensors can play a significant role in curbing the spread of various viruses, including HCoV-2, and controlling morbidity and mortality. Pertaining to the impact of the current pandemic, there is a need for point-of-care biosensor-based testing as a detection method to accelerate the detection process. Integrating biosensors with nanostructures could be a substitute for ultrasensitive label-free biosensors to amplify sensing and miniaturization. Notably, next-generation biosensors could expedite the detection process. An elaborate description of various types of functionalized nanomaterials and their synthetic aspects is presented. The utility of the functionalized nanostructured materials for fabricating nanobiosensors to detect several types of viral infections is described in this review. This review also discusses the choice of appropriate nanomaterials, as well as challenges and opportunities in the field of nanobiosensors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
- Department
of Chemistry, Kirori Mal College, University
of Delhi, New Delhi, Delhi 110007, India
| | - Ritika Sharma
- Department
of Biochemistry, University of Delhi, New Delhi, Delhi 110021, India
| | - Bhawna
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi 110021, India
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, Delhi 110021, India
| | - Susheel Kalia
- Department
of Chemistry, Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Pankaj Thakur
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| |
Collapse
|
20
|
Kavetskyy T, Smutok O, Demkiv O, Kukhazh Y, Stasyuk N, Leonenko E, Kiv A, Kobayashi Y, Kinomura A, Šauša O, Gonchar M, Katz E. Improvement of laccase biosensor characteristics using sulfur-doped TiO2 nanoparticles. Bioelectrochemistry 2022; 147:108215. [DOI: 10.1016/j.bioelechem.2022.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
|
21
|
A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Yin Z, Lu B, Chen Y, Guo C. Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Front Bioeng Biotechnol 2022; 10:900269. [PMID: 35711642 PMCID: PMC9194854 DOI: 10.3389/fbioe.2022.900269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Electron transport layer (ETL), one of the important layers for high-performing perovskite solar cells (PSCs), also has great potential in bioengineering applications. It could be used for biological sensors, biological imaging, and biomedical treatments with high resolution or efficiency. Seldom research focused on the development of biological material for ETL and their application in biological uses. This review will introduce commercial and biological materials used in ETL to help readers understand the working mechanism of ETL. And the ways to prepare ETL at low temperatures will also be introduced to improve the performance of ETL. Then this review summarizes the latest research on material doping, material modification, and bilayer ETL structures to improve the electronic transmission capacity of ETLs. Finally, the application of ETLs in bioengineering will be also shown to demonstrate that ETLs and their used material have a high potential for biological applications.
Collapse
Affiliation(s)
- Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Biao Lu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Yanbo Chen
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Caixia Guo
- Presidents’ Office of China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
23
|
Subramanian A, Azimi M, Leong CY, Lee SL, Santato C, Cicoira F. Solution-Processed Titanium Dioxide Ion-Gated Transistors and Their Application for pH Sensing. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.813535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium dioxide (TiO2) is an abundant metal oxide, widely used in food industry, cosmetics, medicine, water treatment and electronic devices. TiO2 is of interest for next-generation indium-free thin-film transistors and ion-gated transistors due to its tunable optoelectronic properties, ambient stability, and solution processability. In this work, we fabricated TiO2 films using a wet chemical approach and demonstrated their transistor behavior with room temperature ionic liquids and aqueous electrolytes. In addition, we demonstrated the pH sensing behavior of the TiO2 IGTs with a sensitivity of ∼48 mV/pH. Furthermore, we demonstrated a low temperature (120°C), solution processed TiO2-based IGTs on flexible polyethylene terephthalate (PET) substrates, which were stable under moderate tensile bending.
Collapse
|
24
|
Yang J, Lu S, Wu H, Hu H, Miao Q, Huang L, Chen L, Ni Y. Mussel-Inspired Magnetic Dissolving Pulp Fibers Toward the Adsorption and Degradation of Organic Dyes. Front Chem 2022; 10:840133. [PMID: 35372284 PMCID: PMC8965010 DOI: 10.3389/fchem.2022.840133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, a simple synthetic method was used to prepare a new type of magnetic dissolving pulp (MDP) @polydopamine (PDA) fibers. The hydroxyl groups of the fibers were converted into carboxyl groups after succinylation. Fe3O4 nanoparticles were grown in situ on the fibers. The prepared MDP@PDA fibers have catalytic reduction efficiency and adsorption performance for methylene blue organic dyes, and it has been thoroughly tested under various pH conditions. Fe3O4@PDA fibers have high reusability, are easy to separate, and regenerate quickly. The catalytic and adsorption efficiency barely decreases after repeated use. The surface of dissolving pulp fibers with a functionalized multifunctional PDA coating is used to create multifunctional catalysts and adsorbent materials. This study presents a very useful and convenient method for the synthesis and adjustment of MDP@PDA fibers, which have a wide range of potential applications in catalysis and wastewater treatment.
Collapse
Affiliation(s)
- Jiawei Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Huichao Hu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Qingxian Miao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Chemical Engineering, Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
25
|
Fattahi A, Koohsari P, Shadman Lakmehsari M, Ghandi K. The Impact of the Surface Modification on Tin-Doped Indium Oxide Nanocomposite Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:155. [PMID: 35010105 PMCID: PMC8746389 DOI: 10.3390/nano12010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
This review provides an analysis of the theoretical methods to study the effects of surface modification on structural properties of nanostructured indium tin oxide (ITO), mainly by organic compounds. The computational data are compared with experimental data such as X-ray diffraction (XRD), atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDS) data with the focus on optoelectronic and electrocatalytic properties of the surface to investigate potential relations of these properties and applications of ITO in fields such as biosensing and electronic device fabrication. Our analysis shows that the change in optoelectronic properties of the surface is mainly due to functionalizing the surface with organic molecules and that the electrocatalytic properties vary as a function of size.
Collapse
Affiliation(s)
- Arash Fattahi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Peyman Koohsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Muhammad Shadman Lakmehsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
26
|
Lohcharoenkal W, Abbas Z, Rojanasakul Y. Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. BIOSENSORS 2021; 11:364. [PMID: 34677320 PMCID: PMC8533878 DOI: 10.3390/bios11100364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Collapse
Affiliation(s)
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
27
|
Abbas HA, Radwan ALA, Khaled E, Hassan RY. Synthesis and characterization of nanostructured copper and lanthanum co‐doped zirconia for voltammetric sensing of tumor biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Hussien A. Abbas
- Inorganic Chemistry Department National Research Centre Cairo Egypt
| | | | - Elmorsy Khaled
- Applied Organic Chemistry Department National Research Centre Giza Egypt
| | - Rabeay Y.A. Hassan
- Applied Organic Chemistry Department National Research Centre Giza Egypt
- Nanoscience Program, Zewail City of Science and Technology University of Science and Technology (UST) Giza Egypt
| |
Collapse
|
28
|
Qin L, Mawignon FJ, Hussain M, Ange NK, Lu S, Hafezi M, Dong G. Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4083. [PMID: 34361276 PMCID: PMC8347016 DOI: 10.3390/ma14154083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
Ultraviolet (UV) sensors offer significant advantages in human health protection and environmental pollution monitoring. Amongst various materials for UV sensors, the zinc oxide (ZnO) nanostructure is considered as one of the most promising candidates due to its incredible electrical, optical, biomedical, energetic and preparing properties. Compared to other fabricating techniques, hydrothermal synthesis has been proven to show special advantages such as economic cost, low-temperature process and excellent and high-yield production. Here, we summarize the latest progress in research about the hydrothermal synthesis of ZnO nanostructures for UV sensing. We particularly focus on the selective hydrothermal processes and reveal the effect of key factors/parameters on ZnO architectures, such as the laser power source, temperature, growth time, precursor, seeding solution and bases. Furthermore, ZnO hydrothermal nanostructures for UV applications as well as their mechanisms are also summarized. This review will therefore enlighten future ideas of low-temperature and low-cost ZnO-based UV sensors.
Collapse
Affiliation(s)
- Liguo Qin
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (F.J.M.); (M.H.); (N.K.A.); (S.L.); (M.H.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
29
|
Saraji M, Alijani S. A molecularly imprinted polymer on chromium (ΙΙΙ) oxide nanoparticles for spectrofluorometric detection of bisphenol A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119711. [PMID: 33774415 DOI: 10.1016/j.saa.2021.119711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
A unique fluorescent probe for the detection of bisphenol A (BPA) was established by creating a molecularly imprinted polymer (MIP) shell on chromium (ΙΙΙ) oxide nanoparticles (Cr2O3 NPs). The advantages of high selectivity of MIPs and the strong fluorescence property of Cr2O3 NPs were combined for the preparation of the probe. MIPs-coated Cr2O3 NPs were composed by anchoring MIP layer on the surface of Cr2O3 NPs using one-pot precipitation polymerization. Acrylic-based monomer and cross-linker were used to prepared MIP. The MIP-coated Cr2O3 NPs were characterized by spectrofluorometery, Fourier transform infrared spectroscopy, transmission electron microscopy, field transmission electron microscopy, dynamic light scattering, EDX and elemental mapping. The prepared NPs showed strong fluorescence emission at 360 nm excited at 300 nm which quenched in the presence of BPA. The dynamic range of the optical sensor was in the range of 0.04-4.4 μmol L-1 and the detection limit was 0.015 μmol L-1. The relative standard deviation was 2.2 and 1.3% for the concentration levels of 0.14 and 3.1 μmol L-1, respectively. The probe had a great selectivity in the determination of BPA with an imprinting factor of 6.3. The sensor was applied for the quantification of bisphenol A in water samples.
Collapse
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Shekoufeh Alijani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
30
|
Pineda-Reyes AM, Herrera-Rivera MR, Rojas-Chávez H, Cruz-Martínez H, Medina DI. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. SENSORS (BASEL, SWITZERLAND) 2021; 21:4425. [PMID: 34203318 PMCID: PMC8272168 DOI: 10.3390/s21134425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental-theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.
Collapse
Affiliation(s)
- Ana María Pineda-Reyes
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o. de Mayo S/N, Cuautitlán Izcalli, Estado de Mexico 54740, Mexico;
| | - María R. Herrera-Rivera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León 64849, Mexico;
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de Mexico 13508, Mexico;
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico
| |
Collapse
|
31
|
Zhang M, Adkins M, Wang Z. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing. SENSORS 2021; 21:s21103467. [PMID: 34065696 PMCID: PMC8156696 DOI: 10.3390/s21103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023]
Abstract
Semiconductor (SC)-based field-effect transistors (FETs) have been demonstrated as amazing enhancer gadgets due to their delicate interface towards surface adsorption. This leads to their application as sensors and biosensors. Additionally, the semiconductor material has enormous recognizable fixation extends, high affectability, high consistency for solid detecting, and the ability to coordinate with other microfluidic gatherings. This review focused on current progress on the semiconductor-interfaced FET biosensor through the fundamental interface structure of sensor design, including inorganic semiconductor/aqueous interface, photoelectrochemical interface, nano-optical interface, and metal-assisted interface. The works that also point to a further advancement for the trademark properties mentioned have been reviewed here. The emergence of research on the organic semiconductor interface, integrated biosensors with Complementary metal–oxide–semiconductor (CMOS)-compatible, metal-organic frameworks, has accelerated the practical application of biosensors. Through a solid request for research along with sensor application, it will have the option to move forward the innovative sensor with the extraordinary semiconductor interface structure.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Mitchell Adkins
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
| | - Zhe Wang
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
- Correspondence: ; Tel.: +1-248-370-2086
| |
Collapse
|
32
|
Ma Y, Zhang Y, Wang L. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid. Talanta 2021; 226:122105. [PMID: 33676661 DOI: 10.1016/j.talanta.2021.122105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/30/2023]
Abstract
In this manuscript, a layer of 2-methylimidazole zinc salt (ZIF-8) membrane is deposited on the surface of glassy carbon electrode (GCE) modified with platinum nanoparticles (Pt NPs) by reduction electrochemical method to obtain ZIF-8/Pt NPs/GCE, and then used for the detection of ascorbic acid (AA). The deposition of Pt NPs on the surface of GCE can not only guide the nucleation and growth of ZIF-8 membrane, but also exert a synergistic effect with it to enhance conductivity. For ZIF-8 membrane, it can increase the active area of electrode and thus improve the electrochemical response of the sensor for AA. Influence factors such as the deposition current density, deposition time on the surface morphology of the modified electrode, and the detection performance of the modified electrode during the electrochemical deposition of ZIF-8 membrane were explored to get the best performance. In addition, influence of conditions such as sweep speed and pH of the test solution on the electrochemical response signal of AA were also studied. Under the best conditions, the linear range of AA detection by this sensor is from 10 μmol L-1 to 2500 μmol L-1, and the detection limit is 5.2 μmol L-1 based on S/N = 3. What's more, the modified electrode also has good anti-interference ability, reproducibility and stability, and has achieved satisfactory results in the detection for AA in real samples.
Collapse
Affiliation(s)
- Ya Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Yunlong Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
33
|
Fazio E, Spadaro S, Corsaro C, Neri G, Leonardi SG, Neri F, Lavanya N, Sekar C, Donato N, Neri G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. SENSORS 2021; 21:s21072494. [PMID: 33916680 PMCID: PMC8038368 DOI: 10.3390/s21072494] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2−xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.
Collapse
Affiliation(s)
- Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Salvatore Spadaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Salvatore Gianluca Leonardi
- Institute of Advanced Technologies for Energy (ITAE)—CNR, Salita Santa Lucia Sopra Contesse 5, I-98126 Messina, Italy;
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Nehru Lavanya
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Nicola Donato
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| | - Giovanni Neri
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| |
Collapse
|
34
|
Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosens Bioelectron 2021; 176:112941. [DOI: 10.1016/j.bios.2020.112941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
|
35
|
Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials. Talanta 2020; 219:121308. [DOI: 10.1016/j.talanta.2020.121308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
36
|
Enesca A, Andronic L. The Influence of Photoactive Heterostructures on the Photocatalytic Removal of Dyes and Pharmaceutical Active Compounds: A Mini-Review. NANOMATERIALS 2020; 10:nano10091766. [PMID: 32906732 PMCID: PMC7560097 DOI: 10.3390/nano10091766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The diversification of pollutants type and concentration in wastewater has underlined the importance of finding new alternatives to traditional treatment methods. Advanced oxidation processes (AOPs), among others, are considered as promising candidate to efficiently remove organic pollutants such as dyes or pharmaceutical active compounds (PhACs). The present minireview resumes several recent achievements on the implementation and optimization of photoactive heterostructures used as photocatalysts for dyes and PhACs removal. The paper is focused on various methods of enhancing the heterostructure photocatalytic properties by optimizing parameters such as synthesis methods, composition, crystallinity, morphology, pollutant concentration and light irradiation.
Collapse
|
37
|
Sedki M, Chen Y, Mulchandani A. Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4811. [PMID: 32858906 PMCID: PMC7506755 DOI: 10.3390/s20174811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.
Collapse
Affiliation(s)
- Mohammed Sedki
- Department of Materials Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Ying Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|