1
|
Park CB, Lee CH, Cho KW, Shin S, Jang WH, Byeon J, Oh YR, Kim SJ, Park JW, Kang GM, Min SH, Kim S, Yu R, Kim MS. Extracellular Cleavage of Microglia-Derived Progranulin Promotes Diet-Induced Obesity. Diabetes 2024; 73:2009-2021. [PMID: 39302854 DOI: 10.2337/db24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily conserved secretory protein containing seven and a half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, which encodes PGRN. Mice with microglia-specific Grn depletion displayed diet-dependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn depletion produced adverse outcomes, such as fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high-fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appeared to be linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating diet-induced obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sunghun Shin
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junyeong Byeon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
de Winne C, Pascual FL, Lopez-Vicchi F, Etcheverry-Boneo L, Mendez-Garcia LF, Ornstein AM, Lacau-Mengido IM, Sorianello E, Becu-Villalobos D. Neuroendocrine control of brown adipocyte function by prolactin and growth hormone. J Neuroendocrinol 2024; 36:e13248. [PMID: 36932836 DOI: 10.1111/jne.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/06/2023]
Abstract
Growth hormone (GH) is fundamental for growth and glucose homeostasis, and prolactin for optimal pregnancy and lactation outcome, but additionally, both hormones have multiple functions that include a strong impact on energetic metabolism. In this respect, prolactin and GH receptors have been found in brown, and white adipocytes, as well as in hypothalamic centers regulating thermogenesis. This review describes the neuroendocrine control of the function and plasticity of brown and beige adipocytes, with a special focus on prolactin and GH actions. Most evidence points to a negative association between high prolactin levels and the thermogenic capacity of BAT, except in early development. During lactation and pregnancy, prolactin may be a contributing factor that limits unneeded thermogenesis, downregulating BAT UCP1. Furthermore, animal models of high serum prolactin have low BAT UCP1 levels and whitening of the tissue, while lack of Prlr induces beiging in WAT depots. These actions may involve hypothalamic nuclei, particularly the DMN, POA and ARN, brain centers that participate in thermogenesis. Studies on GH regulation of BAT function present some controversies. Most mouse models with GH excess or deficiency point to an inhibitory role of GH on BAT function. Even so, a stimulatory role of GH on WAT beiging has also been described, in accordance with whole-genome microarrays that demonstrate divergent response signatures of BAT and WAT genes to the loss of GH signaling. Understanding the physiology of BAT and WAT beiging may contribute to the ongoing efforts to curtail obesity.
Collapse
Affiliation(s)
- Catalina de Winne
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Florencia L Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luz Etcheverry-Boneo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luis F Mendez-Garcia
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Isabel Maria Lacau-Mengido
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Moon S, Lee HH, Archer-Hartmann S, Nagai N, Mubasher Z, Parappurath M, Ahmed L, Ramos RL, Kimata K, Azadi P, Cai W, Zhao JY. Knockout of the intellectual disability-linked gene Hs6st2 in mice decreases heparan sulfate 6-O-sulfation, impairs dendritic spines of hippocampal neurons, and affects memory. Glycobiology 2024; 34:cwad095. [PMID: 38015989 PMCID: PMC10969535 DOI: 10.1093/glycob/cwad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Zainab Mubasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Mahima Parappurath
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Laiba Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| |
Collapse
|
5
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
6
|
Tayanloo-Beik A, Nikkhah A, Alaei S, Goodarzi P, Rezaei-Tavirani M, Mafi AR, Larijani B, Shouroki FF, Arjmand B. Brown adipose tissue and alzheimer's disease. Metab Brain Dis 2023; 38:91-107. [PMID: 36322277 DOI: 10.1007/s11011-022-01097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-β (Aβ) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, Palop L, Fernández-Martos CM. Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43 A315T transgenic model of Amyotrophic Lateral Sclerosis. Sci Rep 2022; 12:20814. [PMID: 36460700 PMCID: PMC9718766 DOI: 10.1038/s41598-022-25033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating progressive neurodegenerative disease, has no effective treatment. Recent evidence supports a strong metabolic component in ALS pathogenesis. Indeed, metabolic abnormalities in ALS correlate to disease susceptibility and progression, raising additional therapeutic targets against ALS. Ozone (O3), a natural bioactive molecule, has been shown to elicit beneficial effects to reduce metabolic disturbances and improved motor behavior in TDP-43A315T mice. However, it is fundamental to determine the mechanism through which O3 acts in ALS. To characterize the association between O3 exposure and disease-associated weight loss in ALS, we assessed the mRNA and protein expression profile of molecular pathways with a main role in the regulation of the metabolic homeostasis on the hypothalamus and the brown adipose tissue (BAT) at the disease end-stage, in TDP-43A315T mice compared to age-matched WT littermates. In addition, the impact of O3 exposure on the faecal bacterial community diversity, by Illumina sequencing, and on the neuromuscular junctions (NMJs), by confocal imaging, were analysed. Our findings suggest the effectiveness of O3 exposure to induce metabolic effects in the hypothalamus and BAT of TDP-43A315T mice and could be a new complementary non-pharmacological approach for ALS therapy.
Collapse
Affiliation(s)
- Sara Rodríguez-Sánchez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Nicolas Valiente
- grid.10420.370000 0001 2286 1424Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Susana Seseña
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Marta Cabrera-Pinto
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Rodríguez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Alfonso Aranda
- grid.8048.40000 0001 2194 2329Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Llanos Palop
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Carmen M. Fernández-Martos
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain ,grid.1009.80000 0004 1936 826XWicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania Australia
| |
Collapse
|
8
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
9
|
Dos Reis Araujo T, Lubaczeuski C, Carneiro EM. Effects of double burden malnutrition on energetic metabolism and glycemic homeostasis: A narrative review. Life Sci 2022; 307:120883. [PMID: 35970240 DOI: 10.1016/j.lfs.2022.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
Abstract
Rapid changes in the food process led to greater consumption of ultra-processed foods which, associated with reduced physical activity, increased the number of overweight and obese individuals worldwide. However, in low and middle-income countries (LMICS) the growth of the obesity epidemic took place despite the high prevalence of undernutrition in children. This generated the coexistence of these two nutritional patterns, currently defined as double burden malnutrition (DBM). Several reports have already described the social, political, and economic aspects related to the causes and possible solutions for the control of DBM. Here, we highlight the metabolic alterations, related to fat deposition and glycemic homeostasis, described in experimental models of DBM and the differential effects of therapeutic strategies already tested. Therefore, this work aims to help the scientific community to understand how the DBM can lead to the development of obesity and type 2 diabetes through different mechanisms from traditional models of obesity and highlights the need to study these mechanisms and new therapeutic strategies to improve damages caused by DBM.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Camila Lubaczeuski
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Sherman SB, Harberson M, Rashleigh R, Gupta N, Powers R, Talla R, Thusu A, Hill JW. Spexin modulates molecular thermogenic profile of adipose tissue and thermoregulatory behaviors in female C57BL/6 mice. Horm Behav 2022; 143:105195. [PMID: 35580373 PMCID: PMC10150790 DOI: 10.1016/j.yhbeh.2022.105195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Thermoregulation is the physiological process by which an animal regulates body temperature in response to its environment. It is known that galanin, a neuropeptide widely distributed throughout the central nervous system and secreted by the gut, plays a role in thermoregulatory behaviors and metabolism. We tested the ability of the novel neuropeptide spexin, which shares sequence homology to galanin, to regulate these functions in female mice. Supraphysiological levels of spexin in C57BL/6 mice did not lead to weight loss after 50 days of treatment. Behavioral analysis of long-term spexin treatment showed it decreased anxiety and increased thermoregulatory nest building, which was not observed when mice were housed at thermoneutral temperatures. Treatment also disrupted the thermogenic profile of brown and white adipose tissue, decreasing mRNA expression of Ucp1 in BAT and immunodetection of β3-adrenergic receptors in gWAT. Our results reveal novel functions for spexin as a modulator of thermoregulatory behaviors and adipose tissue metabolism.
Collapse
Affiliation(s)
- Shermel B Sherman
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Mitchell Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Niraj Gupta
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Riley Powers
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Ramya Talla
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Ashima Thusu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States.
| |
Collapse
|
11
|
Lezama-García K, Mota-Rojas D, Martínez-Burnes J, Villanueva-García D, Domínguez-Oliva A, Gómez-Prado J, Mora-Medina P, Casas-Alvarado A, Olmos-Hernández A, Soto P, Muns R. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Vet Sci 2022; 9:vetsci9050246. [PMID: 35622774 PMCID: PMC9145389 DOI: 10.3390/vetsci9050246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Thermoregulation in newborn mammals is an essential species-specific mechanism of the nervous system that contributes to their survival during the first hours and days of their life. When exposed to cold weather, which is a risk factor associated with mortality in neonates, pathways such as the hypothalamic–pituitary–adrenal axis (HPA) are activated to achieve temperature control, increasing the circulating levels of catecholamine and cortisol. Consequently, alterations in blood circulation and mechanisms to produce or to retain heat (e.g., vasoconstriction, piloerection, shivering, brown adipocyte tissue activation, and huddling) begin to prevent hypothermia. This study aimed to discuss the mechanisms of thermoregulation in newborn domestic mammals, highlighting the differences between altricial and precocial species. The processes that employ brown adipocyte tissue, shivering, thermoregulatory behaviors, and dermal vasomotor control will be analyzed to understand the physiology and the importance of implementing techniques to promote thermoregulation and survival in the critical post-birth period of mammals. Also, infrared thermography as a helpful method to perform thermal measurements without animal interactions does not affect these parameters.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
- Correspondence:
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Tamaulipas, Mexico;
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Patricia Mora-Medina
- Department of Livestock Science, FESC, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico;
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Paola Soto
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.D.-O.); (J.G.-P.); (A.C.-A.); (P.S.)
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Livestock Production Sciences Unit, Hillsborough BT26 6DR, Northern Ireland, UK;
| |
Collapse
|
12
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
13
|
Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L, Schaul S, Patel N, Saenz L, Luo P, Lai P, Torres V, Kota M, Dixit D, Cai X, Qu N, Hyseni I, Yu K, Jiang Y, Tong Q, Sun Z, Arenkiel BR, He Y, Xu P, Xu Y. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. SCIENCE ADVANCES 2022; 8:eabk0185. [PMID: 35044814 PMCID: PMC8769556 DOI: 10.1126/sciadv.abk0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Estrogen receptor–α (ERα) expressed by neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (ERαvlVMH) regulates body weight in females, but the downstream neural circuits mediating this biology remain largely unknown. Here we identified a neural circuit mediating the metabolic effects of ERαvlVMH neurons. We found that selective activation of ERαvlVMH neurons stimulated brown adipose tissue (BAT) thermogenesis, physical activity, and core temperature and that ERαvlVMH neurons provide monosynaptic glutamatergic inputs to 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN). Notably, the ERαvlVMH → DRN circuit responds to changes in ambient temperature and nutritional states. We further showed that 5-HTDRN neurons mediate the stimulatory effects of ERαvlVMH neurons on BAT thermogenesis and physical activity and that ERα expressed by DRN-projecting ERαvlVMH neurons is required for the maintenance of energy balance. Together, these findings support a model that ERαvlVMH neurons activate BAT thermogenesis and physical activity through stimulating 5-HTDRN neurons.
Collapse
Affiliation(s)
- Hui Ye
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenji Saito
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Saenz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pei Luo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Valeria Torres
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maya Kota
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xing Cai
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Qu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaifan Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Deckmyn B, Domenger D, Blondel C, Ducastel S, Nicolas E, Dorchies E, Caron E, Charton J, Vallez E, Deprez B, Annicotte JS, Lestavel S, Tailleux A, Magnan C, Staels B, Bantubungi K. Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System. Front Mol Neurosci 2022; 14:808603. [PMID: 35058750 PMCID: PMC8764415 DOI: 10.3389/fnmol.2021.808603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.
Collapse
Affiliation(s)
- Benjamin Deckmyn
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratory of Lille Catholic Hospitals, Medical Biology Department, Lille Catholic University, Lille, France
| | - Dorothée Domenger
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Chloé Blondel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Sarah Ducastel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Nicolas
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Dorchies
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Julie Charton
- Institut Pasteur de Lille, Lille, France
- Inserm U1177, Lille, France
- Drugs and Molecules for Living Systems, U1177, University of Lille, Lille, France
| | - Emmanuelle Vallez
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Deprez
- Institut Pasteur de Lille, Lille, France
- Inserm U1177, Lille, France
- Drugs and Molecules for Living Systems, U1177, University of Lille, Lille, France
| | | | - Sophie Lestavel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Anne Tailleux
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Bart Staels
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: Bart Staels,
| | - Kadiombo Bantubungi
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Kadiombo Bantubungi,
| |
Collapse
|
15
|
Energy homeostasis deregulation is attenuated by TUDCA treatment in streptozotocin-induced Alzheimer's disease mice model. Sci Rep 2021; 11:18114. [PMID: 34518585 PMCID: PMC8437965 DOI: 10.1038/s41598-021-97624-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. While cognitive deficits remain the major manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in food intake, body weight and energy balance are also present, both in AD patients and animal models. In this sense, the tauroursodeoxycholic acid (TUDCA) has shown beneficial effects both in reducing the central and cognitive markers of AD, as well as in attenuating the metabolic disorders associated with it. We previously demonstrated that TUDCA improves glucose homeostasis and decreases the main AD neuromarkers in the streptozotocin-induced AD mouse model (Stz). Besides that, TUDCA-treated Stz mice showed lower body weight and adiposity. Here, we investigated the actions of TUDCA involved in the regulation of body weight and adiposity in Stz mice, since the effects of TUDCA in hypothalamic appetite control and energy homeostasis have not yet been explored in an AD mice model. The TUDCA-treated mice (Stz + TUDCA) displayed lower food intake, higher energy expenditure (EE) and respiratory quotient. In addition, we observed in the hypothalamus of the Stz + TUDCA mice reduced fluorescence and gene expression of inflammatory markers, as well as normalization of the orexigenic neuropeptides AgRP and NPY expression. Moreover, leptin-induced p-JAK2 and p-STAT3 signaling in the hypothalamus of Stz + TUDCA mice was improved, accompanied by reduced acute food intake after leptin stimulation. Taken together, we demonstrate that TUDCA treatment restores energy metabolism in Stz mice, a phenomenon that is associated with reduced food intake, increased EE and improved hypothalamic leptin signaling. These findings suggest treatment with TUDCA as a promising therapeutic intervention for the control of energy homeostasis in AD individuals.
Collapse
|
16
|
Anti-Obesity Effect of Pine Needle Extract on High-Fat Diet-Induced Obese Mice. PLANTS 2021; 10:plants10050837. [PMID: 33919440 PMCID: PMC8143554 DOI: 10.3390/plants10050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Background: Obesity due to an excessive intake of nutrient disturbs the hypothalamus-mediated energy metabolism subsequently develops metabolic disorders. In this study, we investigated the effect of pine needle extract (PNE) on the hypothalamic proopiomelanocortin (POMC) neurons involved in the regulation of energy balance via melanocortin system and fat tissue metabolism. Methods: We performed electrophysiological and immunohistochemical analyses to determine the effect of PNE on POMC neurons. Mice were fed a normal or high-fat diet for 12 weeks, then received PNE for the last 2 weeks to measure the following physiological indices: Body weight, food intake, fat/lean mass, glucose metabolism, and plasma leptin levels. In addition, changes of thermogenic, lipolytic, and lipogenetic markers were evaluated in brown adipose tissue (BAT) and white adipose tissue (WAT) by western blotting, respectively. Results: PNE increased hypothalamic POMC neuronal activity, and the effect was abolished by blockade of melanocortin 3/4 receptors (MC3/4Rs). PNE decreased body weight, fat mass, plasma leptin levels, and improved glucose metabolism after high-fat-induced obesity. However, PNE did not change the expression of thermogenic markers of the BAT in HFD fed groups, but decreased only the lipogenetic markers of WAT. This study suggests that PNE has a potent anti-obesity effect, inhibiting lipogenesis in WAT, even though HFD-induced leptin resistance-mediated disruption of POMC neuronal activity.
Collapse
|
17
|
Central Apolipoprotein A-IV Stimulates Thermogenesis in Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms22031221. [PMID: 33513710 PMCID: PMC7865537 DOI: 10.3390/ijms22031221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.
Collapse
|
18
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
19
|
Yu S, Li C, Ding Y, Huang S, Wang W, Wu Y, Wang F, Wang A, Han Y, Sun Z, Lu Y, Gu N. Exploring the 'cold/hot' properties of traditional Chinese medicine by cell temperature measurement. PHARMACEUTICAL BIOLOGY 2020; 58:208-218. [PMID: 32114881 PMCID: PMC7067177 DOI: 10.1080/13880209.2020.1732429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Context: It is common sense that chewing a mint leaf can cause a cooling feeling, while chewing ginger root will produce a burning feeling. In Traditional Chinese Medicine (TCM), this phenomenon is referred to as 'cold/hot' properties of herbs. Herein, it is reported that TCM with different "cold/hot" properties have different effects on the variation of cells.Objective: To explore the intrinsic 'cold/hot' properties of TCM from the perspective of cellular and molecular biology.Materials and methods: A375 cells were selected using Cancer Cell Line Encyclopaedia (CCLE) analysis and western blots. Hypaconitine and baicalin were selected by structural similarity analysis from 56 and 140 compounds, respectively. A wireless thermometry system was used to measure cellular temperature change induced by different compounds. Alteration of intracellular calcium influx was investigated by means of calcium imaging.Results: The IC50 values of GSK1016790A, HC067047, hypaconitine, and baicalin for A375 cells are 8.363 nM, 816.4 μM, 286.4 μM and 29.84 μM, respectively. And, 8 μM hypaconitine induced obvious calcium influx while 8 μM baicalin inhibited calcium influx induced by TRPV4 activation. Cellular temperature elevated significantly when treated with GSK1016790A or hypaconitine, while the results were reversed when cells were treated with HC067047 or baicalin.Discussion and conclusions: The changes in cellular temperature are speculated to be caused by the alteration of intracellular calcium influx mediated by TRPV4. In addition, the 'cold/hot' properties of compounds in TCM can be classified by using cellular temperature detection.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can Li
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangxu Wang
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuexia Han
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Zhiguang Sun
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- CONTACT Yin Lu
| | - Ning Gu
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering of Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- Ning Gu
| |
Collapse
|
20
|
Moriwaki S, Narimatsu Y, Fukumura K, Iwakoshi-Ukena E, Furumitsu M, Ukena K. Effects of Chronic Intracerebroventricular Infusion of RFamide-Related Peptide-3 on Energy Metabolism in Male Mice. Int J Mol Sci 2020; 21:ijms21228606. [PMID: 33203104 PMCID: PMC7698077 DOI: 10.3390/ijms21228606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.
Collapse
|
21
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
22
|
Castillo-Armengol J, Barquissau V, Geller S, Ji H, Severi I, Venema W, Fenandez EA, Moret C, Huber K, Leal-Esteban LC, Nasrallah A, Martinez-Carreres L, Niederhäuser G, Seoane-Collazo P, Lagarrigue S, López M, Giordano A, Croizier S, Thorens B, Lopez-Mejia IC, Fajas L. Hypothalamic CDK4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. EMBO Rep 2020; 21:e49807. [PMID: 32657019 PMCID: PMC7507572 DOI: 10.15252/embr.201949807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
This study investigated the role of CDK4 in the oxidative metabolism of brown adipose tissue (BAT). BAT from Cdk4−/− mice exhibited fewer lipids and increased mitochondrial volume and expression of canonical thermogenic genes, rendering these mice more resistant to cold exposure. Interestingly, these effects were not BAT cell‐autonomous but rather driven by increased sympathetic innervation. In particular, the ventromedial hypothalamus (VMH) is known to modulate BAT activation via the sympathetic nervous system. We thus examined the effects of VMH neuron‐specific Cdk4 deletion. These mice display increased sympathetic innervation and enhanced cold tolerance, similar to Cdk4−/− mice, in addition to browning of scWAT. Overall, we provide evidence showing that CDK4 modulates thermogenesis by regulating sympathetic innervation of adipose tissue depots through hypothalamic nuclei, including the VMH. This demonstrates that CDK4 not only negatively regulates oxidative pathways, but also modulates the central regulation of metabolism through its action in the brain.
Collapse
Affiliation(s)
| | - Valentin Barquissau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Honglei Ji
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Wiebe Venema
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eric Aria Fenandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Catherine Moret
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Anita Nasrallah
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Melguizo Rodríguez L, Illescas-Montes R, Costela-Ruiz VJ, García-Martínez O. Stimulation of brown adipose tissue by polyphenols in extra virgin olive oil. Crit Rev Food Sci Nutr 2020; 61:3481-3488. [PMID: 32723184 DOI: 10.1080/10408398.2020.1799930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Obesity is one of the main public health problems of the 21st century resulting from an imbalance between calorie intake and energy expenditure. Currently, the search for new treatments against this pathology has become a priority. One of the therapeutic strategies against obesity could be the activation of brown adipose tissue through different molecules such as the phenolic compounds of extra virgin olive oil (EVOO). The objective of this review was to provide an update of scientific knowledge on the relationship between EVOO phenolic compounds and brown adipose tissue.According to this review, it has been demonstrated that extra virgin olive oil phenolic compounds can have beneficial effects on obesity by activating brown adipose tissue and enhance thermogenesis through different signaling pathways mediated by molecules such as AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) or sirtuin 1 (Sirt1).
Collapse
Affiliation(s)
- L Melguizo Rodríguez
- Department of Nursing, Faculty of Health Sciences (Ceuta), Biomedical Group (BIO277), University of Granada, Ceuta, Spain.,Instituto Investigación Biosanitaria, ibs.Granada, Granada, Spain
| | - R Illescas-Montes
- Instituto Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Department of Nursing, Faculty of Health Sciences, Biomedical Group (BIO277), University of Granada, Granada, Spain
| | - V J Costela-Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Department of Nursing, Faculty of Health Sciences, Biomedical Group (BIO277), University of Granada, Granada, Spain
| | - O García-Martínez
- Instituto Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Department of Nursing, Faculty of Health Sciences, Biomedical Group (BIO277), University of Granada, Granada, Spain
| |
Collapse
|
24
|
Giacobbo BL, Doorduin J, Moraga-Amaro R, Nazario LR, Schildt A, Bromberg E, Dierckx RAJO, de Vries EFJ. Chronic harmine treatment has a delayed effect on mobility in control and socially defeated rats. Psychopharmacology (Berl) 2020; 237:1595-1606. [PMID: 32088835 PMCID: PMC7239822 DOI: 10.1007/s00213-020-05483-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Depression is characterized by behavioral, cognitive and physiological changes, imposing a major burden on the overall wellbeing of the patient. Some evidence indicates that social stress, changes in growth factors (e.g., brain-derived neurotrophic factor (BDNF)), and neuroinflammation are involved in the development and progression of the disease. The monoamine oxidase A inhibitor drug harmine was suggested to have both antidepressant and anti-inflammatory properties and may, therefore, be a potential candidate for treatment of depression. AIM The goal of this study was to assess the effects of harmine on behavior, brain BDNF levels, and microglia activation in control rats and a rat model of social stress. MATERIAL AND METHODS Rats were submitted to 5 consecutive days of repeated social defeat (RSD) or control conditions. Animals were treated daily with harmine (15 mg/kg) or vehicle from day 3 until the end of the experiment. To assess the effects of harmine treatment on behavior, the sucrose preference test (SPT) was performed on days 1, 6, and 15, the open field test (OFT) on days 6 and 14, and the novel object recognition test (NOR) on day 16. Brain microgliosis was assessed using [11C]PBR-28 PET on day 17. Animals were terminated on day 17, and BDNF protein concentrations in the hippocampus and frontal cortex were analyzed using ELISA. RESULTS RSD significantly decreased bodyweight and increased anxiety and anhedonia-related parameters in the OFT and SPT on day 6, but these behavioral effects were not observed anymore on day 14/15. Harmine treatment caused a significant reduction in bodyweight gain in both groups, induced anhedonia in the SPT on day 6, and significantly reduced the mobility and exploratory behavior of the animals in the OFT mainly on day 14. PET imaging and the NOR test did not show any significant effects on microglia activation and memory, respectively. BDNF protein concentrations in the hippocampus and frontal cortex were not significantly affected by either RSD or harmine treatment. DISCUSSION Harmine was not able to reverse the acute effects of RSD on anxiety and anhedonia and even aggravated the effect of RSD on bodyweight loss. Moreover, harmine treatment caused unexpected side effects on general locomotion, both in RSD and control animals, but did not influence glial activation status and BDNF concentrations in the brain. In this model, RSD-induced stress was not strong enough to induce long-term effects on the behavior, neuroinflammation, or BDNF protein concentration. Thus, the efficacy of harmine treatment on these delayed parameters needs to be further evaluated in more severe models of chronic stress.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
- Laboratory of Biology and Nervous System Development, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
- Laboratory of Neurochemistry and Psychopharmacology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Elke Bromberg
- Laboratory of Biology and Nervous System Development, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
25
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
26
|
Yu H, Chhabra KH, Thompson Z, Jones GL, Kiran S, Shangguan G, Low MJ. Hypothalamic POMC deficiency increases circulating adiponectin despite obesity. Mol Metab 2020; 35:100957. [PMID: 32244188 PMCID: PMC7082555 DOI: 10.1016/j.molmet.2020.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The steep rise in the prevalence of obesity and its related metabolic syndrome have become a major worldwide health concerns. Melanocortin peptides from hypothalamic arcuate nucleus (Arc) POMC neurons induce satiety to limit food intake. Consequently, Arc Pomc-deficient mice (ArcPomc−/−) exhibit hyperphagia and obesity. Previous studies demonstrated that the circulating levels of adiponectin, a protein abundantly produced and secreted by fat cells, negatively correlate with obesity in both rodents and humans. However, we found that ArcPomc−/− mice have increased circulating adiponectin levels despite obesity. Therefore, we investigated the physiological function and underlying mechanisms of hypothalamic POMC in regulating systemic adiponectin levels. Methods Circulating adiponectin was measured in obese ArcPomc−/− mice at ages 4–52 weeks. To determine whether increased adiponectin was a direct result of ArcPomc deficiency or a secondary effect of obesity, we examined plasma adiponectin levels in calorie-restricted mice with or without a history of obesity and in ArcPomc−/− mice before and after genetic restoration of Pomc expression in the hypothalamus. To delineate the mechanisms causing increased adiponectin in ArcPomc−/− mice, we determined sympathetic outflow to adipose tissue by assessing epinephrine, norepinephrine, and tyrosine hydroxylase protein levels and measured the circulating adiponectin in the mice after acute norepinephrine or propranolol treatments. In addition, adiponectin mRNA and protein levels were measured in discrete adipose tissue depots to ascertain which fat depots contributed the most to the high level of adiponectin in the ArcPomc−/− mice. Finally, we generated compound Adiopoq−/−:ArcPomc−/− mice and compared their growth, body composition, and glucose homeostasis to the individual knockout mouse strains and their wild-type controls. Results Obese ArcPomc−/− female mice had unexpectedly increased plasma adiponectin compared to wild-type siblings at all ages greater than 8 weeks. Despite chronic calorie restriction to achieve normal body weights, higher adiponectin levels persisted in the ArcPomc−/− female mice. Genetic restoration of Pomc expression in the Arc or acute treatment of the ArcPomc−/− female mice with melanotan II reduced adiponectin levels to control littermate values. The ArcPomc−/− mice had defective thermogenesis and decreased epinephrine, norepinephrine, and tyrosine hydroxylase protein levels in their fat pads, indicating reduced sympathetic outflow to adipose tissue. Injections of norepinephrine into the ArcPomc−/− female mice reduced circulating adiponectin levels, whereas injections of propranolol significantly increased adiponectin levels. Despite the beneficial effects of adiponectin on metabolism, the deletion of adiponectin alleles in the ArcPomc−/− mice did not exacerbate their metabolic abnormalities. Conclusion In summary, to the best of our knowledge, this study provides the first evidence that despite obesity, the ArcPomc−/− mouse model has high circulating adiponectin levels, which demonstrated that increased fat mass is not necessarily correlated with hypoadiponectinemia. Our investigation also found a previously unknown physiological pathway connecting POMC neurons via the sympathetic nervous system to circulating adiponectin, thereby shedding light on the biological regulation of adiponectin. Obese female hypothalamic-specific Pomc-deficient mice have unexpectedly elevated circulating adiponectin. Restoration of Pomc expression in the hypothalamus reduces plasma adiponectin. Low sympathetic output to subcutaneous fat depots in the Pomc-deficient mice contributes to high adiponectin levels. Deletion of adiponectin in hypothalamic-specific Pomc-deficient mice does not alter their metabolic phenotype.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Zoe Thompson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Graham L Jones
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sylee Kiran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; School of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, USA
| | - Gary Shangguan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Kincaid HJ, Nagpal R, Yadav H. Microbiome-immune-metabolic axis in the epidemic of childhood obesity: Evidence and opportunities. Obes Rev 2020; 21:e12963. [PMID: 31663251 PMCID: PMC7771488 DOI: 10.1111/obr.12963] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
Obesity epidemic responsible for increase in diabetes, heart diseases, infections and cancer shows no signs of abating. Obesity in children is also on rise, indicating the urgent need of strategies for prevention and intervention that must begin in early life. While originally posited that obesity results from the simple concept of consuming more calories, or genetics, emerging research suggests that the bacteria living in our gut (gut microbiome) and its interactions with immune cells and metabolic organs including adipose tissues (microbiome-immune-metabolic axis) play significant role in obesity development in childhood. Specifically, abnormal changes (dysbiosis) in the gut microbiome, stimulation of inflammatory cytokines, and shifts in the metabolic functions of brown adipose tissue and the browning of white adipose tissue are associated with increased obesity. Many factors from as early as gestation appear to contribute in obesity, such as maternal health, diet, antibiotic use by mother and/or child, and birth and feeding methods. Herein, using evidence from animal and human studies, we discuss how these factors impact microbiome-immune-metabolic axis and cause obesity epidemic in children, and describe the gaps in knowledge that are warranted for future research.
Collapse
Affiliation(s)
- Halle J Kincaid
- Department of Internal Medicine- Molecular Medicine, and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Department of Internal Medicine- Molecular Medicine, and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine- Molecular Medicine, and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Liu H, Xu Y, Hu F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:578830. [PMID: 33071984 PMCID: PMC7538541 DOI: 10.3389/fendo.2020.578830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global health issue, but effective therapies remain very limited. Adaptive thermogenesis promotes weight loss by dissipating energy in the form of heat, thereby representing a promising target to counteract obesity. Notably, the regulation of thermogenesis is tightly orchestrated by complex neuronal networks, especially those in the hypothalamus. Recent evidence highlights the importance of adenosine monophosphate-activated protein kinase (AMPK) within the ventromedial nucleus of the hypothalamus (VMH) in modulating thermogenesis. Various molecules, such as GLP-1, leptin, estradiol, and thyroid hormones, have been reported to act on the VMH to inhibit AMPK, which subsequently increases thermogenesis through the activation of the sympathetic nervous system (SNS). In this review, we summarize the critical role of AMPK within the VMH in the control of energy balance, focusing on its contribution to thermogenesis and the associated mechanisms.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Hu
| |
Collapse
|
29
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
30
|
Castillo‐Armengol J, Fajas L, Lopez‐Mejia IC. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 2019; 20:e47903. [PMID: 31423716 PMCID: PMC6726901 DOI: 10.15252/embr.201947903] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Multidirectional interactions between metabolic organs in the periphery and the central nervous system have evolved concomitantly with multicellular organisms to maintain whole-body energy homeostasis and ensure the organism's adaptation to external cues. These interactions are altered in pathological conditions such as obesity and type 2 diabetes. Bioactive peptides and proteins, such as hormones and cytokines, produced by both peripheral organs and the central nervous system, are key messengers in this inter-organ communication. Despite the early discovery of the first hormones more than 100 years ago, recent studies taking advantage of novel technologies have shed light on the multiple ways used by cells in the body to communicate and maintain energy balance. This review briefly summarizes well-established concepts and focuses on recent advances describing how specific proteins and peptides mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to maintain energy homeostasis. Additionally, this review outlines how the improved knowledge about these inter-organ networks is helping us to redefine therapeutic strategies in an effort to promote healthy living and fight metabolic disorders and other diseases.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | |
Collapse
|
31
|
Fukuhara S, Nakajima H, Sugimoto S, Kodo K, Shigehara K, Morimoto H, Tsuma Y, Moroto M, Mori J, Kosaka K, Morimoto M, Hosoi H. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One 2019; 14:e0210184. [PMID: 30608967 PMCID: PMC6319720 DOI: 10.1371/journal.pone.0210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutation of the methyl-CpG-binding protein 2 (MECP2) gene. Although RTT has been associated with obesity, the underlying mechanism has not yet been elucidated. In this study, female heterozygous Mecp2-null mice (Mecp2+/- mice), a model of RTT, were fed a normal chow diet or high-fat diet (HFD), and the changes in molecular signaling pathways were investigated. Specifically, we examined the expression of genes related to the hypothalamus and dopamine reward circuitry, which represent a central network of feeding behavior control. In particular, dopamine reward circuitry has been shown to regulate hedonic feeding behavior, and its disruption is associated with HFD-related changes in palatability. The Mecp2+/- mice that were fed the normal chow showed normal body weight and food consumption, whereas those fed the HFD showed extreme obesity with hyperphagia, an increase of body fat mass, glucose intolerance, and insulin resistance compared with wild-type mice fed the HFD (WT-HFD mice). The main cause of obesity in Mecp2+/--HFD mice was a remarkable increase in calorie intake, with no difference in oxygen consumption or locomotor activity. Agouti-related peptide mRNA and protein levels were increased, whereas proopiomelanocortin mRNA and protein levels were reduced in Mecp2+/--HFD mice with hyperleptinemia, which play an essential role in appetite and satiety in the hypothalamus. The conditioned place preference test revealed that Mecp2+/- mice preferred the HFD. Tyrosine hydroxylase and dopamine transporter mRNA levels in the ventral tegmental area, and dopamine receptor and dopamine- and cAMP-regulated phosphoprotein mRNA levels in the nucleus accumbens were significantly lower in Mecp2+/--HFD mice than those of WT-HFD mice. Thus, HFD feeding induced dysregulation of food intake in the hypothalamus and dopamine reward circuitry, and accelerated the development of extreme obesity associated with addiction-like eating behavior in Mecp2+/- mice.
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
- * E-mail:
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kazuki Kodo
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
32
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
33
|
Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat Commun 2018; 9:4722. [PMID: 30413707 PMCID: PMC6226433 DOI: 10.1038/s41467-018-06462-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Excess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2−/− mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected. NPFFR2 signalling is required to maintain basal arcuate nucleus NPY mRNA expression. Lack of NPFFR2 signalling leads to a decrease in BAT thermogenesis under HFD conditions with significantly lower UCP-1 and PGC-1α levels in the BAT. Together, these data demonstrate that NPFFR2 signalling promotes diet-induced thermogenesis via a novel hypothalamic NPY-dependent circuitry thereby coupling energy homoeostasis with energy partitioning to adipose and bone tissue. Excess caloric intake leads to increased thermogenesis in brown adipose tissue, to limit weight gain. Here, the authors show that neuropeptide FF receptor-2 signalling promotes thermogenesis via control of NPY expression in the arcuate nucleus, and that it absence in mice leads to a failure of activation of diet-induced thermogenesis and the development of exacerbated obesity.
Collapse
|
34
|
Augmented Insulin and Leptin Resistance of High Fat Diet-Fed APPswe/PS1dE9 Transgenic Mice Exacerbate Obesity and Glycemic Dysregulation. Int J Mol Sci 2018; 19:ijms19082333. [PMID: 30096853 PMCID: PMC6121904 DOI: 10.3390/ijms19082333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disease is highly associated with metabolic syndromes. We previously demonstrated that glycemic dysregulation and obesity are augmented in high fat diet (HFD)-treated APPswe/PS1dE9 (APP/PS1) transgenic mice. In the current study, the underlying mechanism mediating exacerbated metabolic stresses in HFD APP/PS1 transgenic mice was further examined. APP/PS1 mice developed insulin resistance and, consequently, impaired glucose homeostasis after 10 weeks on HFD. [18F]-2-fluoro-2-deoxy-d-glucose ([18F]-FDG) positron emission tomography showed that interscapular brown adipose tissue is vulnerable to HFD and AD-related pathology. Chronic HFD induced hyperphagia, with limited effects on basal metabolic rates in APP/PS1 transgenic mice. Excessive food intake may be caused by impairment of leptin signaling in the hypothalamus because leptin failed to suppress the food intake of HFD APP/PS1 transgenic mice. Leptin-induced pSTAT3 signaling in the arcuate nucleus was attenuated. Dysregulated energy homeostasis including hyperphagia and exacerbated obesity was elicited prior to the presence of the amyloid pathology in the hypothalamus of HFD APP/PS1 transgenic mice; nevertheless, cortical neuroinflammation and the level of serum Aβ and IL-6 were significantly elevated. Our study demonstrates the pivotal role of AD-related pathology in augmenting HFD-induced insulin and leptin resistance and impairing hypothalamic regulation of energy homeostasis.
Collapse
|
35
|
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, Tovar AR, Gamba G. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab 2018; 314:E53-E65. [PMID: 29066461 DOI: 10.1152/ajpendo.00108.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | | | - Lilia G Noriega
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Jose V Jiménez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Braulio A Marfil-Garza
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Armando R Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
36
|
Central Circadian Clock Regulates Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:79-103. [PMID: 30390286 DOI: 10.1007/978-981-13-1286-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body not only responds to environmental changes but also anticipates them. The light and dark cycle with the period of about 24 h is a recurring environmental change that determines the diurnal variation in food availability and safety from predators in nature. As a result, the circadian clock is evolved in most animals to align locomotor behaviors and energy metabolism with the light cue. The central circadian clock in mammals is located at the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain. We here review the molecular and anatomic architecture of the central circadian clock in mammals, describe the experimental and observational evidence that suggests a critical role of the central circadian clock in shaping systemic energy metabolism, and discuss the involvement of endocrine factors, neuropeptides, and the autonomic nervous system in the metabolic functions of the central circadian clock.
Collapse
|
37
|
Choudhary RC, Jia X. Hypothalamic or Extrahypothalamic Modulation and Targeted Temperature Management After Brain Injury. Ther Hypothermia Temp Manag 2017; 7:125-133. [PMID: 28467285 PMCID: PMC5610405 DOI: 10.1089/ther.2017.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeted temperature management (TTM) has been recognized to protect tissue function and positively influence neurological outcomes after brain injury. While shivering during hypothermia nullifies the beneficial effect of TTM, traditionally, antishivering drugs or paralyzing agents have been used to reduce the shivering. The hypothalamic area of the brain helps in controlling cerebral temperature and body temperature through interactions between different brain areas. Thus, modulation of different brain areas either pharmacologically or by electrical stimulation may contribute in TTM; although, very few studies have shown that TTM might be achieved by activation and inhibition of neurons in the hypothalamic region. Recent studies have investigated potential pharmacological methods of inducing hypothermia for TTM by aiming to maintain the TTM and reduce the shivering effect without using antiparalytic drugs. Better survival and neurological outcome after brain injury have been reported after pharmacologically induced TTM. This review discusses the mechanisms and modulation of the hypothalamus with other brain areas that are involved in inducing hypothermia through which TTM may be achieved and provides therapeutic strategies for TTM after brain injury.
Collapse
Affiliation(s)
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Tham SW, Li L, Effraim P, Waxman S. Between fire and ice: refractory hypothermia and warmth-induced pain in inherited erythromelalgia. BMJ Case Rep 2017; 2017:bcr-2017-219486. [PMID: 28751508 DOI: 10.1136/bcr-2017-219486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inherited erythromelalgia (IEM) is a well-described pain disorder caused by mutations of sodium channel Nav1.7, a peripheral channel expressed within dorsal root ganglion and the sympathetic ganglion neurons. Clinically, IEM is characterised by paroxysmal attacks of severe pain, usually in the distal extremities, triggered by warmth or exercise. Pain is not adequately treated by existing pharmacological agents. Individuals with IEM classically cool their limbs for relief, in some cases resulting in tissue injury. We describe a patient from a family with IEM due to the L858F mutation of Nav1.7 who presented with refractory hypothermia due to overcooling. This presentation of refractory hypothermia necessitating warming strategies, complicated by severe warmth-induced pain, posed a substantial therapeutic challenge. We report our experience in overcoming hypothermia lasting 3 weeks in a child with IEM, discuss possible pathophysiological mechanisms underlying this unusual complication and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- See Wan Tham
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Anesthesia and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Li Li
- Department of Anesthesia and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Philip Effraim
- Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, Veteran Affairs Medical Center, West Haven, Connecticut, USA
| | - Stephen Waxman
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, Veteran Affairs Medical Center, West Haven, Connecticut, USA.,Department of Neurology, Yale University School of Medicine, West Haven, Connecticut, USA
| |
Collapse
|
39
|
Song NJ, Chang SH, Li DY, Villanueva CJ, Park KW. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp Mol Med 2017; 49:e353. [PMID: 28684864 PMCID: PMC5565954 DOI: 10.1038/emm.2017.70] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a central metabolic organ that controls energy homeostasis of the whole body. White adipose tissue (WAT) stores excess energy in the form of triglycerides, whereas brown adipose tissue (BAT) dissipates energy in the form of heat through mitochondrial uncoupling protein 1 (Ucp1). A newly identified adipose tissue called 'beige fat' (BAT-like) is produced through a process called WAT browning. This tissue mainly resides in WAT depots and displays intermediate characteristics of both WAT and BAT. Since the recent discovery of BAT in the human body, along with the identification of molecular targets for BAT activation, stimulating energy expenditure has been considered as a great strategy to treat human obesity and metabolic diseases. Here we summarize recent findings regarding molecular targets and thermogenic small molecules that can stimulate BAT and increase energy expenditure, with an emphasis on possible therapeutic applications in humans.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
40
|
Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. Int J Mol Sci 2017; 18:ijms18040832. [PMID: 28420089 PMCID: PMC5412416 DOI: 10.3390/ijms18040832] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, an orexigenic hormone released primarily from the gut, signals the hypothalamus to stimulate growth hormone release, enhance appetite and promote weight gain. The ghrelin receptor, aka Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in the brain, with highest expression in Agouti-Related Peptide (AgRP) neurons of the hypothalamus. We recently reported that neuron-specific deletion of GHS-R completely prevents diet-induced obesity (DIO) in mice by activating non-shivering thermogenesis. To further decipher the specific neuronal circuits mediating the metabolic effects of GHS-R, we generated AgRP neuron-specific GHS-R knockout mice (AgRP-Cre;Ghsrf/f). Our data showed that GHS-R in AgRP neurons is required for ghrelin’s stimulatory effects on growth hormone secretion, acute food intake and adiposity, but not for long-term total food intake. Importantly, deletion of GHS-R in AgRP neurons attenuated diet-induced obesity (DIO) and enhanced cold-resistance in mice fed high fat diet (HFD). The HFD-fed knockout mice showed increased energy expenditure, and exhibited enhanced thermogenic activation in both brown and subcutaneous fat; this implies that GHS-R suppression in AgRP neurons enhances sympathetic outflow. In summary, our results suggest that AgRP neurons are key site for GHS-R mediated thermogenesis, and demonstrate that GHS-R in AgRP neurons plays crucial roles in governing energy utilization and pathogenesis of DIO.
Collapse
|
41
|
Yao L, Liu Y, Qiu Z, Kumar S, Curran JE, Blangero J, Chen Y, Lehman DM. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation. J Neuroendocrinol 2017; 29:10.1111/jne.12455. [PMID: 28071834 PMCID: PMC5328859 DOI: 10.1111/jne.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
Recent data suggest that common genetic risks for metabolic disorders such as obesity may be human-specific and exert effects via the central nervous system. To overcome the limitation of human tissue access for study, we have generated induced human pluripotent stem cell (hiPSC)-derived neuronal cultures that recapture many features of hypothalamic neurones within the arcuate nucleus. In the present study, we have comprehensively characterised this model across development, benchmarked these neurones to in vivo events, and demonstrate a link between obesity risk variants and hypothalamic development. The dynamic transcriptome across neuronal maturation was examined using microarray and RNA sequencing methods at nine time points. K-means clustering of the longitudinal data was conducted to identify co-regulation and microRNA control of biological processes. The transcriptomes were compared with those of 103 samples from 13 brain regions reported in the Genotype-Tissue Expression database (GTEx) using principal components analysis. Genes with proximity to body mass index (BMI)-associated genetic variants were mapped to the developmentally expressed genesets, and enrichment significance was assessed with Fisher's exact test. The human neuronal cultures have a transcriptional and physiological profile of neuropeptide Y/agouti-related peptide arcuate nucleus neurones. The neuronal transcriptomes were highly correlated with adult hypothalamus compared to any other brain region from the GTEx. Also, approximately 25% of the transcripts showed substantial changes in expression across neuronal development and potential co-regulation of biological processes that mirror neuronal development in vivo. These developmentally expressed genes were significantly enriched for genes in proximity to BMI-associated variants. We confirmed the utility of this in vitro human model for studying the development of key hypothalamic neurones involved in energy balance and show that genes at loci associated with body weight regulation may share a pattern of developmental regulation. These data support the need to investigate early development to elucidate the human-specific central nervous system pathophysiology underlying obesity susceptibility.
Collapse
Affiliation(s)
- Li Yao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yuanhang Liu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhifang Qiu
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
42
|
Wankhade UD, Shen M, Yadav H, Thakali KM. Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2365609. [PMID: 28105413 PMCID: PMC5220392 DOI: 10.1155/2016/2365609] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and "beige" adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.
Collapse
Affiliation(s)
- Umesh D. Wankhade
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hariom Yadav
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Keshari M. Thakali
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
43
|
Côté I, Sakarya Y, Kirichenko N, Morgan D, Carter CS, Tümer N, Scarpace PJ. Activation of the central melanocortin system chronically reduces body mass without the necessity of long-term caloric restriction. Can J Physiol Pharmacol 2016; 95:206-214. [PMID: 28051332 DOI: 10.1139/cjpp-2016-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanotan II (MTII) is a potent appetite suppressor that rapidly reduces body mass. Given the rapid loss of anorexic response upon chronic MTII treatment, most investigations have focused on the initial physiological adaptations. However, other evidence supports MTII as a long-term modulator of energy balance that remains to be established. Therefore, we examined the chronic effects of MTII on energy homeostasis. MTII (high or low dose) or artificial cerebrospinal fluid (aCSF) was infused into the lateral ventricle of the brain of 6-month-old F344BN rats (6-7/group) over 40 days. MTII suppressed appetite in a dose-dependent manner (P < 0.05). Although food intake promptly rose back to control level, body mass was persistently reduced in both MTII groups (P < 0.01). At day 40, both MTII groups displayed lower adiposity than the aCSF animals (P < 0.01). These results show that MTII chronically reduces body mass without the requirement of long-term caloric restriction. Our study proposes that food restriction helps initiate mass loss; however, combined with a secondary pharmacological approach preserving a negative energy balance state over time may help combat obesity.
Collapse
Affiliation(s)
- I Côté
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Y Sakarya
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - N Kirichenko
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - D Morgan
- c Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - C S Carter
- d Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - N Tümer
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - P J Scarpace
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Bargut TCL, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 2016; 48:452-60. [PMID: 27561621 DOI: 10.1016/j.tice.2016.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | | |
Collapse
|
45
|
Hu F, Xu Y, Liu F. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis. Am J Physiol Endocrinol Metab 2016; 310:E994-E1002. [PMID: 27166282 PMCID: PMC4935144 DOI: 10.1152/ajpendo.00121.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes.
Collapse
Affiliation(s)
- Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas; and
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
46
|
Rummel C, Bredehöft J, Damm J, Schweighöfer H, Peek V, Harden LM. Obesity Impacts Fever and Sickness Behavior During Acute Systemic Inflammation. Physiology (Bethesda) 2016; 31:117-30. [PMID: 26889017 DOI: 10.1152/physiol.00049.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is reaching dramatic proportions in humans and is associated with a higher risk for cardiovascular disease, diabetes, and cognitive alterations, and a higher mortality during infection and inflammation. The focus of the present review is on the influence of obesity on the presentation of fever, sickness behavior, and inflammatory responses during acute systemic inflammation.
Collapse
Affiliation(s)
- Christoph Rummel
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Janne Bredehöft
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Jelena Damm
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Hanna Schweighöfer
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Verena Peek
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Lois M Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|