1
|
Li H, Lin L, Huang X, Lu Y, Su X. 2-Hydroxylation is a chemical switch linking fatty acids to glucose-stimulated insulin secretion. J Biol Chem 2024:107912. [PMID: 39442620 DOI: 10.1016/j.jbc.2024.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells is metabolically regulated and progressively diminished during the development of type 2 diabetes (T2D). This dynamic process is tightly coupled with fatty acid metabolism, but the underlying mechanisms remain poorly understood. Fatty acid 2-hydroxylase (FA2H) catalyzes the conversion of fatty acids to chiral specific (R)-2-hydroxy fatty acids ((R)-2-OHFAs), which influences cell metabolism. However, little is known about its potential coupling with GSIS in pancreatic β cells. Here, we showed that Fa2h knockout decreases plasma membrane localization and protein level of glucose transporter 2 (GLUT2), which is essential for GSIS, thereby controlling blood glucose homeostasis. Conversely, FA2H overexpression increases GLUT2 on the plasma membrane and enhances GSIS. Mechanistically, FA2H suppresses the internalization and trafficking of GLUT2 to the lysosomes for degradation. Overexpression of wild-type FA2H, but not its mutant with impaired hydroxylase activity in the pancreatic β-cells, improves glucose tolerance by promoting insulin secretion. Levels of 2-OHFAs and Fa2h gene expression are lower in high-fat diet-induced obese mouse islets with impaired GSIS. Moreover, lower gene expression of FA2H is observed in a set of human T2D islets when the insulin secretion index is significantly suppressed, indicating the potential involvement of FA2H in regulating mouse and human GSIS. Collectively, our results identified an FA chemical switch to maintain the proper response of GSIS in pancreatic β cells and provided a new perspective on the β-cell failure that triggers T2D.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Lin Lin
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Yang Lu
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China; Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Lv PP, Feng C, Ding GL, Yu DQ, Yan YS, Liu J, Lv M, Ying YY, Li JY, Chen XJ, Ye YH, Amanda K, Wu YT, Huang HF, Zhang D. The High Estradiol Environment after IVF Causes the Increased Risk of Glucose Metabolic Dysfunction in Offspring. J Clin Endocrinol Metab 2024:dgae671. [PMID: 39383320 DOI: 10.1210/clinem/dgae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
CONTEXT Assisted reproductive technology (ART) is associated with increased metabolic risks in offspring. The effect of high maternal estradiol (E2) levels during early pregnancy on the glucose metabolism of offspring remains unclear. OBJECTIVE To evaluate glucose metabolism in in vitro fertilization (IVF)-conceived children and assess whether high E2 exposure during early pregnancy is associated with metabolic alterations. DESIGN/SETTING/PARTICIPANTS This retrospective analysis included 500 singletons aged 3-10 years born after fresh embryo transfer (ET) (n=200), frozen ET (n=100), and natural conception (NC) (n=200) from a university hospital. METHODS Children underwent anthropometric measurements and examinations for fasting glucose, insulin, and lipid levels. A mouse model of high E2 exposure during early pregnancy was established to study glucose and insulin tolerance, and insulin secretion. RESULTS Compared with NC, children born after fresh ET showed higher fasting glucose/insulin levels, increased insulin resistance, and higher incidence of impaired fasting glucose, which might be associated with a higher maternal E2 levels. Frozen ET showed intermediate results. In mice, offspring exposed to high E2 levels during gestation exhibited impaired glucose/insulin tolerance and defects in insulin secretion. CONCLUSION High maternal E2 levels in early pregnancy are associated with altered glucose metabolism and increased metabolic risks in IVF-conceived children. Further studies are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ping-Ping Lv
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Chun Feng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Dan-Qin Yu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yi-Shang Yan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Juan Liu
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Min Lv
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yan-Yun Ying
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing-Yi Li
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xi-Jing Chen
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ying-Hui Ye
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kallen Amanda
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - He-Feng Huang
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Dan Zhang
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| |
Collapse
|
3
|
Tian X, Li C, Li T, Yu F, Shi R. Estrogen Status Influences Whole-Body Vibration Training-Induced Improvements on Muscle Mass and Strength in Female Ovariectomized Mice. Int J Med Sci 2024; 21:2149-2157. [PMID: 39239545 PMCID: PMC11373558 DOI: 10.7150/ijms.97770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Estradiol (E2) deficiency arising from menopause is closely related to changes in body composition and declines of muscle mass and strength in elderly women. Whole-body vibration training (WBV) is an emerging approach expected to improve muscle mass and strength of older person, but the underlying mechanisms remain unclear. The balance between protein synthesis and degradation is a determining factor for muscle mass and strength, which is regulated by Akt-mTOR and FoxO1 signal pathway, respectively. In the present study, we firstly determined whether the effects of WBV on muscle mass and strength in ovariectomized female mice was affected by estrogen level, then investigated whether this was associated with Akt-mTOR and FoxO1 signal pathways. We found that (1) WBV, E2 supplementation (E) and WBV combined with E2 supplementation (WBV+E) significantly increased serum estradiol content, quadriceps muscle mass and grip strength in ovariectomized mice, accompanied with alterations of body composition (reducing fat content, increasing lean body mass and lean percent), furthermore, the altered degrees of these indicators by WBV+E were greater than WBV alone; (2) WBV, E and WBV+E remarkably increased the activities of Akt and mTOR and decreased FoxO1 activity, and the changed degrees by WBV+E were greater than WBV alone; (3) Pearson correlation coefficient revealed that serum estradiol content was positively correlated with Akt and mTOR activities, while inversely associated with FoxO1 activity. We concluded that WBV could significantly increase muscle mass and strength in ovariectomized mice, which might achieve through activating Akt-mTOR and suppressing FoxO1 signal pathways, and the improving effect of WBV on muscle mass and strength was better when in the presence of estrogen.
Collapse
Affiliation(s)
- Xiangyang Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Cong Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tao Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Fangfang Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
5
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Lu D, Yao D, Hu G, Zhou J, Shen X, Qian L. Maternal docosahexaenoic acid supplementation during lactation improves exercise performance, enhances intestinal glucose absorption and modulates gut microbiota in weaning offspring mice. Front Nutr 2024; 11:1423576. [PMID: 39036494 PMCID: PMC11258037 DOI: 10.3389/fnut.2024.1423576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Intestinal dysfunction induced by weaning stress is common during breastfeeding period. Docosahexaenoic acid (DHA) is well known for promoting visual and brain development, but its effects on early intestinal development remain unknown. This study investigated the impact of maternal DHA supplementation during lactation on intestinal glucose absorption and gut microbiota in weaning offspring mice. Materials and methods Dams were supplemented with vehicle (control), 150 mg/(kg body weight · day) DHA (L-DHA), or 450 mg/(kg body weight · day) DHA (H-DHA) throughout lactation by oral administration. After weaning, pups were randomly divided into three groups for athletic analysis, microbial and proteomic analysis, biochemical analysis, 4-deoxy-4-fluoro-D-glucose (4-FDG) absorption test, and gene expression quantitation of glucose transport-associated proteins and mTOR signaling components. Results The H-DHA group exhibited enhanced grip strength and prolonged swimming duration compared to the control group. Additionally, there were significant increases in jejunal and ileal villus height, and expanded surface area of jejunal villi in the H-DHA group. Microbial analyses revealed that maternal DHA intake increased the abundance of beneficial gut bacteria and promoted metabolic pathways linked to carbohydrate and energy metabolism. Proteomic studies indicated an increased abundance of nutrient transport proteins and enrichment of pathways involved in absorption and digestion in the H-DHA group. This group also showed higher concentrations of glucose in the jejunum and ileum, as well as elevated glycogen levels in the liver and muscles, in contrast to lower glucose levels in the intestinal contents and feces compared to the control group. The 4-FDG absorption test showed more efficient absorption after oral 4-FDG gavage in the H-DHA group. Moreover, the expressions of glucose transport-associated proteins, GLUT2 and SGLT1, and the activation of mTOR pathway were enhanced in the H-DHA group compared to the control group. The L-DHA group also showed similar but less pronounced improvements in these aspects relative to the H-DHA group. Conclusion Our findings suggested that maternal DHA supplementation during lactation improves the exercise performance, enhances the intestinal glucose absorption by increasing the expressions of glucose transporters, and beneficially alters the structure of gut microbiome in weaning offspring mice.
Collapse
Affiliation(s)
- Dalu Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaoli Hu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Qian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ojaghi M, Pamenter ME. Hypoxia impairs blood glucose homeostasis in naked mole-rat adult subordinates but not queens. J Exp Biol 2024; 227:jeb247537. [PMID: 38680085 PMCID: PMC11166464 DOI: 10.1242/jeb.247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and metabolize only carbohydrates in hypoxia. Glucose is the primary building block of dietary carbohydrates, but how blood glucose is regulated during hypoxia has not been explored in NMRs. We hypothesized that NMRs mobilize glucose stores to support anaerobic energy metabolism in hypoxia. To test this, we treated newborn, juvenile and adult (subordinate and queen) NMRs in normoxia (21% O2) or hypoxia (7, 5 or 3% O2), while measuring metabolic rate, body temperature and blood [glucose]. We also challenged animals with glucose, insulin or insulin-like growth factor-1 (IGF-1) injections and measured the rate of glucose clearance in normoxia and hypoxia. We found that: (1) blood [glucose] increases in moderate hypoxia in queens and pups, but only in severe hypoxia in adult subordinates and juveniles; (2) glucose tolerance is similar between developmental stages in normoxia, but glucose clearance times are 2- to 3-fold longer in juveniles and subordinates than in queens or pups in hypoxia; and (3) reoxygenation accelerates glucose clearance in hypoxic subordinate adults. Mechanistically, (4) insulin and IGF-1 reduce blood [glucose] in subordinates in both normoxia but only IGF-1 impacts blood [glucose] in hypoxic queens. Our results indicate that insulin signaling is impaired by hypoxia in NMRs, but that queens utilize IGF-1 to overcome this limitation and effectively regulate blood glucose in hypoxia. This suggests that sexual maturation impacts blood glucose handling in hypoxic NMR queens, which may allow queens to spend longer periods of time in hypoxic nest chambers.
Collapse
Affiliation(s)
- Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
8
|
Dong C, Wu G, Li H, Qiao Y, Gao S. Type 1 and type 2 diabetes mortality burden: Predictions for 2030 based on Bayesian age-period-cohort analysis of China and global mortality burden from 1990 to 2019. J Diabetes Investig 2024; 15:623-633. [PMID: 38265170 PMCID: PMC11060160 DOI: 10.1111/jdi.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS This study assessed diabetes (type 1 and type 2) mortality in China and globally from 1990 to 2019, predicting the next decade's trends. MATERIALS AND METHODS Data came from the Global Burden of Disease (GBD) database. The annual percentage change (AAPC) in age-standardized mortality rates (ASMR) for diabetes (type 1 and type 2) during 1990-2019 was calculated. A Bayesian age-period-cohort (BAPC) model predicted diabetes (type 1 and type 2) mortality from 2020 to 2030. RESULTS In China, type 1 diabetes deaths declined from 6,005 to 4,504 cases (AAPC -2.827), while type 2 diabetes deaths rose from 64,084 to 168,388 cases (AAPC -0.763) from 1990 to 2019. Globally, type 1 diabetes deaths increased from 55,417 to 78,236 cases (AAPC 0.223), and type 2 diabetes deaths increased from 606,407 to 1,472,934 cases (AAPC 0.365). Both China and global trends showed declining type 1 diabetes ASMR. However, female type 2 diabetes ASMR in China initially increased and then decreased, while males had a rebound trend. Peak type 1 diabetes deaths were in the 40-44 age group, and type 2 diabetes peaked in those over 70. BAPC predicted declining diabetes (type 1 and type 2) mortality burden in China and globally over the next 10 years. CONCLUSIONS Type 2 diabetes mortality remained high in China and globally despite decreasing type 1 diabetes mortality over 30 years. Predictions suggest a gradual decrease in diabetes mortality over the next decade, highlighting the need for continued focus on type 2 diabetes prevention and treatment.
Collapse
Affiliation(s)
- Chunping Dong
- Department of EndocrinologyShaanxi Provincial People's HospitalXi'an CityChina
| | - Guifu Wu
- Department of EndocrinologyShaanxi Provincial People's HospitalXi'an CityChina
| | - Hui Li
- Department of EndocrinologyShaanxi Provincial People's HospitalXi'an CityChina
| | - Yuan Qiao
- Department of EndocrinologyShaanxi Provincial People's HospitalXi'an CityChina
| | - Shan Gao
- Department of EndocrinologyShaanxi Provincial People's HospitalXi'an CityChina
| |
Collapse
|
9
|
Prabha B, Lekshmy Krishnan S, Abraham B, Jayamurthy P, Radhakrishnan KV. An insight into the mechanistic role of (-)-Ampelopsin F from Vatica chinensis L. in inducing insulin secretion in pancreatic beta cells. Bioorg Med Chem 2024; 103:117695. [PMID: 38522346 DOI: 10.1016/j.bmc.2024.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.
Collapse
Affiliation(s)
- B Prabha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - S Lekshmy Krishnan
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Billu Abraham
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P Jayamurthy
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - K V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Muhammad A, Hixon JC, Pharmacy Yusuf A, Rivas Zarete JI, Johnson I, Miller J, Adu-Addai B, Yates C, Mahavadi S. Sex-specific epigenetics drive low GPER expression in gastrointestinal smooth muscles in type 2 diabetic mice. Sci Rep 2024; 14:5633. [PMID: 38453938 PMCID: PMC10920797 DOI: 10.1038/s41598-024-54213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Type 2 diabetes mellitus (T2D) causes gastroparesis, delayed intestinal transit, and constipation, for unknown reasons. Complications are predominant in women than men (particularly pregnant and postmenopausal women), suggesting a female hormone-mediated mechanism. Low G-protein coupled estrogen receptor (GPER) expression from epigenetic modifications may explain it. We explored sexually differentiated GPER expression and gastrointestinal symptoms related to GPER alterations in wild-type (WT) and T2D mice (db/db). We also created smooth muscle-specific GPER knockout (GPER KO) mice to phenotypically explore the effect of GPER deficiency on gastrointestinal motility. GPER mRNA and protein expression, DNA methylation and histone modifications were measured from stomach and colon samples of db/db and WT mice. Changes in gut motility were also evaluated as daily fecal pellet production patterns. We found that WT female tissues have the highest GPER mRNA and protein expressions. The expression is lowest in all db/db. GPER downregulation is associated with promoter hypermethylation and reduced enrichment of H3K4me3 and H3K27ac marks around the GPER promoter. We also observed sex-specific disparities in fecal pellet production patterns of the GPER KO mice compared to WT. We thus, conclude that T2D impairs gut GPER expression, and epigenetic sex-specific mechanisms matter in the downregulation.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Juanita C Hixon
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | | | - Jatna I Rivas Zarete
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - India Johnson
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Jamial Miller
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Benjamin Adu-Addai
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Clayton Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunila Mahavadi
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
11
|
Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, Kang Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur J Pharmacol 2023; 960:176115. [PMID: 37866740 DOI: 10.1016/j.ejphar.2023.176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Naringenin is a citrus flavonoid that potently improves metabolic parameters in animal models of metabolic disorders, such as type 2 diabetes. Estrogen receptor (ER) activation promotes β cell function and survival, thereby improving systemic glucose metabolism. In this study, we used a luciferase reporter assay, isolated rat islets and a diabetic rat model to investigate the effects of naringenin on ER signaling and the underlying mechanism of naringenin-mediated improvement of islet function in diabetes. Naringenin specifically activated ERβ without affecting the activity of ERα, G protein-coupled estrogen receptor (GPER) or estrogen-related receptor (ERR) α/β/γ. Additionally, treatment with naringenin enhanced glucose-stimulated insulin secretion in isolated rat islets. This effect was abrogated by PHTPP, an ERβ antagonist. Transcriptomic analysis revealed that naringenin upregulated the expression of genes, such as Pdx1 and Mafa, which are closely linked to improved β-cell function. In consistence, single administration of naringenin to normal rats elevated plasma insulin levels and improved glucose responses. These beneficial effects were blocked by PHTPP. In streptozocin-nicotinamide induced diabetic rats, treatment for 2 weeks with naringenin alone, but not in combination with PHTPP, significantly restored pancreatic β cell mass and improved glucose metabolism. Collectively, these data support that naringenin specifically activate ERβ to improve insulin secretion in the primary rat islets. Furthermore, naringenin administration also protected β cell function and reversed glucose dysregulation in diabetic rats. These beneficial effects are at least partially dependent on the ERβ pathway.
Collapse
Affiliation(s)
- Peibin Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaojing Zhang
- Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
12
|
Ren X, Dai Y, Shan M, Zheng J, Zhang Z, Shen T. Astragalus polysaccharide restores insulin secretion impaired by lipopolysaccharides through the protein kinase B /mammalian target of rapamycin/glucose transporter 2 pathway. BMC Complement Med Ther 2023; 23:358. [PMID: 37817130 PMCID: PMC10563267 DOI: 10.1186/s12906-023-04188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced dysfunction of pancreatic β-cells leads to impaired insulin (INS) secretion. Astragalus polysaccharide (APS) is a bioactive heteropolysaccharide extracted from Astragalus membranaceus and is a popular Chinese herbal medicine. This study aimed to elucidate the mechanisms by which APS affects INS secretion from β-cells under LPS stress. METHODS Rat insulinoma (INS-1) cells were treated with LPS at a low, medium, or high concentration of APS. Glucose-stimulated insulin secretion (GSIS) was evaluated using an enzyme-linked immunosorbent assay (ELISA). Transcriptome sequencing was used to assess genome-wide gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to determine the signaling pathways affected by APS. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression of glucose transporter 2 (GLUT2), glucokinase (GCK), pancreatic duodenal homeobox-1 (PDX-1), and INS. Western blot analysis was used to detect the protein expression of phosphorylated protein kinase B (p-Akt), total Akt (t-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), total mTOR (t-mTOR), and GLUT2. RESULTS LPS decreased GLUT2, GCK, PDX-1, and INS expression and reduced GSIS. These LPS-induced decreases in gene expression and GSIS were restored by APS treatment. In addition, transcriptome sequencing in combination with KEGG enrichment analysis revealed changes in the INS signaling pathway following APS treatment. LPS decreased p-Akt and p-mTOR expression, which was restored by APS treatment. The restorative effects of APS on GSIS as well as on the expression of GLUT2, GCK, PDX-1, and INS were abolished by treatment with the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin (RPM). CONCLUSIONS APS restored GSIS in LPS-stimulated pancreatic β-cells by activating the Akt/mTOR/GLUT2 signaling pathway.
Collapse
Affiliation(s)
- Xiaodan Ren
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, No. 37, Shi-er-qiao Road, Jinniu District, 610075, 610075, Chengdu, Chengdu, Sichuan, China
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ying Dai
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mengya Shan
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhongyi Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, No. 37, Shi-er-qiao Road, Jinniu District, 610075, 610075, Chengdu, Chengdu, Sichuan, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, No. 37, Shi-er-qiao Road, Jinniu District, 610075, 610075, Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
14
|
De Sanctis V, Daar S, Soliman AT, Tzoulis P, Di Maio S, Kattamis C. Assessment of glucose homeostasis in young adult female β-thalassemia major patients (β-TM) with acquired hypogonadotropic hypogonadism (AHH) never treated with sex steroids compared to eugonadal β-TM patients with spontaneous menstrual cycles. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023065. [PMID: 37326269 PMCID: PMC10308476 DOI: 10.23750/abm.v94i3.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Acquired ypogonadotropic hypogonadism (AHH) is the most prevalent endocrine complication in thalassemia major (TM). STUDY DESIGN Considering the detrimental effect of estrogen deficiency on glucose metabolism, the ICET-A Network promoted a retrospective study on the long-term effects of estrogen deficiency on glucose homeostasis in female β-TM patients with HH without hormonal replacement therapy (HRT). PATIENTS AND METHODS Seventeen β-TM patients with AHH (4 had arrested puberty; Tanners' breast stage 2-3), never treated with sex steroids, and 11 eugonadal β-TM patients with spontaneous menstrual cycles at the time of referral were studied. A standard 3-h OGTT was performed in the morning, after an overnight fast. Six-point plasma glucose and insulin level determinations, indices of insulin secretion and sensitivity, early-phase insulin insulinogenic index (IGI), HOMA-IR and β-cell function (HOMA-β), oral disposition index (oDI), glucose and insulin areas under the OGTT curves were evaluated. RESULTS Abnormal glucose tolerance (AGT) or diabetes was observed in 15 (88.2%) of 17 patients with AHH and 6 (54.5%) of 11 patients with eumenorrhea. The difference between the two groups was statistically significant (P: 0.048). However, the group of eugonadal patients was younger compared to AHH patients (26.5 ± 4.8 years vs. 32.6 ± 6.2 years ; P: 0.010). Advanced age, severity of iron overload, splenectomy, increased ALT levels and reduced IGF-1 levels were the main clinical and laboratory risk factors for glucose dysregulation observed in β-TM with AHH compared to eugonadal β-TM patients with spontaneous menstrual cycles. CONCLUSION These data further support the indication for an annual assessment of OGTT in patients with β-TM. We believe that a registry of subjects with hypogonadism is necessary for a better understanding of the long-term consequences of this condition and refining treatment options.
Collapse
Affiliation(s)
| | - Shahina Daar
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman.
| | - Ashraf T Soliman
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar and Department of Pediatrics, Division of Endocrinology, Alexandria University Children's Hospital, Alexandria, Egypt.
| | - Ploutarchos Tzoulis
- Department of Diabetes & Endocrinology, Whittington Hospital, University College London, London, UK.
| | - Salvatore Di Maio
- Emeritus Director in Pediatrics, Children's Hospital "Santobono-Pausilipon", Naples, Italy.
| | - Christos Kattamis
- First Department of Paediatrics, National Kapodistrian University of Athens, Greece.
| |
Collapse
|
15
|
Berumen J, Orozco L, Gallardo-Rincón H, Rivas F, Barrera E, Benuto RE, García-Ortiz H, Marin-Medina M, Juárez-Torres E, Alvarado-Silva A, Ramos-Martinez E, MartÍnez-Juárez LA, Lomelín-Gascón J, Montoya A, Ortega-Montiel J, Alvarez-Hernández DA, Larriva-Shad J, Tapia-Conyer R. Sex differences in the influence of type 2 diabetes (T2D)-related genes, parental history of T2D, and obesity on T2D development: a case-control study. Biol Sex Differ 2023; 14:39. [PMID: 37291636 DOI: 10.1186/s13293-023-00521-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND This study investigated the effect of sex and age at type 2 diabetes (T2D) diagnosis on the influence of T2D-related genes, parental history of T2D, and obesity on T2D development. METHODS In this case-control study, 1012 T2D cases and 1008 healthy subjects were selected from the Diabetes in Mexico Study database. Participants were stratified by sex and age at T2D diagnosis (early, ≤ 45 years; late, ≥ 46 years). Sixty-nine T2D-associated single nucleotide polymorphisms were explored and the percentage contribution (R2) of T2D-related genes, parental history of T2D, and obesity (body mass index [BMI] and waist-hip ratio [WHR]) on T2D development was calculated using univariate and multivariate logistic regression models. RESULTS T2D-related genes influenced T2D development most in males who were diagnosed early (R2 = 23.5%; females, R2 = 13.5%; males and females diagnosed late, R2 = 11.9% and R2 = 7.3%, respectively). With an early diagnosis, insulin production-related genes were more influential in males (76.0% of R2) while peripheral insulin resistance-associated genes were more influential in females (52.3% of R2). With a late diagnosis, insulin production-related genes from chromosome region 11p15.5 notably influenced males while peripheral insulin resistance and genes associated with inflammation and other processes notably influenced females. Influence of parental history was higher among those diagnosed early (males, 19.9%; females, 17.5%) versus late (males, 6.4%; females, 5,3%). Unilateral maternal T2D history was more influential than paternal T2D history. BMI influenced T2D development for all, while WHR exclusively influenced males. CONCLUSIONS The influence of T2D-related genes, maternal T2D history, and fat distribution on T2D development was greater in males than females.
Collapse
Affiliation(s)
- Jaime Berumen
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Cuauhtémoc, 06720, Ciudad de Mexico, México.
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Ciudad de Mexico, México
| | - Héctor Gallardo-Rincón
- Universidad of Guadalajara, Health Sciences University Center, Guadalajara, Jalisco, México.
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México.
| | - Fernando Rivas
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Cuauhtémoc, 06720, Ciudad de Mexico, México
| | - Elizabeth Barrera
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Cuauhtémoc, 06720, Ciudad de Mexico, México
| | | | | | | | | | | | - Espiridión Ramos-Martinez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Cuauhtémoc, 06720, Ciudad de Mexico, México
| | - Luis Alberto MartÍnez-Juárez
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México
| | - Julieta Lomelín-Gascón
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México
| | - Alejandra Montoya
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México
| | - Janinne Ortega-Montiel
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México
| | - Diego-Abelardo Alvarez-Hernández
- Fundación Carlos Slim, Lago Zurich 245, Presa Falcon Building (Floor 20), Col. Ampliacion Granada, Miguel Hidalgo, 11529, Mexico City, México
| | - Jorge Larriva-Shad
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Roberto Tapia-Conyer
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| |
Collapse
|
16
|
Shahbazian M, Jafarynezhad F, Yadeghari M, Farhadi Z, Samani SL, Esmailidehaj M, Safari F, Azizian H. The effects of G protein-coupled receptor 30 (GPR30) on cardiac glucose metabolism in diabetic ovariectomized female rats. J Basic Clin Physiol Pharmacol 2023; 34:205-213. [PMID: 35170266 DOI: 10.1515/jbcpp-2021-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetic cardiometabolic disorders are characterized by significant changes in cardiac metabolism and are increased in postmenopausal women, which emphasize the role of 17β-estradiol (E2). Despite this, there are few safe and effective pharmacological treatments for these disorders. The role of G protein-coupled estrogen receptor (GPR30), which mediates the non-genomic effects of E2, is mostly unexplored. METHODS In this study, we used ovariectomy (menopausal model) and type 2 diabetic (T2D) rats' models to evaluate the preclinical action of G-1 (GPR30 agonist) against cardiometabolic disorders. T2D was induced by a high-fat diet and a low dose of streptozotocin. G-1 was administrated for six weeks after the establishment of T2D. RESULTS We found that G-1 counteracts the effects of T2D and ovariectomy by increasing the body weight, reducing fasting blood sugar, heart weight, and heart weight to body weight ratio. Also, both ovariectomy and T2D led to decreases in the cardiac protein levels of hexokinase 2 (HK2) and GLUT4, while G-1-treated female rats reversed these changes and only increased HK2 protein level. In addition, T2D and ovariectomy increased glucose and glycogen content in the heart, but G-1 treatment significantly reduced them. CONCLUSIONS In conclusion, our work demonstrates that G-1 as a selective GPR30 agonist is a viable therapeutic approach against T2D and cardiometabolic diseases in multiple preclinical female models.
Collapse
Affiliation(s)
- Mohammad Shahbazian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Jafarynezhad
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yadeghari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Lotfi Samani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Toor S, Yardley JE, Momeni Z. Type 1 Diabetes and the Menstrual Cycle: Where/How Does Exercise Fit in? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2772. [PMID: 36833469 PMCID: PMC9957258 DOI: 10.3390/ijerph20042772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Regular exercise is associated with substantial health benefits for individuals with type 1 diabetes (T1D). However, the fear of hypoglycemia (low blood glucose) due to activity-induced declines in blood glucose levels acts as a major barrier to partaking in exercise in this population. For females with T1D, hormonal fluctuations during the menstrual cycle and their effects on blood glucose levels can act as an additional barrier. The impact that these cyclic changes may have on blood glucose and insulin needs and the consequent risk of hypoglycemia during or after exercise are still unknown in this population. Therefore, in this narrative review, we gathered existing knowledge about the menstrual cycle in T1D and the effects of different cyclic phases on substrate metabolism and glucose response to exercise in females with T1D to increase knowledge and understanding around exercise in this underrepresented population. This increased knowledge in such an understudied area can help to better inform exercise guidelines for females with T1D. It can also play an important role in eliminating a significant barrier to exercise in this population, which has the potential to increase activity, improve mental health and quality of life, and decrease the risk of diabetes-related complications.
Collapse
Affiliation(s)
- Saru Toor
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB T6G 2E1, Canada
- Immunology and Infection Program, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jane E. Yardley
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB T6G 2E1, Canada
- Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Women’s and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Zeinab Momeni
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB T6G 2E1, Canada
- Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
- Women’s and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
18
|
Hankerd K, Koo H, McDonough KE, Wang J, Pariyar R, Tang SJ, Chung JM, La JH. Gonadal hormone-dependent nociceptor sensitization maintains nociplastic pain state in female mice. Pain 2023; 164:402-412. [PMID: 35975896 PMCID: PMC9755459 DOI: 10.1097/j.pain.0000000000002715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Nociplastic pain conditions develop predominantly in women. We recently established a murine nociplastic pain model by applying postinjury thermal (40°C) stimulation to an injured (capsaicin-injected) area, triggering a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. The nociplastic pain state was centrally maintained by spinal microglia in males but peripherally by ongoing afferent activity at the previously injured area in females. Here, we investigated whether gonadal hormones are critical for the development of this peripherally maintained nociplastic pain state in females. Although the transition to a nociplastic pain state still occurred in ovariectomized females, the pain state was maintained neither by ongoing afferent activity at the previously injured area nor by spinal microglia. Estradiol reconstitution a week before the injury plus postinjury stimulation, but not after the transition had already occurred, restored the development of peripherally maintained nociplastic mechanical hypersensitivity in ovariectomized females. G protein-coupled estrogen receptor antagonism during the transition phase mimicked ovariectomy in gonad-intact females, whereas the receptor antagonism after the transition gradually alleviated the nociplastic mechanical hypersensitivity. At the previously injured area, afferents responsive to allyl isothiocyanate (AITC), a TRPA1 agonist, contributed to the maintenance of nociplastic mechanical hypersensitivity in gonad-intact females. In ex vivo skin-nerve preparations, only AITC-responsive afferents from the nociplastic pain model in gonad-intact females showed ongoing activities greater than control. These results suggest that gonadal hormones are critical for peripherally maintained nociplastic pain state in females by sensitizing AITC-responsive afferents to be persistently active.
Collapse
Affiliation(s)
- Kali Hankerd
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Ho Koo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Kathleen E McDonough
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Jigong Wang
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Ramesh Pariyar
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Seong JM, Gi MY, Cha JA, Sung HH, Park SY, Park CH, Yoon H. Gender Difference in the Association of Hyperuricemia with Insulin Resistance and beta-cell Function in Nondiabetic Korean Adults: The 2019 Korea National Health and Nutrition Examination Survey. Endocr Res 2023; 48:1-8. [PMID: 36322048 DOI: 10.1080/07435800.2022.2142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
AIMS This study was conducted to assess the association of uric acid (UA) with the homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) by gender in nondiabetic Korean adults. MATERIALS AND METHODS The study was carried out using data from the 2019 Korean National Health and Nutrition Examination Survey and included nondiabetic Korean men, premenopausal women, and postmenopausal women aged 20 years or older. RESULTS First, after adjusted for the related variables (excluding obesity), the prevalence of hyperuricemia (UA ≥ 7.0 mg/dL in men or UA ≥ 6.0 mg/dL in women) was positively associated with the quartiles of HOMA-IR and HOMA-B in men, premenopausal women, and postmenopausal women. Second, when further adjusted for obesity, hyperuricemia was positively associated with the quartiles of HOMA-IR and HOMA-B in men and postmenopausal women but not in premenopausal women. Third, after adjusted for the related variables (including obesity), UA level was positively associated with the quartiles of HOMA-IR and HOMA-B in men and postmenopausal women but not in premenopausal women. CONCLUSIONS hyperuricemia is positively associated with insulin resistance and beta-cell function in nondiabetic Korean men and postmenopausal women but not in premenopausal women.
Collapse
Affiliation(s)
- Jeong Min Seong
- Department of Dental Hygiene, College of Health Science, Kangwon National University, Samcheok-si, 25949, South Korea
| | - Mi Young Gi
- Department of Nursing, Christian College of Nursing, 61662, South Korea
| | - Ju Ae Cha
- Department of Nursing, Chunnam Technouniversity, Gokseong-gun, 57500, South Korea
| | - Hyun Ho Sung
- Department of Clinical Laboratory Science, Dongnam Health University, Suwonsi, 16328, South Korea
| | - So Young Park
- Department of Dental Hygiene, Wonkwang Health Science University, Iksan-si, 54538, South Korea
| | - Cho Hee Park
- Department of Global Medical Beauty, Konyang University, 121, Daehak-ro, Nonsan-si, 32992, South Korea
| | - Hyun Yoon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si, 54538, South Korea
| |
Collapse
|
20
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
21
|
Wu Y, Liu Y, Jia H, Luo C, Chen H. Treatment of endometriosis with dienogest in combination with traditional Chinese medicine: A systematic review and meta-analysis. Front Surg 2022; 9:992490. [PMID: 36386543 PMCID: PMC9663487 DOI: 10.3389/fsurg.2022.992490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Endometriosis is now considered to be a systemic disease rather than a disease that primarily affects the pelvis. Dienogest (DNG) has unique advantages in the treatment of endometriosis, but it also has side effects. Alternatively, Traditional Chinese Medicine (TCM) has been used for over 2000 years in the treatment and prevention of disease and growing numbers of Chinese scholars are experimenting with the combined use of Dienogest and TCM for endometriosis treatment. OBJECTIVES This review evaluated the efficacy and safety of TCM in combination with Dienogest in the treatment of endometriosis through meta-analysis. METHODS MEDLINE, Embase, the Cochrane Library, PubMed, Web of Science, China National Knowledge Infrastructure, Journal Integration Platform, and Wanfang were used in literature searches, with a deadline of May 31, 2022. Literature quality was assessed using the Cochrane Collaboration "risk of bias" (ROB2) tool, and the "meta" package of R software v.4.1 was used for meta-analysis. Dichotomous variables and continuous variables were assessed using the relative risk (RR) and 95% confidence intervals (95% CI); standard mean differences (MD) and 95% CI, respectively. RESULTS Twelve human randomized controlled trials (RCTs) and one retrospective study, all 13 written in the Chinese language, were included in the meta-analysis (720 experiments and 719 controls). The result indicated that TCM plus Dienogest was superior to Dienogest/TCM alone in increasing the cure rates (RR = 1.3780; 95% CI, 1.1058, 1.7172; P = 0.0043), remarkable effect rate (RR = 1.3389; 95% CI, 1.1829, 1.5154; P < 0.0001), invalid rate (RR = 0.2299; 95% CI, 0.1591, 0.3322; P < 0.0001), and rate of adverse effects (RR = 0.6177; 95% CI, 0.4288, 0.8899; P = 0.0097). The same conclusion was drawn from the subgroup analysis. CONCLUSION Results suggest that TCM combined with Dienogest is superior to Dienogest or TCM alone and can be used as a complementary treatment for endometriosis. TCMs have potential to improve clinical efficacy and reduce the side effects of Dienogest. This study was financially supported by Annual Science and Technology Steering Plan Project of Zhuzhou. PROSPERO has registered our meta-analysis as CRD42022339518 (https://www.crd.york.ac.uk/prospero/record_email.php).
Collapse
Affiliation(s)
- Yu’e Wu
- Guangdong Laboratory Animals Monitoring Insitute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Yujie Liu
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Insitute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Chao Luo
- Department of Neurology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Huan Chen
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
22
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
23
|
Khaksari M, Raji-Amirhasani A, Bashiri H, Ebrahimi MN, Azizian H. Protective effects of combining SERMs with estrogen on metabolic parameters in postmenopausal diabetic cardiovascular dysfunction: The role of cytokines and angiotensin II. Steroids 2022; 183:109023. [PMID: 35358567 DOI: 10.1016/j.steroids.2022.109023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The beneficial effects of the administration of selective estrogen receptor modulators (SERMs) and estrogen (E2), alone or in combination with each other, have been reported in postmenopausal diabetic cardiovascular dysfunction. In the present study, we determined the mechanism of action of SERMs and E2 on inflammatory balance, angiotensin II (Ang II) serum levels, and glycemic profile in a postmenopausal diabetic rat model. METHODS Ovariectomized rats with type 2 diabetes received daily SERMs (tamoxifen and raloxifene) and E2 for one month. After treatment, cardiovascular risk indices, glycemic profile, and serum Ang II, TNF-α and IL-10 levels were measured. RESULTS Type 2 diabetes caused an abnormal glycemic profile, which was exacerbated by ovariectomy. All treatments inhibited the effects of diabetes and ovariectomy on the glycemic profile, with combined treatments (SERMs + E2) showing stronger effects. Cardiovascular risk indices that became abnormal by diabetes and worsened by ovariectomy were improved in all treatment modalities. Also, combined treatment reduced serum Ang II, TNF-α, and the ratio of TNF-α to IL-10, indicating an improvement in inflammatory balance. CONCLUSION Our study showed the administration of SERMs and E2, alone or in combination, could be an effective alternative in the treatment of menopausal diabetes, and generally, the beneficial effects of combined treatments were more effective than the effects of E2 or SERMs alone. It appears that E2 or SERMs benefit the cardiovascular system by improving inflammatory balance and reducing Ang II levels.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Raji-Amirhasani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hossein Azizian
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
24
|
Bian C, Zhang H, Gao J, Wang Y, Li J, Guo D, Wang W, Song Y, Weng Y, Ren H. SIRT6 regulates SREBP1c-induced glucolipid metabolism in liver and pancreas via the AMPKα-mTORC1 pathway. J Transl Med 2022; 102:474-484. [PMID: 34923569 DOI: 10.1038/s41374-021-00715-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to determine the mechanism by which SIRT6 regulates glucolipid metabolism disorders. We detected histological and molecular changes in Sprague-Dawley rats as well as in BRL 3A and INS-1 cell lines subjected to overnutrition and starvation. SIRT6, SREBP1c, and glucolipid metabolism biomarkers were identified by fluorescence co-localization, real-time PCR, and western blotting. Gene silencing studies were performed. Recombinant SIRT6, AMPK agonist (AICAR), mTOR inhibitor (rapamycin), and liver X receptor (LXR) agonist (T0901317) were used to pre-treated in BRL 3A and INS-1 cells. Real-time PCR and western blotting were used to detect related proteins, and cell counting was utilized to detect proliferation. We obtained conflicting results; SIRT6 and SREBP1c appeared in both the liver and pancreas of high-fat and hungry rats. Recombinant SIRT6 alleviated the decrease in AMPKα and increase in mTORC1 (complex of mTOR, Raptor, and Rheb) caused by overnutrition. SIRT6 siRNA reversed the glucolipid metabolic disorders caused by the AMPK agonist and mTOR inhibitor but not by the LXR agonist. Taken together, our results demonstrate that SIRT6 regulates glycolipid metabolism through AMPKα-mTORC1 regulating SREBP1c in the liver and pancreas induced by overnutrition and starvation, independent of LXR.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Gao
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxia Wang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Li
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Weng
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
25
|
Attenuation of ROS/Chloride Efflux-Mediated NLRP3 Inflammasome Activation Contributes to Alleviation of Diabetic Cardiomyopathy in Rats after Sleeve Gastrectomy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4608914. [PMID: 35498125 PMCID: PMC9042617 DOI: 10.1155/2022/4608914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) can develop in diabetes mellitus and is a major cause of morbidity and mortality. Surgical bariatric surgery procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes and have benefits regarding systolic and diastolic myocardial function. The NLR family pyrin domain containing 3 (NLRP3) inflammasome appears to participate in the development of DCM. However, whether SG surgery affects myocardial NLRP3 inflammasome-related pyroptosis to improve cardiac function remains unclear. This study was aimed at investigating the effect of SG surgery on NLRP3-associated pyroptosis in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a metabolic benefit of SG, including a reduced body weight, food intake, and blood glucose levels and restored glucose tolerance and insulin sensitivity postoperatively. We observed a marked decline in glucose uptake in rats with DCM, and this was restored after SG. Also, SG alleviated the dysfunction of myocardial contraction and diastole, delayed the progression of DCM, and reduced the NLRP3 inflammasome-mediated myocardial pyroptosis in vivo. H9c2 cardiomyocytes showed membrane disruption and DNA damage under a high glucose stimulus, which suggested myocardial pyroptosis. Using a ROS scavenger or chloride channel blocker in vitro restored myocardial NLRP3-mediated pyroptosis. Furthermore, we found that chloride efflux acted downstream of ROS generation. In conclusion, SG may ameliorate or even reverse the progression of DCM. Our study provides evidence that the SG operation alleviates NLRP3 inflammasome dysregulation in DCM. Clearance of ROS overburden and suppression of chloride efflux due to SG might act as the proximal event before inhibition of NLRP3 inflammasome in the myocardium, thus contributing to morphological and functional alleviation of DCM.
Collapse
|
26
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
27
|
Pejon TMM, Faria VS, Gobatto CA, Manchado-Gobatto FB, Scariot PPM, Cornachione AS, Beck WR. Effect of 12-wk Training in Ovariectomised Rats on PGC-1α, NRF-1 and Energy Substrates. Int J Sports Med 2022; 43:632-641. [PMID: 35180801 DOI: 10.1055/a-1717-1693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolic diseases are associated with hypoestrogenism owing to their lower energy expenditure and consequent imbalance. Physical training promotes energy expenditure through PGC-1α and NRF-1, which are muscle proteins of the oxidative metabolism. However, the influence of physical training on protein expression in individuals with hypoestrogenism remains uncertain. Thus, the aim of this study is to determine the effect of 12 weeks of moderate-intensity swimming training on the muscle expression of PGC-1α, NRF-1, glycogen and triglyceride in ovariectomised rats. OVX and OVX+TR rats were subjected to ovariectomy. The trained animals swam for 30 minutes, 5 days/week, at 80% of the critical load intensity. Soleus was collected to quantify PGC-1α and NRF-1 expressions, while gastrocnemius and gluteus maximus were collected to measure glycogen and triglyceride. Blood glucose was also evaluated. Whereas ovariectomy decreased PGC-1α expression (p<0.05) without altering NRF-1 (p=0.48), physical training increased PGC-1α (p<0.01) and NRF-1 (p<0.05). Ovariectomy reduced glycogen (p<0.05) and triglyceride (p<0.05), whereas physical training increased glycogen (p<0.05) but did not change triglyceride (p=0.06). Ovariectomy increased blood glucose (p<0.01), while physical training reduced it (p<0.01). In summary, 12 weeks of individualized and moderate-intensity training were capable of preventing muscle metabolic consequences caused by ovariectomy.
Collapse
Affiliation(s)
- Taciane Maria Melges Pejon
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vinicius Silva Faria
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, Department of Sport Sciences, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology, Department of Sport Sciences, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, Department of Sport Sciences, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Anabelle Silva Cornachione
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Wladimir Rafael Beck
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
28
|
Dana P, Hayati Roodbari N, Yaghmaei P, Hajebrahimi Z. Effects of empagliflozin on the expression of kisspeptin gene and reproductive system function in streptozotocin-induced diabetic male rats. Front Endocrinol (Lausanne) 2022; 13:1059942. [PMID: 36479221 PMCID: PMC9719967 DOI: 10.3389/fendo.2022.1059942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
One of the main health concerns of diabetes is testicular dysfunction and impairment of reproductive function and sperm quality which can cause male infertility. kisspeptin is a hypothalamic neuropeptide hormone that is involved in the regulation of energy metabolism, gonadotrophin-releasing hormone (GnRH), and reproductive function. In the present study, the therapeutic effects of empagliflozin (sodium-glucose co-transporter 2 inhibitors) on kisspeptin expression along with reproductive function were investigated in diabetic male Wistar rats. Diabetes was induced by a single dose injection of 60 mg/kg streptozotocin. Empagliflozin in doses of 10 and 25 mg/kg body weight was used for 8 weeks. Serum samples, testis, epididymis, and pancreas tissues were collected at the end of the experiments. Lipid profiles, oxidative stress markers, blood hormones, expression of kisspeptin along with pathological alterations of the testis were assayed using real-time PCR, biochemical, and histological technics. Data have shown that empagliflozin improved hyperglycemia, reproductive impairment, oxidative stress condition, and histopathological alterations of pancreatic and testis tissues in diabetic animals. It improved the serum levels of sex hormones, insulin, leptin, and the expression of kisspeptin in the testes tissues. Spermatogenesis is also improved in treated animals. Data indicated that the administration of empagliflozin can ameliorate symptoms of diabetes. It probably has promising antidiabetic potential and may improve the male infertility of diabetic subjects. To our knowledge, this is the first experimental evidence for the potential impact of empagliflozin on kisspeptin expression in diabetic male rats.
Collapse
Affiliation(s)
- Parisa Dana
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- *Correspondence: Nasim Hayati Roodbari,
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
29
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
31
|
Kinsella GK, Cannito S, Bordano V, Stephens JC, Rosa AC, Miglio G, Guaschino V, Iannaccone V, Findlay JBC, Benetti E. GPR21 Inhibition Increases Glucose-Uptake in HepG2 Cells. Int J Mol Sci 2021; 22:ijms221910784. [PMID: 34639123 PMCID: PMC8509304 DOI: 10.3390/ijms221910784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
GPR21 is a constitutively active, orphan, G-protein-coupled receptor, with in vivo studies suggesting its involvement in the modulation of insulin sensitivity. However, its precise contribution is not fully understood. As the liver is both a major target of insulin signalling and critically involved in glucose metabolism, the aim of this study was to examine the role of GPR21 in the regulation of glucose uptake and production in human hepatocytes. In particular, HepG2 cells, which express GPR21, were adopted as cellular models. Compared with untreated cells, a significant increase in glucose uptake was measured in cells treated with siRNA to downregulate GPR21 expression or with the GPR21-inverse agonist, GRA2. Consistently, a significantly higher membrane translocation of GLUT-2 was measured under these conditions. These effects were accompanied by an increased ratio of phAKT(Ser473)/tot-AKT and phGSK-3β(Ser9)/tot-GSK-3β, thus indicating a marked activation of the insulin signalling pathway. Moreover, a significant reduction in ERK activation was observed with GPR21 inhibition. Collectively, these results indicate that GPR21 mediates the negative effects on glucose uptake by the liver cells. In addition, they suggest that the pharmacological inhibition of GPR21 could be a novel strategy to improve glucose homeostasis and counteract hepatic insulin resistance.
Collapse
Affiliation(s)
- Gemma K. Kinsella
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland;
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy;
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - John C. Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Arianna C. Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Valeria Guaschino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Valeria Iannaccone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - John B. C. Findlay
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland;
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
- Correspondence: ; Tel.: +39-0116707137
| |
Collapse
|
32
|
Yang S, Yin Z, Zhu G. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur J Pharmacol 2021; 908:174363. [PMID: 34297966 DOI: 10.1016/j.ejphar.2021.174363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Aging-related diseases, especially vascular and neurological disorders cause huge economic burden. How to delay vascular and neurological aging is one of the insurmountable questions. G protein-coupled estrogen receptor 1 (GPER) has been extensively investigated in recent years due to its multiple biological responses. In this review, the function of GPER in aging-related diseases represented by vascular diseases, and neurological disorders were discussed. Apart from that, activation of GPER was also found to renovate the aging brain characterized by memory decline, but in a manner different from another two nuclear estrogen receptors estrogen receptor (ER)α and ERβ. This salutary effect would be better clarified from the aspects of synaptic inputs and transmission. Furthermore, we carefully described molecular mechanisms underpinning GPER-mediated effects. This review would update our understanding of GPER in the aging process. Targeting GPER may represent a promising strategy in the aging-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhe Yin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
33
|
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol 2021; 62:100926. [PMID: 34089761 PMCID: PMC8523217 DOI: 10.1016/j.yfrne.2021.100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Miriam Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
34
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
35
|
Campos-Ramírez C, Ramírez-Amaya V, Olalde-Mendoza L, Palacios-Delgado J, Anaya-Loyola MA. Soft Drink Consumption in Young Mexican Adults Is Associated with Higher Total Body Fat Percentage in Men but Not in Women. Foods 2020; 9:E1760. [PMID: 33260727 PMCID: PMC7761352 DOI: 10.3390/foods9121760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
A high consumption of soft drinks (SDs) has been linked with the development of anthropometric and metabolic alterations. We evaluate the association between SD consumption and some anthropometric and metabolic variables. This study is an observational study, using a sample of 394 university students, of which 158 were men (40.1%) and 238 women (59.9%), between 18 and 30 years. An SD intake questionnaire provided the consumption of different SDs. The participants' weight, height, and waist and hip circumferences were collected. Metabolic biomarkers were analyzed. The average intake of caloric SDs (CSDs) was 1193.6 ± 1534.8 mL/week and 84.5 ± 115.02 mL/week for non-caloric SDs (NCSDs). Sex differences were found in the amount of SD consumption and these statistical differences were driven by those men subjects with a high total body fat percentage (TBF%). In men, correlations were found between the intake of CSDs and the body mass index, waist and hip circumferences, TBF%, and visceral fat percentage. In woman, a correlation was found with glucose and triglycerides. The prediction model revealed that the intake of CSDs predicts TBF% and low-density lipoprotein only in men. A high amount of CSD consumption in men was associated with a high TBF%, and this may be predictive of future development of metabolic abnormalities.
Collapse
Affiliation(s)
- Cesar Campos-Ramírez
- Program of Biological Science, Department of Natural Sciences, Autonomous University of Queretaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Mexico; (C.C.-R.); (L.O.-M.)
| | - Víctor Ramírez-Amaya
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Friuli 2434, Colinas de Vélez Sarsfield, Córdoba 5016, Argentina;
| | - Liliana Olalde-Mendoza
- Program of Biological Science, Department of Natural Sciences, Autonomous University of Queretaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Mexico; (C.C.-R.); (L.O.-M.)
| | - Jorge Palacios-Delgado
- University of Mexican Valley-Campus Juriquilla, Blvd. Juriquilla 1000 Querétaro, Querétaro 76230, Mexico;
| | - Miriam Aracely Anaya-Loyola
- Department of Natural Sciences, Autonomous University of Queretaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Mexico
| |
Collapse
|
36
|
Mann SN, Pitel KS, Nelson-Holte MH, Iwaniec UT, Turner RT, Sathiaseelan R, Kirkland JL, Schneider A, Morris KT, Malayannan S, Hawse JR, Stout MB. 17α-Estradiol prevents ovariectomy-mediated obesity and bone loss. Exp Gerontol 2020; 142:111113. [PMID: 33065227 PMCID: PMC8351143 DOI: 10.1016/j.exger.2020.111113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females. Eight-week-old female C57BL/6J mice were subjected to SHAM or OVX surgery and received dietary 17α-E2 during a six-week intervention period. We observed that 17α-E2 prevented OVX-induced increases in body weight and adiposity. Similarly, uterine weight and luminal cell thickness were decreased by OVX and prevented by 17α-E2 treatment. Interestingly, 17α-E2 prevented OVX-induced declines in tibial metaphysis cancellous bone. And similarly, 17α-E2 improved bone density parameters in both tibia and femur cancellous bone, primarily in OVX mice. In contrast, to the effects on cancellous bone, cortical bone parameters were largely unaffected by OVX or 17α-E2. In the non-weight bearing lumbar vertebrae, OVX reduced trabecular thickness but not spacing, while 17α-E2 increased trabecular thickness and reduced spacing. Despite this, 17α-E2 did improve bone volume/tissue volume in lumbar vertebrae. Overall, we found that 17α-E2 prevented OVX-induced increases in adiposity and changes in bone mass and architecture, with minimal effects in SHAM-operated mice. We also observed that 17α-E2 rescued uterine tissue mass and lining morphology to control levels without inducing hypertrophy, suggesting that 17α-E2 could be considered as an adjunct to traditional hormone replacement therapies.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Molly H Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Urszula T Iwaniec
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Russell T Turner
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
37
|
Guo CY, Liao WT, Qiu RJ, Zhou DS, Ni WJ, Yu CP, Zeng Y. Aurantio-obtusin improves obesity and insulin resistance induced by high-fat diet in obese mice. Phytother Res 2020; 35:346-360. [PMID: 32749748 DOI: 10.1002/ptr.6805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 02/02/2023]
Abstract
Aurantio-obtusin (AUR) is the main bioactive compound among the anthraquinones, from Cassia seed extract. This study was conducted to identify whether AUR could improve obesity and insulin resistance, induced by a high-fat diet in obese mice. Mice were fed a high-fat diet for 6 weeks and were then assigned to the high-fat diet (HFD) control group, the AUR 5 mg/kg group, or the AUR 10 mg/kg group. AUR improves glucose by activating the expression of PI3K, Akt and GLUT4, GLUT2. AUR altered the expression levels of several lipid metabolism-related and adipokine genes. AUR decreased the mRNA expression of PPAR-γ, FAS and increased the mRNA expression of PPAR-α in liver. AUR lowered SREBP-1c, FAS, SCD-1, inflammatory cytokines, and increased the expression of PPAR-γ, PPAR-α, CPT-1, and adiponectin in white adipose tissue (WAT). AUR docking with the insulin receptor showed that the residues of the insulin receptor, ectodomain, were the same as those around the emodin. The effect of AUR may be elicited by regulating the activity of the insulin signaling pathway, expression of lipid metabolism-related genes, and expression of inflammatory cytokine markers to improve adiposity, insulin resistance, and dyslipidemia.
Collapse
Affiliation(s)
- Cong-Ying Guo
- Guangdong Pharmaceutical University, Guangzhou, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China
| | - Wei-Tao Liao
- Guangdong Pharmaceutical University, Guangzhou, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China
| | - Rui-Jin Qiu
- Wuzhou Institute of Agricultural Sciences, Wuzhou, China
| | - Dan-Shui Zhou
- Guangdong Pharmaceutical University, Guangzhou, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China
| | - Wei-Ju Ni
- Guangdong Pharmaceutical University, Guangzhou, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China
| | - Cui-Ping Yu
- Wuzhou Institute of Agricultural Sciences, Wuzhou, China
| | - Yu Zeng
- Guangdong Pharmaceutical University, Guangzhou, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, China
| |
Collapse
|
38
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
39
|
You MM, Liu YC, Chen YF, Pan YM, Miao ZN, Shi YZ, Si JJ, Chen ML, Hu FL. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats. J Food Biochem 2020; 44:e13138. [PMID: 31894585 DOI: 10.1111/jfbc.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has a high incidence in postmenopausal women and is accompanied by insulin resistance, obesity, and dyslipidemia. Royal jelly (RJ), a natural substance derived from hive, possesses numerous health-beneficial properties. Here, we evaluated the effects of RJ (150, 300, and 450 mg kg-1 day-1 , 8 weeks) on NAFLD in ovariectomized (OVX) rats. Based on the results, RJ ameliorated the degree of anxiety, improved serum lipid profile, and attenuated the hepatic steatosis and liver injury in OVX rats. Furthermore, the protective effects of RJ could be attributed to its antioxidant properties, which enhance the levels of hepatic antioxidant enzymes. The qRT-PCR results also suggest that RJ improves the disturbances of circadian genes by downregulating their expression, including that of Per1 and Per 2, in the liver of OVX rats. Altogether, our findings suggest that RJ may be a promising agent for the treatment of NAFLD. PRACTICAL APPLICATIONS: Postmenopausal women are at an increased risk of NAFLD. Currently, there are no licensed therapies for NAFLD. Although hormone replacement therapy (HRT) is reported to inhibit the development of NAFLD, it causes unexpected adverse effects. As HRT is controversial, the use of natural supplements to counteract the detrimental effects of menopause has recently attracted more attention. RJ is a natural product secreted from the hypopharyngeal and mandibular glands of worker bees. The present study illustrates the protective effect of the natural product, RJ, and its underlying mechanisms on NAFLD. This is the first study to assess the effect of RJ on NAFLD under estrogen deficiency. Such findings contribute to the further utilization of RJ, which might serve as a promising therapeutic option and natural food for the treatment of NAFLD.
Collapse
Affiliation(s)
- Meng-Meng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Chen Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Fan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Ming Pan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo-Ning Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Zhen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Juan-Juan Si
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min-Li Chen
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|