1
|
Fortunato-Silva J, de Rezende LP, Ferreira-Neto ML, Bispo-da-Silva LB, Balbi APC. Intrauterine exposure to a high-fat diet, with different levels of lipids, and its gastrointestinal repercussions: a model of fetal programming in rats. J Dev Orig Health Dis 2024; 15:e33. [PMID: 39711030 DOI: 10.1017/s2040174424000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
It is known that adverse stimuli, such as altered diets during pregnancy and lactation, can result in deleterious effects on the progeny. The aim of this study was to evaluate the possible gastrointestinal repercussions in the offspring of Wistar rats exposed to high-fat diets. Pregnant rats were divided into three groups: normolipidic diet (3.5% lipids), a diet containing 28% lipids, and a diet with 40% lipids. Body weight and food, water, daily caloric, and macronutrient intake were evaluated in the pregnant rats. Structural and functional gastrointestinal parameters were assessed in 30-day-old male pups. Depending on the lipid content of the maternal diet, the pups may exhibit gastric mucosal thickening, an increase in the relative weight of the small intestine, a reduction in the jejunal and ileal mucosa, and a decrease in the total thickness of the ileum. Additionally, there may be a reduction in the number of villi per area in these organs and a thinning of the muscular layer in the large intestine. The structural changes induced by the maternal high-fat diet seem to reduce the stomach's sensitivity to ethanol-induced ulcers, which is the only functional alteration observed. Therefore, the offspring of dams exposed to high-fat diets during pregnancy and lactation exhibits impaired gastrointestinal development, with alterations depending on dietary fat content and specific gastrointestinal regions. Structural changes did not always result in functional abnormalities and, in some cases, appeared protective. The long-term consequences of the observed morphological alterations require further investigation.
Collapse
Affiliation(s)
- Jéssica Fortunato-Silva
- Program in Applied Structural and Cellular Biology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Lívia Prometti de Rezende
- Program in Applied Structural and Cellular Biology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Luiz Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Borges Bispo-da-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Paula Coelho Balbi
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
2
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
3
|
Horakova O, Janovska P, Irodenko I, Buresova J, van der Stelt I, Stanic S, Haasova E, Shekhar N, Kobets T, Keijer J, Zouhar P, Rossmeisl M, Kopecky J, Bardova K. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Am J Physiol Endocrinol Metab 2024; 327:E729-E745. [PMID: 39441238 DOI: 10.1152/ajpendo.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Inge van der Stelt
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nivasini Shekhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatyana Kobets
- Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Li Y, Yang Y, Ye B, Lin Y. Maternal high fat diet programs spatial learning and central leptin signaling in mouse offspring in a sex-specific manner. Physiol Behav 2024; 281:114580. [PMID: 38714271 DOI: 10.1016/j.physbeh.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.
Collapse
Affiliation(s)
- YiQuan Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya Yang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - BoWei Ye
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Yau-Qiu ZX, Galmés S, Castillo P, Picó C, Palou A, Rodríguez AM. Maternal choline supplementation mitigates premature foetal weight gain induced by an obesogenic diet, potentially linked to increased amniotic fluid leptin levels in rats. Sci Rep 2024; 14:11366. [PMID: 38762543 PMCID: PMC11102553 DOI: 10.1038/s41598-024-62229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
6
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Guimarães AC, de Moura EG, Silva SG, Lopes BP, Bertasso IM, Pietrobon CB, Quitete FT, de Oliveira Malafaia T, Souza ÉPG, Lisboa PC, de Oliveira E. Citrus aurantium L. and synephrine improve brown adipose tissue function in adolescent mice programmed by early postnatal overfeeding. Front Nutr 2024; 10:1278121. [PMID: 38274208 PMCID: PMC10809993 DOI: 10.3389/fnut.2023.1278121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction and aims Obesity is a multifactorial condition with high health risk, associated with important chronic disorders such as diabetes, dyslipidemia, and cardiovascular dysfunction. Citrus aurantium L. (C. aurantium) is a medicinal plant, and its active component, synephrine, a β-3 adrenergic agonist, can be used for weight loss. We investigated the effects of C. aurantium and synephrine in obese adolescent mice programmed by early postnatal overfeeding. Methods Three days after birth, male Swiss mice were divided into a small litter (SL) group (3 pups) and a normal litter (NL) group (9 pups). At 30 days old, SL and NL mice were treated with C. aurantium standardized to 6% synephrine, C. aurantium with 30% synephrine, isolated synephrine, or vehicle for 19 days. Results The SL group had a higher body weight than the NL group. Heart rate and blood pressure were not elevated. The SL group had hyperleptinemia and central obesity that were normalized by C. aurantium and synephrine. In brown adipose tissue, the SL group showed a higher lipid droplet sectional area, less nuclei, a reduction in thermogenesis markers related to thermogenesis (UCP-1, PRDM16, PGC-1α and PPARg), and mitochondrial disfunction. C. aurantium and synephrine treatment normalized these parameters. Conclusion Our data indicates that the treatment with C. aurantium and synephrine could be a promising alternative for the control of some obesity dysfunction, such as improvement of brown adipose tissue dysfunction and leptinemia.
Collapse
Affiliation(s)
- Andressa Cardoso Guimarães
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie Giannini Silva
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Department of Basic and Experimental Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tayanne de Oliveira Malafaia
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Patrícia Garcia Souza
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine de Oliveira
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
10
|
Gallardo Paffetti M, Cárcamo JG, Azócar-Aedo L, Parra A. Effect of a Diet-Induced Obesity on the Progeny Response in a Murine Model. Nutrients 2023; 15:4970. [PMID: 38068828 PMCID: PMC10708177 DOI: 10.3390/nu15234970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Diet-induced obesity could have detrimental effects on adults and their progeny. The aim of this study was to determine the effect of a high-energy diet on both F1 mice body weight and tissue/organ weight and F2 offspring growth. A simple murine model for obesity was developed using a high-energy diet and mice reared in litters of five or ten, from 30 dams receiving a cafeteria diet of either commercial chow (low energy), or a mixture of commercial chow, chocolate (50% cacao), and salty peanuts (high energy). This diet continued from mating until weaning, when the pups were allocated according to sex into eight groups based on maternal diet, litter size, and post-weaning diet. On day 74, the males were slaughtered, and the females were bred then slaughtered after lactation. As a result, the high-energy maternal diet increased the F1 offspring growth during lactation, while the high-energy post-weaning diet increased the F1 adult body weight and tissue/organ weight. The high-energy maternal diet could negatively affect the onset of the F1 but not the maintenance of breastfeeding of F1 and F2 offspring. For F2 offspring growth, the high energy overlapped the low-energy post-weaning diet, due to problems of gaining weight during lactation.
Collapse
Affiliation(s)
- Maria Gallardo Paffetti
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile
| | - Juan G. Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Lucía Azócar-Aedo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5480000, Chile;
| | - Angel Parra
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
11
|
Goldkamp AK, Lahuis CH, Hagen DE, Taxis TM. Influence of Maternal BLV Infection on miRNA and tRF Expression in Calves. Pathogens 2023; 12:1312. [PMID: 38003777 PMCID: PMC10674961 DOI: 10.3390/pathogens12111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Small non-coding RNAs, such as microRNAs (miRNA) and tRNA-derived fragments (tRF), are known to be involved in post-transcriptional gene regulation. Research has provided evidence that small RNAs may influence immune development in calves. Bovine leukosis is a disease in cattle caused by Bovine Leukemia Virus (BLV) that leads to increased susceptibility to opportunistic pathogens. No research has addressed the potential influence that a maternal BLV infection may have on gene regulation through the differential expression of miRNAs or tRFs in progeny. Blood samples from 14-day old Holstein calves born to BLV-infected dams were collected. Antibodies for BLV were assessed using ELISA and levels of BLV provirus were assessed using qPCR. Total RNA was extracted from whole blood samples for small RNA sequencing. Five miRNAs (bta-miR-1, bta-miR-206, bta-miR-133a, bta-miR-133b, and bta-miR-2450d) and five tRFs (tRF-36-8JZ8RN58X2NF79E, tRF-20-0PF05B2I, tRF-27-W4R951KHZKK, tRF-22-S3M8309NF, and tRF-26-M87SFR2W9J0) were dysregulated in calves born to BLV-infected dams. The miRNAs appear to be involved in the gene regulation of immunological responses and muscle development. The tRF subtypes and parental tRNA profiles in calves born to infected dams appear to be consistent with previous publications in adult cattle with BLV infection. These findings offer insight into how maternal BLV infection status may impact the development of offspring.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74074, USA; (A.K.G.)
| | - Ciarra H. Lahuis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74074, USA; (A.K.G.)
| | - Tasia M. Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
12
|
Lapa Neto CJC, de Melo IMF, Alpiovezza PKBM, de Albuquerque YML, Francisco Soares A, Teixeira ÁAC, Wanderley-Teixeira V. Melatonin associated with a high-fat diet during pregnancy and lactation prevents liver changes in the offspring. Gen Comp Endocrinol 2023; 343:114357. [PMID: 37586542 DOI: 10.1016/j.ygcen.2023.114357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
In the present study, we set out to determine whether melatonin combined with a high-fat diet during pregnancy and lactation can prevent liver disorders in offspring. Forty rats were divided into four groups: DC - pregnant rats submitted to the standard diet; DC + Mel - pregnant rats submitted to the standard diet combined with melatonin; HFD - pregnant rats submitted to a high-fat diet; HFD + Mel - pregnant rats submitted to a high-fat diet combined with melatonin. Morphophysiological and biochemical parameters were analyzed. Melatonin (5 mg/kg) was administered intraperitoneally. The HFD group offspring showed an increase in AST, ALT, alkaline phosphatase, cholesterol, triglycerides, LDL and glucose levels, and a reduction in HDL and lipase levels. In the liver obseved steatosis, hepatocellular ballooning, increased lobular parenchyma and reduced non-lobular parenchyma, beside reduced liver glycogen and fibrosis. These changes were not observed in the HFD + Mel group. In conclusion, melatonin combined with a high-fat diet preserves the liver architecture and function in the offspring.
Collapse
Affiliation(s)
- Clovis J C Lapa Neto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Ismaela M F de Melo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Paloma K B M Alpiovezza
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Yuri M L de Albuquerque
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Anísio Francisco Soares
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Álvaro A C Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Valéria Wanderley-Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
13
|
Omar AK, Li Puma LC, Whitcomb LA, Risk BD, Witt AC, Bruemmer JE, Winger QA, Bouma GJ, Chicco AJ. High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. Am J Physiol Regul Integr Comp Physiol 2023; 325:R523-R533. [PMID: 37642284 PMCID: PMC11178291 DOI: 10.1152/ajpregu.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.
Collapse
Affiliation(s)
- Asma K Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Briana D Risk
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| | - Aria C Witt
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason E Bruemmer
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Quinton A Winger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
14
|
Sur D, Agranyoni O, Kirby M, Cohen N, Bagaev A, Karandasheva K, Shmerkin E, Gorobets D, Savita BK, Avneri R, Divon MS, Lax E, Michaelevski I, Pinhasov A. Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity. Mol Psychiatry 2023; 28:3816-3828. [PMID: 37845494 DOI: 10.1038/s41380-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.
Collapse
Affiliation(s)
- Debpali Sur
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Michael Kirby
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Naamah Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Anastasia Bagaev
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Kristina Karandasheva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Denis Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Brajesh Kumar Savita
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Mali-Salmon Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Izhak Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel.
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
15
|
Barrera C, Castillo V, Valenzuela R, Valenzuela CA, Garcia-Diaz DF, Llanos M. Effects on Fetal Metabolic Programming and Endocannabinoid System of a Normocaloric Diet during Pregnancy and Lactation of Female Mice with Pregestational Obesity. Nutrients 2023; 15:3531. [PMID: 37630722 PMCID: PMC10458167 DOI: 10.3390/nu15163531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Fetal programming provides explanatory mechanisms for the currently high prevalence of gestational obesity. The endocannabinoid system (ECS) participates in the regulation of energy balance, and with a high-fat diet (HFD), it is overactivated. The aim of this study was to determine the effects of a nutritional intervention during pregnancy and lactation on obese female progenitors, on metabolic alterations of the offspring and on the involvement of ECS. Female mice (C57/BL/6-F0), 45 days old, and their offspring (males) were separated according to type of diet before and during gestation and lactation: CON-F1: control diet; HFD-F1 group: HFD (fat: 60% Kcal); INT-F1 group: HFD until mating and control diet (fat: 10% Kcal) afterward. Glucose tolerance and insulin sensitivity (IS) were tested at 2 and 4 months. At 120 days, mice were sacrificed, plasma was extracted for the determination of hormones, and livers for gene expression and the protein level determination of ECS components. INT-F1 group presented a lower IS compared to CON-F1, and normal levels of adiponectin and corticosterone in relation to the HFD-F1 group. The intervention increased hepatic gene expression for fatty-acid amide hydrolase and monoacylglycerol lipase enzymes; however, these differences were not observed at the protein expression level. Our results suggest that this intervention model normalized some hormonal parameters and hepatic mRNA levels of ECS components that were altered in the offspring of progenitors with pre-pregnancy obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Valeska Castillo
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 8380453, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Carina A. Valenzuela
- Eating Behavior Research Center, School of Nutrition and Dietetics, Faculty of Pharmacy, Universidad de Valparaíso Playa Ancha, Valparaíso 2360102, Chile;
| | - Diego F. Garcia-Diaz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Miguel Llanos
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
16
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
17
|
Pavela G, Yi N, Mestre L, Xun P, Allison DB. Birth weight moderates the association between obesity and mortality rate. Ann Epidemiol 2023; 82:26-32. [PMID: 37015307 PMCID: PMC10463462 DOI: 10.1016/j.annepidem.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE The strength of the association between obesity and mortality rate (MR) varies by body mass index (BMI) and sociodemographic groups. We test the hypothesis that the association between obesity and MR varies, in part, due to the moderating effect of parental BMI and birth weight. METHODS Data come from the 1958 National Child Development Study, an ongoing longitudinal dataset initiated in 1958 with baseline measures of birth weight from 18,059 infants born in Great Britain over 1 week. We tested whether the association between BMI and MR was moderated by parental BMI and birth weight using generalized additive proportional hazards models. RESULTS The association between adult BMI and MR was moderated by birth weight and maternal BMI, such that the association between BMI and MR was weaker among individuals with a higher birth weight (P = .0148) and stronger among individuals born to mothers with a higher BMI (P = .032). At any given level of BMI approximately greater than 25, individuals with low birth weight or born to mothers with a higher BMI, had a higher MR. Paternal BMI did not significantly modify the relationship between BMI and MR (P = .5168). CONCLUSIONS Results suggest that the relationship between obesity and MR is modified by birth weight and maternal BMI.
Collapse
Affiliation(s)
- Gregory Pavela
- School of Public Health, University of Alabama at Birmingham, Birmingham.
| | - Nengjun Yi
- School of Public Health, University of Alabama at Birmingham, Birmingham
| | - Luis Mestre
- School of Public Health, Indiana University Bloomington, Bloomington
| | | | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington
| |
Collapse
|
18
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
19
|
Shrivastava K, Swaminathan T, Barlotta A, Athreya V, Choudhry H, Rossi MA. Maternal overnutrition is associated with altered synaptic input to lateral hypothalamic area. Mol Metab 2023; 71:101702. [PMID: 36898526 PMCID: PMC10025284 DOI: 10.1016/j.molmet.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Maternal overnutrition is associated with adverse outcomes in offspring, including increased risk for obesity and diabetes. Here, we aim to test the effects of maternal obesity on lateral hypothalamic feeding circuit function and determine the relationship with body weight regulation. METHODS Using a mouse model of maternal obesity, we assessed how perinatal overnutrition affected food intake and body weight regulation in adult offspring. We then used channelrhodopsin-assisted circuit mapping and electrophysiological recordings to assess the synaptic connectivity within an extended amygdala-lateral hypothalamic pathway. RESULTS We show that maternal overnutrition during gestation and throughout lactation produces offspring that are heavier than controls prior to weaning. When weaned onto chow, the body weights of over-nourished offspring normalize to control levels. However, when presented with highly palatable food as adults, both male and female maternally over-nourished offspring are highly susceptible to diet-induced obesity. This is associated with altered synaptic strength in an extended amygdala-lateral hypothalamic pathway, which is predicted by developmental growth rate. Additionally, lateral hypothalamic neurons receiving synaptic input from the bed nucleus of the stria terminalis have enhanced excitatory input following maternal overnutrition which is predicted by early life growth rate. CONCLUSIONS Together, these results demonstrate one way in which maternal obesity rewires hypothalamic feeding circuits to predispose offspring to metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A Rossi
- Child Health Institute of New Jersey, USA; Department of Psychiatry, Robert Wood Johnson Medical School, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
20
|
Maternal Over- and Malnutrition and Increased Risk for Addictive and Eating Disorders in the Offspring. Nutrients 2023; 15:nu15051095. [PMID: 36904093 PMCID: PMC10004806 DOI: 10.3390/nu15051095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence from human and animal studies has shown that maternal overnutrition and/or obesity are linked with neurobehavioral changes in the offspring. This fetal programming is characterized by adaptive responses to changes in the nutritional state during early life. In the past decade, an association has been made between overconsumption of highly-palatable food by the mother during fetal development and abnormal behaviors resembling addiction in the offspring. Maternal overnutrition can lead to alterations in the offspring's brain reward circuitry leading to hyperresponsiveness of this circuit following exposure to calorie-dense foods later in life. Given the accumulating evidence indicating that the central nervous system plays a pivotal role in regulating food intake, energy balance, and the motivation to seek food, a dysfunction in the reward circuitry may contribute to the addiction-like behaviors observed in the offspring. However, the underlying mechanisms leading to these alterations in the reward circuitry during fetal development and their relevance to the increased risk for the offspring to later develop addictive-like behaviors is still unclear. Here, we review the most relevant scientific reports about the impact of food overconsumption during fetal development and its effect on addictive-like behaviors of the offspring in the context of eating disorders and obesity.
Collapse
|
21
|
Reid BM, Sokol N, Aubuchon-Endsley NL, Stroud LR. Maternal prenatal cortisol and the interaction of income and pre-pregnancy body mass index are independently associated with newborn cortisol. Dev Psychobiol 2023; 65:e22354. [PMID: 36567656 PMCID: PMC9940703 DOI: 10.1002/dev.22354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/21/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022]
Abstract
While extensive research has supported the developmental programming hypothesis regarding contributions of prenatal psychosocial or nutritional adversity to offspring stress physiology, fewer studies consider both exposures together with maternal stress physiology. This study examined newborn cortisol output during a stressor as a function of maternal pre-pregnancy health status and nutritional history (pre-pregnancy body mass index [PPBMI]), economic resources (household income), and maternal cortisol awakening response (mCAR) in late pregnancy. Participants were 102 mother-infant pairs from an economically and racial/ethnically diverse sample. Offspring salivary cortisol response to a neurobehavioral exam was assessed at 1 month. Income and maternal PPBMI were positively associated with mCAR in late pregnancy. mCAR was positively related to 1-month newborn cortisol response. The interaction of income and PPBMI was positively associated with newborn cortisol output during an exam at 1-month. Mothers with the highest PPBMI and lowest income had offspring with higher cortisol responses than offspring of mothers with higher income and lower PPBMI. There was no evidence of indirect mediation effects of predictors (PPBMI, income, and interaction) on infant cortisol via mCAR. The differential effects of the interaction of PPBMI and income suggest that these exposures influence infant cortisol output in the context of one another, independent of maternal pregnancy cortisol.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - Natasha Sokol
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | | | - Laura R. Stroud
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center for Behavioral and Preventive Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Eisha S, Joarder I, Wijenayake S, McGowan PO. Non-nutritive bioactive components in maternal milk and offspring development: a scoping review. J Dev Orig Health Dis 2022; 13:665-673. [PMID: 35387707 DOI: 10.1017/s2040174422000149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactation is a critical time in mammalian development, where maternal factors shape offspring outcomes. In this scoping review, we discuss current literature concerning maternal factors that influence lactation biology and highlight important associations between changes in milk composition and offspring outcomes. Specifically, we explore maternal nutritional, psychosocial, and environmental exposures that influence non-nutritive bioactive components in milk and their links to offspring growth, development, metabolic, and behavioral outcomes. A comprehensive literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Predetermined eligibility criteria were used to analyze 3,275 papers, and the final review included 40 primary research articles. Outcomes of this review identify maternal obesity to be a leading maternal factor influencing the non-nutritive bioactive composition of milk with notable links to offspring outcomes. Offspring growth and development are the most common modes of programming associated with changes in non-nutritive milk composition due to maternal factors in early life. In addition to discussing studies investigating these key associations, we also identify knowledge gaps in the current literature and suggest opportunities and considerations for future studies.
Collapse
Affiliation(s)
- Shafinaz Eisha
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ishraq Joarder
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sanoji Wijenayake
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, Richardson College for the Environment and Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
24
|
Kelly AC, J Rosario F, Chan J, Cox LA, Powell TL, Jansson T. Transcriptomic responses are sex-dependent in the skeletal muscle and liver in offspring of obese mice. Am J Physiol Endocrinol Metab 2022; 323:E336-E353. [PMID: 35858246 PMCID: PMC9529275 DOI: 10.1152/ajpendo.00263.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Infants born to obese mothers are more likely to develop metabolic disease, including glucose intolerance and hepatic steatosis, in adult life. We examined the effects of maternal obesity on the transcriptome of skeletal muscle and liver tissues of the near-term fetus and 3-mo-old offspring in mice born to dams fed a high-fat and -sugar diet. Previously, we have shown that male, but not female, offspring develop glucose intolerance, insulin resistance, and liver steatosis at 3 mo old. Female C57BL6/J mice were fed normal chow or an obesogenic high-calorie diet before mating and throughout pregnancy. RNAseq was performed on the liver and gastrocnemius muscle following collection from fetuses on embryonic day 18.5 (E18.5) as well as from 3-mo-old offspring from obese dams and control dams. Significant genes were generated for each sex, queried for enrichment, and modeled to canonical pathways. RNAseq was corroborated by protein quantification in offspring. The transcriptomic response to maternal obesity in the liver was more marked in males than females. However, in both male and female offspring of obese dams, we found significant enrichment for fatty acid metabolism, mitochondrial transport, and oxidative stress in the liver transcriptomes as well as decreased protein concentrations of electron transport chain members. In skeletal muscle, pathway analysis of gene expression revealed sexual dimorphic patterns, including metabolic processes of fatty acids and glucose, as well as PPAR, AMPK, and PI3K-Akt signaling pathways. Transcriptomic responses to maternal obesity in skeletal muscle were more marked in female offspring than males. Female offspring had greater expression of genes associated with glucose uptake, and protein abundance reflected greater activation of mTOR signaling. Skeletal muscle and livers in mice born to obese dams had sexually dimorphic transcriptomic responses that changed from the fetus to the adult offspring. These data provide insights into mechanisms underpinning metabolic programming in maternal obesity.NEW & NOTEWORTHY Transcriptomic data support that fetuses of obese mothers modulate metabolism in both muscle and liver. These changes were strikingly sexually dimorphic in agreement with published findings that male offspring of obese dams exhibit pronounced metabolic disease earlier. In both males and females, the transcriptomic responses in the fetus were different than those at 3 mo, implicating adaptive mechanisms throughout adulthood.
Collapse
Affiliation(s)
- Amy C Kelly
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeannie Chan
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Khalsa AS, Li R, Rausch J, Klebanoff MA, Ingol TT, Boone KM, Keim SA. Early childhood growth trajectories in a Medicaid population. Pediatr Obes 2022; 17:e12918. [PMID: 35307980 PMCID: PMC9357091 DOI: 10.1111/ijpo.12918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Evidence on the role of early growth trajectories and later obesity risk is primarily based on privately insured or universally insured samples. OBJECTIVES We aimed to characterize and determine factors associated with early growth trajectories and estimate associations with overweight/obesity risk in a Medicaid-insured and uninsured cohort. METHODS Infants seen at a large pediatric academic centre in 2010-2016 were included. Weight and length/height measurements were converted to age and sex-specific BMI z-scores (BMIz) based on the World Health Organization (WHO) Growth Standards. Group-based trajectories were modelled using BMIz created groups. Logistic and log-binomial regression models estimated associations between membership in trajectories and maternal/child factors and overweight or obesity at 36, 48, and 60 months, separately. Analyses were performed between 2019 and 2021. RESULTS The best-fitting model identified five BMIz trajectories among 30 189 children and 310 113 clinical encounters; two trajectories showed rapid rise in BMIz. Lower maternal education, pre-pregnancy maternal overweight/obese status, and maternal smoking were positively associated with both rapid-rising BMIz trajectories. Children in either of the two rapid-rising trajectories were 3.00 (95% CI: 2.85, 3.25), 2.97 (95% CI: 2.77, 3.18) and 2.76 (95% CI: 2.53, 3.01) times more likely to have overweight or obesity at 36, 48, and 60 months, respectively compared to children in the stable trajectory groups. CONCLUSIONS Among Medicaid insured and uninsured children, several maternal and child characteristics were associated with early rapid-rise in BMIz. Clinical monitoring of early rapidly rising BMI may be important to address modifiable risk factors for obesity in families from low-income households.
Collapse
Affiliation(s)
- Amrik Singh Khalsa
- Division of Primary Care Pediatrics, Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205
- Center for Child Health Equity and Outcomes Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital 700 Children’s Drive, Columbus, OH 43205
- Department of Pediatrics, College of Medicine, The Ohio State University 370 W. 9th Ave. Columbus, OH 43210
| | - Rui Li
- Department of Hematology, James Cancer Hospital & Solove Research Institute, The Ohio State University Wexner Medical Center 460 W 10th Ave, Columbus, OH 43210
| | - Joseph Rausch
- Department of Pediatrics, College of Medicine, The Ohio State University 370 W. 9th Ave. Columbus, OH 43210
- Center for Biobehavioral Health, The Abigail Wexner Research Institute, Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205
| | - Mark A. Klebanoff
- Department of Pediatrics, College of Medicine, The Ohio State University 370 W. 9th Ave. Columbus, OH 43210
- Center for Perinatal Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205
- Division of Epidemiology, College of Public Health, The Ohio State University 370 W. 9 Ave. Columbus, OH 43210
| | - Taniqua T. Ingol
- Division of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599
| | - Kelly M. Boone
- Center for Biobehavioral Health, The Abigail Wexner Research Institute, Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205
| | - Sarah A. Keim
- Department of Pediatrics, College of Medicine, The Ohio State University 370 W. 9th Ave. Columbus, OH 43210
- Center for Biobehavioral Health, The Abigail Wexner Research Institute, Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205
- Division of Epidemiology, College of Public Health, The Ohio State University 370 W. 9 Ave. Columbus, OH 43210
| |
Collapse
|
26
|
Murphy CC, Cirillo PM, Krigbaum NY, Singal AG, Lee M, Zaki T, Burstein E, Cohn BA. Maternal obesity, pregnancy weight gain, and birth weight and risk of colorectal cancer. Gut 2022; 71:1332-1339. [PMID: 34429385 PMCID: PMC8866526 DOI: 10.1136/gutjnl-2021-325001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. Obesity is a well-established risk factor for CRC, and fetal or developmental origins of obesity may underlie its effect on cancer in adulthood. We examined associations of maternal obesity, pregnancy weight gain, and birth weight and CRC in adult offspring. DESIGN The Child Health and Development Studies is a prospective cohort of women receiving prenatal care between 1959 and 1966 in Oakland, California (N=18 751 live births among 14 507 mothers). Clinical information was abstracted from mothers' medical records 6 months prior to pregnancy through delivery. Diagnoses of CRC in adult (age ≥18 years) offspring were ascertained through 2019 by linkage with the California Cancer Registry. We used Cox proportional hazards models to estimate adjusted HR (aHR); we examined effect measure modification using single-referent models to estimate the relative excess risk due to interaction (RERI). RESULTS 68 offspring were diagnosed with CRC over 738 048 person-years of follow-up, and half (48.5%) were diagnosed younger than age 50 years. Maternal obesity (≥30 kg/m2) increased the risk of CRC in offspring (aHR 2.51, 95% CI 1.05 to 6.02). Total weight gain modified the association of rate of early weight gain (RERI -4.37, 95% CI -9.49 to 0.76), suggesting discordant growth from early to late pregnancy increases risk. There was an elevated association with birth weight (≥4000 g: aHR 1.95, 95% CI 0.8 to 4.38). CONCLUSION Our results suggest that in utero events are important risk factors for CRC and may contribute to increasing incidence rates in younger adults.
Collapse
Affiliation(s)
- Caitlin C Murphy
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Oakland, California, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Oakland, California, USA
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - MinJae Lee
- Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Timothy Zaki
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ezra Burstein
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Oakland, California, USA
| |
Collapse
|
27
|
Kondracki AJ, Valente MJ, Ibrahimou B, Bursac Z. Risk of large for gestational age births at early, full and late term in relation to pre-pregnancy body mass index: Mediation by gestational diabetes status. Paediatr Perinat Epidemiol 2022; 36:566-576. [PMID: 34755381 DOI: 10.1111/ppe.12809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Maternal pre-pregnancy body mass index (BMI) is strongly associated with infant birthweight and the risk differs in pregnancies complicated by gestational diabetes (GDM). OBJECTIVES To examine the risk of large for gestational age (LGA) (≥97th percentile) singleton births at early term, full term and late term in relation to maternal pre-pregnancy BMI status mediated through GDM. METHODS We analysed data from the 2018 U.S. National Vital Statistics Natality File restricted to singleton term births (N = 3,229,783). In counterfactual models for causal inference, we estimated the total effect (TE), natural direct effect (NDE) and natural indirect effect (NIE) for the association of pre-pregnancy BMI with subcategories of LGA births at early, full and late term mediated through GDM, using log-binomial regression and adjusting for race/ethnicity, age, education, parity and infant sex. Proportion mediated was calculated on the risk difference scale and potential unmeasured confounders were assessed using the E-value. RESULTS Overall, 6.4% of women had GDM, and there were 3.6% LGA singleton term births. The highest prevalence of GDM was among pre-gestational overweight/obesity that also had the highest rates of LGA births at term. The TE estimates for the risk of LGA births were the strongest across women with higher pre-pregnancy BMI compared to women with normal pre-pregnancy BMI. The NDE estimates were higher than the NIE estimates for overweight/obese BMI status. The proportion mediated, which answers the causal question to what extent the total effect of the association between pre-pregnancy BMI and LGA births is accounted for through GDM, was the highest (up to 16%) for early term births. CONCLUSIONS Term singleton births make up the largest proportion in a cohort of newborns. While the percentage mediated through GDM was relatively small, health risks arising from pre-pregnancy overweight, and obesity can be substantial to both mothers and their offspring.
Collapse
Affiliation(s)
- Anthony J Kondracki
- Department of Biostatistics, Robert Stempel College of Public Health & Social Work Florida, International University, Miami, FL, USA
| | - Matthew J Valente
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health & Social Work Florida, International University, Miami, FL, USA
| | - Zoran Bursac
- Department of Biostatistics, Robert Stempel College of Public Health & Social Work Florida, International University, Miami, FL, USA
| |
Collapse
|
28
|
Cossin-Sevrin N, Hsu BY, Marciau C, Viblanc VA, Ruuskanen S, Stier A. Effect of prenatal glucocorticoids and thyroid hormones on developmental plasticity of mitochondrial aerobic metabolism, growth and survival: an experimental test in wild great tits. J Exp Biol 2022; 225:jeb243414. [PMID: 35420125 PMCID: PMC10216743 DOI: 10.1242/jeb.243414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Developmental plasticity is partly mediated by transgenerational effects, including those mediated by the maternal endocrine system. Glucocorticoid and thyroid hormones may play central roles in developmental programming through their action on metabolism and growth. However, the mechanisms by which they affect growth and development remain understudied. One hypothesis is that maternal hormones directly affect the production and availability of energy-carrying molecules (e.g. ATP) by their action on mitochondrial function. To test this hypothesis, we experimentally increased glucocorticoid and thyroid hormones in wild great tit eggs (Parus major) to investigate their impact on offspring mitochondrial aerobic metabolism (measured in blood cells), and subsequent growth and survival. We show that prenatal glucocorticoid supplementation affected offspring cellular aerobic metabolism by decreasing mitochondrial density, maximal mitochondrial respiration and oxidative phosphorylation, while increasing the proportion of the maximum capacity being used under endogenous conditions. Prenatal glucocorticoid supplementation only had mild effects on offspring body mass, size and condition during the rearing period, but led to a sex-specific (females only) decrease in body mass a few months after fledging. Contrary to our expectations, thyroid hormone supplementation did not affect offspring growth or mitochondrial metabolism. Recapture probability as juveniles or adults was not significantly affected by prenatal hormonal treatment. Our results demonstrate that prenatal glucocorticoids can affect post-natal mitochondrial density and aerobic metabolism. The weak effects on growth and apparent survival suggest that nestlings were mostly able to compensate for the transient decrease in mitochondrial aerobic metabolism induced by prenatal glucocorticoids.
Collapse
Affiliation(s)
- Nina Cossin-Sevrin
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Coline Marciau
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS 7004, Australia
| | - Vincent A. Viblanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Suvi Ruuskanen
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Antoine Stier
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
29
|
Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022; 23:e13392. [PMID: 34845821 DOI: 10.1111/obr.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA.,Department of Obstetrics and Gynecology, University of California, Irvine, California, USA.,Department of Epidemiology, University of California, Irvine, California, USA
| |
Collapse
|
30
|
Wang Q, Yang M, Deng X, Wang S, Zhou B, Li X, Shi J, Zhang Z, Niu W. Explorations on risk profiles for overweight and obesity in 9501 preschool-aged children. Obes Res Clin Pract 2022; 16:106-114. [PMID: 35277363 DOI: 10.1016/j.orcp.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Childhood obesity places a major burden on global public health. We aimed to identify and characterize potential factors, both individually and jointly, in association with overweight and obesity in Chinese preschool-aged children. METHODS We cross-sectionally recruited 9501 preschool-aged children from 30 kindergartens in Beijing and Tangshan. Overweight and obesity are defined according to the World Health Organization (WHO), International Obesity Task Force (IOTF), and China criteria. RESULTS After multivariable adjustment, eating speed, sleep duration, birthweight, and paternal body mass index (BMI) were consistently and significantly associated with childhood overweight and obesity under three growth criteria at a significance level of 5%. Additional fast food intake frequency, maternal BMI, gestational weight gain (GWG) and maternal pre-pregnancy BMI were significant factors for overweight (WHO criteria) and obesity (both IOTF and China criteria). Importantly, there were significant interactions between parental obesity and eating speed for childhood obesity. Finally, for practical reasons, risk nomogram models were constructed for childhood overweight and obesity based on significant factors under each criterion, with good prediction accuracy. CONCLUSION Our findings indicated a synergistic association of lifestyle, fetal and neonatal, and family-related factors with the risk of experiencing overweight and obesity among preschool-aged children.
Collapse
Affiliation(s)
- Qiong Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Min Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiangling Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Shunan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China; Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiumei Li
- Department of Pediatrics, Changping District Maternal and Child Health Care Hospital, Beijing, China
| | - Jinfeng Shi
- Department of Pediatrics, Tangshan Maternal and Child Health Care Hospital, Hebei, China
| | - Zhixin Zhang
- International Medical Services, China-Japan Friendship Hospital, Beijing, China.
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
31
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
32
|
Hufnagel A, Fernandez-Twinn DS, Blackmore HL, Ashmore TJ, Heaton RA, Jenkins B, Koulman A, Hargreaves IP, Aiken CE, Ozanne SE. Maternal but not fetoplacental health can be improved by metformin in a murine diet-induced model of maternal obesity and glucose intolerance. J Physiol 2022; 600:903-919. [PMID: 34505282 PMCID: PMC7612651 DOI: 10.1113/jp281902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is a global problem that increases the risk of short- and long-term adverse outcomes for mother and child, many of which are linked to gestational diabetes mellitus. Effective treatments are essential to prevent the transmission of poor metabolic health from mother to child. Metformin is an effective glucose lowering drug commonly used to treat gestational diabetes mellitus; however, its wider effects on maternal and fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin on maternal and feto-placental health. Metformin (300 mg kg-1 day-1 ) was given to obese females via the diet and was shown to achieve clinically relevant concentrations in maternal serum (1669 ± 568 nM in late pregnancy). Obese dams developed glucose intolerance during pregnancy and had reduced uterine artery compliance. Metformin treatment of obese dams improved maternal glucose tolerance, reduced maternal fat mass and restored uterine artery function. Placental efficiency was reduced in obese dams, with increased calcification and reduced labyrinthine area. Consequently, fetuses from obese dams weighed less (P < 0.001) at the end of gestation. Despite normalisation of maternal parameters, metformin did not correct placental structure or fetal growth restriction. Metformin levels were substantial in the placenta and fetal circulation (109.7 ± 125.4 nmol g-1 in the placenta and 2063 ± 2327 nM in fetal plasma). These findings reveal the distinct effects of metformin administration during pregnancy on mother and fetus and highlight the complex balance of risk vs. benefits that are weighed in obstetric medical treatments. KEY POINTS: Maternal obesity and gestational diabetes mellitus have detrimental short- and long-term effects for mother and child. Metformin is commonly used to treat gestational diabetes mellitus in many populations worldwide but the effects on fetus and placenta are unknown. In a mouse model of diet-induced obesity and glucose intolerance in pregnancy we show reduced uterine artery compliance, placental structural changes and reduced fetal growth. Metformin treatment improved maternal metabolic health and uterine artery compliance but did not rescue obesity-induced changes in the fetus or placenta. Metformin crossed the placenta into the fetal circulation and entered fetal tissue. Metformin has beneficial effects on maternal health beyond glycaemic control. However, despite improvements in maternal physiology, metformin did not prevent fetal growth restriction or placental ageing. The high uptake of metformin into the placental and fetal circulation highlights the potential for direct immediate effects of metformin on the fetus with possible long-term consequences postnatally.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Heather L Blackmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Benjamin Jenkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Albert Koulman
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, University of Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| |
Collapse
|
33
|
Zhang P, Liu Y, Zhu D, Chen X, Zhang Y, Zhou X, Huang Q, Li M, Chen Y, Sun M. Sirt3 negatively regulates Glut4 in skeletal muscle insulin resistance in old male offspring rats fed with maternal high fat diet. J Nutr Biochem 2022; 104:108970. [DOI: 10.1016/j.jnutbio.2022.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
|
34
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Anwer H, Morris MJ, Noble DWA, Nakagawa S, Lagisz M. Transgenerational effects of obesogenic diets in rodents: A meta-analysis. Obes Rev 2022; 23:e13342. [PMID: 34595817 DOI: 10.1111/obr.13342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Obesity is a major health condition that affects millions worldwide. There is an increased interest in understanding the adverse outcomes associated with obesogenic diets. A multitude of studies have investigated the transgenerational impacts of maternal and parental obesogenic diets on subsequent generations of offspring, but results have largely been mixed. We conducted a systematic review and meta-analysis on rodent studies to elucidate how obesogenic diets impact the mean and variance of grand-offspring traits. Our study focused on transgenerational effects (i.e., F2 and F3 generations) in one-off and multigenerational exposure studies. From 33 included articles, we obtained 407 effect sizes representing pairwise comparisons of control and treatment grand-offspring groups pertaining to measures of body weight, adiposity, glucose, insulin, leptin, and triglycerides. We found evidence that male and female grand-offspring descended from grandparents exposed to an obesogenic diet displayed phenotypes consistent with metabolic syndrome, especially in cases where the obesogenic diet was continued across generations. Further, we found stronger evidence for the effects of grand-maternal than grand-paternal exposure on grand-offspring traits. A high-fat diet in one-off exposure studies did not seem to impact phenotypic variation, whereas in multigenerational exposure studies it reduced variation in several traits.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
38
|
Paula VG, Vesentini G, Sinzato YK, Moraes-Souza RQ, Volpato GT, Damasceno DC. Intergenerational high-fat diet impairs ovarian follicular development in rodents: a systematic review and meta-analysis. Nutr Rev 2021; 80:889-903. [PMID: 34459492 DOI: 10.1093/nutrit/nuab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
CONTEXT Excessive consumption of high-fat diets has increased in the population over time and is harmful to female fertility. OBJECTIVE To investigate and discuss the effects of a high-fat diet on ovarian follicles in rodents. DATA SOURCE A systematic literature search of PubMed, EMBASE, Web of Science, and SCOPUS was carried out. DATA EXTRACTION Study characteristics, including study design, population, intervention, outcome, and risk of bias were analyzed. DATA ANALYSIS Twenty-two articles were included in a systematic review. Given the availability of studies, a quantitative meta-analysis included 12 studies that were performed for outcomes. There was a decrease in primordial follicles in female rodents that received a high-fat diet compared with the standard diet group. The offspring of mothers exposed to a high-fat diet showed an increased number of cystic follicles and a decreased number of secondary follicles and antral follicles, compared with the control diet group. Therefore, these high-fat diet-induced follicular alterations might impair the fertility of dams and their female newborns. CONCLUSION The consumption of a high-fat diet causes damage to ovarian follicular development, and this commitment will persist in the next generation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42019133865.
Collapse
Affiliation(s)
- Verônyca G Paula
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Giovana Vesentini
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri K Sinzato
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Rafaianne Q Moraes-Souza
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Gustavo T Volpato
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora C Damasceno
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
39
|
Kulhanek D, Rao RB, Paulsen ME. Excess sucrose intake during pregnancy programs fetal brain glucocorticoid receptor expression in female but not male C57Bl/6J mice. Obes Sci Pract 2021; 7:462-472. [PMID: 34401204 PMCID: PMC8346374 DOI: 10.1002/osp4.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sex-specific mechanisms explaining the association between mothers with obesity and the development of obesity in children are poorly characterized. Permanent changes in fetal brain glucocorticoid receptor (GR) expression caused by exposure to overnutrition in utero may program aberrant energy homeostasis, thereby predisposing the offspring to obesity. This study explores sex differences in brain GR expression using an established mouse model of overnutrition during pregnancy. METHODS Female C57Bl/6J mice were fed control (CON) or high-fat-high-sucrose (HFHS) diets. Dam cholesterol, insulin, and triglycerides were measured by colorimetric assays. Fetal corticosterone exposure was measured by placental Abca1, Hsd11β1, Hsd11β2, and brain Nr3c1 (GR); Pomc expression measured by RT-qPCR. RESULTS Female, but not male, HFHS fetuses had 46% decreased brain GR and twofold increased Pomc expression. There was decreased Abca1 and Hsd11β1 but not Hsd11β2 expression in HFHS placentas. Caloric and sucrose intake, but not fat intake, in dams inversely correlated with fetal GR expression in both sexes. Excess sucrose consumption by dams inversely correlated with female fetal GR and directly correlated with female fetal Pomc expression. CONCLUSIONS Excess sucrose consumption in pregnant dams caused lower GR and higher Pomc expression in the female fetal brain. Clinical investigation of excess sucrose intake during pregnancy and its subsequent effect on hypothalamic-pituitary-adrenal axis activity and appetite in offspring may lead to novel, sex-specific obesity prevention strategies in the development of obesity in children.
Collapse
Affiliation(s)
- Debra Kulhanek
- Department of PediatricsDivision of NeonatologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Raghavendra B. Rao
- Department of PediatricsDivision of NeonatologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Megan E. Paulsen
- Department of PediatricsDivision of NeonatologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| |
Collapse
|
40
|
Martins MG, Cruz AGD, Oliveira GPD, Woodside B, Horta-Júnior JDADCE, Kiss ACI. Effects of snack intake during pregnancy and lactation on reproductive outcome in mild hyperglycemic rats. Physiol Behav 2021; 240:113544. [PMID: 34332976 DOI: 10.1016/j.physbeh.2021.113544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
Metabolic disorders, like diabetes, as well as maternal diet, alter nutrient availability in utero, inducing adaptations in the offspring. Whether the effects of maternal hyperglycemia are modulated by diet, however, has yet to be explored. In the current study, we examined this issue by giving females rats, treated neonatally with STZ to induce mild hyperglycemia, and control littermates either ad libitum access to standard chow (Control n = 17; STZ n = 16) or standard chow and snacks (Control-snack n = 18; STZ-snack n = 19) (potato chips and a red fruit-flavored sucrose syrup solution 1.5%) throughout pregnancy and lactation. We hypothesized that the maternal glucose intolerance typically seen in female rats treated neonatally with STZ would be exacerbated by snack intake, and that the combination of snack intake and STZ treatment would lead to alterations in maternal behavior and offspring development. Maternal body weight and food intake were measured daily through pregnancy and lactation and litter weight throughout lactation. At birth, litter size, offspring weight, body length, and anogenital distance were obtained and offspring were classified according to their weight. Measures of nursing and retrieval behavior, as well as exploration in the open field and the elevated plus-maze were also recorded. As predicted, snack intake tended to aggravate the glucose intolerance of STZ-treated rats during pregnancy. Both Control and STZ-treated females that had access to snacks ate more calories and fat, but less carbohydrate and protein than females having access to chow alone. Overall, STZ-treated dams gave birth to fewer pups. Chow-fed STZ females gave birth to a greater proportion of large for pregnancy age pups, whereas dams in the Control-snack group gave birth to a greater proportion of small pups. The birth weight classification of pups born to STZ-snack rats, however, resembled that of the Control chow-fed females. Although all litters gained weight during lactation, litters from snack-fed dams gained less weight regardless of maternal hyperglycemia and did not show catch-up growth by weaning. Overall, STZ rats spent more time nest building, whereas the average inter milk ejection interval was higher in snack-fed females. STZ-snack dams retrieved the complete litter faster than dams in the other groups. Together, these data suggest that when mild hyperglycemic females are given access to snacks throughout pregnancy and lactation their intake is similar to that of Control females given snack access. The combination of hyperglycemia and snack access tended to decrease glucose tolerance in pregnancy, and normalized birth weight classification, but produced few other effects that were not seen as a function of snack intake or hyperglycemia alone. Since birth weight is a strong predictor of health issues, future studies will further investigate offspring behavioral and metabolic outcomes later in life.
Collapse
Affiliation(s)
- Marina Galleazzo Martins
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil.
| | - Alessandra Gonçalves da Cruz
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Giovana Pereira de Oliveira
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Psychology Department, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - José de Anchieta de Castro E Horta-Júnior
- São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Ana Carolina Inhasz Kiss
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
41
|
Zhou B, Niu W, Liu F, Yuan Y, Wang K, Zhang J, Wang Y, Zhang Z. Risk factors for recurrent respiratory tract infection in preschool-aged children. Pediatr Res 2021; 90:223-231. [PMID: 33173178 DOI: 10.1038/s41390-020-01233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 10/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND We aimed to identify potential risk factors for recurrent respiratory tract infection among Chinese preschool-aged children, and further to construct a nomogram prediction model. METHODS This is a cross-sectional survey conducted in Beijing. Utilizing a stratified cluster random sampling strategy, a total of 7222 children from 20 kindergartens were enrolled. Data are analyzed by STATA software and R language. RESULTS Five independent factors were identified to be significantly associated with recurrent respiratory tract infection risk overall and by pathogenic sites. The significant odds of recurrent respiratory tract infection was 8.31 (95% confidence interval [CI]: 5.69-12.12, P < 0.001), 2.31 (2.06-2.58, P < 0.001), 1.72 (1.48-1.99, P < 0.001), 1.24 (1.08-1.43, P = 0.002), and 1.19 (1.09-1.31, P < 0.001) for asthma, allergy, initial use of antibiotics <6 months, breastfeeding duration <6 months, and maternal body mass index, respectively. Besides the leading role played by asthma, allergy, initial use of antibiotics, and breastfeeding might exert a graded, dose-dependent effect on recurrent respiratory tract infection susceptibility. CONCLUSIONS We have identified five potential risk factors for the risk of recurrent respiratory tract infection from 7222 preschool-aged Chinese children. Notably, asthma plays a leading role, and allergy, initial use of antibiotics, and breastfeeding might exert a graded, dose-dependent effect on recurrent respiratory tract infection susceptibility. IMPACT This is the first report of examining the joint contribution of multiple potential risk factors to recurrent respiratory tract infection among Chinese preschool-aged children. We have identified five potential risk factors for the risk of recurrent respiratory tract infection via analyzing survey data from 7222 preschool-aged Chinese children. Asthma plays a leading role, and allergy, initial use of antibiotics, and breastfeeding might exert a graded, dose-dependent effect on recurrent respiratory tract infection susceptibility.
Collapse
Affiliation(s)
- Bo Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,International Medical Services, China-Japan Friendship Hospital, Beijing, China.,Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Fangyu Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Yuan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,International Medical Services, China-Japan Friendship Hospital, Beijing, China.,Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yunfeng Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- International Medical Services, China-Japan Friendship Hospital, Beijing, China. .,Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
42
|
Lassi ZS, Padhani ZA, Rabbani A, Rind F, Salam RA, Bhutta ZA. Effects of nutritional interventions during pregnancy on birth, child health and development outcomes: A systematic review of evidence from low- and middle-income countries. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1150. [PMID: 37131924 PMCID: PMC8356342 DOI: 10.1002/cl2.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Optimal nutrition plays a crucial role in pregnancy. Poor maternal nutrition and maternal obesity has risk factors for serious fetal complications and neonatal outcomes, including intrauterine growth restriction, congenital abnormalities, stillbirth, low birth weight (LBW), preterm birth, fetal macrosomia, increased risk of neonatal infections, neonatal hypothermia, and neonatal death. The prevalence of maternal malnutrition is higher in low- and middle-income countries (LMICs) (10-19%) when compared with high-income countries, with variation by region and by country. Several behavioral interventions, including dietary control and exercise, have been found to reduce the risk of these adverse outcomes. However, none has reviewed dietary interventions to prevent maternal obesity in pregnant women. Objectives The review aims to assess the effectiveness of balanced energy protein (BEP) supplementation, food distribution programs (FDPs), and dietary interventions to prevent maternal obesity during pregnancy on birth, child health, and developmental outcomes. Search Methods We searched Cochrane Controlled Trials Register (CENTRAL), MEDLINE, Embase, CINAHL, and 12 other databases, and trials registers for ongoing studies up until April 2019. We also searched for gray literature from different sources and for citations on Google Scholar and Web of Sciences. We also checked the reference lists of included studies and relevant reviews and contacted the authors of studies for any ongoing and unpublished studies. The search was followed by title/abstract screening, full-text screening and data extraction. Selection Criteria We included randomized control trials, and quasi experimental trials to evaluate the impact of nutritional interventions (BEP, FDP, and dietary interventions to prevent maternal obesity) compared to control or standard of care, among healthy pregnant women of any age living in LMICs. Data Collection and Analysis Two review authors independently assessed and screened studies for eligibility, extracted data, and assessed quality of the studies included in the review. We conducted a meta-analysis of all reported primary and secondary outcomes. Subgroup analysis and GRADE assessment was performed for all reported primary outcomes. Main Results The review included 15 studies, of these, eight were on BEP supplementation, five on FDP, and two on interventions for obesity prevention. BEP supplementation may show a reduction in the rate of stillbirths by 61% (risk ratio [RR], 0.39; 95% CI, 0.19-0.80; three studies, n = 1913; low quality on GRADE), perinatal mortality by 50% (RR, 0.50; 95% CI, 0.30-0.84; one study, n = 1446; low quality on GRADE), LBW infants by 40% (RR, 0.60; 95% CI, 0.41-0.86; three studies, n = 1830; low quality of evidence on GRADE); small for gestational age (SGA) by 29% (RR, 0.71; 95% CI, 0.54-0.94; five studies, n = 1844) and increased birth weight by 107.28 g (mean difference [MD], 107.28 g; 95% CI, 68.51-146.04, eight studies, n = 2190). An increase of 107.28 g of birthweight is clinically significant in the countries where the intervention was provided. BEP supplementation had no effect on miscarriage, neonatal mortality, infant mortality, preterm birth, birth length, and head circumference. FDP may show improvement in mean birth weight by 46 g (MD, 46.00 g; 95% CI, 45.10-46.90, three studies, n = 5272), in birth length by 0.20 cm (MD, 0.20 cm; 95% CI, 0.20-0.20, three studies, n = 5272), and reduction in stunting by 18% (RR, 0.82; 95% CI, 0.71-0.94; two studies; n = 4166), and wasting by 13% (RR, 0.87; 95% CI, 0.78-0.97; two studies, n = 3883). There was no effect of FDP on miscarriage, maternal mortality, perinatal mortality, neonatal mortality, infant mortality, preterm birth, LBW, SGA, head circumference, and underweight babies. Studies on interventions for obesity prevention among pregnant women failed to report on the primary outcomes. The studies showed a 195.57 g reduction in mean birth weight (MD, -195.57 g, 95% CI, -349.46 to -41.68, two studies, n = 180), and had no effect on birth length, and macrosomia. Authors' Conclusions Our review highlights improvement in maternal, birth, and child outcomes through BEP supplementation and FDP during pregnancy. But, due to the small number of included studies and low quality of evidence, we are uncertain of the effect of BEP supplementation, FDP and dietary interventions for prevention of obesity on maternal, and child outcomes. Thus, further good quality research is recommended to assess the effect of these interventions on maternal, child and developmental outcomes.
Collapse
Affiliation(s)
- Zohra S. Lassi
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaSA 5005Australia
| | - Zahra A. Padhani
- Center of Excellence in Women and Child HealthAga Khan University HospitalKarachiPakistan
| | - Amna Rabbani
- Center of Excellence in Women and Child HealthAga Khan University HospitalKarachiPakistan
| | - Fahad Rind
- Center of Excellence in Women and Child HealthAga Khan University HospitalKarachiPakistan
| | - Rehana A. Salam
- Center of Excellence in Women and Child HealthAga Khan University HospitalKarachiPakistan
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women and Child HealthAga Khan University HospitalKarachiPakistan
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
43
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
44
|
Larkin BP, Saad S, Glastras SJ, Nguyen LT, Hou M, Chen H, Wang R, Pollock CA. Low-dose hydralazine during gestation reduces renal fibrosis in rodent offspring exposed to maternal high fat diet. PLoS One 2021; 16:e0248854. [PMID: 33735324 PMCID: PMC7971884 DOI: 10.1371/journal.pone.0248854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Maternal high fat diet (HFD) promotes chronic kidney disease (CKD) in offspring. This is in accordance with the theory of fetal programming, which suggests adverse conditions occurring in utero predispose offspring to chronic conditions later in life. DNA methylation has been proposed as a key mechanism by which fetal programming occurs and is implicated in CKD progression. DNA demethylating drugs may interrupt the fetal programming of CKD by maternal obesity. Hydralazine, an antihypertensive agent, demethylates DNA at low doses which do not reduce blood pressure. We used a mouse model of maternal obesity to determine whether gestational administration of low-dose hydralazine to mothers can prevent CKD in offspring. METHODS C57BL/6 dams received HFD or chow from 6 weeks prior to mating and were administered subcutaneous hydralazine (5mg/kg) or saline thrice weekly during gestation. Male offspring were weaned to chow and were sacrificed at either postnatal week 9 or week 32. Biometric and metabolic parameters, renal global DNA methylation, renal structural and functional changes and markers of fibrosis, oxidative stress and inflammation were measured in offspring at weeks 9 and 32. RESULTS In week 9 offspring, maternal HFD consumption did not significantly alter anthropometric or metabolic parameters, or renal global DNA methylation. Week 32 offspring had increased renal global DNA methylation, together with albuminuria, glomerulosclerosis, renal fibrosis and oxidative stress. Administration of low-dose hydralazine to obese mothers during gestation reduced renal global DNA methylation and renal fibrotic markers in week 32 offspring. CONCLUSION Gestational hydralazine reduced renal global DNA methylation in offspring of obese mothers and attenuated maternal obesity-induced renal fibrosis. These data support the use of low-dose hydralazine as a demethylating agent to prevent CKD arising in offspring due to maternal HFD consumption.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney, Australia
| | - Long T. Nguyen
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Miao Hou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Rosy Wang
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Zoccali C, Mallamaci F. Undernutrition in childhood and adolescence and atherosclerosis in adult life. Nutr Metab Cardiovasc Dis 2021; 31:849-851. [PMID: 33546943 DOI: 10.1016/j.numecd.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, 89124, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, 89124, Reggio Calabria, Italy; Nephrology, Hypertension and Renal Transplantation Unit, Ospedali Riuniti Reggio Calabria, Italy
| |
Collapse
|
46
|
Serafim TL, Cunha-Oliveira T, Deus CM, Sardão VA, Cardoso IM, Yang S, Odhiambo JF, Ghnenis AB, Smith AM, Li J, Nathanielsz PW, Ford SP, Oliveira PJ. Maternal obesity in sheep impairs foetal hepatic mitochondrial respiratory chain capacity. Eur J Clin Invest 2021; 51:e13375. [PMID: 32780417 DOI: 10.1111/eci.13375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Changes in the nutritional environment in utero induced by maternal obesity (MO) lead to foetal metabolic dysfunction predisposing offspring to later-life metabolic diseases. Since mitochondria play a crucial role in hepatic metabolism and function, we hypothesized that MO prior to conception and throughout pregnancy programmes foetal sheep liver mitochondrial phenotype. MATERIAL AND METHODS Ewes ate an obesogenic diet (150% requirements; MO), or 100% requirements (CTR), from 60 days prior to conception. Foetal livers were removed at 0.9 gestation. We measured foetal liver mitochondrial DNA copy number, activity of superoxide dismutase, cathepsins B and D and selected protein content, total phospholipids and cardiolipin and activity of mitochondrial respiratory chain complexes. RESULTS A significant decrease in activities of mitochondrial complexes I, II-III and IV, but not aconitase, was observed in MO. In the antioxidant machinery, there was a significant increase in activity of total superoxide dismutase (SOD) and SOD2 in MO. However, no differences were found regarding autophagy-related protein content (p62, beclin-I, LC3-I, LC3-II and Lamp2A) and cathepsin B and D activities. A 21.5% decrease in total mitochondrial phospholipid was observed in MO. CONCLUSIONS The data indicate that MO impairs foetal hepatic mitochondrial oxidative capacity and affects total mitochondrial phospholipid content. In addition, MO affects the regulation of foetal liver redox pathways, indicating metabolic adaptations to the higher foetal lipid environment. Consequences of in utero programming of foetal hepatic metabolism may persist and compromise mitochondrial bioenergetics in later life, and increase susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Teresa L Serafim
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Claudia M Deus
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Ines M Cardoso
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| | - Shanshan Yang
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - John F Odhiambo
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Adel B Ghnenis
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Ashley M Smith
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Junfei Li
- Department of Radiology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | - Stephen P Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Cantanhede, Portugal
| |
Collapse
|
47
|
Ceglarek VM, Bertasso IM, Pietrobon CB, Scomazzon SP, Leite NC, Bonfleur ML, Araújo ACF, Balbo SL, Grassiolli S. Maternal Roux-en-Y gastric bypass surgery reduces lipid deposition and increases UCP1 expression in the brown adipose tissue of male offspring. Sci Rep 2021; 11:1158. [PMID: 33441773 PMCID: PMC7806700 DOI: 10.1038/s41598-020-80104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity induced by cafeteria diet (CAF) predisposes offspring to obesity and metabolic diseases, events that could be avoided by maternal bariatric surgery (BS). Herein we evaluated whether maternal BS is able to modulate brown adipose tissue (BAT) morphology and function in adult male rats born from obese female rats submitted to Roux-en-Y gastric bypass (RYGB). For this, adult male rat offspring were obtained from female rats that consumed standard diet (CTL), or CAF diet, and were submitted to simulated operation or RYGB. Analysis of offspring showed that, at 120 days of life, the maternal CAF diet induced adiposity and decreased the expression of mitochondrial Complex I (CI) and Complex III (CIII) in the BAT, resulting in higher accumulation of lipids than in BAT from offspring of CTL dams. Moreover, maternal RYGB increased UCP1 expression and prevented excessive deposition of lipids in the BAT of adult male offspring rats. However, maternal RYGB failed to reverse the effects of maternal diet on CI and CIII expression. Thus, maternal CAF promotes higher lipid deposition in the BAT of offspring, contributing to elevated adiposity. Maternal RYGB prevented obesity in offspring, probably by increasing the expression of UCP1.
Collapse
Affiliation(s)
- Vanessa Marieli Ceglarek
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil. .,Institute of Basic Health Sciences. Biological Sciences: Physiology, postgraduate. Department of Physiology, Room 337-7, Laboratory of Neurophysiology of Cognition and Development of the Brain, Federal University of Rio Grande do Sul, 500, Sarmento Leite - Farroupilha, Porto Alegre, RS, 90050-170, Brazil.
| | - Iala Milene Bertasso
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sofia Pizzato Scomazzon
- Medical Sciences: Endocrinology Post Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nayara Carvalho Leite
- Obesity Comorbidities and Research Center, University of Campinas, Campinas, SP, Brazil
| | - Maria Lúcia Bonfleur
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Allan Cezar Faria Araújo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| |
Collapse
|
48
|
Lin C, Lin Y, Luo J, Yu J, Cheng Y, Wu X, Lin L, Lin Y. Maternal High-Fat Diet Multigenerationally Impairs Hippocampal Synaptic Plasticity and Memory in Male Rat Offspring. Endocrinology 2021; 162:bqaa214. [PMID: 33211807 DOI: 10.1210/endocr/bqaa214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
As advances are made in the field of developmental origins of health and disease, there is an emphasis on long-term influence of maternal environmental factors on offspring health. Maternal high-fat diet (HFD) consumption has been suggested to exert detrimental effects on cognitive function in offspring, but whether HFD-dependent brain remodeling can be transmitted to the next generations is still unclear. This study tested the hypothesis that HFD consumption during rat pregnancy and lactation multigenerationally influences male offspring hippocampal synaptic plasticity and cognitive function. We observed that hippocampus-dependent learning and memory was impaired in 3 generations from HFD-fed maternal ancestors (referred as F1-F3), as assessed by novel object recognition and Morris water maze tests. Moreover, maternal HFD exposure also affected electrophysiological and ultrastructure measures of hippocampal synaptic plasticity across generations. We observed that intranasal insulin replacement partially rescued hippocampal synaptic plasticity and cognitive deficits in F3 rats, suggesting central insulin resistance may play an important role in maternal diet-induced neuroplasticity impairment. Furthermore, maternal HFD exposure enhanced the palmitoylation of GluA1 critically involved in long-term potentiation induction, while palmitoylation inhibitor 2-bromopalmitate counteracts GluA1 hyperpalmitoylation and partially abolishes the detrimental effects of maternal diet on learning and memory in F3 offspring. Importantly, maternal HFD-dependent GluA1 hyperpalmitoylation was reversed by insulin replacement. Taken together, our data suggest that maternal HFD exposure multigenerationally influences adult male offspring hippocampal synaptic plasticity and cognitive performance, and central insulin resistance may serve as the cross-talk between maternal diet and cognitive impairment across generations.
Collapse
Affiliation(s)
- Cheng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - YanYan Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Luo
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - JunRu Yu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - YaNi Cheng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - XiaoYun Wu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Dijkstra DJ, Verkaik-Schakel RN, Eskandar S, Limonciel A, Stojanovska V, Scherjon SA, Plösch T. Mid-gestation low-dose LPS administration results in female-specific excessive weight gain upon a western style diet in mouse offspring. Sci Rep 2020; 10:19618. [PMID: 33184349 PMCID: PMC7665071 DOI: 10.1038/s41598-020-76501-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023] Open
Abstract
Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place.
Collapse
Affiliation(s)
- Dorieke J Dijkstra
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Sharon Eskandar
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands.,Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sicco A Scherjon
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands. .,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
50
|
Osorio JS. Gut health, stress, and immunity in neonatal dairy calves: the host side of host-pathogen interactions. J Anim Sci Biotechnol 2020; 11:105. [PMID: 33292513 PMCID: PMC7649058 DOI: 10.1186/s40104-020-00509-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
The cumulative evidence that perinatal events have long-lasting ripple effects through the life of livestock animals should impact future nutritional and management recommendations at the farm level. The implications of fetal programming due to malnutrition, including neonatal survival and lower birth weights, have been characterized, particularly during early and mid-gestation, when placental and early fetal stages are being developed. The accelerated fetal growth during late pregnancy has been known for some time, while the impact of maternal stressors during this time on fetal development and by extent its postnatal repercussions on health and performance are still being defined. Maternal stressors during late pregnancy cannot only influence colostrogenesis but also compromise adequate intestinal development in the fetus, thus, that further limits the newborn's ability to absorb nutrients, bioactive compounds, and immunity (i.e., immunoglobulins, cytokines, and immune cells) from colostrum. These negative effects set the newborn calf to a challenging start in life by compromising passive immunity and intestinal maturation needed to establish a mature postnatal mucosal immune system while needing to digest and absorb nutrients in milk or milk replacer. Besides the dense-nutrient content and immunity in colostrum, it contains bioactive compounds such as growth factors, hormones, and cholesterol as well as molecular signals or instructions [e.g., microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)] transferred from mother to offspring with the aim to influence postnatal gut maturation. The recent change in paradigm regarding prenatal materno-fetal microbiota inoculation and likely the presence of microbiota in the developing fetus intestine needs to be addressed in future research in ruminants. There still much to know on what prenatal or postnatal factors may predispose neonates to become susceptible to enteropathogens (e.g., enterotoxigenic Escherichia coli), causing diarrhea. From the host-side of this host-pathogen interaction, molecular data such as fecal RNA could, over time, help fill those gaps in knowledge. In addition, merging this novel fecal RNA approach with more established microbiome techniques can provide a more holistic picture of an enteropathogenesis and potentially uncover control points that can be addressed through management or nutrition at the farm level to minimize preweaning morbidity and mortality.
Collapse
Affiliation(s)
- Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, 113 H Alfred Dairy Science Hall, Brookings, SD, 57007, USA.
| |
Collapse
|