1
|
You H, Gou Q, Dong M, Chang F, Xiu J. Exploring the role of iNOS in HFpEF-Related myocardial fibrosis: Involvement of PTEN-PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2024; 734:150589. [PMID: 39245028 DOI: 10.1016/j.bbrc.2024.150589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a challenging condition to treat with myocardial fibrosis being a pivotal pathological component. Previous studies have suggested a role for inducible nitric oxide synthase (iNOS) in the progression of this condition, but the precise mechanisms remain unclear. This study aimed to investigate the role of iNOS in HFpEF-related myocardial fibrosis and identify potential therapeutic targets. METHODS A 'two-hit' mouse model of HFpEF was established, and echocardiography, histopathology and biochemical analyses were performed. In vitro experiments were conducted in mouse cardiac fibroblasts, with iNOS overexpression and application of iNOS or phosphatidylinositol 3 kinase (PI3K) inhibitors. The iNOS-S-nitrosylated phosphatase and TENsin homolog (SNO-PTEN)-phosphorylated-protein kinase B (p-AKT) pathway was investigated, along with the effects on fibrotic markers and cell proliferation and migration. RESULTS HFpEF mice exhibited significant cardiac dysfunction and fibrosis, with increased expression of iNOS, SNO-PTEN, and p-AKT, indicative of the activation of the iNOS-SNO-PTEN-p-AKT pathway. iNOS overexpression in mouse cardiac fibroblasts led to increased SNO-PTEN, decreased PTEN, activated phosphorylated PI3K (p-PI3K) and p-AKT, and enhanced cell proliferation and migration, as well as increased collagen I and III expression. The use of an iNOS inhibitor (L-NIL) or a PI3K inhibitor (LY294002) partially reversed these changes. CONCLUSION Our findings suggest that the iNOS-SNO-PTEN-p-AKT pathway may play a crucial role in HFpEF-related myocardial fibrosis, with iNOS and PI3K inhibitors offering potential therapeutic benefits. These insights may pave the way for the development of effective drug therapies for HFpEF.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China; Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qiling Gou
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Eid N, Bhatnagar P, Chan LL, Garcia-Macia M. Suppression of hepatic steatosis in non-alcoholic steatohepatitis model by modified Xiaoyao San formula: Evidence, mechanisms and perspective. World J Hepatol 2024; 16:1208-1212. [DOI: 10.4254/wjh.v16.i10.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
In this letter, we comment on a recent publication by Mei et al, in the World Journal of Hepatology, investigating the hepatoprotective effects of the modified Xiaoyao San (MXS) formula in a male rat model of non-alcoholic steatohepatitis (NASH). The authors found that MXS treatment mitigated hepatic steatosis and inflammation in the NASH model, as evidenced by the reduction in lipid droplets (LDs), fibrosis markers and lipogenic factors. Interestingly, these hepatoprotective effects were associated with androgen upregulation (based on metabolomics analysis of male steroid hormone metabolites), adenosine 5’-monophosphate-activated protein kinase (AMPK) activation, and restoration of phosphatase and tensin homolog (PTEN) expression. However, the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model, and androgen upregulation, AMPK activation, and restoration of PTEN expression. This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model. As a perspective, we propose additional mechanisms (such as autophagy/lipophagy activation in hepatocytes) for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model. A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.
Collapse
Affiliation(s)
- Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Payal Bhatnagar
- Department of Pharmaceutical Technology, School of pharmacy, IMU University, Kuala Lumpur 57000, Malaysia
| | - Li-Li Chan
- Department of Pathology and Pharmacology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics, Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain
| |
Collapse
|
3
|
Fang H, Wang X, Wang Z, Ma X, Zhang L, Yang L. Modulation of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum during early pregnancy. Domest Anim Endocrinol 2024; 89:106870. [PMID: 38954983 DOI: 10.1016/j.domaniend.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xinxin Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Zhongyue Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xiaoxin Ma
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China.
| |
Collapse
|
4
|
He Y, E M, Liu S, Liu G, Cao Y. The cellular signaling and regulatory role of protein phosphatase in tumor diagnosis: Upstream miRNAs of PTEN. Int J Biol Macromol 2024; 280:136179. [PMID: 39357725 DOI: 10.1016/j.ijbiomac.2024.136179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Protein phosphatases have demonstrated considerable promise in the realm of early tumor diagnosis across various malignancies. These enzymes play a critical role in modulating the PI3K-Akt signaling pathway, which is integral to cellular processes such as proliferation, survival, and migration. When the activity of protein phosphatases becomes abnormal, it can disrupt these essential signaling pathways, potentially leading to the initiation and progression of tumors. Consequently, monitoring for abnormal expression and activity levels of protein phosphatases could serve as a vital biomarker for early cancer detection. By identifying these alterations, clinicians may be better equipped to diagnose tumors at an earlier stage, significantly improving patient outcomes.In summary, our study highlights the multifaceted and significant role of PTEN in various forms of cancer, including esophageal squamous cell carcinoma (ESCA). Further analysis showed that the expression levels of protein phosphatase and PTEN protein were significantly associated with the early diagnosis of tumors, especially in the early stage of tumors, and their detection sensitivity and specificity were high. Therefore, by detecting the expression of protein phosphatase and PTEN protein, the early diagnosis of tumor can be achieved, and the therapeutic effect and prognosis of patients can be improved.
Collapse
Affiliation(s)
- Yunlong He
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150060, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150060, China.
| | - Shuang Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150060, China
| | - Guohui Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150060, China
| | - Yang Cao
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang 150060, China
| |
Collapse
|
5
|
You Y, Chen S, Tang B, Xing X, Deng H, Wu Y. Exosome-related gene identification and diagnostic model construction in hepatic ischemia-reperfusion injury. Sci Rep 2024; 14:22450. [PMID: 39341981 PMCID: PMC11439056 DOI: 10.1038/s41598-024-73441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) may cause severe hepatic impairment, acute hepatic insufficiency, and multiorgan system collapse. Exosomes can alleviate HIRI. Therefore, this study explored the role of exosomal-related genes (ERGs) in HIRI using bioinformatics to determine the underlying molecular mechanisms and novel diagnostic markers for HIRI. We merged the GSE12720, GSE14951, and GSE15480 datasets obtained from the Gene Expression Omnibus (GEO) database into a combined gene dataset (CGD). CGD was used to identify differentially expressed genes (DEGs) based on a comparison of the HIRI and healthy control cohorts. The impact of these DEGs on HIRI was assessed through gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). ERGs were retrieved from the GeneCards database and prior studies, and overlapped with the identified DEGs to yield the set of exosome-related differentially expressed genes (ERDEGs). Functional annotations and enrichment pathways of these genes were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Diagnostic models for HIRI were developed using least absolute shrinkage and selection operator (LASSO) regression and support vector machine (SVM) algorithms. Key genes with diagnostic value were identified from the overlap, and single-sample gene-set enrichment analysis (ssGSEA) was conducted to evaluate the immune infiltration characteristics. A molecular regulatory interaction network was established using Cytoscape software to elucidate the intricate regulatory mechanisms of key genes in HIRI. Finally, exosome score (Es) was obtained using ssGSEA and the HIRI group was divided into the Es_High and Es_Low groups based on the median Es. Gene expression was analyzed to understand the impact of all genes in the CGD on HIRI. Finally, the relative expression levels of the five key genes in the hypoxia-reoxygenation (H/R) model were determined using quantitative real-time PCR (qRT-PCR). A total of 3810 DEGs were identified through differential expression analysis of the CGD, and 61 of these ERDEGs were screened. Based on GO and KEGG enrichment analyses, the ERDEGs were mainly enriched in wound healing, MAPK, protein kinase B signaling, and other pathways. GSEA and GSVA revealed that these genes were mainly enriched in the TP53, MAPK, TGF[Formula: see text], JAK-STAT, MAPK, and NFKB pathways. Five key genes (ANXA1, HNRNPA2B1, ICAM1, PTEN, and THBS1) with diagnostic value were screened using the LASSO regression and SVM algorithms and their molecular interaction network was established using Cytoscape software. Based on ssGSEA, substantial variations were found in the expression of 18 immune cell types among the groups (p < 0.05). Finally, the Es of each HIRI patient was calculated. ERDEGs in the Es_High and Es_Low groups were enriched in the IL18, TP53, MAPK, TGF[Formula: see text], and JAK-STAT pathways. The differential expression of these five key genes in the H/R model was verified using qRT-PCR. Herein, five key genes were identified as potential diagnostic markers. Moreover, the potential impact of these genes on pathways and the regulatory mechanisms of their interaction network in HIRI were revealed. Altogether, our findings may serve as a theoretical foundation for enhancing clinical diagnosis and elucidating underlying pathogeneses.
Collapse
Affiliation(s)
- Yujuan You
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China
| | - Shoulin Chen
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China
| | - Binquan Tang
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China
| | - Xianliang Xing
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China
| | - Huanling Deng
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China
| | - Yiguo Wu
- Department of Blood Transfusion, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, P. R. China.
| |
Collapse
|
6
|
Dai Z, Zhao W, Cao L, Zhu Z, Xia Z, Xia L. Engineered probiotic E.coli Nissle 1917 for release PTEN to improve the tumor microenvironment and suppress tumor growth. Biotechnol Lett 2024:10.1007/s10529-024-03536-6. [PMID: 39331305 DOI: 10.1007/s10529-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The cancer is one of the diseases of serious threat to people's health and life nowadays. But heterogeneity, drug resistance and treatment side effects of cancer, traditional treatments still have limitations. Tumor-targeting probiotics with a well-established Biosafety and efficient targeting as a delivery vectors to deliver anticancer genes or antitumor drugs to tumor microenvironment has attracted much attention in cancer therapies. In this study, E.coil Nissle 1917 (EcN) was utilized to deliver eukaryotic anti-tumor protein PTEN to tumor microenvironment and suppress tumor growth. Therefore, the EcN (PTEN) was developed. Our results demonstrated that EcN (PTEN) could colonize the tumor site accurately and inhibit the growth of colorectal cancer cells in tumor-bearing mice. It is worth noting that the tumor microenvironment of the treated mice showed significant recruitment of and M1 macrophages, neutrophils and T lymphocytes. No toxicity was observed in the normal tissues during the experiments. This research show the probiotic EcN(PTEN) holds the promise of becoming a powerful weapon against cancer and expected to provide more effective treatments for cancer patients.
Collapse
Affiliation(s)
- Zirui Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Wenjuan Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Li Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Zirong Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Ziyuan Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China.
| |
Collapse
|
7
|
Hazazi A, Khan FR, Albloui F, Arif S, Abdulaziz O, Alhomrani M, Sindi AAA, Abu-Alghayth MH, Abalkhail A, Nassar SA, Binshaya AS. Signaling pathways in HPV-induced cervical cancer: Exploring the therapeutic promise of RNA modulation. Pathol Res Pract 2024; 263:155612. [PMID: 39357186 DOI: 10.1016/j.prp.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cervical cancer, originating from the epithelial tissue of the uterine cervix, constitutes the most commonly diagnosed malignancy among women worldwide. The predominant etiological factor underpinning cervical carcinogenesis is persistent infection with high-risk human papillomavirus (HPV) genotypes, notably HPV-16 and HPV-18. Oncoproteins encoded by high-risk HPV interfere with multiple essential cellular signaling cascades. Specifically, E5, E6, and E7 proteins disrupt the signaling pathways like p53, retinoblastoma tumor suppressor protein (pRB), The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK), and Wnt/β-catenin, promoting HPV-mediated carcinogenesis. This dysregulation disrupts cell cycle control, apoptosis, and metastasis through modulation of microRNAs (miRNA) and key cellular processes. The novel therapeutic interventions for HPV prevention and detection are fundamental to patient management. RNA-based treatment modalities offer the potential for manipulating critical pathways involved in cervical carcinogenesis. RNA therapeutics offer novel approaches to drug development by targeting intracellular genetic elements inaccessible to conventional modalities. Additional advantages include rapid design, synthesis, and a reduced genotoxic profile compared to DNA-based therapies. Despite beneficial attributes, system stability and efficient delivery remain critical parameters. This study assessed the intricate relationship between HPV, cervical cancer, and various signaling pathways. The study explores miRNAs' diagnostic and therapeutic potential, mall interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs)in cervical cancer management. The review highlights the prospect of RNA-targeted therapies to modulate specific cancer signaling pathways. This approach offers a novel strategy for cervical cancer treatment through precise regulation of cancer signaling. Future research should concentrate on developing RNA-targeted interventions to improve cervical cancer treatment outcomes through increased therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Quwayiyah, Shaqra University, Riyadh, Saudi Arabia; Department of Pharmaceutical Chemistry, Azad Institute of Pharmacy and Research, Lucknow, UP, India
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sultan Arif
- Department of Plastic Surgery and Burn Unit, Security Force Hospital, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, P.O.Box 66666, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Professor, Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
8
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
9
|
Tian Y, Liu YF, Wang YY, Li YZ, Ding WY, Zhang C. Molecular mechanisms of PTEN in atherosclerosis: A comprehensive review. Eur J Pharmacol 2024; 979:176857. [PMID: 39094923 DOI: 10.1016/j.ejphar.2024.176857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall caused by an imbalance of lipid metabolism and a maladaptive inflammatory response. A variety of harmful cellular changes associated with atherosclerosis include endothelial dysfunction, the migration of circulating inflammatory cells to the arterial wall, the production of proinflammatory cytokines, lipid buildup in the intima, local inflammatory responses in blood vessels, atherosclerosis-associated apoptosis, and autophagy. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity. Previous studies have shown that PTEN is closely related to atherosclerosis. This article reviews the role of PTEN in atherosclerosis from the perspectives of autophagy, apoptosis, inflammation, proliferation, and angiogenesis.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yong-Zhen Li
- Department of Pathology, The First People's Hospital of Zigong, Zigong, China, 643099, People's Republic of China
| | - Wen-Yan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
10
|
Fieni C, Sorrentino C, Ciummo SL, Fontana A, Lotti LV, Scialis S, Calvo Garcia D, Caulo M, Di Carlo E. Immunoliposome-based targeted delivery of the CRISPR/Cas9gRNA-IL30 complex inhibits prostate cancer and prolongs survival. Exp Mol Med 2024; 56:2033-2051. [PMID: 39232121 PMCID: PMC11447253 DOI: 10.1038/s12276-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
The development of selective and nontoxic immunotherapy targeting prostate cancer (PC) is challenging. Interleukin (IL)30 plays immunoinhibitory and oncogenic roles in PC, and its tumor-specific suppression may have significant clinical implications. CRISPR/Cas9-mediated IL30 gene deletion in PC xenografts using anti-PSCA antibody-driven lipid nanocomplexes (Cas9gRNA-hIL30-PSCA NxPs) revealed significant genome editing efficiency and circulation stability without off-target effects or organ toxicity. Biweekly intravenous administration of Cas9gRNA-hIL30-PSCA NxPs to PC-bearing mice inhibited tumor growth and metastasis and improved survival. Mechanistically, Cas9gRNA-hIL30-PSCA NxPs suppressed ANGPTL 1/2/4, IL1β, CCL2, CXCL1/6, SERPINE1-F1, EFNB2, PLG, PF4, VEGFA, VEGFD, ANG, TGFβ1, EGF and HGF expression in human PC cells while upregulated CDH1, DKK3 and PTEN expression, leading to low proliferation and extensive ischemic necrosis. In the syngeneic PC model, IL30-targeting immunoliposomes downregulated NFKB1 expression and prevented intratumoral influx of CD11b+Gr-1+MDCs, Foxp3+Tregs, and NKp46+RORγt+ILC3, and prolonged host survival by inhibiting tumor progression. This study serves as a proof of principle that immunoliposome-based targeted delivery of Cas9gRNA-IL30 represent a potentially safe and effective strategy for PC treatment.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UDA-TECHLAB Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Sofia Scialis
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
11
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
12
|
Yang Y, Pu J, Yang Y. Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon 2024; 10:e35721. [PMID: 39170140 PMCID: PMC11336864 DOI: 10.1016/j.heliyon.2024.e35721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
While traditional high-dose chemotherapy can effectively prolong the overall survival of acute myeloid leukemia (AML) patients and contribute to better prognostic outcomes, the advent of chemoresistance is a persistent challenge to effective AML management in the clinic. The therapeutic resistance is thought to emerge owing to the heterogeneous and adaptable nature of tumor cells when exposed to exogenous stimuli. Recent studies have focused on exploring metabolic changes that may afford novel opportunities to treat AML, with a particular focus on glycolytic metabolism. The Warburg effect, a hallmark of cancer, refers to metabolism of glucose through glycolysis under normoxic conditions, which contributes to the development of chemoresistance. Despite the key significance of this metabolic process in the context of malignant transformation, the underlying molecular mechanisms linking glycolysis to chemoresistance in AML remain incompletely understood. This review offers an overview of the current status of research focused on the relationship between glycolytic metabolism and AML resistance to chemotherapy, with a particular focus on the contributions of glucose transporters, key glycolytic enzymes, signaling pathways, non-coding RNAs, and the tumor microenvironment to this relationship. Together, this article will provide a foundation for the selection of novel therapeutic targets and the formulation of new approaches to treating AML.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neonatology, Zigong Maternity and Child Health Care Hospital, Zigong, Sichuan, 643000, China
| | - Jianlin Pu
- Department of Psychiatry, The Zigong Affiliated Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan, 643000, China
| | - You Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
13
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
14
|
Cao F, Li Y, Peng T, Li Y, Yang L, Hu L, Zhang H, Wang J. PTEN in kidney diseases: a potential therapeutic target in preventing AKI-to-CKD transition. Front Med (Lausanne) 2024; 11:1428995. [PMID: 39165377 PMCID: PMC11333338 DOI: 10.3389/fmed.2024.1428995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Renal fibrosis, a critical factor in the development of chronic kidney disease (CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent maladaptive repair resulting from pharmacological or pathological stimuli. Phosphatase and tensin homolog (PTEN), also known as phosphatase and tensin-associated phosphatase, plays a pivotal role in regulating the physiological behavior of renal tubular epithelial cells, glomeruli, and renal interstitial cells, thereby preserving the homeostasis of renal structure and function. It significantly impacts cell proliferation, apoptosis, fibrosis, and mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual elucidation of PTEN's involvement in various kidney injuries, its specific role in AKI and maladaptive repair after injury remains unclear. This review endeavors to delineate the multifaceted role of PTEN in renal pathology during AKI and CKD progression along with its underlying mechanisms, emphasizing its influence on oxidative stress, autophagy, non-coding RNA-mediated recruitment and activation of immune cells as well as renal fibrosis. Furthermore, we summarize prospective therapeutic targeting strategies for AKI and CKD-treatment related diseases through modulation of PTEN.
Collapse
Affiliation(s)
- Fangfang Cao
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanyuan Li
- Division of Science and Education, Mianyang Central Hospital, Mianyang, China
| | - Ting Peng
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanmei Li
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lihua Yang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lanping Hu
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Han Zhang
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
15
|
Ma M, Ma G, Zhang C, Wang Y, He X, Kang X. Identification of Autophagy-Related Genes Involved in Intervertebral Disc Degeneration by Microarray Data Analysis. World Neurosurg 2024; 188:e1-e17. [PMID: 38782255 DOI: 10.1016/j.wneu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Nucleus pulposus cells survive in a hypoxic, acidic, nutrient-poor, and hypotonic microenvironment. Consequently, they maintain low proliferation and undergo autophagy to protect themselves from cellular stress. Therefore, we aimed to identify autophagy-related biomarkers involved in intervertebral disc degeneration pathogenesis. METHODS Autophagy-related differentially expressed genes were derived from the intersection between the public GSE147383 microarray data set to identify differentially expressed genes and online databases to identify autophagy-related genes. Furthermore, we assessed their biological functions with gene annotation and enrichment analysis in the Metscape portal. Then, the STRING database and Cytoscape software allowed inferring a protein-protein interaction (PPI) network and identifying hub genes. In addition, to predict transcription factors that may regulate the hub genes, we used the GeneMANIA website. Finally, the competing endogenous RNA prediction tools and Cytoscape were also used to construct an mRNA-miRNA-lncRNA network. RESULTS A total of 123 autophagy-related differentially expressed genes were identified, they were mainly involved in phosphoinositide 3-kinase-Akt signaling, autophagy animal, and apoptosis pathways. Nine were identified as hub genes (PTEN, MYC, CTNNB1, JUN, BECN1, ERBB2, FOXO3, ATM, and FN1) and 36 transcription factors were associated with them. Finally, an autophagy-associated competing endogenous RNA network was constructed based on the 9 hub genes. CONCLUSIONS Nine hub genes were identified and a network of competing endogenous RNA associated with autophagy was established. They can be used as autophagy-related biomarkers of intervertebral disc degeneration and for further exploration.
Collapse
Affiliation(s)
- Miao Ma
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guifu Ma
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yajun Wang
- Breast Department, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- Department of Orthopedics, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
16
|
Lim JS, Kim E, Song JS, Ahn S. Energy‑stress‑mediated activation of AMPK sensitizes MPS1 kinase inhibition in triple‑negative breast cancer. Oncol Rep 2024; 52:101. [PMID: 38904203 PMCID: PMC11223027 DOI: 10.3892/or.2024.8760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Jong Seung Lim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunkyoung Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin-Sook Song
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
17
|
He C, Li Y, Gan L, Lin Y, Zhang B, Ma L, Xue H. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis. J Endocrinol Invest 2024; 47:1971-1986. [PMID: 38285310 DOI: 10.1007/s40618-023-02293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Autoimmune Thyroiditis (AIT) is the most common thyroid disease; however, there were no measures to prevent the progression of the disease. The present study attempts to identify that Notch signaling regulates the differentiation of T helper 17 (Th17) cells by activating downstream Phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway participating in the thyroid injury of the experimental autoimmune thyroiditis (EAT). METHODS In vivo experiments, mice were randomly divided into 4 groups: a control group, an EAT group, and two groups with LY294002 treatment (pTg plus 25 mg/kg or 50 mg/kg LY294002, respectively). The degrees of thyroiditis were evaluated, and the percentage of Th17 cells, expression of interleukin-17A (IL-17A), and the main components of the Notch-PI3K signaling pathway were detected in different groups. In vitro experiments, two different dosages of LY294002 (25 and 50 μM) were used to intervene splenic mononuclear cells (SMCs) from EAT mice to further evaluate the regulatory effect of Notch-PI3K pathway on Th17 cells. RESULTS Our data demonstrate that the infiltration of Th17 cells and the expressions of IL-17A, Notch, hairy and split 1 (Hes1), p‑AKT (Ser473), p‑AKT (Thr308), p‑mTOR (Ser2448), S6K1, and S6K2 increased remarkably in EAT mice. After PI3K pathway was blocked, the degrees of thyroiditis were significantly alleviated, and the proportion of Th17 cells, the expression of IL-17A, and the above Notch-PI3K pathway-related molecules decreased in a dose-dependent manner. Additionally, the proportion of Th17 cells was positively correlated with the concentration of serum thyroglobulin antibody (TgAb), IL-17A, and Notch-PI3K pathway-related molecules mRNA levels. CONCLUSIONS Notch signal promotes the secretion of IL-17A from Th17 cells by regulating the downstream PI3K/AKT/mTORC1 pathway through Hes-Phosphatase and tensin homolog (PTEN) and participates in thyroid autoimmune damage, and the PI3K pathway inhibitor may play important effects on AIT by affecting Th17 cells differentiation.
Collapse
Affiliation(s)
- C He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - L Gan
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - B Zhang
- Nanchang University Queen Mary School, Nanchang, 330031, People's Republic of China
| | - L Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - H Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China.
| |
Collapse
|
18
|
Zhang H, Wang Z, Li Q, Cao C, Guo Y, Chen Y. IRTKS promotes osteogenic differentiation by inhibiting PTEN phosphorylation. Biomed Pharmacother 2024; 177:116872. [PMID: 38908202 DOI: 10.1016/j.biopha.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024] Open
Abstract
Insulin stimulates osteoblast proliferation and differentiation as an anabolic agent in bone. Insulin Receptor Tyrosine Kinase Substrate (IRTKS) is involved in insulin signaling as an adapter for insulin receptors (IR). Here, we showed that IRTKS levels were significantly decreased in bone marrow mesenchymal stem cells (BMSCs) derived from the bone marrow of patients with osteoporosis. Based on relevant experiments, we observed that IRTKS promoted the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In addition, we identified a Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) as a potential active substrate of IRTKS. We demonstrated a direct interaction between IRTKS and PTEN using co-immunoprecipitation. Subsequently, we confirmed that the SH3 domain of IRTKS directly binds to the C-terminal tail of PTEN. Further experimental results demonstrated that PTEN attenuated the promoting effects of IRTKS on the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In conclusion, this study suggests that IRTKS contributes to osteogenic differentiation by inhibiting PTEN phosphorylation and provides a potential therapeutic target for osteoporosis patients.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Congcong Cao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; The First Clinical College of Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yongyuan Guo
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
19
|
Mei XL, Wu SY, Wu SL, Luo XL, Huang SX, Liu R, Qiang Z. Hepatoprotective effects of Xiaoyao San formula on hepatic steatosis and inflammation via regulating the sex hormones metabolism. World J Hepatol 2024; 16:1051-1066. [PMID: 39086531 PMCID: PMC11287615 DOI: 10.4254/wjh.v16.i7.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024] Open
Abstract
BACKGROUND The modified Xiaoyao San (MXS) formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer, which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival. However, the molecular mechanisms underlying that remain unclear. AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury, steatosis and inflammation. METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis (NASH) model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes. Liver tissues were collected for western blotting and immunohistochemistry (IHC) assays. Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining. The serum samples were collected for biochemical assays and NMR-based metabonomics analysis. The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH. RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress. The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation, inflammation and hepatic fibrosis in the pathogenesis of NASH. The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis. Mechanistically, we found that MXS protected against NASH by attenuating the sex hormone-related metabolism, especially the metabolism of male hormones. CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones. Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.
Collapse
Affiliation(s)
- Xiao-Li Mei
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Shu-Yi Wu
- College of Chinese Medicine, Chongqing College of Traditional Chinses Medicine, Chongqing 402760, China
| | - Si-Lan Wu
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Xiao-Lin Luo
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Si-Xing Huang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Rui Liu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhe Qiang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
- College of Chinese Medicine, Chongqing College of Traditional Chinses Medicine, Chongqing 402760, China
- College of Pharmacy, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
20
|
Molín J, José-López R, Ramírez GA, Pumarola M. Immunohistochemical Expression of PTEN in Canine Gliomas. Animals (Basel) 2024; 14:2115. [PMID: 39061577 PMCID: PMC11273977 DOI: 10.3390/ani14142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a critical tumor suppressor gene with a vital role in regulating cell proliferation, migration, and survival. The loss of PTEN function, either by genetic alterations or decreased protein expression, is frequent in human gliomas and has been correlated with tumor progression, grade, therapeutic resistance, and decreased overall survival in patients with glioma. While different genetic mutations in PTEN gene have been occasionally reported in canine gliomas, no alterations in protein expression have been reported. This study investigates the immunohistochemical expression of PTEN in canine gliomas to evaluate possible alterations, as those reported in human gliomas. Immunohistochemical PTEN expression and pattern distribution were analyzed in 37 spontaneous canine gliomas. Among gliomas, 52.6% cases showed high PTEN expression and 48.6% displayed reduced (13.5%) or highly reduced (35.1%) immunopositivity. Most oligodendrogliomas showed high expression (73.7%), while the majority of astrocytomas (69.2%) showed a reduced or highly reduced expression. A reduced PTEN expression was mostly associated with a heterogeneous loss of PTEN immunopositivity. These observations are in line with those reported in human gliomas and provide a rationale for future studies regarding abnormalities in PTEN expression and PI3K/Akt/mTor pathway in canine gliomas, to evaluate its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Jéssica Molín
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Roberto José-López
- Division of Small Animal Clinical Sciences, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Neurology and Neurosurgery Service, Southfields Veterinary Specialists, Part of Linnaeus Veterinary Ltd., Basildon SS14 3AP, UK
| | - Gustavo A. Ramírez
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
21
|
James AJ, Torres-Guzman RA, Chaker SC, Sigel ME, Perdikis G, Supp DM, Dale Slater EL. Global insights into keloid formation: An international systematic review of regional genetic risk factors and commonalities. Wound Repair Regen 2024. [PMID: 38958095 DOI: 10.1111/wrr.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Keloid disorder is a morbid and disfiguring benign fibroproliferative disease with a higher incidence in groups with darker skin pigmentation. Predicting keloidogenesis in patients is difficult with treatment primarily aimed at preventing further scar expansion and improving aesthetics without addressing their unknown underlying pathophysiology. We aimed to identify potential genetic predispositions to keloid scarring in the literature. A search was conducted on 21 August 2023, by the first and second authors independently from 1985 to August 2023 using PubMed, MEDLINE, Embase, Web of Science, Scopus and CINAHL. The following MeSH terms were used: 'Keloid', 'Risk' and 'Genetic'. Two researchers independently searched for studies based on titles and abstracts and screened filtered articles by reviewing full text. If no agreement could be reached, a third senior author designated whether the article should be included. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement as the basis of our organisation. Human studies with genetic analysis to determine an association of a protein or gene to keloidogenesis were selected for inclusion. Studies in languages other than English, reviews, conference articles, and book chapters were excluded. Fifty studies met inclusion criteria. The human leukocyte antigen (HLA) system was broadly implicated, and the DRB1*15 allele was associated with an increased risk of keloid in three separate ethnic groups. Some HLA Class I alleles were associated with keloid in one population but not in others. Additionally, polymorphisms in the E3 ubiquitin-protein ligase (NEDD4) signal cascade and vitamin D receptor (VDR) have been implicated in diverse groups. No current genetic test can predict keloid risk. Our review identified candidate predisposing genes, including NEDD4, VDR and components of the HLA system. Further studies in heterogeneous populations are needed to identify reliable screening targets.
Collapse
Affiliation(s)
- Andrew J James
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ricardo A Torres-Guzman
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Galen Perdikis
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Shriners Children's Ohio, Dayton, Ohio, USA
| | - Elizabeth L Dale Slater
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Chauhan R, Malhotra L, Gupta A, Dagar G, Mendiratta M, Masoodi T, Hashem S, Al Marzooqi S, Das D, Uddin S, Ethayathulla AS, Macha MA, Akil AAS, Sahoo RK, Rai E, Bhat AA, Singh M. Bergenin inhibits growth of human cervical cancer cells by decreasing Galectin-3 and MMP-9 expression. Sci Rep 2024; 14:15287. [PMID: 38961106 PMCID: PMC11222472 DOI: 10.1038/s41598-024-64781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Mohini Mendiratta
- Department of Medical Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York, 10016, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ekta Rai
- School of Life Sciences Jawahar Lal Nehru University, New Delhi, India
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
23
|
Banjan B, Vishwakarma R, Ramakrishnan K, Dev RR, Kalath H, Kumar P, Soman S, Raju R, Revikumar A, Rehman N, Abhinand CS. Targeting AFP-RARβ complex formation: a potential strategy for treating AFP-positive hepatocellular carcinoma. Mol Divers 2024:10.1007/s11030-024-10915-8. [PMID: 38955977 DOI: 10.1007/s11030-024-10915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARβ interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARβ complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARβ complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Pankaj Kumar
- Nitte (Deemed to Be University), Department of Pharmaceutical Chemistry, NGSMPS, NGSM Institute of Pharmaceutical Sciences, Mangalore, 575018, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
24
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Shi Y, Kang X, Ge Y, Cao Y, Li Y, Guo X, Chen W, Guo S, Wang Y, Liu D, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Feng F, Wang Y, You H, Ma W. The molecular signature and prognosis of glioma with preoperative intratumoral hemorrhage: a retrospective cohort analysis. BMC Neurol 2024; 24:202. [PMID: 38877400 PMCID: PMC11177380 DOI: 10.1186/s12883-024-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| |
Collapse
|
26
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Yadav M, Vaishkiar I, Sharma A, Shukla A, Mohan A, Girdhar M, Kumar A, Malik T, Mohan A. Oestrogen receptor positive breast cancer and its embedded mechanism: breast cancer resistance to conventional drugs and related therapies, a review. Open Biol 2024; 14:230272. [PMID: 38889771 DOI: 10.1098/rsob.230272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/14/2024] [Indexed: 06/20/2024] Open
Abstract
Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.
Collapse
Affiliation(s)
- Manu Yadav
- Division of Genetics, ICAR- Indian Agricultural Research Institute , Pusa, New Delhi, India
| | - Ishita Vaishkiar
- Amity Institute of Biotechnology (AIB) University, Amity University Noida , Noida, India
| | - Ananya Sharma
- Department: Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University , Srinagar, India
| | - Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| | - Aradhana Mohan
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University , Phagwara, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology , New Delhi, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University , Jimma, Oromia 378, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| |
Collapse
|
28
|
Jitpasutham T, Andrianus S, Gubbiotti M, Nosé V, Baloch ZW, Madrigal E, Faquin WC. Thyroid nodules with DICER1 mutation or PTEN alteration: A comparative cytologic, clinical, and molecular study of 117 FNA cases. Cancer Cytopathol 2024; 132:370-385. [PMID: 38558329 DOI: 10.1002/cncy.22811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND DICER1 mutations and PTEN alterations are increasingly detected by thyroid fine-needle aspiration (FNA). Both are associated with nodular thyroid disease and cancer. The authors analyzed a large comparative thyroid FNA cohort with DICER1 mutation or PTEN alteration. METHODS A total of 117 thyroid FNAs with DICER1 or PTEN alterations were retrieved from the databases of two academic medical institutions. Demographic, clinical, and radiologic data were collected; FNA slides were analyzed for 29 cytomorphologic features. RESULTS Of 117 thyroid FNAs, 36 (30.8%) had DICER1 mutation and 81 (69.2%) showed PTEN alteration. The DICER1 cohort had 33 (91.7%) females and three (8.3%) males (mean, 40.9 years); 61.8% had multinodular disease. FNAs were classified as atypia of undetermined significance (AUS), 23 (63.9%); follicular neoplasm (FN), 12 (33.3%); and malignant, 1 (2.8%). The PTEN subgroup had 66 (81.5%) females and 15 (18.5%) males (mean, 55.2 years) with increased multinodular disease (93.8%, p = .0016). PTEN FNAs had greater cytologic diversity: non-diagnostic, 2 (2.5%); benign, 5 (6.2%); AUS, 44 (54.3%); FN, 24 (29.6%); and malignant, 6 (7.4%). Both DICER1 and PTEN cases showed a range of resected tumor subtypes. The DICER1 cohort included thyroblastoma, and the PTEN group included anaplastic carcinoma. The cytomorphology of DICER1 and PTEN cases showed overlapping features, especially microfollicular patterns. Minor cytomorphologic differences included papillary patterns in DICER1 (p = .039), and oncocytic changes (p < .0001) in PTEN. CONCLUSIONS DICER1 and PTEN FNAs reveal many cytologic similarities. DICER1 patients are younger, and PTEN patients had multinodular disease. Awareness of these genetic cohorts can identify patients at risk for thyroid cancer.
Collapse
Affiliation(s)
- Tikamporn Jitpasutham
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine, Department of Pathology, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Stefen Andrianus
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Gubbiotti
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vania Nosé
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zubair W Baloch
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emilio Madrigal
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Martín-Valbuena J, Gestoso-Uzal N, Justel-Rodríguez M, Isidoro-García M, Marcos-Vadillo E, Lorenzo-Hernández SM, Criado-Muriel MC, Prieto-Matos P. PTEN hamartoma tumor syndrome: Clinical and genetic characterization in pediatric patients. Childs Nerv Syst 2024; 40:1689-1697. [PMID: 38407606 PMCID: PMC11111493 DOI: 10.1007/s00381-024-06301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The aim of this study was to provide a full characterization of a cohort of 11 pediatric patients diagnosed with PTEN hamartoma tumor syndrome (PHTS). PATIENTS AND METHODS Eleven patients with genetic diagnostic of PHTS were recruited between February 2019 and April 2023. Clinical, imaging, demographic, and genetic data were retrospectively collected from their hospital medical history. RESULTS Regarding clinical manifestations, macrocephaly was the leading sign, present in all patients. Frontal bossing was the most frequent dysmorphism. Neurological issues were present in most patients. Dental malformations were described for the first time, being present in 27% of the patients. Brain MRI showed anomalies in 57% of the patients. No tumoral lesions were present at the time of the study. Regarding genetics, 72% of the alterations were in the tensin-type C2 domain of PTEN protein. We identified four PTEN genetic alterations for the first time. CONCLUSIONS PTEN mutations appear with a wide variety of clinical signs and symptoms, sometimes associated with phenotypes which do not fit classical clinical diagnostic criteria for PHTS. We recommend carrying out a genetic study to establish an early diagnosis in children with significant macrocephaly. This facilitates personalized monitoring and enables anticipation of potential PHTS-related complications.
Collapse
Affiliation(s)
| | - Nerea Gestoso-Uzal
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Isidoro-García
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | - Elena Marcos-Vadillo
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | | | - M Carla Criado-Muriel
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain.
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain.
| | - Pablo Prieto-Matos
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| |
Collapse
|
30
|
Hou Y, Yang Z, Xiang B, Liu J, Geng L, Xu D, Zhan M, Xu Y, Zhang B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci Rep 2024; 14:12406. [PMID: 38811809 PMCID: PMC11137110 DOI: 10.1038/s41598-024-63081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer, and coronavirus disease 2019 (COVID-19) has become a serious public health threat worldwide. Patients with LUAD and COVID-19 have a poor prognosis. Therefore, finding medications that can be used to treat COVID-19/LUAD patients is essential. Bioinformatics analysis was used to identify 20 possible metformin target genes for the treatment of COVID-19/LUAD. PTEN and mTOR may serve as hub target genes of metformin. Metformin may be able to cure COVID-19/LUAD comorbidity through energy metabolism, oxidoreductase NADH activity, FoxO signalling pathway, AMPK signalling system, and mTOR signalling pathway, among other pathways, according to the results of bioinformatic research. Metformin has ability to inhibit the proliferation of A549 cells, according to the results of colony formation and proliferation assays. In A549 cells, metformin increased glucose uptake and lactate generation, while decreasing ATP synthesis and the NAD+/NADH ratio. In summary, PTEN and mTOR may be potential targets of metformin for the treatment of COVID-19/LUAD. The mechanism by which metformin inhibits lung adenocarcinoma cell proliferation may be related to glucose metabolism regulated by PI3K/AKT signalling and mTOR signalling pathways. Our study provides a new theoretical basis for the treatment of COVID-19/LUAD.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Baoli Xiang
- Respiratory Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiangmin Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Lina Geng
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yuhuan Xu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
31
|
Xie AX, Tansey W, Reznik E. UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307903. [PMID: 38826234 PMCID: PMC11142294 DOI: 10.1101/2024.05.24.24307903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Comprehensively studying metabolism requires the measurement of metabolite levels. However, in contrast to the broad availability of gene expression data, metabolites are rarely measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier to metabolic discovery, we propose a Bayesian framework ("UnitedMet") which leverages the empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite levels from widely available transcriptomic data. We demonstrate that UnitedMet is equally capable of imputing whole pool sizes as well as the outcomes of isotope tracing experiments. We apply UnitedMet to investigate the metabolic impact of driver mutations in kidney cancer, identifying a novel association between BAP1 and a highly oxidative tumor phenotype. We similarly apply UnitedMet to determine that advanced kidney cancers upregulate oxidative phosphorylation relative to early-stage disease, that oxidative metabolism in kidney cancer is associated with inferior outcomes to combination therapy, and that kidney cancer metastases themselves demonstrate elevated oxidative phosphorylation relative to primary tumors. UnitedMet therefore enables the assessment of metabolic phenotypes in contexts where metabolite measurements were not taken or are otherwise infeasible, opening new avenues for the generation and evaluation of metabolite-centered hypotheses. UnitedMet is open source and publicly available (https://github.com/reznik-lab/UnitedMet).
Collapse
Affiliation(s)
- Amy X. Xie
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
- Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY
| | - Wesley Tansey
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| |
Collapse
|
32
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
33
|
Dilday T, Abt M, Ramos-Solís N, Dayal N, Larocque E, Oblak AL, Sintim HO, Yeh ES. Identification and characterization of a potent and selective HUNK inhibitor for treatment of HER2+ breast cancer. Cell Chem Biol 2024; 31:989-999.e7. [PMID: 38307028 PMCID: PMC11102337 DOI: 10.1016/j.chembiol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.
Collapse
Affiliation(s)
- Tinslee Dilday
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicole Ramos-Solís
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Neetu Dayal
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth Larocque
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN 46202, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
35
|
Liu J, Zhang J, Zhang Y, Yang B, Liu H, Chen Y. MATN2 overexpression suppresses tumor growth in ovarian cancer via PTEN/PI3K/AKT pathway. Funct Integr Genomics 2024; 24:71. [PMID: 38568332 DOI: 10.1007/s10142-024-01340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
The incidence rate of developing ovarian cancer decreases over the years; however, mortality ranks top among malignancies of women, mainly metastasis through local invasion. Matrilin-2 (MATN2) is a member of the matrilin family that plays an important role in many cancers. However, its relationship with ovarian cancer remains unknown. Our study aimed to explore the function and possible mechanism of MATN2 in ovarian cancer. Human ovarian cancer tissue microarrays were used to detect the MATN2 expression in different types of ovarian cancer using immunohistochemistry (IHC). CCK-8, wound scratch healing assay, transwell assay, and flow cytometry were used to detect cell mobility. Gene and protein expression were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. MATN2 interacts with phosphatase, and the tensin homolog (PTEN) deleted on chromosome 10 was analyzed using TCGA database and co-immunoprecipitation (Co-IP). In vivo experiments were conducted using BALB/c nude mice, and tumor volume and weight were recorded. Tumor growth was determined using hematoxylin and eosin (H&E) and IHC staining. MATN2 was significantly downregulated in ovarian cancer cells. The SKOV3 and A2780 cell mobility was significantly inhibited by MATN2 overexpression, while the cell apoptosis rate was significantly increased. MATN2 overexpression decreased transplanted tumor size in vivo. These results were reversed by inhibiting MATN2. Furthermore, we found that PTEN closely interacted with MATN2 using bioinformatics and Co-IP. MATN2 overexpression significantly inhibited the PI3K/AKT pathway, however, PTEN suppression reversed this effect of MATN2 overexpression. These results indicated that MATN2 may play a critical role in ovarian cancer development by inhibiting cells proliferation and migration. The mechanism was related to interacting with PTEN, thus inhibiting downstream effectors in the PI3K/AKT pathway, which may be a novel target for treating ovarian cancer.
Collapse
Affiliation(s)
- Jingbo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Jing Zhang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Yuan Zhang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Bo Yang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Hongli Liu
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
36
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
37
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
38
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
39
|
Pinto CIG, Branco ADM, Bucar S, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Evaluation of the theranostic potential of [ 64Cu]CuCl 2 in glioblastoma spheroids. EJNMMI Res 2024; 14:26. [PMID: 38453813 PMCID: PMC10920519 DOI: 10.1186/s13550-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
Collapse
Affiliation(s)
- Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André D M Branco
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa and Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes (Basel) 2024; 15:332. [PMID: 38540392 PMCID: PMC10970281 DOI: 10.3390/genes15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 06/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway serves as a master regulator of cell growth, proliferation, and survival. Upregulation of the mTOR pathway has been shown to cause malformations of cortical development, medically refractory epilepsies, and neurodevelopmental disorders, collectively described as mTORopathies. Tuberous sclerosis complex (TSC) serves as the prototypical mTORopathy. Characterized by the development of benign tumors in multiple organs, pathogenic variants in TSC1 or TSC2 disrupt the TSC protein complex, a negative regulator of the mTOR pathway. Variants in critical domains of the TSC complex, especially in the catalytic TSC2 subunit, correlate with increased disease severity. Variants in less crucial exons and non-coding regions, as well as those undetectable with conventional testing, may lead to milder phenotypes. Despite the assumption of complete penetrance, expressivity varies within families, and certain variants delay disease onset with milder neurological effects. Understanding these genotype-phenotype correlations is crucial for effective clinical management. Notably, 15% of patients have no mutation identified by conventional genetic testing, with the majority of cases postulated to be caused by somatic TSC1/TSC2 variants which present complex diagnostic challenges. Advancements in genetic testing, prenatal screening, and precision medicine hold promise for changing the diagnostic and treatment paradigm for TSC and related mTORopathies. Herein, we explore the genetic and molecular mechanisms of TSC and other mTORopathies, emphasizing contemporary genetic methods in understanding and diagnosing the condition.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shan Grewal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elisabetta Trinari
- Division of Developmental Pediatrics, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
41
|
Moon JS, Lee W, Cho YH, Kim Y, Kim GW. The Significance of N6-Methyladenosine RNA Methylation in Regulating the Hepatitis B Virus Life Cycle. J Microbiol Biotechnol 2024; 34:233-239. [PMID: 37942519 PMCID: PMC10940779 DOI: 10.4014/jmb.2309.09013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation has recently emerged as a significant co-transcriptional modification involved in regulating various RNA functions. It plays a vital function in numerous biological processes. Enzymes referred to as m6A methyltransferases, such as the methyltransferaselike (METTL) 3-METTL14-Wilms tumor 1 (WT1)-associated protein (WTAP) complex, are responsible for adding m6A modifications, while m6A demethylases, including fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), can remove m6A methylation. The functions of m6A-methylated RNA are regulated through the recognition and interaction of m6A reader proteins. Recent research has shown that m6A methylation takes place at multiple sites within hepatitis B virus (HBV) RNAs, and the location of these modifications can differentially impact the HBV infection. The addition of m6A modifications to HBV RNA can influence its stability and translation, thereby affecting viral replication and pathogenesis. Furthermore, HBV infection can also alter the m6A modification pattern of host RNA, indicating the virus's ability to manipulate host cellular processes, including m6A modification. This manipulation aids in establishing chronic infection, promoting liver disease, and contributing to pathogenesis. A comprehensive understanding of the functional roles of m6A modification during HBV infection is crucial for developing innovative approaches to combat HBV-mediated liver disease. In this review, we explore the functions of m6A modification in HBV replication and its impact on the development of liver disease.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wooseong Lee
- Center for Convergent Research of Emerging virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong-Hee Cho
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Medical Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Geon-Woo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
42
|
Xu M, Deng X, Xiang N, Zhang Z, Yang M, Liu Q. Plk3 Enhances Cisplatin Sensitivity of Nonsmall-Cell Lung Cancer Cells through Inhibition of the PI3K/AKT Pathway via Stabilizing PTEN. ACS OMEGA 2024; 9:8995-9002. [PMID: 38434880 PMCID: PMC10905570 DOI: 10.1021/acsomega.3c07271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Polo-like kinase 3 (Plk3) is involved in tumor development with a tumor suppressive function. However, the effect of Plk3 on the chemoresistance remains unclear. It has been documented that activation of the PI3K/AKT signaling pathway by PTEN loss significantly enhances chemoresistance in nonsmall-cell lung cancer (NSCLC). This study aims to evaluate the PTEN regulation by Plk3 and identify targets and underlying mechanisms that could be used to relieve chemoresistance. Our results showed that silencing Plk3 reduced PTEN expression and activated PI3K/AKT signaling by dephosphorylating and destabilizing PTEN in NSCLC cells. Reducing Plk3 expression promoted drug resistance to cisplatin (DDP), while overexpressing Plk3 promoted DDP sensitivity. However, these effects were attenuated when MK2206, a PI3K/AKT inhibitor, was applied. In conclusion, upregulation of Plk3 sensitized NSCLC cells toward DDP, which provides a potential target to restore DDP chemoresponse. We provided novel evidence that the PTEN/PI3K/AKT signaling pathway could be regulated by Plk3 through phosphorylation of PTEN and highlighted the critical role of Plk3 in the DDP resistance of NSCLC.
Collapse
Affiliation(s)
- Mengshan Xu
- Breast
Tumor Center, Hainan Provincial Tumor Hospital, Haikou 570312, Hainan, China
| | - Xiaoyun Deng
- Department
of Medical Oncology, Hainan Provincial Tumor
Hospital, Haikou 570312, Hainan, China
| | - Nana Xiang
- Department
of Medical Oncology, Luoyang Central Hospital, Luoyang 471001, Henan, China
| | - Zhao Zhang
- Breast
Tumor Center, Hainan Provincial Tumor Hospital, Haikou 570312, Hainan, China
| | - Min Yang
- Department
of Medical Oncology, Hainan Provincial Tumor
Hospital, Haikou 570312, Hainan, China
| | - Qinxiang Liu
- Department
of Medical Oncology, Hainan Provincial Tumor
Hospital, Haikou 570312, Hainan, China
| |
Collapse
|
43
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
44
|
Maphutha J, Twilley D, Lall N. The Role of the PTEN Tumor Suppressor Gene and Its Anti-Angiogenic Activity in Melanoma and Other Cancers. Molecules 2024; 29:721. [PMID: 38338464 PMCID: PMC10856229 DOI: 10.3390/molecules29030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.
Collapse
Affiliation(s)
- Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
45
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
46
|
Lorenz J, Richter S, Kirstein AS, Kolbig F, Nebe M, Schulze M, Kiess W, Spitzbarth I, Klöting N, Le Duc D, Baschant U, Garten A. Pten knockout in mouse preosteoblasts leads to changes in bone turnover and strength. JBMR Plus 2024; 8:ziad016. [PMID: 38505222 PMCID: PMC10945711 DOI: 10.1093/jbmrpl/ziad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024] Open
Abstract
Bone development and remodeling are controlled by the phosphoinositide-3-kinase (Pi3k) signaling pathway. We investigated the effects of downregulation of phosphatase and tensin homolog (Pten), a negative regulator of Pi3k signaling, in a mouse model of Pten deficiency in preosteoblasts. We aimed to identify mechanisms that are involved in the regulation of bone turnover and are linked to bone disorders. Femora, tibiae, and bone marrow stromal cells (BMSCs) isolated from mice with a conditional deletion of Pten (Pten cKO) in Osterix/Sp7-expressing osteoprogenitor cells were compared to Cre-negative controls. Bone phenotyping was performed by μCT measurements, bone histomorphometry, quantification of bone turnover markers CTX and procollagen type 1 N propeptide (P1NP), and three-point bending test. Proliferation of BMSCs was measured by counting nuclei and Ki-67-stained cells. In vitro, osteogenic differentiation capacity was determined by ALP staining, as well as by detecting gene expression of osteogenic markers. BMSCs from Pten cKO mice were functionally different from control BMSCs. Osteogenic markers were increased in BMSCs derived from Pten cKO mice, while Pten protein expression was lower and Akt phosphorylation was increased. We detected a higher trabecular bone volume and an altered cortical bone morphology in Pten cKO bones with a progressive decrease in bone and tissue mineral density. Pten cKO bones displayed fewer osteoclasts and more osteoblasts (P = .00095) per trabecular bone surface and a higher trabecular bone formation rate. Biomechanical analysis revealed a significantly higher bone strength (P = .00012 for males) and elasticity of Pten cKO femora. On the cellular level, both proliferation and osteogenic differentiation capacity of Pten cKO BMSCs were significantly increased compared to controls. Our findings suggest that Pten knockout in osteoprogenitor cells increases bone stability and elasticity by increasing trabecular bone mass and leads to increased proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Judith Lorenz
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Sandy Richter
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Anna S Kirstein
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Florentien Kolbig
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Michèle Nebe
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Marco Schulze
- Saxon Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Wieland Kiess
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Ingo Spitzbarth
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University, 04103 Leipzig, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, 01309 Dresden, Germany
| | - Antje Garten
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Yao C, Sun J, Luo W, Chen H, Chen T, Chen C, Zhang B, Zhang Y. Down-expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenesis and accelerates age-related bone loss via PTEN/PI3K/AKT pathway. Bone Joint Res 2024; 13:52-65. [PMID: 38295830 PMCID: PMC10830172 DOI: 10.1302/2046-3758.132.bjr-2023-0146.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Aims To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. Methods In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed. Results The CM and exosomes collected from senescent MLO-Y4 cells inhibited osteogenic differentiation of MC3T3-E1 cells. RNA sequencing detected significantly lower expression of miR-494-3p in senescent MLO-Y4 cell-derived exosomes compared with normal exosomes. The upregulation of exosomal miR-494-3p by miRNA mimics attenuated the effects of senescent MLO-Y4 cell-derived exosomes on osteogenic differentiation. Luciferase reporter assay demonstrated that miR-494-3p targeted phosphatase and tensin homolog (PTEN), which is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overexpression of PTEN or inhibition of the PI3K/AKT pathway blocked the functions of exosomal miR-494-3p. In SAMP6 mice, senescent MLO-Y4 cell-derived exosomes accelerated bone loss, which was rescued by upregulation of exosomal miR-494-3p. Conclusion Reduced expression of miR-494-3p in senescent osteocyte-derived exosomes inhibits osteogenic differentiation and accelerates age-related bone loss via PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wanxin Luo
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Cao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
48
|
Wang Y, Xie L, Liu F, Ding D, Wei W, Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117299. [PMID: 37816474 DOI: 10.1016/j.jep.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a "silent killer" that threatens women's lives and health, ovarian cancer (OC) has the clinical characteristics of being difficult to detect, difficult to treat, and high recurrence. Traditional Chinese medicine (TCM) can be utilized as a long-term complementary and alternative therapy since it has shown benefits in alleviating clinical symptoms of OC, decreasing toxic side effects of radiation and chemotherapy, as well as enhancing patients' quality of life. AIM OF THE REVIEW This paper reviews how TCM contributes to the apoptosis of OC cells through signaling pathways, including active constituents, extracts, and herbal formulas, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in OC. METHODS The search was conducted from scientific databases PubMed, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases aiming to elucidate the apoptosis signaling pathways in OC cells by TCM. The articles were searched by the keywords "ovarian cancer", "apoptosis", "signaling pathway", "traditional Chinese medicine", "Chinese herbal monomer", "Chinese herbal extract", and "herbal formula". The search was conducted from January 2013 to June 2023. A total of 97 potentially relevant articles were included, including 93 articles on Chinese medicine active constituents or extracts and 4 articles on Chinese herbal compound prescriptions. RESULTS TCM can induce apoptosis in OC cells by regulating signaling pathways with obvious advantages, including STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, Nrf2, HIF-1α, Fas/Fas L signaling pathway, etc. CONCLUSION: Chinese medicine can induce apoptosis in OC cells through multiple pathways, targets, and routes. TCM has special advantages for treating OC, providing more reasonable evidence for the research and development of new apoptosis inducers.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Liangzhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Danni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
49
|
Huang C, Li Y, Li B, Liu X, Luo D, Liu Y, Wei M, Yang Z, Xu Y. Identifying potential ferroptosis key genes for diagnosis and treatment of postmenopausal osteoporosis through competitive endogenous RNA network analysis. Heliyon 2024; 10:e23672. [PMID: 38226266 PMCID: PMC10788451 DOI: 10.1016/j.heliyon.2023.e23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Objective Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.
Collapse
Affiliation(s)
- Chengcheng Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yang Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Bo Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Xiujuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Dan Luo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Mengjuan Wei
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - ZhenGuo Yang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yunsheng Xu
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
50
|
De D, Ghosh G, Karmakar P. Sumoylation and phosphorylation of PTEN boosts and curtails autophagy respectively by influencing cell membrane localisation. Exp Cell Res 2024; 434:113872. [PMID: 38072303 DOI: 10.1016/j.yexcr.2023.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Autophagy is involved in the entirety of cellular survival, homeostasis and death which becomes more self-evident when its dysregulation is implicated in several pathological conditions. PTEN positively regulates autophagy and like other proteins undergo post-translational modifications. It is crucial to investigate the relationship between PTEN and autophagy as it is generally observed to be negligible in PTEN deficient cancer cells. Here, we have shown that such modifications of PTEN namely sumoylation and phosphorylation upregulates and downregulates autophagy respectively. Transfection of plasmid containing full length PTEN in PTEN-negative prostate cancer cell line PC3, induced autophagy on further starvation. When a sumoylation-deficient mutant of PTEN was transfected and cells were put under similar starvation, a decline in autophagy was observed. On the other hand, cells transfected with phosphorylation-deficient mutant of PTEN showed elevated expression of autophagy. Contrarily, transfection with phosphorylation-mimicking mutant caused reduced expression of autophagy. On further analysis, it was detected that PTEN's association with the plasma membrane was under positive and negative influence from its sumoylation and phosphorylation respectively. This association is integral as it is the foremost site for PTEN to oppose PI3K/AKT pathway and consequently upregulate autophagy. Thus, this study indicates that sumoylation and phosphorylation of PTEN can control autophagy via its cell membrane association.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Ginia Ghosh
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Parimal Karmakar
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|