1
|
Barbon S, Armellin F, Passerini V, De Angeli S, Primerano S, Del Pup L, Durante E, Macchi V, De Caro R, Parnigotto PP, Veronesi A, Porzionato A. Innate immune response in COVID-19: single-cell multi-omics profile of NK lymphocytes in a clinical case series. Cell Commun Signal 2024; 22:496. [PMID: 39407208 PMCID: PMC11476714 DOI: 10.1186/s12964-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) represents the biggest global health emergency in recent decades. The host immune response to SARS-CoV-2 seems to play a key role in disease pathogenesis and clinical manifestations, with Natural Killer (NK) lymphocytes being among the targets of virus-induced regulation. METHODS This study performed a single-cell multi-omics analysis of transcripts and proteins of NK lymphocytes in COVID-19 patients, for the characterization of the innate immunological response to infection. NK cells were isolated from peripheral blood samples collected from adult subjects divided into 3 study groups: (1) non-infected subjects (Naïve group, n = 3), (2) post COVID-19 convalescent subjects (Healed group, n = 3) and (3) patients that were vaccinated against SARS-CoV-2 (Vaccine group, n = 3). Cells were then analysed by the BD Rhapsody System for the single-cell multi-omics investigation of transcriptome and membrane proteins. RESULTS The bioinformatic analysis identified 5 cell clusters which differentially expressed gene/protein markers, defining NK cell subsets as "Active NK cells" and "Mature NK cells". Calculating the relative proportion of each cluster within patient groups, more than 40% of the Naïve group cell population was found to belong to Mature NKs, whereas more than 75% of the Vaccine group cell population belonged to the cluster of Active NKs. Regarding the Healed group, it seemed to show intermediate phenotype between Active and Mature NK cells. Differential expression of specific genes, proteins and signaling pathways was detected comparing the profile of the 3 experimental groups, revealing a more activated NK cell phenotype in vaccinated patients versus recovered individuals. CONCLUSIONS The present study detected differential expression of NK cell markers in relation to SARS-CoV-2 infection and vaccine administration, suggesting the possibility to identify key molecular targets for clinical-diagnostic use of the individual response to viral infection and/or re-infection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy.
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy.
| | - Fabrizio Armellin
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Verena Passerini
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Sergio De Angeli
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Simona Primerano
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Laura Del Pup
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Elisabetta Durante
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| | - Arianna Veronesi
- Complex Operative Unit of Transfusion Medicine - Marca Trevigiana Local Unit of Health and Social Services 2, Treviso Hospital, Piazzale dell'Ospedale 1, 31100, Treviso, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Via Gabelli 65, 35121, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling - T.E.S. Onlus, Padova, Italy
| |
Collapse
|
2
|
Lee I, Lee A, Shin S, Kumar S, Nam MH, Kang KW, Kim BS, Cho SD, Kim H, Han S, Park SH, Seo S, Jun HS. Use of a platform with lens-free shadow imaging technology to monitor natural killer cell activity. Biosens Bioelectron 2024; 261:116512. [PMID: 38908292 DOI: 10.1016/j.bios.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Natural killer (NK) cells are a crucial component of the innate immune system. This study introduces Cellytics NK, a novel platform for rapid and precise measurement of NK cell activity. This platform combines an NK-specific activation stimulator cocktail (ASC) and lens-free shadow imaging technology (LSIT), using optoelectronic components. LSIT captures digital hologram images of resting and ASC-activated NK cells, while an algorithm evaluates cell size and cytoplasmic complexity using shadow parameters. The combined shadow parameter derived from the peak-to-peak distance and width standard deviation rapidly distinguishes active NK cells from inactive NK cells at the single-cell level within 30 s. Here, the feasibility of the system was demonstrated by assessing NK cells from healthy donors and immunocompromised cancer patients, demonstrating a significant difference in the innate immunity index (I3). Cancer patients showed a lower I3 value (161%) than healthy donors (326%). I3 was strongly correlated with NK cell activity measured using various markers such as interferon-gamma, tumor necrosis factor-alpha, perforin, granzyme B, and CD107a. This technology holds promise for advancing immune functional assays, offering rapid and accurate on-site analysis of NK cells, a crucial innate immune cell, with its compact and cost-effective optoelectronic setup, especially in the post-COVID-19 era.
Collapse
Affiliation(s)
- Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hawon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunmi Han
- Metaimmunetech Inc., Sejong, 30019, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| |
Collapse
|
3
|
Kroll KW, Hueber B, Balachandran H, Afifi A, Manickam C, Nettere D, Pollara J, Hudson A, Woolley G, Ndhlovu LC, Reeves RK. FcαRI (CD89) is upregulated on subsets of mucosal and circulating NK cells and regulates IgA-class specific signaling and functions. Mucosal Immunol 2024; 17:692-699. [PMID: 38677592 PMCID: PMC11323182 DOI: 10.1016/j.mucimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Immunoglobulin A (IgA) is the predominant mucosal antibody class with both anti- and pro-inflammatory roles1-3. However, the specific role of the IgA receptor cluster of differentiation (CD)89, expressed by a subset of natural killer (NK) cells, is poorly explored. We found that CD89 protein expression on circulating NK cells is infrequent in humans and rhesus macaques, but transcriptomic analysis showed ubiquitous CD89 expression, suggesting an inducible phenotype. Interestingly, CD89+ NK cells were more frequent in cord blood and mucosae, indicating a putative IgA-mediated NK cell function in the mucosae and infant immune system. CD89+ NK cells signaled through upregulated CD3 zeta chain (CD3ζ), spleen tyrosine kinase (Syk), zeta chain-associated protein kinase 70 (ZAP70), and signaling lymphocytic activation molecule family 1 (SLAMF1), but also showed high expression of inhibitory receptors such as killer cell lectin-like receptor subfamily G (KLRG1) and reduced activating NKp46 and NKp30. CD89-based activation or antibody-mediated cellular cytotoxicity with monomeric IgA1 reduced NK cell functions, while antibody-mediated cellular cytotoxicity with combinations of IgG and IgA2 was enhanced compared to IgG alone. These data suggest that functional CD89+ NK cells survey mucosal sites, but CD89 likely serves as regulatory receptor which can be further modulated depending on IgA and IgG subclass. Although the full functional niche of CD89+ NK cells remains unexplored, these intriguing data suggest the CD89 axis could represent a novel immunotherapeutic target in the mucosae or early life.
Collapse
Affiliation(s)
- Kyle W Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ameera Afifi
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Danielle Nettere
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Justin Pollara
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Hudson
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
4
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
5
|
Sadhupati DP, Lakshmisudha R, Chakravarthy KNK, Naidana PS. A standardized combination of Terminalia chebula and Withania somnifera extracts enhances immune function in adults: a pilot randomized, double-blind, placebo-controlled clinical study. Food Nutr Res 2024; 68:10297. [PMID: 38863743 PMCID: PMC11165258 DOI: 10.29219/fnr.v68.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/13/2024] Open
Abstract
Background The use of botanical medicine has been demonstrated as a potential strategy to manage or treat a variety of health issues. Terminalia chebula (Retz) fruit and Withania somnifera (L.) Dunal roots are important medicinal herbs described in Ayurveda and traditional therapy for diverse health benefits. Objective This pilot study aimed to evaluate the immune function-enhancing potential of a unique blend of T. chebula fruit and W. somnifera root extracts, LN20189, in healthy men and women. Methods Forty healthy volunteers (age: 35-60 years) were randomized into two groups receiving either LN20189 (500 mg per day) or a matched placebo over 28 consecutive days. The total T-cell population was the primary efficacy measure in this study. The secondary efficacy measures included counts of CD4, CD8, natural killer (NK) cells, serum levels of interleukin-2 (IL-2), interferon-gamma (IFN-γ), total immunoglobulin-G (IgG), and Immune Function Questionnaire (IFQ) scores. Safety parameter assessments were also conducted. Results Post-trial, in LN20189-supplemented subjects, T cells, CD4, NK cells count, and the CD4:CD8 ratio were increased by 9.32, 10.10, 19.91, and 17.43%, respectively, as compared to baseline. LN20189 supplementation increased serum IFN-γ and IgG levels by 14.57 and 27.09% from baseline and by 13.98 and 21.99%, compared to placebo, respectively. Also, the IFQ scores in the LN20189 group were 84.68% (vs. baseline) and 69.44% (vs. placebo) lower at the end of the trial. LN20189 improved the study volunteers' cellular and humoral immune functions. Conclusion In summary, LN20189 supplementation was found tolerable and improved the key cellular and humoral factors of the immune system and helped improve immune function of the trial volunteers.
Collapse
Affiliation(s)
| | | | | | - Partha Sarathy Naidana
- Department of Community Medicine, ASR Academy of Medical Sciences, Eluru, Andhra Pradesh, India
| |
Collapse
|
6
|
Alles M, Gunasena M, Isckarus C, De Silva I, Board S, Mulhern W, Collins PL, Demberg T, Liyanage NPM. Novel Oral Adjuvant to Enhance Cytotoxic Memory-Like NK Cell Responses in an HIV Vaccine Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593683. [PMID: 38798447 PMCID: PMC11118904 DOI: 10.1101/2024.05.11.593683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Antibody-dependent cell-mediated cytotoxicity, mediated by natural killer (NK) cells and antibodies, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific (memory-like) cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.
Collapse
|
7
|
Zedan HT, Smatti MK, Al-Sadeq DW, Al Khatib HA, Nicolai E, Pieri M, Bernardini S, Hssain AA, Taleb S, Qotba H, Issa K, Abu Raddad LJ, Althani AA, Nasrallah GK, Yassine HM. SARS-CoV-2 infection triggers more potent antibody-dependent cellular cytotoxicity (ADCC) responses than mRNA-, vector-, and inactivated virus-based COVID-19 vaccines. J Med Virol 2024; 96:e29527. [PMID: 38511514 DOI: 10.1002/jmv.29527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.
Collapse
Affiliation(s)
- Hadeel T Zedan
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Duaa W Al-Sadeq
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Eleonora Nicolai
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Sara Taleb
- Department of Research, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hamda Qotba
- Department of Clinical Research, Primary Health Care Centers, Doha, Qatar
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Khodr Issa
- Proteomics, Inflammatory Response, and Mass Spectrometry (PRISM) Laboratory, INSERM U-1192, University of Lille, Lille, France
| | - Laith J Abu Raddad
- Department of Population Health Sciences, Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Asmaa A Althani
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Infectious Diseases Department, Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Jung EK, Chu TH, Kim SA, Vo MC, Nguyen VT, Lee KH, Jung SH, Yoon M, Cho D, Lee JJ, Yoon TM. Efficacy of natural killer cell therapy combined with chemoradiotherapy in murine models of head and neck squamous cell carcinoma. Cytotherapy 2024; 26:242-251. [PMID: 38142382 DOI: 10.1016/j.jcyt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based cancer immunotherapy is effective when combined with other treatment modalities such as irradiation and chemotherapy. NK cell's antitumor function to treat solid tumor, including head and neck squamous cell carcinoma (HNSCC), has been targeted recently. This study assessed NK cell recruitment in response to chemoradiation therapy (CRT) in HNSCC. METHODS Ex vivo expansion of NK cell, flow cytometry, cell viability assay, cytotoxicity assay, immunohistochemistry, and animal model were performed. RESULTS Mouse NK cells were recruited to the tumor site by CRT in a nude mouse model. Furthermore, expanded and activated human NK cells (eNKs) were recruited to the tumor site in response to CRT, and CRT enhanced the anti-tumor activity of eNK in an NOD/SCID IL-2Rγnull mouse model. Various HNSCC cancer cell lines exhibited different NK cell ligand activation patterns in response to CRT that correlated with NK cell-mediated cytotoxicity. CONCLUSIONS Identifying the activation patterns of NK cell ligands during CRT might improve patient selection for adjuvant NK cell immunotherapy combined with CRT. This is the first study to investigate the NK cell's antitumor function and recruitment with CRT in HNSCC mouse model.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea; Department of Hematology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Sun-Ae Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Van-Tan Nguyen
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| | - Tae Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| |
Collapse
|
9
|
Pahwa P, Vyas AK, Sevak JK, Singh R, Maras JS, Patra S, Sarin SK, Trehanpati N. Modulation of CD8 +T cells, NK cells and Th1cytokines by metabolic milieu in decline of HBV-viremia in pregnant women treated with tenofovir-disoproxil from second trimester of pregnancy. J Reprod Immunol 2024; 162:104208. [PMID: 38367478 DOI: 10.1016/j.jri.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
High HBV DNA levels predispose to mother to child transmission (MTCT) of HBV. Early nucleotide analogue (NA) therapy can reduce HBV DNA and minimize MTCT. We analysed immune-metabolic profile in pregnant mothers who received NA from 2nd trimester compared with untreated mothers. In 2nd trimester, there was no difference in immune profiles between Gr.1 and Gr.2 but high viral load women had downregulated pyruvate, NAD+ metabolism but in 3rd trimester, Gr.1 had significant reduction in HBV-DNA, upregulated pyruvate and NAD with increased IFN-2αA, CD8Tcells, NK cells and decreased Tregs, IL15, IL18, IL29, TGFβ3 compared to Gr.2. In Gr.1, three eAg-ve women showed undetectable DNA and HBsAg. At delivery, Gr.1 showed no MTCT, with undetectable HBV DNA, HBsAg, high CD8 and NK cells in two women. We conclude, that starting NA from second trimester, reduces HBV load and MTCT, modulates NAD, induces immunity and suggest use of NA in early gestation in future trials.
Collapse
Affiliation(s)
- Prabhjyoti Pahwa
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashish Kumar Vyas
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sharda Patra
- Department of Obstetrics and Gynaecology, Lady Harding Medical College, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
10
|
Hontecillas-Prieto L, García-Domínguez DJ, Palazón-Carrión N, Martín García-Sancho A, Nogales-Fernández E, Jiménez-Cortegana C, Sánchez-León ML, Silva-Romeiro S, Flores-Campos R, Carnicero-González F, Ríos-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Martínez-Banaclocha N, Gumà-Padrò J, Gómez-Codina J, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Labrador J, Guirado-Risueño M, Provencio-Pulla M, Sánchez-Beato M, Marylene L, Álvaro-Naranjo T, Casanova-Espinosa M, Rueda-Domínguez A, Sánchez-Margalet V, de la Cruz-Merino L. CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front Immunol 2024; 15:1293931. [PMID: 38469299 PMCID: PMC10926187 DOI: 10.3389/fimmu.2024.1293931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured with upfront standard chemoimmunotherapy schedules. However, in approximately 35-40% of the patients DLBCL relapses, and therefore, especially in this setting, the search for new prognostic and predictive biomarkers is an urgent need. Natural killer (NK) are effector cells characterized by playing an important role in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment response and survival in relapsed/refractory (R/R) DLBCL patients. Methods 78 patients received the R2-GDP schedule in the phase II trial. Blood samples were analyzed by flow cytometry. Statistical analyses were carried out in order to identify the prognostic potential of CD8+ NKs at baseline in R/R DLBCL patients. Results Our results showed that the number of circulating CD8+ NKs in R/R DLBCL patients were lower than in healthy donors, and it did not change during and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was associated with complete responses in patients with R/R DLBCL. In addition, we also demonstrated that CD8+ NKs levels have potential prognostic value in terms of overall survival in R/R DLBCL patients. Conclusion CD8+ NKs represent a new biomarker with prediction and prognosis potential to be considered in the clinical management of patients with R/R DLBCL. Clinical trial registration https://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-001620-29 EudraCT, ID:2014-001620-29.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Alejandro Martín García-Sancho
- Department of Hematology, Hospital Universitario de Salamanca, IBSAL, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Esteban Nogales-Fernández
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - María L. Sánchez-León
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Silvia Silva-Romeiro
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Rocío Flores-Campos
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | | | | | | | | | | | - Natividad Martínez-Banaclocha
- Oncology Dept., Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Josep Gumà-Padrò
- Department of Clinical Oncology, Hospital Universitari Sant Joan de Reus URV, IISPV, Reus, Spain
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario La Fé, Valencia, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Laura Gálvez-Carvajal
- Department of Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jorge Labrador
- Department of Hematology, Research Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - María Guirado-Risueño
- Department of Clinical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Provencio-Pulla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, CIBERONC, Madrid, Spain
| | - Lejeune Marylene
- Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, IISPV, URV, Tortosa, Tarragona, Spain
| | - Tomás Álvaro-Naranjo
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | | | | | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
11
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
12
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
13
|
Gazi U, Tosun O, Kursat Derici M, Karasartova D, Semra Gureser A, Taylan Ozkan A. Importance of NK Cells in Cellular and Humoral Responses Triggered by Pneumococcus Vaccination. Int Arch Allergy Immunol 2023; 185:362-369. [PMID: 38151005 PMCID: PMC11126198 DOI: 10.1159/000535562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
INTRODUCTION Despite the success of vaccination in reducing overall rate of pneumococcal pneumonia, Streptococcus pneumoniae is still held responsible for high mortality and modality rates worldwide. Our study aimed to investigate the potential role played by NK cells in immune response generated by pneumococcal vaccination, which could contribute to the development of more effective vaccines. METHODS The study included mice with and without NK cell depletion which were immunized with pneumococcus polysaccharide-conjugated vaccine followed by pneumococcus polysaccharide vaccine (PPV). Serum samples and splenocytes were collected from mice sacrificed 4 weeks after the last PPV dose. Serum samples were used for antibody level quantification by ELISA assay, while splenocytes were treated with PPV in vitro before monitoring CD4+ T-cell subsets (TH1, TH2, and TH17) and cytokine (IFN-γ, IL-4, and IL-17) secretion levels by flow cytometry and ELISA analysis, respectively. RESULTS Results demonstrated reduced pneumococcal IgG and TH1 cell levels due to NK cell depletion. Nevertheless, in contrast to these observations, IFN-γ secretion levels after in vitro PPV-23 treatment of splenocytes did not exhibit any statistically significant difference between the two mice groups. CONCLUSIONS The data indicate a positive contribution of NK cells to both T-cell and B-cell responses triggered against pneumococcal vaccination. Further studies are required to confirm our data and investigate the potential benefit of NK cell targeting in promoting vaccine efficacy, especially in the elderly population who continues to be affected significantly by pneumococcal pneumonia.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus,
| | - Ozgur Tosun
- Department of Biostatistics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Mehmet Kursat Derici
- Department of Medical Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Djursun Karasartova
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ayse Semra Gureser
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Aysegul Taylan Ozkan
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
14
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
16
|
Jeong J, Lim MK, Han EH, Lee SH, Lee S. Immune-enhancement effects of Angelica gigas Nakai extracts via MAPK/NF-ƙB signaling pathways in cyclophosphamide-induced immunosuppressed mice. Food Sci Biotechnol 2023; 32:1573-1584. [PMID: 37637834 PMCID: PMC10449711 DOI: 10.1007/s10068-023-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the immune-enhancement effects of Angelica gigas Nakai extract (ANE) and its yeast-fermented extract (FAN) in cyclophosphamide (CPP)-induced immunosuppressed mice. Angelica gigas Nakai (AGN) increased the protein level of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) and immune-related cytokines in mouse splenocytes. AGN also restored CPP-induced suppression of NK cell activity and splenocyte proliferation. Furthermore, AGN activated the ERK and p38 MAPK/NF-κB signaling pathways in mouse splenocytes via phosphorylation of signaling molecules. These findings indicate that upregulation of cytokines and enzymes may be closely associated with the MAPK/NF-κB signaling pathways. In conclusion, AGN can restore CPP-induced immunosuppression in mice, although there was no significant difference in the immune-enhancing effect between ANE and FAN. It is suggested that AGN might have the potential to enhance immunity as an immunostimulant under immunosuppressed conditions. Therefore, it could be used as an effective agent or a dietary supplement for improving immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01281-6.
Collapse
Affiliation(s)
- Jeongho Jeong
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Mi Kyung Lim
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Eun Hye Han
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Sang Ho Lee
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Soyeon Lee
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| |
Collapse
|
17
|
Clement M. The association of microbial infection and adaptive immune cell activation in Alzheimer's disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad015. [PMID: 38567070 PMCID: PMC10917186 DOI: 10.1093/discim/kyad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Nunes S, Tibúrcio R, Bonyek-Silva I, Oliveira PR, Khouri R, Boaventura V, Barral A, Brodskyn C, Tavares NM. Transcriptome Analysis Identifies the Crosstalk between Dendritic and Natural Killer Cells in Human Cutaneous Leishmaniasis. Microorganisms 2023; 11:1937. [PMID: 37630497 PMCID: PMC10459107 DOI: 10.3390/microorganisms11081937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Skin ulcers of cutaneous leishmaniasis (CL) are characterized by a localized inflammatory response mediated by innate and adaptive immune cells, including dendritic cells (DC) and natural killer (NK) cells. Bidirectional interactions between DCs and NK cells contribute to tailor leishmaniasis outcome. Despite advances in the Leishmania biology field in recent decades, the mechanisms involved in DC/NK-mediated control of Leishmania sp. pathogenesis as well as the cellular and molecular players involved in such interaction remain unclear. The present study sought to investigate canonical pathways associated with CL arising from Leishmania braziliensis infection. Initially, two publicly available microarray datasets of skin biopsies from active CL lesions were analyzed, and five pathways were identified using differentially expressed genes. The "Crosstalk between DCs and NK cells" pathway was notable due to a high number of modulated genes. The molecules significantly involved in this pathway were identified, and our findings were validated in newly obtained CL biopsies. We found increased expression of TLR4, TNFRSF1B, IL-15, IL-6, CD40, CCR7, TNF and IFNG, confirming the analysis of publicly available datasets. These findings reveal the "crosstalk between DCs and NK cells" as a potential pathway to be further explored in the pathogenesis of CL, especially the expression of CCR7, which is correlated with lesion development.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
| | - Rafael Tibúrcio
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
| | - Icaro Bonyek-Silva
- Baiano Federal Institute (IFBaiano), Xique-Xique 47400-000, Bahia, Brazil;
| | - Pablo Rafael Oliveira
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| | - Ricardo Khouri
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Viviane Boaventura
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Aldina Barral
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Cláudia Brodskyn
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| | - Natalia Machado Tavares
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| |
Collapse
|
19
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Choi JP, Ayoub G, Ham J, Huh Y, Choi SE, Hwang YK, Noh JY, Kim SH, Song JY, Kim ES, Chang YS. Exercise With a Novel Digital Device Increased Serum Anti-influenza Antibody Titers After Influenza Vaccination. Immune Netw 2023; 23:e18. [PMID: 37179746 PMCID: PMC10166655 DOI: 10.4110/in.2023.23.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 05/15/2023] Open
Abstract
It has been reported that some exercise could enhance the anti-viral antibody titers after vaccination including influenza and coronavirus disease 2019 vaccines. We developed SAT-008, a novel digital device, consists of physical activities and activities related to the autonomic nervous system. We assessed the feasibility of SAT-008 to boost host immunity after an influenza vaccination by a randomized, open-label, and controlled study on adults administered influenza vaccines in the previous year. Among 32 participants, the SAT-008 showed a significant increase in the anti-influenza antibody titers assessed by hemagglutination-inhibition test against antigen subtype B Yamagata lineage after 4 wk of vaccination and subtype B Victoria lineage after 12 wk (p<0.05). There was no difference in the antibody titers against subtype "A." The SAT-008 also showed significant increase in the plasma cytokine levels of IL-10, IL-1β, and IL-6 at weeks 4 and 12 after the vaccination (p<0.05). A new approach using the digital device may boost host immunity against virus via vaccine adjuvant-like effects. Trial Registration ClinicalTrials.gov Identifier: NCT04916145.
Collapse
Affiliation(s)
- Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | | | - Jarang Ham
- S-Alpha Therapeutics, Inc., Seoul 06628, Korea
| | | | | | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
22
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
23
|
Jolles S, Giralt S, Kerre T, Lazarus HM, Mustafa SS, Ria R, Vinh DC. Agents contributing to secondary immunodeficiency development in patients with multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphoma: A systematic literature review. Front Oncol 2023; 13:1098326. [PMID: 36824125 PMCID: PMC9941665 DOI: 10.3389/fonc.2023.1098326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Patients with hematological malignancies (HMs), like chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and non-Hodgkin lymphoma (NHL), have a high risk of secondary immunodeficiency (SID), SID-related infections, and mortality. Here, we report the results of a systematic literature review on the potential association of various cancer regimens with infection rates, neutropenia, lymphocytopenia, or hypogammaglobulinemia, indicative of SID. Methods A systematic literature search was performed in 03/2022 using PubMed to search for clinical trials that mentioned in the title and/or abstract selected cancer (CLL, MM, or NHL) treatments covering 12 classes of drugs, including B-lineage monoclonal antibodies, CAR T therapies, proteasome inhibitors, kinase inhibitors, immunomodulators, antimetabolites, anti-tumor antibiotics, alkylating agents, Bcl-2 antagonists, histone deacetylase inhibitors, vinca alkaloids, and selective inhibitors of nuclear export. To be included, a publication had to report at least one of the following: percentages of patients with any grade and/or grade ≥3 infections, any grade and/or grade ≥3 neutropenia, or hypogammaglobulinemia. From the relevant publications, the percentages of patients with lymphocytopenia and specific types of infection (fungal, viral, bacterial, respiratory [upper or lower respiratory tract], bronchitis, pneumonia, urinary tract infection, skin, gastrointestinal, and sepsis) were collected. Results Of 89 relevant studies, 17, 38, and 34 included patients with CLL, MM, and NHL, respectively. In CLL, MM, and NHL, any grade infections were seen in 51.3%, 35.9% and 31.1% of patients, and any grade neutropenia in 36.3%, 36.4%, and 35.4% of patients, respectively. The highest proportion of patients with grade ≥3 infections across classes of drugs were: 41.0% in patients with MM treated with a B-lineage monoclonal antibody combination; and 29.9% and 38.0% of patients with CLL and NHL treated with a kinase inhibitor combination, respectively. In the limited studies, the mean percentage of patients with lymphocytopenia was 1.9%, 11.9%, and 38.6% in CLL, MM, and NHL, respectively. Two studies reported the proportion of patients with hypogammaglobulinemia: 0-15.3% in CLL and 5.9% in NHL (no studies reported hypogammaglobulinemia in MM). Conclusion This review highlights cancer treatments contributing to infections and neutropenia, potentially related to SID, and shows underreporting of hypogammaglobulinemia and lymphocytopenia before and during HM therapies.
Collapse
Affiliation(s)
- Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Sergio Giralt
- Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tessa Kerre
- Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Hillard M. Lazarus
- Department of Medicine, Hematology-Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - S. Shahzad Mustafa
- Rochester Regional Health, Rochester, NY, United States
- Department of Medicine, Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Donald C. Vinh
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
24
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
25
|
Alomar S, Alkhuriji A, Alkhulaifi FM, Mansour L, Al-Jurayyan A, Aldossari GS, Albalawi AE, Alanazi AD. Relationship between KIR genotypes and HLA-ligands with SARS-CoV-2 infection in the Saudi population. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102416. [PMID: 36338940 PMCID: PMC9622466 DOI: 10.1016/j.jksus.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Aim To ascertain whether killer cell immunoglobulin-like receptors (KIR) genes polymorphisms and HLA-I ligands are associated with COVID-19 in Saudi Arabia. Methods Eighty-seven COVID-19 patients who tested positive for SARS-CoV-2 and one hundred and fourteen healthy controls were enrolled in this study for genotyping of the 16 KIR genes, HLA-C1 and -C2 allotypes and HLA-G 14-bp indels polymorphisms using the sequence specific primer polymerase chain reaction (SSP-PCR) method. KIR genotype frequency differences and combination KIR-HLA-C ligand were tested for significance. Results Framework genes KIR2DL4, KIR3DL2, KIR3DL3, and KIR3DP2 were present in all individuals. The frequencies of KIR2DL2 and KIR2D4 were higher in COVID-19 positive patients than in healthy individuals. The frequencies of the combination KIR2DL2-HLA-C2 was also significantly higher in patients affected by COVID-19 compared with healthy controls. Conclusion It was found that the inhibitory KIR2DL2 gene in isolation or combined with its HLA-C2 ligand could be associated with susceptibility to COVID-19 in the Saudi population.
Collapse
Affiliation(s)
- Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, PO. Box: 2455, Riyadh 11451, Saudi Arabia
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Afrah Alkhuriji
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Fadwa M Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghadeer S Aldossari
- Serology, Immunology and HLA, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Aishah Eid Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| |
Collapse
|
26
|
Assy L, Khalil SM, Attia M, Salem ML. IL-12 conditioning of peripheral blood mononuclear cells from breast cancer patients promotes the zoledronate-induced expansion of γδ T cells in vitro and enhances their cytotoxic activity and cytokine production. Int Immunopharmacol 2023; 114:109402. [PMID: 36481526 DOI: 10.1016/j.intimp.2022.109402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a series of our preclinical studies, we have reported that conditioning of α/β CD8+ T cells in vitro with interleukin-12 (IL-12) during their expansion improves their homing phenotype and anti-tumor cytolytic function upon their adoptive transfer in vivo. Vγ9+Vδ2+ T cells can also be expanded in vitro with amino bisphosphonates such as zoledronate (ZOL) for the purpose of adoptive therapy. AIM We aimed in this study to use IL-12 to enhance the expansion and cytotoxic functions of ZOL-expanded Vγ9+Vδ2+T cells. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were separated from healthy donors and stage II breast cancer patients. PBMCs (1 × 106 cells/mL) were cultured and treated with ZOL/IL2, ZOL/IL2/IL12, or IL2/IL12. Cultured cells were harvested on days 7 and 14 of culture and their numbers, phenotype, and cytolytic activity were assessed. The levels of pro- and inflammatory cytokines/chemokines in the plasma and supernatants of the cultured cells were analyzed by Luminex. RESULTS In healthy subjects, the addition of IL-12 to ZOL/IL2-stimulated PBMCs increased the expansion and the cytotoxic activity of Vγ9+Vδ2+ T cells on days 7 and 14 of culture. The latter was measured by the expression level of the cytolytic molecules granzyme B (GZB) and perforin (PER). Of note, αβ CD8 + T cells were also activated under the same condition but with a lesser extent addition of IL-12 to ZOL/IL2-stimulated PBMCs from cancer patients also induced similar effects but were lower than in control subjects. Interestingly, ZOL/IL2/IL12-treated PBMCs showed higher levels of cytokines/chemokines, in particular, CCL, CCL4, GM-CSF, IL-1rα; IL-12, IL-13, TNF, and IFNγ measured on days 7 and 14. CONCLUSION The addition of IL12 at the start of the expansion protocol can enhance the activity of γδ T cells which might be mediated in part by the activation of αβ T cells.
Collapse
Affiliation(s)
- Lobna Assy
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Sohaila M Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt.
| |
Collapse
|
27
|
Jerigova V, Zeman M, Okuliarova M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213722. [PMID: 36430199 PMCID: PMC9690954 DOI: 10.3390/ijms232213722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.
Collapse
|
28
|
Guzelj S, Weiss M, Slütter B, Frkanec R, Jakopin Ž. Covalently Conjugated NOD2/TLR7 Agonists Are Potent and Versatile Immune Potentiators. J Med Chem 2022; 65:15085-15101. [DOI: 10.1021/acs.jmedchem.2c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ruža Frkanec
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Gunasekaran M, Difiglia A, Fitzgerald J, Hariri R, van der Touw W, Mahlakõiv T. Human placental hematopoietic stem cell-derived natural killer cells (CYNK) recognize and eliminate influenza A virus-infected cells. Front Immunol 2022; 13:900624. [DOI: 10.3389/fimmu.2022.900624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) infections are a significant recurrent threat to public health and a significant burden on global economy, highlighting the need for developing more effective therapies. Natural killer (NK) cells play a pivotal role in the control of pulmonary IAV infection, however, little is known about the therapeutic potential of adoptively transferred NK cells for viral infections. Here, we investigated the antiviral activity of CYNK, human placental hematopoietic stem cell-derived NK cells, against IAV infection in vitro. Virus infection induced the expression of NK cell activating ligands on respiratory epithelial cells, resulting in enhanced recognition by CYNK cells. Upon co-culture with IAV-infected epithelial cells, CYNK exhibited elevated degranulation and increased production of IFN-γ, TNF-α and GM-CSF in a virus dose-dependent manner. Furthermore, CYNK showed virus dose-dependent cytotoxicity against IAV-infected cells. The antiviral activity of CYNK was mediated by NKp46 and NKG2D. Together, these data demonstrate that CYNK possesses potent antiviral function against IAV and warrant clinical investigations for adoptive NK cell therapies against viral infections.
Collapse
|
30
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
31
|
Guzelj S, Bizjak Š, Jakopin Ž. Discovery of Desmuramylpeptide NOD2 Agonists with Single-Digit Nanomolar Potency. ACS Med Chem Lett 2022; 13:1270-1277. [PMID: 35978688 PMCID: PMC9377006 DOI: 10.1021/acsmedchemlett.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Špela Bizjak
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Papak I, Chruściel E, Dziubek K, Kurkowiak M, Urban-Wójciuk Z, Marjański T, Rzyman W, Marek-Trzonkowska N. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci 2022; 23:ijms23137030. [PMID: 35806034 PMCID: PMC9266640 DOI: 10.3390/ijms23137030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.
Collapse
Affiliation(s)
- Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
33
|
In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy. J Clin Med 2022; 11:jcm11113037. [PMID: 35683425 PMCID: PMC9181704 DOI: 10.3390/jcm11113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Sickle cell disease (SCD) is a condition of functional hypo-/a-splenism in which predisposition to bacterial infections is only a facet of a wide spectrum of immune-dysregulation disorders forming the clinical expression of a peculiar immunophenotype. The objective of this study was to perform an in-depth immunophenotypical characterization of SCD pediatric patients, looking for plausible correlations between immunological biomarkers, the impact of hydroxyurea (HU) treatment and clinical course. This was an observational case−control study including 43 patients. The cohort was divided into two main groups, SCD subjects (19/43) and controls (24/43), differing in the presence/absence of an SCD diagnosis. The SCD group was split up into HU+ (12/19) and HU− (7/19) subgroups, respectively receiving or not a concomitant HU treatment. The principal outcomes measured were differences in the immunophenotyping between SCD patients and controls through chi-squared tests, t-tests, and Pearson’s correlation analysis between clinical and immunological parameters. Leukocyte and neutrophil increase, T-cell depletion with prevalence of memory T-cell compartment, NK and B-naïve subset elevation with memory and CD21low B subset reduction, and IgG expansion, significantly distinguished the SCD HU− subgroup from controls, with naïve T cells, switched-memory B cells and IgG maintaining differences between the SCD HU+ group and controls (p-value of <0.05). The mean CD4+ central-memory T-cell% count was the single independent variable showing a positive correlation with vaso-occlusive crisis score in the SCD group (Pearson’s R = 0.039). We report preliminary data assessing plausible clinical implications of baseline and HU-related SCD immunophenotypical alterations, which need to be validated in larger samples, but potentially affecting hypo-/a-splenism immuno-chemoprophylactic recommendations.
Collapse
|
34
|
Fielding CA, Sabberwal P, Williamson JC, Greenwood EJD, Crozier TWM, Zelek W, Seow J, Graham C, Huettner I, Edgeworth JD, Price DA, Morgan PB, Ladell K, Eberl M, Humphreys IR, Merrick B, Doores K, Wilson SJ, Lehner PJ, Wang ECY, Stanton RJ. SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies. eLife 2022; 11:e74489. [PMID: 35587364 PMCID: PMC9239683 DOI: 10.7554/elife.74489] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.
Collapse
Affiliation(s)
- Ceri Alan Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Pragati Sabberwal
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - James C Williamson
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - Edward JD Greenwood
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - Thomas WM Crozier
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - Wioleta Zelek
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Jonathan D Edgeworth
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
- Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Paul B Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Blair Merrick
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
- Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
| | - Katie Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Sam J Wilson
- MRC - University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of CambridgeCambridgeUnited Kingdom
| | - Eddie CY Wang
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
35
|
Duni A, Markopoulos GS, Mallioras I, Pappas H, Pappas E, Koutlas V, Tzalavra E, Baxevanos G, Priska S, Gartzonika K, Mitsis M, Dounousi E. The Humoral Immune Response to BNT162b2 Vaccine Is Associated With Circulating CD19+ B Lymphocytes and the Naïve CD45RA to Memory CD45RO CD4+ T Helper Cells Ratio in Hemodialysis Patients and Kidney Transplant Recipients. Front Immunol 2021; 12:760249. [PMID: 34925330 PMCID: PMC8678464 DOI: 10.3389/fimmu.2021.760249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background The humoral and cellular immune responses to SARS-COV-2 vaccination remain to be elucidated in hemodialysis (HD) patients and kidney transplant recipients (KTRs), considering their baseline immunosuppressed status. The aim of our study was to assess the associations of vaccine-induced antibody responses with circulating lymphocytes sub-populations and their respective patterns of alterations in maintenance HD patients and KTRs. Materials and Methods We included 34 HD patients and 54 KTRs who received two doses of the mRNA-vaccine BNT162b2. Lymphocyte subpopulations were analyzed by flow cytometry before vaccination (T0), before the second vaccine dose (T1) and 2 weeks after the second dose (T2). The anti-SARS-CoV2 antibody response was assessed at T1 and at T2. Results 31 HD patients (91.8%) and 16 KTRs (29.6%) became seropositive at T2. HD patients who became seropositive following the first dose displayed higher CD19+ B lymphocytes compared to their seronegative HD counterparts. A positive correlation was established between CD19+ B cells counts and antibody titers at all time-points in both groups (p < 0.001). KTRs showed higher naïve CD4+CD45RA+ T helper cells compared to HD patients at baseline and T2 whereas HD patients displayed higher memory CD45RO+ T cells compared to KTRs at T2. The naïve CD4+CD45RA to memory CD4+CD45RO+ T helper cells fraction was negatively associated with antibody production in both groups. Conclusions Our study provides a potential conceptual framework for monitoring vaccination efficacy in HD patients and KTRs considering the correlation established between CD19+ B cells, generation of memory CD4+ T helper cells and anti SARS-CoV2 antibody response to vaccination.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.,Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Hematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Ioannis Mallioras
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Haralampos Pappas
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.,Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece
| | | | - Vasileios Koutlas
- Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Eirini Tzalavra
- Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Gerasimos Baxevanos
- Laboratory of Hematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece.,Internal Medicine Department, Hatzikosta General Hospital of Ioannina, Ioannina, Greece
| | - Silvia Priska
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantina Gartzonika
- Microbiology Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michael Mitsis
- Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.,Department of Surgery and Kidney Transplant Unit, University Hospital of Ioannina, Ioannina, Greece.,Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
36
|
Halma J, Pierce S, McLennan R, Bradley T, Fischer R. Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance? Clin Transl Sci 2021; 15:1091-1103. [PMID: 34866338 PMCID: PMC9099129 DOI: 10.1111/cts.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022] Open
Abstract
The roles that natural killer (NK) cells play in liver disease and transplantation remain ill‐defined. Reports on the matter are often contradictory, and the mechanisms elucidated are complex and dependent on the context of the model tested. Moreover, NK cell attributes, such as receptor protein expression and function differ among species, make study of primate or rodent transplant models challenging. Recent insights into NK function and NK‐mediated therapy in the context of cancer therapy may prove applicable to transplantation. Of specific interest are immune checkpoint molecules and the mechanisms by which they modulate NK cells in the tumor micro‐environment. In this review, we summarize NK cell populations in the peripheral blood and liver, and we explore the data regarding the expression and function of immune checkpoint molecules on NK cells. We also hypothesize about the roles they could play in liver transplantation and discuss how they might be harnessed therapeutically in transplant sciences.
Collapse
Affiliation(s)
- Jennifer Halma
- Pediatric Gastroenterology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Stephen Pierce
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ryan Fischer
- Pediatric Gastroenterology, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
37
|
Pradhan D, Biswasroy P, Kar B, Bhuyan SK, Ghosh G, Rath G. Clinical Interventions and Budding Applications of Probiotics in the Treatment and Prevention of Viral Infections. Arch Med Res 2021; 53:122-130. [PMID: 34690010 DOI: 10.1016/j.arcmed.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/06/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Over the period, viral infections remain the utmost challenge in front of the scientific community. Continuous shifting and drafting of viral antigenic peptides are the main drivers in the development of antiviral drug resistance. The resurgence of disease, difficulties facing the development of an effective vaccine and undesirable immunological outcomes, foster to develop an alternative therapeutic approach to combat viral infections. Biomimetic nature of viral particles competent to invade the host cell by downregulating the expression of immune responsive cells. To revive from such complications, strengthening the innate immunity places first and foremost defense mechanisms to restrict viral infiltration. Variegated probiotic strains show antiviral activity by stimulating the macrophage and dendritic cell to secret the inflammation response mediated chemokines and cytokines, production of antimicrobial peptides, and biosurfactants, modulate the antiviral gens expression, alter the proportional functionality of CD4+CD25+Foxp3+ regulatory cells (Tregs), etc. With the appreciation for the antiviral activity and health benefits, however, the selectivity of specific probiotic strain from the diversified microbiome, the interactive molecular mechanism of probiotics, viability and sustainability of a specific number of a probiotic strain at the end of the shelf life, stability, selection of the formulation materials, identification and validation of the key process parameters have the major challenges for the development of an effective probiotic therapy against viral infections.
Collapse
Affiliation(s)
- Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha "O" Anusandhan University, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha "O" Anusandhan, Odisha, India.
| |
Collapse
|
38
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Lin YZ, Lee CC, Cho DY, Wang YL, Chen CY, Weng CY, Chiu SC, Hung MC, Wang SC. Suppression of breast cancer cells resistant to a pure anti-estrogen with CAR-transduced natural killer cells. Am J Cancer Res 2021; 11:4455-4469. [PMID: 34659898 PMCID: PMC8493389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023] Open
Abstract
Anti-estrogens as hormone therapy are the mainstay treatment for estrogen receptor (ER)-positive breast cancer. ER inhibitors through modulating the transcriptional function of ER have been the frontline anti-estrogens to which refractory phenotype often developed in advanced cancer. The anti-estrogen fulvestrant is currently the only clinically approved pure anti-estrogen which causes ER degradation. However, resistance to fulvestrant still occurs and unfortunately it leaves few choices other than chemotherapy as the later-line treatments to fulvestrant-resistant tumors. Here we show that fulvestrant resistance was accompanied by increased expression of a number of innate immune response genes including the natural killer (NK) cell ligand B7-H6 on the cell surface. In an attempt to overcome the drug resistance phenotype, a NK-based molecular approach taking advantage of a chimeric antigen receptor (CAR) system targeting B7-H6 was established and tested in cells with acquired resistance to fulvestrant. The results demonstrate that the cell therapy approach as a single agent can effectively induce cell death of the resistant cancer cells which is enhanced by the increased expression of cell surface B7-H6. This approach departs from the traditional strategies of conquering anti-estrogen resistant breast cancer and offers a new avenue to eradicate hormone-refractory malignant solid tumors.
Collapse
Affiliation(s)
- You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University HospitalTaichung 404332, Taiwan
- Department of Neurosurgery, China Medical University HospitalTaichung 404332, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
| | - Chia-Yun Chen
- Department of Medicine, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Ching-Yu Weng
- Department of Medicine, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University HospitalTaichung 404332, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
- Department of Cancer Biology, University of CincinnatiCincinnati, OH 45267, USA
| |
Collapse
|
40
|
Vulpis E, Giulimondi F, Digiacomo L, Zingoni A, Safavi-Sohi R, Sharifi S, Caracciolo G, Mahmoudi M. The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine. Mol Pharm 2021; 18:2448-2453. [PMID: 33983745 PMCID: PMC8130523 DOI: 10.1021/acs.molpharmaceut.1c00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes.
Collapse
Affiliation(s)
- Elisabetta Vulpis
- Department of Molecular Medicine,
Sapienza University of Rome, Rome,
Italy
| | | | - Luca Digiacomo
- Department of Molecular Medicine,
Sapienza University of Rome, Rome,
Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine,
Sapienza University of Rome, Rome,
Italy
| | - Reihaneh Safavi-Sohi
- Department of Radiology and Precision Health Program,
Michigan State University, East Lansing, Michigan 48824,
United States
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program,
Michigan State University, East Lansing, Michigan 48824,
United States
| | - Giulio Caracciolo
- Department of Molecular Medicine,
Sapienza University of Rome, Rome,
Italy
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program,
Michigan State University, East Lansing, Michigan 48824,
United States
- Mary Horrigan Connors Center for Women’s Health
and Gender Biology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, Massachusetts 02115, United
States
| |
Collapse
|
41
|
Li Y, Wang X, Ma X, Liu C, Wu J, Sun C. Natural Polysaccharides and Their Derivates: A Promising Natural Adjuvant for Tumor Immunotherapy. Front Pharmacol 2021; 12:621813. [PMID: 33935714 PMCID: PMC8080043 DOI: 10.3389/fphar.2021.621813] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The treatment process of tumor is advanced with the development of immunotherapy. In clinical experience, immunotherapy has achieved very significant results. However, the application of immunotherapy is limited by a variety of immune microenvironment. For a long time in the past, polysaccharides such as lentinan and Ganoderma lucidum glycopeptide have been used in clinic as adjuvant drugs to widely improve the immunity of the body. However, their mechanism in tumor immunotherapy has not been deeply discussed. Studies have shown that natural polysaccharides can stimulate innate immunity by activating upstream immune cells so as to regulate adaptive immune pathways such as T cells and improve the effect of immunotherapy, suggesting that polysaccharides also have a promising future in cancer therapy. This review systematically discusses that polysaccharides can directly or indirectly activate macrophages, dendritic cells, natural killer cells etc., binding to their surface receptors, inducing PI3K/Akt, mitogen-activated protein kinase, Notch and other pathways, promote their proliferation and differentiation, increasing the secretion of cytokines, and improve the state of immune suppression. These results provide relevant basis for guiding polysaccharide to be used as adjuvants of cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|