1
|
Fanning NC, Cadzow M, Topless RK, Frampton C, Dalbeth N, Merriman TR, Stamp LK. Association of rare and common genetic variants in MOCOS with inadequate response to allopurinol. Rheumatology (Oxford) 2024; 63:3025-3032. [PMID: 39137147 PMCID: PMC11534095 DOI: 10.1093/rheumatology/keae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVES The minor allele of the common rs2231142 ABCG2 variant predicts inadequate response to allopurinol urate lowering therapy. We hypothesize that additional variants in genes encoding urate transporters and allopurinol-to-oxypurinol metabolic enzymes also predict allopurinol response. METHODS This study included a subset of participants with gout from the Long-term Allopurinol Safety Study Evaluating Outcomes in Gout Patients (LASSO), whose whole genome was sequenced (n = 563). Good responders had a 4:1 or 5:1 ratio of good [serum urate (SU) <0.36 mmol/l on allopurinol ≤300 mg/day] to poor (SU ≥0.36 mmol/l despite allopurinol >300 mg/day) responses over five to six time points, while inadequate responders had a 1:4 or 1:5 ratio of good to poor responses. Adherence to allopurinol was determined by pill counts, and for a subgroup (n = 303), by plasma oxypurinol >20μmol/l. Using the sequence kernel association test (SKAT), we estimated the combined effect of rare and common variants in urate secretory (ABCC4, ABCC5, ABCG2, SLC17A1, SLC17A3, SLC22A6, SLC22A8) and reuptake genes (SLC2A9, SLC22A11) and in allopurinol-to-oxypurinol metabolic genes (AOX1, MOCOS, XDH) on allopurinol response. RESULTS There was an association of rare and common variants in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.019), and in MOCOS, encoding molybdenum cofactor sulfurase, with allopurinol response (PSKAT-C = 0.011). Evidence for genetic association with allopurinol response in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.002) and MOCOS (PSKAT-C < 0.001) was stronger when adherence to allopurinol therapy was confirmed by plasma oxypurinol. CONCLUSION We provide evidence for common and rare genetic variation in MOCOS associating with allopurinol response.
Collapse
Affiliation(s)
- Niamh C Fanning
- Department of Medicine, University of Otago, Christchurch, Aotearoa, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, Aotearoa, New Zealand
- Research and Teaching IT Support, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Ruth K Topless
- Department of Biochemistry, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Chris Frampton
- Department of Medicine, University of Otago, Christchurch, Aotearoa, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, Aotearoa, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, Aotearoa, New Zealand
| |
Collapse
|
2
|
Bard AM, Clark LV, Cosgun E, Aldinger KA, Timms A, Quina LA, Ferres JML, Jardine D, Haas EA, Becker TM, Pagan CM, Santani A, Martinez D, Barua S, McNutt Z, Nesbitt A, Mitchell EA, Ramirez JM. Known pathogenic gene variants and new candidates detected in sudden unexpected infant death using whole genome sequencing. Am J Med Genet A 2024; 194:e63596. [PMID: 38895864 DOI: 10.1002/ajmg.a.63596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study is to gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID). Whole Genome Sequencing (WGS) was performed on 144 infants that succumbed to SUID, and 573 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences. Variants of interest were identified in 88 genes, in 64.6% of our cohort. Seventy-three of these have been previously associated with SIDS/SUID/SUDP. Forty-three can be characterized as cardiac genes and are related to cardiomyopathies, arrhythmias, and other conditions. Variants in 22 genes were associated with neurologic functions. Variants were also found in 13 genes reported to be pathogenic for various systemic disorders and in two genes associated with immunological function. Variants in eight genes are implicated in the response to hypoxia and the regulation of reactive oxygen species (ROS) and have not been previously described in SIDS/SUID/SUDP. Seventy-two infants met the triple risk hypothesis criteria. Our study confirms and further expands the list of genetic variants associated with SUID. The abundance of genes associated with heart disease and the discovery of variants associated with the redox metabolism have important mechanistic implications for the pathophysiology of SUID.
Collapse
Affiliation(s)
- Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lindsay V Clark
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Erdal Cosgun
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- AI for Good Research Lab, Microsoft, Redmond, Washington, USA
- Microsoft Genomics Team, Redmond, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew Timms
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Juan M Lavista Ferres
- Bioinformatics and Research Scientific Computing, Seattle Children's Research Institute, Seattle, Washington, USA
- AI for Good Research Lab, Microsoft, Redmond, Washington, USA
- Microsoft Genomics Team, Redmond, Washington, USA
| | - David Jardine
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Tatiana M Becker
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Chelsea M Pagan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | | | | | | | - Edwin A Mitchell
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Aragaw WW, Gebresilase TT, Negatu DA, Dartois V, Dick T. Multidrug tolerance conferred by loss-of-function mutations in anti-sigma factor RshA of Mycobacterium abscessus. Antimicrob Agents Chemother 2024:e0105124. [PMID: 39470195 DOI: 10.1128/aac.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024] Open
Abstract
Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in Mycobacterium abscessus (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria. Since oxidative stress is generated in response to many antibiotics, we went on to show that deletion of rshA confers low to moderate resistance-by measure of MIC-to a dozen agents recommended or evaluated for the treatment of Mab pulmonary infections. Interestingly, this moderate resistance was associated with a wide range of drug tolerance, up to 1,000-fold increased survival of a ΔrshA Mab mutant upon exposure to several β-lactams and DNA gyrase inhibitors. Consistent with the putative involvement of the SigH regulon, we showed that addition of the transcription inhibitor rifabutin (RBT) abrogated the high-tolerance phenotype of ΔrshA to representatives of the β-lactam and DNA gyrase inhibitor classes. In a survey of 10,000 whole Mab genome sequences, we identified several loss-of-function mutations in rshA as well as non-synonymous polymorphisms in two cysteine residues critical for interactions with SigH. Thus, the multidrug multiform resistance phenotype we have uncovered may not only constitute a step toward canonical resistance acquisition during treatment but also contribute directly to treatment failure.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tewodros T Gebresilase
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dereje A Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
4
|
Chen JY, Li YF, Zhou Z, Jiang XM, Bi X, Yang MF, Zhao B. De novo mutations promote inflammation in children with STAT3 gain-of-function syndrome by affecting IL-1β expression. Int Immunopharmacol 2024; 140:112755. [PMID: 39098225 DOI: 10.1016/j.intimp.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
STAT3 gain-of-function syndrome, characterized by early-onset autoimmunity and primary immune regulatory disorder, remains poorly understood in terms of its immunological mechanisms. We employed whole-genome sequencing of familial trios to elucidate the pivotal role of de novo mutations in genetic diseases. We identified 37 high-risk pathogenic loci affecting 23 genes, including a novel STAT3 c.508G>A mutation. We also observed significant down-regulation of pathogenic genes in affected individuals, potentially associated with inflammatory responses regulated by PTPN14 via miR378c. These findings enhance our understanding of the pathogenesis of STAT3 gain-of-function syndrome and suggest potential therapeutic strategies. Notably, combined JAK inhibitors and IL-6R antagonists may offer promising treatment avenues for mitigating the severity of STAT3 gain-of-function syndrome.
Collapse
Affiliation(s)
- Ji-Yu Chen
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yan-Fang Li
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Zhu Zhou
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Yunnan Clinical Medical Research Center of Chronic Kidney Disease, Kunming 650032, Yunnan, China
| | - Xue-Mei Jiang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xin Bi
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Mi-Feng Yang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Bo Zhao
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| |
Collapse
|
5
|
Chow RD, Nathanson KL, Parikh RB. Phenotypic evaluation of deep learning models for classifying germline variant pathogenicity. NPJ Precis Oncol 2024; 8:235. [PMID: 39427061 PMCID: PMC11490490 DOI: 10.1038/s41698-024-00710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi B Parikh
- Division of Health Policy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Cancer Care Innovation, Abramson Cancer Center, Philadelphia, PA, USA
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
6
|
Qin K, Shi X, Yang K, Xu Q, Wang F, Chen S, Xu T, Liu J, Wen W, Chen R, Liu Z, Cui L, Zhou K. Phage-antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 2024; 15:e0139324. [PMID: 39248568 PMCID: PMC11481518 DOI: 10.1128/mbio.01393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Phage-antibiotic synergy (PAS) represents a superior treatment strategy for pathogen infections with less probability of resistance development. Here, we aim to understand the molecular mechanism by which PAS suppresses resistance in terms of population evolution. A novel hypervirulent Klebsiella pneumoniae (KP) phage H5 was genetically and structurally characterized. The combination of H5 and ceftazidime (CAZ) showed a robust synergistic effect in suppressing resistance emergence. Single-cell Raman analysis showed that the phage-CAZ combination suppressed bacterial metabolic activities, contrasting with the upregulation observed with phage alone. The altered population evolutionary trajectory was found to be responsible for the contrasting metabolic activities under different selective pressures, resulting in pleiotropic effects. A pre-existing wcaJ point mutation (wcaJG949A) was exclusively selected by H5, conferring a fitness advantage and up-regulated activity of carbohydrate metabolism, but also causing a trade-off between phage resistance and collateral sensitivity to CAZ. The wcaJ point mutation was counter-selected by H5-CAZ, inducing various mutations in galU that imposed evolutionary disadvantages with higher fitness costs, and suppressed carbohydrate metabolic activity. H5 and H5-CAZ treatments resulted in opposite effects on the transcriptional activity of the phosphotransferase system and the ascorbate and aldarate metabolism pathway, suggesting potential targets for phage resistance suppression. Our study reveals a novel mechanism of resistance suppression by PAS, highlighting how the complexity of bacterial adaptation to selective pressures drives treatment outcomes. IMPORTANCE Phage-antibiotic synergy (PAS) has been recently proposed as a superior strategy for the treatment of multidrug-resistant pathogens to effectively reduce bacterial load and slow down both phage and antibiotic resistance. However, the underlying mechanisms of resistance suppression by PAS have been poorly and rarely been studied. In this study, we tried to understand how PAS suppresses the emergence of resistance using a hypervirulent Klebsiella pneumoniae (KP) strain and a novel phage H5 in combination with ceftazidime (CAZ) as a model. Our study reveals a novel mechanism by which PAS drives altered evolutionary trajectory of bacterial populations, leading to suppressed emergence of resistance. The findings advance our understanding of how PAS suppresses the emergence of resistance, and are imperative for optimizing the efficacy of phage-antibiotic therapy to further improve clinical outcomes.
Collapse
Affiliation(s)
- Kunhao Qin
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Health Science Center, Medical Department of Jinggangshan University, Ji'an, China
| | - Xing Shi
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qiuqing Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Senxiong Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wangrong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
- Clinical Laboratory Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kai Zhou
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
7
|
Pierson Smela M, Pepe V, Lubbe S, Kiskinis E, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. Stem Cell Reports 2024; 19:1505-1515. [PMID: 39270651 DOI: 10.1016/j.stemcr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
| | - Valerio Pepe
- Wyss Institute at Harvard University, Boston MA, USA
| | - Steven Lubbe
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - George M Church
- Wyss Institute at Harvard University, Boston MA, USA; Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
von Beck T, Patel M, Patel NC, Jacob J. Analysis of rare genetic variants in All of Us cohort patients with common variable immunodeficiency. Front Genet 2024; 15:1409754. [PMID: 39415980 PMCID: PMC11479952 DOI: 10.3389/fgene.2024.1409754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Common variable immunodeficiency (CVID) is a group of genetic disorders involving more than a dozen genetic loci and characterized by a deficiency in specific antibody isotypes leading to poor immune responses and recurrent infection. CVID affects approximately 1 in 10,000 to 1 in 50,000 people worldwide with substantial heterogeneity in disease severity, including asymptomatic individuals designated as hypogammaglobulinemia of undetermined significance (HGUS). As expected of humoral immunodeficiency, the molecular causes of CVID primarily affect the maturation, activation, or survival of B cells and plasma cells. In this retrospective analysis, we defined a cohort of 21 patients with a primary CVID or HGUS diagnosis in the v7 release of the All of Us Research Program database and performed gene annotation and variant effect prediction. Our analysis identified both known disease-causing variants and rare genetic variants overlapping with other immunodeficiency syndromes.
Collapse
Affiliation(s)
- Troy von Beck
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, United States
| | - Meera Patel
- Department of Pediatrics, Division of Allergy and Immunology, Duke University, Durham, NC, United States
| | - Niraj C. Patel
- Department of Pediatrics, Division of Allergy and Immunology, Duke University, Durham, NC, United States
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Sparks MM, Schraidt CE, Yin X, Seeb LW, Christie MR. Rapid genetic adaptation to a novel ecosystem despite a large founder event. Mol Ecol 2024; 33:e17121. [PMID: 37668092 DOI: 10.1111/mec.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced to the Great Lakes via a single introduction event 31 generations ago. Using whole-genome resequencing for 134 fish spanning five sample groups across the native and introduced range, we estimate that the source population's effective population size was 146,886 at the time of introduction, whereas the founding population's effective population size was just 72-a 2040-fold decrease. As expected with a severe founder event, we show reductions in genome-wide measures of genetic diversity, specifically a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations, including missense variants in genes associated with circadian rhythm, immunological response and maturation, which match expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species-specific agent-based model to rule out genetic drift and conclude our results support a strong response to selection occurring in a period gene (per2) that plays a predominant role in determining an organism's daily clock, matching large day length differences experienced by introduced salmon during important phenological periods. Together, these results inform how populations might evolve rapidly to new environments, even with a small pool of standing genetic variation.
Collapse
Affiliation(s)
- Morgan M Sparks
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Claire E Schraidt
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoshen Yin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Smolka M, Paulin LF, Grochowski CM, Horner DW, Mahmoud M, Behera S, Kalef-Ezra E, Gandhi M, Hong K, Pehlivan D, Scholz SW, Carvalho CMB, Proukakis C, Sedlazeck FJ. Detection of mosaic and population-level structural variants with Sniffles2. Nat Biotechnol 2024; 42:1571-1580. [PMID: 38168980 PMCID: PMC11217151 DOI: 10.1038/s41587-023-02024-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
Calling structural variations (SVs) is technically challenging, but using long reads remains the most accurate way to identify complex genomic alterations. Here we present Sniffles2, which improves over current methods by implementing a repeat aware clustering coupled with a fast consensus sequence and coverage-adaptive filtering. Sniffles2 is 11.8 times faster and 29% more accurate than state-of-the-art SV callers across different coverages (5-50×), sequencing technologies (ONT and HiFi) and SV types. Furthermore, Sniffles2 solves the problem of family-level to population-level SV calling to produce fully genotyped VCF files. Across 11 probands, we accurately identified causative SVs around MECP2, including highly complex alleles with three overlapping SVs. Sniffles2 also enables the detection of mosaic SVs in bulk long-read data. As a result, we identified multiple mosaic SVs in brain tissue from a patient with multiple system atrophy. The identified SV showed a remarkable diversity within the cingulate cortex, impacting both genes involved in neuron function and repetitive elements.
Collapse
Affiliation(s)
- Moritz Smolka
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA
| | - Luis F Paulin
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA
| | | | - Dominic W Horner
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sairam Behera
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA
| | - Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mira Gandhi
- Pacific Northwest Research Institute (PNRI), Seattle, WA, USA
| | - Karl Hong
- Bionano Genomics, San Diego, CA, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Pacific Northwest Research Institute (PNRI), Seattle, WA, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Maghrebi M, Marín-Sanz M, Miras Moreno MB, Quagliata G, Caldo F, Gatti N, Mannino G, Pesenti M, D'Alessandro S, Nocito FF, Lucini L, Sestili F, Astolfi S, Barro F, Vigani G. The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109077. [PMID: 39213946 DOI: 10.1016/j.plaphy.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42-, NO3-, PO43-, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Moez Maghrebi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Maria Begona Miras Moreno
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Giulia Quagliata
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francesco Caldo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Noemi Gatti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Giuseppe Mannino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Michele Pesenti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano D'Alessandro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Fabio Francesco Nocito
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Universita Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Francesco Sestili
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Stefania Astolfi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy.
| |
Collapse
|
12
|
Gao R, Li C, Zhou A, Wang X, Lu K, Zuo W, Hu H, Han M, Tong X, Dai F. QTL analysis to identify genes involved in the trade-off between silk protein synthesis and larva-pupa transition in silkworms. Genet Sel Evol 2024; 56:68. [PMID: 39350051 PMCID: PMC11440889 DOI: 10.1186/s12711-024-00937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Insect-based food and feed are increasingly attracting attention. As a domesticated insect, the silkworm (Bombyx mori) has a highly nutritious pupa that can be easily raised in large quantities through large-scale farming, making it a highly promising source of food. The ratio of pupa to cocoon (RPC) refers to the proportion of the weight of the cocoon that is attributed to pupae, and is of significant value for edible utilization, as a higher RPC means a higher ratio of conversion of mulberry leaves to pupa. In silkworm production, there is a trade-off between RPC and cocoon shell ratiao(CSR), which refers the ratio of silk protein to the entire cocoon, during metamorphosis process. Understanding the genetic basis of this balance is crucial for breeding edible strains with a high RPC and further advancing its use as feed. RESULTS Using QTL-seq, we identified a quantitative trait locus (QTL) for the balance between RPC and CSR that is located on chromosome 11 and covers a 9,773,115-bp region. This locus is an artificial selection hot spot that contains ten non-overlapping genomic regions under selection that were involved in the domestication and genetic breeding processes. These regions include 17 genes, nine of which are highly expressed in the silk gland, which is a vital component in the trade-off between RPC and CSR. These genes are annotate with function related with epigenetic modifications and the regulation of DNA replication et al. We identified one and two single nucleotide polymorphisms (SNPs) in the exons of teh KWMTBOMO06541 and KWMTBOMO06485 genes that result in amino acid changes in the protein domains. These SNPs have been strongly selected for during the domestication process. The KWMTBOMO06485 gene encodes the Bombyx mori (Bm) tRNA methyltransferase (BmDnmt2) and its knockout results in a significant change in the trade-off between CSR and RPC in both sexes. CONCLUSIONS Taken together, our results contribute to a better understanding of the genetic basis of RPC and CSR. The identified QTL and genes that affect RPC can be used for marker-assisted and genomic selection of silkworm strains with a high RPC. This will further enhance the production efficiency of silkworms and of closely-related insects for edible and feed purposes.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Ang Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Xiachao Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Kupeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Weidong Zuo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Hoffman JI, Vendrami DLJ, Hench K, Chen RS, Stoffel MA, Kardos M, Amos W, Kalinowski J, Rickert D, Köhrer K, Wachtmeister T, Goebel ME, Bonin CA, Gulland FMD, Dasmahapatra KK. Genomic and fitness consequences of a near-extinction event in the northern elephant seal. Nat Ecol Evol 2024:10.1038/s41559-024-02533-2. [PMID: 39333394 DOI: 10.1038/s41559-024-02533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species' unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0-7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks.
Collapse
Affiliation(s)
- Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- British Antarctic Survey, Cambridge, UK.
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany.
| | - David L J Vendrami
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
| | - Kosmas Hench
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rebecca S Chen
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Martin A Stoffel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Alan Turing Institute, British Library, London, UK
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jörn Kalinowski
- Department of Microbial Genomics and Biotechnology, CeBiTec, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Rickert
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mike E Goebel
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Carolina A Bonin
- Department of Marine and Environmental Sciences, Hampton University, Hampton, VA, USA
| | - Frances M D Gulland
- Karen C. Drayer Wildlife Health Center, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
15
|
Muret K, Le Goff V, Dandine-Roulland C, Hotz C, Jean-Louis F, Boisson B, Mesrob L, Sandron F, Daian D, Olaso R, Le Floch E, Meyer V, Wolkenstein P, Casanova JL, Lévy Y, Bonnet E, Deleuze JF, Hüe S. Comprehensive Catalog of Variants Potentially Associated with Hidradenitis Suppurativa, Including Newly Identified Variants from a Cohort of 100 Patients. Int J Mol Sci 2024; 25:10374. [PMID: 39408704 PMCID: PMC11476843 DOI: 10.3390/ijms251910374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome and inflammatory bowel disease. Genetic studies have identified mutations in the γ-secretase complex that affect Notch signaling pathways critical for skin cell regulation. Despite its high heritability, most reported HS cases do not follow a simple genetic pattern. In this article, we performed whole-exome sequencing (WES) on a cohort of 100 individuals with HS, and we provide a comprehensive review of the variants known to be described or associated with HS. 91 variants were associated with the γ-secretase complex, and 78 variants were associated with other genes involved in the Notch pathway, keratinization, or immune response. Through this new genetic analysis, we have added ten new variants to the existing catalogs. All variants are available in a .vcf file and are provided as a resource for future studies.
Collapse
Affiliation(s)
- Kévin Muret
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Le Goff
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Dandine-Roulland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Hotz
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
- Transversal Dermatology Unit, Jacques Puel Hospital Center, 12000 Rodez, France
| | - Francette Jean-Louis
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Lilia Mesrob
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris Cité University, 75014 Paris, France
| | - Florian Sandron
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Delphine Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Pierre Wolkenstein
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Yves Lévy
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- Centre d’Etude du Polymorphisme Humain (CEPH), Fondation Jean Dausset, 75010 Paris, France
- Centre de Référence, d’Innovation, d’Expertise et de Transfert (CREFIX), 91000 Evry, France
| | - Sophie Hüe
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
- Biologic Immunology-Hematology Department, DMU Biologie, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| |
Collapse
|
16
|
Geurts BS, Zeverijn LJ, Leek LVM, van Berge Henegouwen JM, Hoes LR, van der Wijngaart H, van der Noort V, van de Haar J, van Ommen-Nijhof A, Kok M, Roepman P, Jansen AML, de Leng WWJ, de Jonge MJA, Hoeben A, van Herpen CML, Westgeest HM, Wessels LFA, Verheul HMW, Gelderblom H, Voest EE. Efficacy of Pembrolizumab and Biomarker Analysis in Patients with WGS-Based Intermediate to High Tumor Mutational Load: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:3735-3746. [PMID: 38630551 DOI: 10.1158/1078-0432.ccr-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To evaluate the efficacy of pembrolizumab across multiple cancer types harboring different levels of whole-genome sequencing-based tumor mutational load (TML; total of nonsynonymous mutations across the genome) in patients included in the Drug Rediscovery Protocol (NCT02925234). PATIENTS AND METHODS Patients with solid, treatment-refractory, microsatellite-stable tumors were enrolled in cohort A: breast cancer cohort harboring a TML of 140 to 290, cohort B: tumor-agnostic cohort harboring a TML of 140 to 290, and cohort C: tumor-agnostic cohort harboring a TML >290. Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint was clinical benefit [CB; objective response or stable disease (SD) ≥16 weeks]. Pretreatment tumor biopsies were obtained for whole-genome sequencing and RNA sequencing. RESULTS Seventy-two evaluable patients with 26 different histotypes were enrolled. The CB rate was 13% in cohort A [3/24 with partial response (PR)], 21% in cohort B (3/24 with SD; 2/24 with PR), and 42% in cohort C (4/24 with SD; 6/24 with PR). In cohort C, neoantigen burden estimates and expression of inflammation and innate immune biomarkers were significantly associated with CB. Similar associations were not identified in cohorts A and B. In cohort A, CB was significantly associated with mutations in the chromatin remodeling gene PBRM1, whereas in cohort B, CB was significantly associated with expression of MICA/MICB and butyrophilins. CB and clonal TML were not significantly associated. CONCLUSIONS Although pembrolizumab lacked activity in cohort A, cohorts B and C met the study's primary endpoint. Further research is warranted to refine the selection of patients with tumors harboring lower TMLs and may benefit from a focus on innate immunity. See related commentary by Hsu and Yen, p. 3652.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Louisa R Hoes
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Joris van de Haar
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Marleen Kok
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
17
|
Mongue AJ, Baird RB. Genetic drift drives faster-Z evolution in the salmon louse Lepeophtheirus salmonis. Evolution 2024; 78:1594-1605. [PMID: 38863398 DOI: 10.1093/evolut/qpae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
How sex chromosomes evolve compared to autosomes remains an unresolved question in population genetics. Most studies focus on only a handful of taxa, resulting in uncertainty over whether observed patterns reflect general processes or idiosyncrasies in particular clades. For example, in female heterogametic (ZW) systems, bird Z chromosomes tend to evolve quickly but not adaptively, while in Lepidopterans they evolve adaptively, but not always quickly. To understand how these observations fit into broader evolutionary patterns, we explore Z chromosome evolution outside of these two well-studied clades. We utilize a publicly available genome, gene expression, population, and outgroup data in the salmon louse Lepeophtheirus salmonis, an important agricultural pest copepod. We find that the Z chromosome is faster evolving than autosomes, but that this effect is driven by increased drift rather than adaptive evolution. Due to high rates of female reproductive failure, the Z chromosome exhibits a slightly lower effective population size than the autosomes which is nonetheless to decrease efficiency of hemizygous selection acting on the Z. These results highlight the usefulness of organismal life history in calibrating population genetic expectations and demonstrate the value of the ever-expanding wealth of publicly available data to help resolve outstanding evolutionary questions.
Collapse
Affiliation(s)
- Andrew J Mongue
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Robert B Baird
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Huang R, Jin Z, Zhang D, Li L, Zhou J, Xiao L, Li P, Zhang M, Tian C, Zhang W, Zhong L, Quan M, Zhao R, Du L, Liu LJ, Li Z, Zhang D, Du Q. Rare variations within the serine/arginine-rich splicing factor PtoRSZ21 modulate stomatal size to determine drought tolerance in Populus. THE NEW PHYTOLOGIST 2024; 243:1776-1794. [PMID: 38978318 DOI: 10.1111/nph.19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Donghai Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mengjiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chongde Tian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Leishi Zhong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Rui Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Li-Jun Liu
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agriculture University, Taian, Shandong, 271018, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
19
|
Getahun Strobel A, Hayes AJ, Wirth W, Mua M, Saumalua T, Cabenatabua O, Soqo V, Rosa V, Wang N, Lacey JA, Hocking D, Valcanis M, Jenney A, Howden BP, Duchene S, Mulholland K, Strugnell RA, Davies MR. Genetic heterogeneity in the Salmonella Typhi Vi capsule locus: a population genomic study from Fiji. Microb Genom 2024; 10:001288. [PMID: 39254668 PMCID: PMC11385387 DOI: 10.1099/mgen.0.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Typhoid fever is endemic in many parts of the world and remains a major public health concern in tropical and sub-tropical developing nations, including Fiji. To address high rates of typhoid fever, the Northern Division of Fiji implemented a mass vaccination with typhoid conjugate vaccine (Vi-polysaccharide conjugated to tetanus toxoid) as a public health control measure in 2023. In this study we define the genomic epidemiology of Salmonella Typhi in the Northern Division prior to island-wide vaccination, sequencing 85% (n=419) of the total cases from the Northern and Central Divisions of Fiji that occurred in the period 2017-2019. We found elevated rates of nucleotide polymorphisms in the tviD and tviE genes (responsible for Vi-polysaccharide synthesis) relative to core genome levels within the Fiji endemic S. Typhi genotype 4.2. Expansion of these findings within a globally representative database of 12 382 S. Typhi (86 genotyphi clusters) showed evidence of convergent evolution of the same tviE mutations across the S. Typhi population, indicating that tvi selection has occurred both independently and globally. The functional impact of tvi mutations on the Vi-capsular structure and other phenotypic characteristics are not fully elucidated, yet commonly occurring tviE polymorphisms localize adjacent to predicted active site residues when overlayed against the predicted TviE protein structure. Given the central role of the Vi-polysaccharide in S. Typhi biology and vaccination, further integrated epidemiological, genomic and phenotypic surveillance is required to determine the spread and functional implications of these mutations.
Collapse
Affiliation(s)
- Aneley Getahun Strobel
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- College of Medicine and Health Sciences, Fiji National University, Suva, Fiji
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wytamma Wirth
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mikaele Mua
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Tiko Saumalua
- Northern Health, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Orisi Cabenatabua
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Vika Soqo
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Varanisese Rosa
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna Hocking
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam Jenney
- College of Medicine and Health Sciences, Fiji National University, Suva, Fiji
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kim Mulholland
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Computational Biology, Institut Pasteur, Paris, France
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Hassoun Y, Aptekmann AA, Keniya MV, Gomez RY, Alayo N, Novi G, Quinteros C, Kaya F, Zimmerman M, Caceres DH, Chow NA, Perlin DS, Shor E. Evolutionary dynamics in gut-colonizing Candida glabrata during caspofungin therapy: Emergence of clinically important mutations in sphingolipid biosynthesis. PLoS Pathog 2024; 20:e1012521. [PMID: 39250486 PMCID: PMC11412501 DOI: 10.1371/journal.ppat.1012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/19/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Invasive fungal infections are associated with high mortality, which is exacerbated by the limited antifungal drug armamentarium and increasing antifungal drug resistance. Echinocandins are a frontline antifungal drug class targeting β-glucan synthase (GS), a fungal cell wall biosynthetic enzyme. Echinocandin resistance is generally low but increasing in species like Candida glabrata, an opportunistic yeast pathogen colonizing human mucosal surfaces. Mutations in GS-encoding genes (FKS1 and FKS2 in C. glabrata) are strongly associated with clinical echinocandin failure, but epidemiological studies show that other, as yet unidentified factors also influence echinocandin susceptibility. Furthermore, although the gut is known to be an important reservoir for emergence of drug-resistant strains, the evolution of resistance is not well understood. Here, we studied the evolutionary dynamics of C. glabrata colonizing the gut of immunocompetent mice during treatment with caspofungin, a widely-used echinocandin. Whole genome and amplicon sequencing revealed rapid genetic diversification of this C. glabrata population during treatment and the emergence of both drug target (FKS2) and non-drug target mutations, the latter predominantly in the FEN1 gene encoding a fatty acid elongase functioning in sphingolipid biosynthesis. The fen1 mutants displayed high fitness in the gut specifically during caspofungin treatment and contained high levels of phytosphingosine, whereas genetic depletion of phytosphingosine by deletion of YPC1 gene hypersensitized the wild type strain to caspofungin and was epistatic to fen1Δ. Furthermore, high resolution imaging and mass spectrometry showed that reduced caspofungin susceptibility in fen1Δ cells was associated with reduced caspofungin binding to the plasma membrane. Finally, we identified several different fen1 mutations in clinical C. glabrata isolates, which phenocopied the fen1Δ mutant, causing reduced caspofungin susceptibility. These studies reveal new genetic and molecular determinants of clinical caspofungin susceptibility and illuminate the dynamic evolution of drug target and non-drug target mutations reducing echinocandin efficacy in patients colonized with C. glabrata.
Collapse
Affiliation(s)
- Yasmine Hassoun
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Ariel A Aptekmann
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Mikhail V Keniya
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Rosa Y Gomez
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Nicole Alayo
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Giovanna Novi
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Christopher Quinteros
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Firat Kaya
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Matthew Zimmerman
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| | - Diego H Caceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Nancy A Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David S Perlin
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, D.C., United States of America
| | - Erika Shor
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
| |
Collapse
|
21
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors. Hum Genomics 2024; 18:90. [PMID: 39198917 PMCID: PMC11360829 DOI: 10.1186/s40246-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). RESULTS The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past three decades, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 190 VIPs, resulting in a total of 407 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. CONCLUSIONS VIPdb version 2 summarizes 407 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. VIPdb is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Arul S Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA
- Illumina, Foster City, CA, 94404, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
22
|
Carrara A, Bertelli C, Gardiol C, Marquis B, Andrey DO, Schrenzel J, Pillonel T, Greub G. Association of pathogenic determinants of Fusobacterium necrophorum with bacteremia, and Lemierre's syndrome. Sci Rep 2024; 14:19804. [PMID: 39191804 DOI: 10.1038/s41598-024-70608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Fusobacterium necrophorum is a Gram-negative anaerobic bacterium responsible for localized infections of the oropharynx that can evolve into bacteremia and/or septic thrombophlebitis of the jugular vein or peritonsillar vein, called Lemierre's syndrome. To identify microbial genetic determinants associated with the severity of this life-threatening disease, 70 F. necrophorum strains were collected and grouped into two categories according to the clinical presentation: (i) localized infection, (ii) bacteremia with/without Lemierre's syndrome. Comparative genomic analyses revealed two clades with distinct genetic content, one clade being significantly enriched with isolates from subjects with bacteremia. To identify genetic determinants contributing to F. necrophorum pathogenicity, genomic islands and virulence factor orthogroups (OVFs) were predicted. The presence/absence profiles of OVFs did not group isolates according to their clinical category, but rather according to their phylogeny. However, a variant of lktA, a key virulence factor, with a frameshift deletion that results in two open reading frames, was associated with bacteremia. Moreover, a genome-wide association study identified three orthogroups associated with bacteremic strains: (i) cas8a1, (ii) a sodium/solute symporter, and (iii) a POP1 domain-containing protein. Further studies must be performed to assess the functional impact of lktA mutation and of these orthogroups on the physiopathological mechanisms of F. necrophorum infections.
Collapse
Affiliation(s)
- Alessia Carrara
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Gardiol
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Bastian Marquis
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Diego O Andrey
- Service of Bacteriology and Infectious Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Service of Bacteriology and Infectious Diseases, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
23
|
Agarwal R, Bhugra A, Gautam P, Suroliya V, Chhabra R, Pandey A, Garg P, Rao P, Babu R, Kumar G, Bihari C, Bhattacharyya D, Shasthry SM, Sarin SK, Gupta E. Clinical and Genomic Perspective of SARS CoV-2 Infection in Liver Disease Patients: A Single-Centre Retrospective Study. Curr Microbiol 2024; 81:301. [PMID: 39115704 DOI: 10.1007/s00284-024-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/22/2024] [Indexed: 08/15/2024]
Abstract
The limited literature on the clinical course of COVID-19 among patients with underlying liver disease (LD) is available from India. The present study aimed to evaluate the clinical and mutational profile of SARS-CoV-2 among LD cases. This was a retrospective study including admitted LD cases in whom SARS-CoV-2 RT-PCR testing was performed. Complete demographic and clinical details were retrieved from Hospital Information System. Detailed mutational analysis was performed by comparing LD COVID-19 positive study group, i.e. LD-CoV(+) with COVID-19 positive outpatients without any underlying LD as control, i.e. NLD-CoV(+). Out of 232 enrolled LD cases, 137 (59.1%) were LD-CoV(+). LD cases with existing co-morbidities were affected more (P = 0.002) and had 2.29 times (OR 2.29, CI 95%, 1.25-4.29) higher odds of succumbing to COVID-19 (P = 0.006). On multivariate regression analysis, ascites (P = 0.05), severe COVID-19 pneumonia (P = 0.046), and an increased levels of bilirubin (P = 0.005) and alkaline phosphatase (P = 0.003) were found to be associated with adverse outcome in LD-CoV(+).On mutational analysis, we found certain differences between LD- and NLD-CoV(+) infected with Delta [LD- and NLD-CoV (+ /D)] and Omicron [LD- and NLD-CoV(+/O)]. More mutations were shared between LD- and NLD-CoV(+/O) compared to LD- and NLD-CoV(+/D). There were differences in prevalence of indel mutations specific to LD-CoV ( +) for both Delta and Omicron. Moreover, we also reported an interesting genic bias between LD- and NLD-CoV( +) in harbouring deleterious/tolerated mutations. To conclude, LD cases with comorbidities were affected more and had higher odds of mortality due to COVID-19. The definite difference between LD- and NLD-CoV(+) groups with respect to frequency of harboured mutations and an inherent genic bias between them is of noteworthy importance.
Collapse
Affiliation(s)
- Reshu Agarwal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, D-1 Vasant Kunj, New Delhi, 110070, India
| | - Arjun Bhugra
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, D-1 Vasant Kunj, New Delhi, 110070, India
| | - Pramod Gautam
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Varun Suroliya
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ruchita Chhabra
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, D-1 Vasant Kunj, New Delhi, 110070, India
| | - Amit Pandey
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, D-1 Vasant Kunj, New Delhi, 110070, India
| | - Prince Garg
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pooja Rao
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rosmy Babu
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guresh Kumar
- Department of Biostatistics, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - S M Shasthry
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, D-1 Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
24
|
Saidin A, Papazovska Cherepnalkovski A, Shaukat Z, Arsov T, Hussain R, Roberts BJ, Bucat M, Cogelja K, Ricos MG, Dibbens LM. A Novel Pathogenic TUBA1A Variant in a Croatian Infant Is Linked to a Severe Tubulinopathy with Walker-Warburg-like Features. Genes (Basel) 2024; 15:1031. [PMID: 39202391 PMCID: PMC11353499 DOI: 10.3390/genes15081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Tubulinopathies are associated with malformations of cortical development but not Walker-Warburg Syndrome. Intensive monitoring of a Croatian infant presenting as Walker-Warburg Syndrome in utero began at 21 weeks due to increased growth of cerebral ventricles and foetal biparietal diameter. Monitoring continued until Caesarean delivery at 34 weeks where the infant was eutrophic. Clinical assessment of a progressive neurological disorder of unknown aetiology found a macrocephalic head and markedly hypoplastic genitalia with a micropenis. Neurological examination showed generalized hypotonia with very rare spontaneous movements, hypotonia-induced respiratory insufficiency and ventilator dependence, and generalized myoclonus intensifying during manipulation. With clinical features of hypotonia, lissencephaly, and brain malformations, Walker-Warburg Syndrome was suspected; however, eye anomalies were absent. Genetic trio analysis via whole-exome sequencing only identified a novel de novo mutation in the TUBA1A gene (NM_006009.4:c.848A>G; NP_006000.2:p.His283Arg) in the infant, who died at 2 months of age, as the likely cause. We report a previously unpublished, very rare heterozygous TUBA1A mutation with clinical features of macrocephaly and hypoplastic genitalia which have not previously been associated with the gene. The absence of eye phenotypes or mutations in Walker-Warburg-associated genes confirm this as not a new presentation of Walker-Warburg Syndrome but a novel TUBA1A tubulinopathy for neonatologists to be aware of.
Collapse
Affiliation(s)
- Akzam Saidin
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
- Novocraft Technologies, Petaling Jaya 46300, Malaysia
| | - Anet Papazovska Cherepnalkovski
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Todor Arsov
- Faculty of Medical Sciences, University Goce Delcev in Shtip, 2000 Shtip, North Macedonia;
| | - Rashid Hussain
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Ben J. Roberts
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia;
| | - Marija Bucat
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
| | - Klara Cogelja
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
| | - Michael G. Ricos
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Leanne M. Dibbens
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| |
Collapse
|
25
|
Bobin C, Iddir Y, Butterworth C, Masliah-Planchon J, Saint-Charles A, Bellini A, Bhalshankar J, Pierron G, Combaret V, Attignon V, André N, Corradini N, Dumont B, Mansuy L, Khanfar C, Klein S, Briandet C, Plantaz D, Millot F, Thouvenin S, Aerts I, Ndounga-Diakou LA, Laghouati S, Abbou S, Jehanno N, Tissot H, Renault S, Baulande S, Raynal V, Bozec L, Bieche I, Delattre O, Berlanga P, Schleiermacher G. Sequential Analysis of cfDNA Reveals Clonal Evolution in Patients with Neuroblastoma Receiving ALK-Targeted Therapy. Clin Cancer Res 2024; 30:3316-3328. [PMID: 38787533 PMCID: PMC11292203 DOI: 10.1158/1078-0432.ccr-24-0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.
Collapse
Affiliation(s)
- Charles Bobin
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Yasmine Iddir
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Charlotte Butterworth
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Alexandra Saint-Charles
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Jaydutt Bhalshankar
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Valéry Attignon
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Nicolas André
- Marseille-La Timone University Hospital, Oncologie Pédiatrique, Marseille, France.
- CRCM INSERM U1068 REMAP4KIDS, Aix Marseille University, Marseille, France.
| | - Nadège Corradini
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Benoit Dumont
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Ludovic Mansuy
- Service d’oncologie Pédiatrique du CHRU de Nancy, Hôpital d’enfants, Vandoeuvre, France.
| | - Camille Khanfar
- Department of Pediatric Oncology, CHU Amiens Picardie, Amiens, France.
| | - Sebastien Klein
- Pediatric Oncology and Hematology, CHU Jean-Minjoz, Besançon, France.
| | | | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, Grenoble Alpes University Hospital, Grenoble, France.
| | - Frederic Millot
- Department of Paediatric Haematology and Oncology, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France.
| | - Sandrine Thouvenin
- Department of Pediatric Hematology-Oncology, University Hospital St Etienne, St Etienne, France.
| | - Isabelle Aerts
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| | - Lee Aymar Ndounga-Diakou
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Salim Laghouati
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Hubert Tissot
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, Inserm CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France.
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Laurence Bozec
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France.
| | - Ivan Bieche
- Pharmacogenomics Unit, Institut Curie, Paris, France.
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- Somatic Genetics Unit, Institut Curie, Paris, France.
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| |
Collapse
|
26
|
Vanhoye X, Mouty P, Mouty S, Bargues N, Couprie N, Fayolle E, Géromel V, Taoudi M, Raymond L, Taly JF. Implementation of long-read sequencing for routine molecular diagnosis of familial mediterranean fever. Pract Lab Med 2024; 41:e00423. [PMID: 39228674 PMCID: PMC11369391 DOI: 10.1016/j.plabm.2024.e00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Long-read sequencing technology, widely used in research, is proving useful in clinical diagnosis, especially for infectious diseases. Despite recent advances, it hasn't been routinely applied to constitutional human diseases. Long-read sequencing detects intronic variants and phases variants, crucial for identifying recessive diseases. Methods We integrated long-read sequencing into the clinical diagnostic workflow for the MEFV gene, responsible for familial Mediterranean fever (FMF), using a Nanopore-based workflow. This involved long-range PCR amplification, native barcoding kit library preparation, GridION sequencing, and in-house bioinformatics. We compared this new workflow against our validated method using 39 patient samples and 3 samples from an external quality assessment scheme to ensure compliance with ISO15189 standards. Results Our evaluation demonstrated excellent performance, meeting ISO15189 requirements for reproducibility, repeatability, sensitivity, and specificity. Since October 2022, 150 patient samples were successfully analyzed with no failures. Among these samples, we identified 13 heterozygous carriers of likely pathogenic (LP) or pathogenic (P) variants, 1 patient with a homozygous LP/P variant in MEFV, and 4 patients with compound heterozygous variants. Conclusion This study represents the first integration of long-read sequencing for FMF clinical diagnosis, achieving 100 % sensitivity and specificity. Our findings highlight its potential to identify pathogenic variants without parental segregation analysis, offering faster, cost-effective, and accurate clinical diagnosis. This successful implementation lays the groundwork for future applications in other constitutional human diseases, advancing precision medicine.
Collapse
|
27
|
Parvizi E, Bachler A, Zwick A, Walsh TK, Moritz C, McGaughran A. Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth. J Evol Biol 2024; 37:967-977. [PMID: 38824398 DOI: 10.1093/jeb/voae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.
Collapse
Affiliation(s)
- Elahe Parvizi
- Department of Ecology, Biodiversity and Animal Behaviour, Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Andy Bachler
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation, Land & Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Andreas Zwick
- National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Canberra, ACT, Australia
| | - Tom K Walsh
- Commonwealth Scientific and Industrial Research Organisation, Land & Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angela McGaughran
- Department of Ecology, Biodiversity and Animal Behaviour, Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
28
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Morikawa T, Fujita S, Shide K, Haraguchi M, Tamaki S, Mikawa T, Kondoh H, Nakano H, Sumiyama K, Nagamatsu G, Goda N, Okamoto S, Nakamura-Ishizu A, Shimoda K, Suematsu M, Suda T, Takubo K. SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production. Cell Stem Cell 2024; 31:1145-1161.e15. [PMID: 38772377 DOI: 10.1016/j.stem.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takumi Mikawa
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan; RIKEN Center for Biosystems Dynamics Research, Laboratory for Mouse Genetic Engineering, Osaka 565-0871, Japan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu 400-8501, Japan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
30
|
Ben Braiek M, Szymczak S, André C, Bardou P, Fidelle F, Granado-Tajada I, Plisson-Petit F, Sarry J, Woloszyn F, Moreno-Romieux C, Fabre S. A single base pair duplication in the SLC33A1 gene is associated with fetal losses and neonatal lethality in Manech Tête Rousse dairy sheep. Anim Genet 2024; 55:644-657. [PMID: 38922751 DOI: 10.1111/age.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Soline Szymczak
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Itsasne Granado-Tajada
- Department of Animal Production, NEIKER-BRTA Basque Institute of Agricultural Research and Development, Arkaute, Spain
| | | | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
31
|
Embaby A, Huijberts SCFA, Wang L, Leite de Oliveira R, Rosing H, Nuijen B, Sanders J, Hofland I, van Steenis C, Kluin RJC, Lieftink C, Smith CG, Blank CU, van Thienen JV, Haanen JBAG, Steeghs N, Opdam FL, Beijnen JH, Huitema ADR, Bernards R, Schellens JHM, Wilgenhof S. A Proof-of-Concept Study of Sequential Treatment with the HDAC Inhibitor Vorinostat following BRAF and MEK Inhibitors in BRAFV600-Mutated Melanoma. Clin Cancer Res 2024; 30:3157-3166. [PMID: 38739109 DOI: 10.1158/1078-0432.ccr-23-3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600-mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of resistant tumor cells. We aimed to assess the antitumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600-mutated melanoma who progressed after initial response to BRAFi/MEKi. PATIENTS AND METHODS Patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma were treated with vorinostat 360 mg once daily for 14 days followed by BRAFi/MEKi. The primary endpoint was an objective response rate of progressive lesions of at least 30% according to Response Evaluation Criteria in Solid Tumors 1.1. Secondary endpoints included progression-free survival, overall survival, safety, pharmacokinetics of vorinostat, and translational molecular analyses using ctDNA and tumor biopsies. RESULTS Of the 26 patients with progressive BRAFi/MEKi-resistant BRAFV600-mutated melanoma receiving treatment with vorinostat, 22 patients were evaluable for response. The objective response rate was 9%, with one complete response for 31.2 months and one partial response for 14.9 months. Median progression-free survival and overall survival were 1.4 and 5.4 months, respectively. Common adverse events were fatigue (23%) and nausea (19%). ctDNA analysis showed emerging secondary mutations in NRAS and MEK in eight patients at the time of BRAFi/MEKi resistance. Elimination of these mutations by vorinostat treatment was observed in three patients. CONCLUSIONS Intermittent treatment with vorinostat in patients with BRAFi/MEKi-resistant BRAFV600-mutated melanoma is well tolerated. Although the primary endpoint of this study was not met, durable antitumor responses were observed in a minority of patients (9%).
Collapse
Affiliation(s)
- Alaa Embaby
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sanne C F A Huijberts
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rodrigo Leite de Oliveira
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CEMM, Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Charlaine van Steenis
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Christian U Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Dai D, Sari EM, Si J, Ashari H, Dagong MIA, Pauciullo A, Lenstra JA, Han J, Zhang Y. Genomic analysis reveals the association of KIT and MITF variants with the white spotting in swamp buffaloes. BMC Genomics 2024; 25:713. [PMID: 39048931 PMCID: PMC11267946 DOI: 10.1186/s12864-024-10634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Swamp-type buffaloes with varying degrees of white spotting are found exclusively in Tana Toraja, South Sulawesi, Indonesia, where spotted buffalo bulls are highly valued in accordance with the Torajan customs. The white spotting depigmentation is caused by the absence of melanocytes. However, the genetic variants that cause this phenotype have not been fully characterized. The objective of this study was to identify the genomic regions and variants responsible for this unique coat-color pattern. RESULTS Genome-wide association study (GWAS) and selection signature analysis identified MITF as a key gene based on the whole-genome sequencing data of 28 solid and 39 spotted buffaloes, while KIT was also found to be involved in the development of this phenotype by a candidate gene approach. Alternative candidate mutations included, in addition to the previously reported nonsense mutation c.649 C > T (p.Arg217*) and splice donor mutation c.1179 + 2T > A in MITF, a nonsense mutation c.2028T > A (p.Tyr676*) in KIT. All these three mutations were located in the genomic regions that were highly conserved exclusively in Indonesian swamp buffaloes and they accounted largely (95%) for the manifestation of white spotting. Last but not the least, ADAMTS20 and TWIST2 may also contribute to the diversification of this coat-color pattern. CONCLUSIONS The alternative mutations identified in this study affect, at least partially and independently, the development of melanocytes. The presence and persistence of such mutations may be explained by significant financial and social value of spotted buffaloes used in historical Rambu Solo ceremony in Tana Toraja, Indonesia. Several de novo spontaneous mutations have therefore been favored by traditional breeding for the spotted buffaloes.
Collapse
Affiliation(s)
- Dongmei Dai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eka Meutia Sari
- Department of Animal Science, Agriculture Faculty, Universitas Syiah Kuala (USK), Banda Aceh, 23111, Indonesia.
| | - Jingfang Si
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hidayat Ashari
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Muhammad Ihsan Andi Dagong
- Animal Production Department, Faculty of Animal Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), 10095, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Yi Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
34
|
Sigeman H, Downing PA, Zhang H, Hansson B. The rate of W chromosome degeneration across multiple avian neo-sex chromosomes. Sci Rep 2024; 14:16548. [PMID: 39020011 PMCID: PMC11255319 DOI: 10.1038/s41598-024-66470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
35
|
Jimoh-Abdulghaffaar HO, Joel IY, Jimoh OS, Ganiyu KO, Alatiba TM, Ogunyomi VO, Adebayo MS, Awoliyi VT, Agaka AO, Oyedeji AB, Kolade IA, Ojulari LS. Sex Influences Genetic Susceptibility to Depression-Like Behaviors in Chronic Unpredictable Mild Stress-Exposed Wistar Rats. Mol Neurobiol 2024:10.1007/s12035-024-04348-5. [PMID: 39012445 DOI: 10.1007/s12035-024-04348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Depression is one of the most common mood disorders among psychiatric diseases. It affects about 10% of the adult population. However, its etiopathogenesis remains poorly understood. Exploring the dynamics of stress-susceptibility and resilience will help in understanding the molecular and biological mechanisms underlying the etiopathogenesis of depression. This study aimed to determine the differences and/or similarities in factors responsible for susceptibility to depression-like behaviors in male and female Wistar rats subjected to chronic unpredictable mild stress (CUMS). Sixty Wistar rats (30 male and 30 female) weighing between 120 and 150 g were used for this study. The rats were divided into two sub-groups: control (10) and test (20) groups. Rats in the test groups were subjected to CUMS. Depression-like behaviors were assessed using light-dark box, sucrose preference, and tail suspension tests. Rats that showed depression-like behaviors following the behavioral tests (CUMS-susceptible group) were sacrificed, and their hippocampi were excised. Genomic deoxyribonucleic acid (gDNA) was purified from the hippocampal samples. Purified gDNA was subjected to whole genome sequencing (WGS). Base-calling of sequence reads from raw sequencing signal (FAST5) files was carried out, and variants were called from alignment BAM files. The corresponding VCF files generated from the variant calling experiment were filtered. Genes were identified, their impacts estimated, and variants annotated. Functional enrichment analysis was then carried out. Approximately 41% of the male and 49% of the female rats subjected to CUMS showed significant (p < 0.05) depression-like behaviors following assessment on behavioral tests. WGS of the hippocampal DNA revealed 289,839 single nucleotide polymorphisms variant types, 7002 insertions, and 34,459 deletions in males, and 1,570,186 single nucleotide polymorphisms variant types, 109,860 insertions, and 597,241 deletions in female Wistar rats. Three genes with high-impact variants were identified in male and 22 in female Wistar rats, respectively. In conclusion, female Wistar rats are more susceptible to depression-like behaviors after exposure to CUMS than males. They also have more gene variants (especially high-impact variants) than male Wistar rats.
Collapse
Affiliation(s)
| | - Ireoluwa Yinka Joel
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State, Nigeria
| | | | - Kaosara Oyinola Ganiyu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Temidayo Micheal Alatiba
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Victory Oluwaseyi Ogunyomi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Muhammed Salaudeen Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Victoria Tolulope Awoliyi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adamah Olamide Agaka
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminat Bolatito Oyedeji
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ifeoluwa A Kolade
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lekan Sheriff Ojulari
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
36
|
Galindo-Trigo S, Khandare V, Roosjen M, Adams J, Wangler AM, Bayer M, Borst JW, Smakowska-Luzan E, Butenko MA. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr Biol 2024; 34:3020-3030.e7. [PMID: 38917797 DOI: 10.1016/j.cub.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Virendrasinh Khandare
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Mark Roosjen
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Alexa-Maria Wangler
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Martin Bayer
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Jan Willem Borst
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
37
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
38
|
Saballos AI, Brooks MD, Tranel PJ, Williams MM. Mapping of flumioxazin tolerance in a snap bean diversity panel leads to the discovery of a master genomic region controlling multiple stress resistance genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1404889. [PMID: 39015289 PMCID: PMC11250381 DOI: 10.3389/fpls.2024.1404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Introduction Effective weed management tools are crucial for maintaining the profitable production of snap bean (Phaseolus vulgaris L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms. Methods We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables. Results Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.
Collapse
Affiliation(s)
- Ana I. Saballos
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Matthew D. Brooks
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| | - Patrick J. Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Martin M. Williams
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, IL, United States
| |
Collapse
|
39
|
Dols-Icardo O, Carbayo Á, Jericó I, Blasco-Martínez O, Álvarez-Sánchez E, López Pérez MA, Bernal S, Rodríguez-Santiago B, Cusco I, Turon-Sans J, Cabezas-Torres M, Caballero-Ávila M, Vesperinas A, Llansó L, Pagola-Lorz I, Torné L, Valle-Tamayo N, Muñoz L, Rubio-Guerra S, Illán-Gala I, Cortés-Vicente E, Gelpi E, Rojas-García R. Identification of a pathogenic mutation in ARPP21 in patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333834. [PMID: 38960585 DOI: 10.1136/jnnp-2024-333834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Between 5% and 10% of amyotrophic lateral sclerosis (ALS) cases have a family history of the disease, 30% of which do not have an identifiable underlying genetic cause after a comprehensive study of the known ALS-related genes. Based on a significantly increased incidence of ALS in a small geographical region from Spain, the aim of this work was to identify novel ALS-related genes in ALS cases with negative genetic testing. METHODS We detected an increased incidence of both sporadic and, especially, familial ALS cases in a small region from Spain compared with available demographic and epidemiological data. We performed whole genome sequencing in a group of 12 patients with ALS (5 of them familial) from this unique area. We expanded the study to include affected family members and additional cases from a wider surrounding region. RESULTS We identified a shared missense mutation (c.1586C>T; p.Pro529Leu) in the cyclic AMP regulated phosphoprotein 21 (ARPP21) gene that encodes an RNA-binding protein, in a total of 10 patients with ALS from 7 unrelated families. No mutations were found in other ALS-causing genes. CONCLUSIONS While previous studies have dismissed a causal role of ARPP21 in ALS, our results strongly support ARPP21 as a novel ALS-causing gene.
Collapse
Affiliation(s)
- Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Álvaro Carbayo
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ivonne Jericó
- Neuromuscular and Motor Neuron Diseases Research Group, Department of Neurology, Hospital Universitario de Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdisNa), Pamplona, Spain
| | | | - Esther Álvarez-Sánchez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Sara Bernal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Benjamín Rodríguez-Santiago
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ivon Cusco
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Janina Turon-Sans
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Manuel Cabezas-Torres
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marta Caballero-Ávila
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ana Vesperinas
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Laura Llansó
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Inmaculada Pagola-Lorz
- Neuromuscular and Motor Neuron Diseases Research Group, Department of Neurology, Hospital Universitario de Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdisNa), Pamplona, Spain
| | - Laura Torné
- Neuromuscular and Motor Neuron Diseases Research Group, Department of Neurology, Hospital Universitario de Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdisNa), Pamplona, Spain
| | - Natalia Valle-Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laia Muñoz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sara Rubio-Guerra
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena Cortés-Vicente
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ricard Rojas-García
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Harsono IW, Ariani Y, Benyamin B, Fadilah F, Pujianto DA, Hafifah CN. IDeRare: a lightweight and extensible open-source phenotype and exome analysis pipeline for germline rare disease diagnosis. JAMIA Open 2024; 7:ooae052. [PMID: 38883202 PMCID: PMC11179852 DOI: 10.1093/jamiaopen/ooae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Objectives Diagnosing rare diseases is an arduous and challenging process in clinical settings, resulting in the late discovery of novel variants and referral loops. To help clinicians, we built IDeRare pipelines to accelerate phenotype-genotype analysis for patients with suspected rare diseases. Materials and Methods IDeRare pipeline is separated into phenotype and genotype parts. The phenotype utilizes our handmade Python library, while the genotype part utilizes command line (bash) and Python script to combine bioinformatics executable and Docker image. Results We described various implementations of IDeRare phenotype and genotype parts with real-world clinical and exome data using IDeRare, accelerating the terminology conversion process and giving insight on the diagnostic pathway based on disease linkage analysis until exome analysis and HTML-based reporting for clinicians. Conclusion IDeRare is freely available under the BSD-3 license, obtainable via GitHub. The portability of IDeRare pipeline could be easily implemented for semi-technical users and extensible for advanced users.
Collapse
Affiliation(s)
- Ivan William Harsono
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yulia Ariani
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide 5000, Australia
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide 5000, Australia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Bioinformatics Core Facilities-IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dwi Ari Pujianto
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Cut Nurul Hafifah
- Department of Child Health, Dr Cipto Mangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
41
|
Yalcin HA, Jacott CN, Ramirez-Gonzalez RH, Steuernagel B, Sidhu GS, Kirby R, Verbeek E, Schoonbeek HJ, Ridout CJ, Wells R. A complex receptor locus confers responsiveness to necrosis and ethylene-inducing like peptides in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:266-282. [PMID: 38605581 DOI: 10.1111/tpj.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Brassica crops are susceptible to diseases which can be mitigated by breeding for resistance. MAMPs (microbe-associated molecular patterns) are conserved molecules of pathogens that elicit host defences known as pattern-triggered immunity (PTI). Necrosis and Ethylene-inducing peptide 1-like proteins (NLPs) are MAMPs found in a wide range of phytopathogens. We studied the response to BcNEP2, a representative NLP from Botrytis cinerea, and showed that it contributes to disease resistance in Brassica napus. To map regions conferring NLP response, we used the production of reactive oxygen species (ROS) induced during PTI across a population of diverse B. napus accessions for associative transcriptomics (AT), and bulk segregant analysis (BSA) on DNA pools created from a cross of NLP-responsive and non-responsive lines. In silico mapping with AT identified two peaks for NLP responsiveness on chromosomes A04 and C05 whereas the BSA identified one peak on A04. BSA delimited the region for NLP-responsiveness to 3 Mbp, containing ~245 genes on the Darmor-bzh reference genome and four co-segregating KASP markers were identified. The same pipeline with the ZS11 genome confirmed the highest-associated region on chromosome A04. Comparative BLAST analysis revealed unannotated clusters of receptor-like protein (RLP) homologues on ZS11 chromosome A04. However, no specific RLP homologue conferring NLP response could be identified. Our results also suggest that BR-SIGNALLING KINASE1 may be involved with modulating the NLP response. Overall, we demonstrate that responsiveness to NLP contributes to disease resistance in B. napus and define the associated genomic location. These results can have practical application in crop improvement.
Collapse
Affiliation(s)
- Hicret Asli Yalcin
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- TUBITAK Marmara Research Centre, Life Sciences, TUBITAK, Gebze, Kocaeli, 41470, Türkiye
| | - Catherine N Jacott
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Microbiology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | - Rachel Kirby
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Emma Verbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Rachel Wells
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
42
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: Trends from 25 years of genetic variant impact predictors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600283. [PMID: 38979289 PMCID: PMC11230257 DOI: 10.1101/2024.06.25.600283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). Results The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past 25 years, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 186 VIPs, resulting in a total of 403 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. Conclusions VIPdb version 2 summarizes 403 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. Availability VIPdb version 2 is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Currently at: Illumina, Foster City, California 94404, USA
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Chen S, Xie D, Li Z, Wang J, Hu Z, Zhou D. Frequency-dependent selection of neoantigens fosters tumor immune escape and predicts immunotherapy response. Commun Biol 2024; 7:770. [PMID: 38918569 PMCID: PMC11199503 DOI: 10.1038/s42003-024-06460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer is an evolutionary process shaped by selective pressure from the microenvironments. However, recent studies reveal that certain tumors undergo neutral evolution where there is no detectable fitness difference amongst the cells following malignant transformation. Here, through computational modeling, we demonstrate that negative frequency-dependent selection (or NFDS), where the immune response against cancer cells depends on the clonality of neoantigens, can lead to an immunogenic landscape that is highly similar to neutral evolution. Crucially, NFDS promotes high antigenic heterogeneity and early immune evasion in hypermutable tumors, leading to poor responses to immune checkpoint blockade (ICB) therapy. Our model also reveals that NFDS is characterized by a negative association between average clonality and total burden of neoantigens. Indeed, this unique feature of NFDS is common in the whole-exome sequencing (WES) datasets (357 tumor samples from 275 patients) from four melanoma cohorts with ICB therapy and a non-small cell lung cancer (NSCLC) WES dataset (327 tumor samples from 100 patients). Altogether, our study provides quantitative evidence supporting the theory of NFDS in cancer, explaining the high prevalence of neutral-looking tumors. These findings also highlight the critical role of frequency-dependent selection in devising more efficient and predictive immunotherapies.
Collapse
Affiliation(s)
- Shaoqing Chen
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Duo Xie
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zan Li
- Life Science Research Center, Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| | - Zheng Hu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
44
|
Fulton JE, McCarron AM, Lund AR, Drobik-Czwarno W, Mullen A, Wolc A, Szadkowska J, Schmidt CJ, Taylor RL. The RHCE gene encodes the chicken blood system I. Genet Sel Evol 2024; 56:47. [PMID: 38898419 PMCID: PMC11188259 DOI: 10.1186/s12711-024-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND There are 13 known chicken blood systems, which were originally detected by agglutination of red blood cells by specific alloantisera. The genomic region or specific gene responsible has been identified for four of these systems (A, B, D and E). We determined the identity of the gene responsible for the chicken blood system I, using DNA from multiple birds with known chicken I blood system serology, 600K and 54K single nucleotide polymorphism (SNP) data, and lowpass sequence information. RESULTS The gene responsible for the chicken I blood system was identified as RHCE, which is also one of the genes responsible for the highly polymorphic human Rh blood group locus, for which maternal/fetal antigenic differences can result in fetal hemolytic anemia with fetal mortality. We identified 17 unique RHCE haplotypes in the chicken, with six haplotypes corresponding to known I system serological alleles. We also detected deletions in the RHCE gene that encompass more than 6000 bp and that are predicted to remove its last seven exons. CONCLUSIONS RHCE is the gene responsible for the chicken I blood system. This is the fifth chicken blood system for which the responsible gene and gene variants are known. With rapid DNA-based testing now available, the impact of I blood system variation on response against disease, general immune function, and animal production can be investigated in greater detail.
Collapse
Affiliation(s)
- Janet E Fulton
- Hy-Line International, Research and Development, PO Box 310, Dallas Center, IA, USA.
| | - Amy M McCarron
- Hy-Line International, Research and Development, PO Box 310, Dallas Center, IA, USA
| | - Ashlee R Lund
- Hy-Line International, Research and Development, PO Box 310, Dallas Center, IA, USA
| | - Wioleta Drobik-Czwarno
- Department of Animal Genetics and Conservation, Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Abigail Mullen
- Hy-Line International, Research and Development, PO Box 310, Dallas Center, IA, USA
| | - Anna Wolc
- Hy-Line International, Research and Development, PO Box 310, Dallas Center, IA, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Joanna Szadkowska
- Department of Animal Genetics and Conservation, Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Carl J Schmidt
- Department of Animal and Food Science, University of Delaware, Newark, DE, USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
45
|
Tanaka Y, Nakanishi Y, Furuhata E, Nakada KI, Maruyama R, Suzuki H, Suzuki T. FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation. Sci Rep 2024; 14:14080. [PMID: 38890442 PMCID: PMC11189521 DOI: 10.1038/s41598-024-64829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
Collapse
Affiliation(s)
- Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ken-Ichi Nakada
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Rino Maruyama
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
46
|
Margalit S, Tulpová Z, Detinis Zur T, Michaeli Y, Deek J, Nifker G, Haldar R, Gnatek Y, Omer D, Dekel B, Feldman HB, Grunwald A, Ebenstein Y. Long-Read Structural and Epigenetic Profiling of a Kidney Tumor-Matched Sample with Nanopore Sequencing and Optical Genome Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587463. [PMID: 38915648 PMCID: PMC11195078 DOI: 10.1101/2024.03.31.587463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.
Collapse
Affiliation(s)
- Sapir Margalit
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rita Haldar
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagit Baris Feldman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Assaf Grunwald
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
47
|
Sawant A, Shi F, Lopes EC, Hu Z, Abdelfattah S, Baul J, Powers J, Hinrichs CS, Rabinowitz JD, Chan CS, Lattime EC, Ganesan S, White E. Immune Checkpoint Blockade Delays Cancer and Extends Survival in Murine DNA Polymerase Mutator Syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597960. [PMID: 38915517 PMCID: PMC11195045 DOI: 10.1101/2024.06.10.597960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mutations in polymerases Pold1 and Pole exonuclease domains in humans are associated with increased cancer incidence, elevated tumor mutation burden (TMB) and response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond. Here we generated Pold1 and Pole proofreading mutator mice and show that ICB treatment of mice with high TMB tumors did not improve survival as only a subset of tumors responded. Similarly, introducing the mutator alleles into mice with Kras/p53 lung cancer did not improve survival, however, passaging mutator tumor cells in vitro without immune editing caused rejection in immune-competent hosts, demonstrating the efficiency by which cells with antigenic mutations are eliminated. Finally, ICB treatment of mutator mice earlier, before observable tumors delayed cancer onset, improved survival, and selected for tumors without aneuploidy, suggesting the use of ICB in individuals at high risk for cancer prevention. Highlights Germline somatic and conditional Pold1 and Pole exonuclease domain mutations in mice produce a mutator phenotype. Spontaneous cancers arise in mutator mice that have genomic features comparable to human tumors with these mutations.ICB treatment of mutator mice with tumors did not improve survival as only a subset of tumors respond. Introduction of the mutator alleles into an autochthonous mouse lung cancer model also did not produce immunogenic tumors, whereas passaging mutator tumor cells in vitro caused immune rejection indicating efficient selection against antigenic mutations in vivo . Prophylactic ICB treatment delayed cancer onset, improved survival, and selected for tumors with no aneuploidy.
Collapse
|
48
|
Rastogi R, Chung R, Li S, Li C, Lee K, Woo J, Kim DW, Keum C, Babbi G, Martelli PL, Savojardo C, Casadio R, Chennen K, Weber T, Poch O, Ancien F, Cia G, Pucci F, Raimondi D, Vranken W, Rooman M, Marquet C, Olenyi T, Rost B, Andreoletti G, Kamandula A, Peng Y, Bakolitsa C, Mort M, Cooper DN, Bergquist T, Pejaver V, Liu X, Radivojac P, Brenner SE, Ioannidis NM. Critical assessment of missense variant effect predictors on disease-relevant variant data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597828. [PMID: 38895200 PMCID: PMC11185644 DOI: 10.1101/2024.06.06.597828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.
Collapse
|
49
|
Reith RR, Beever JE, Paschal JC, Banta J, Porter BF, Steffen DJ, Hairgrove TB, Petersen JL. A de novo mutation in CACNA1A is associated with autosomal dominant bovine familial convulsions and ataxia in Angus cattle. Anim Genet 2024; 55:344-351. [PMID: 38426585 DOI: 10.1111/age.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.
Collapse
Affiliation(s)
- Rachel R Reith
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Jonathan E Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Joe C Paschal
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Jason Banta
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Brian F Porter
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - David J Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Thomas B Hairgrove
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
50
|
Xiao Y, Jin W, Qian K, Ju L, Wang G, Wu K, Cao R, Chang L, Xu Z, Luo J, Shan L, Yu F, Chen X, Liu D, Cao H, Wang Y, Cao X, Zhou W, Cui D, Tian Y, Ji C, Luo Y, Hong X, Chen F, Peng M, Zhang Y, Wang X. Integrative Single Cell Atlas Revealed Intratumoral Heterogeneity Generation from an Adaptive Epigenetic Cell State in Human Bladder Urothelial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308438. [PMID: 38582099 PMCID: PMC11200000 DOI: 10.1002/advs.202308438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyBeijing102206China
| | - Kaiyu Qian
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kai Wu
- Euler TechnologyBeijing102206China
| | - Rui Cao
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Zilin Xu
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jun Luo
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | - Fang Yu
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | | | - Hong Cao
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinyue Cao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Trial CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhou
- Hubei Key Laboratory of Medical Technology on TransplantationInstitute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan UniversityWuhan430071China
| | - Diansheng Cui
- Department of UrologyHubei Cancer HospitalWuhan430079China
| | - Ye Tian
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Chundong Ji
- Department of UrologyThe Affiliated Hospital of Panzhihua UniversityPanzhihua617099China
| | - Yongwen Luo
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xin Hong
- Department of UrologyPeking University International HospitalBeijing102206China
| | - Fangjin Chen
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Academy of SciencesKunming650201China
| | - Yi Zhang
- Euler TechnologyBeijing102206China
| | - Xinghuan Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteWuhan UniversityWuhan430071China
| |
Collapse
|