1
|
Hang Nghiem-Rao T, Johnson JS, Pan A, Atkinson SN, Behling C, Simpson PM, Holtz ML, Weinstock GM, Schwimmer JB, Salzman NH. A serum-induced gene signature in hepatocytes is associated with pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2024; 78:886-897. [PMID: 38390691 DOI: 10.1002/jpn3.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD. METHODS We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns. RESULTS Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD. CONCLUSION The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.
Collapse
Affiliation(s)
- T Hang Nghiem-Rao
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Amy Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Samantha N Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cynthia Behling
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, San Diego School of Medicine, University of California, La Jolla, California, USA
- Department of Pathology, Sharp Medical Center, San Diego, California, USA
| | - Pippa M Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary L Holtz
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, San Diego School of Medicine, University of California, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Nita H Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Ghrayeb A, Finney AC, Agranovich B, Peled D, Anand SK, McKinney MP, Sarji M, Yang D, Weissman N, Drucker S, Fernandes SI, Fernández-García J, Mahan K, Abassi Z, Tan L, Lorenzi PL, Traylor J, Zhang J, Abramovich I, Chen YE, Rom O, Mor I, Gottlieb E. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab 2024; 36:116-129.e7. [PMID: 38171331 PMCID: PMC10777734 DOI: 10.1016/j.cmet.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.
Collapse
Affiliation(s)
- Alia Ghrayeb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daniel Peled
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahasen Sarji
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natan Weissman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shani Drucker
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sara Isabel Fernandes
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Jonatan Fernández-García
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Kyle Mahan
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Zaid Abassi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Inbal Mor
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
3
|
Pansa CC, Molica LR, de Oliveira Júnior FC, Santello LC, Moraes KCM. Cellular and molecular effects of fipronil in lipid metabolism of HepG2 and its possible connection to non-alcoholic fatty liver disease. J Biochem Mol Toxicol 2024; 38:e23595. [PMID: 38050659 DOI: 10.1002/jbt.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global public health problem that affects more than a quarter of the population. The development of this disease is correlated with metabolic dysfunctions that lead to lipid accumulation in the liver. Pesticides are one of etiologies that support NAFLD establishment. Therefore, the effects of the insecticide fipronil on the lipid metabolism of the human hepatic cell line, HepG2, was investigated, considering its widespread use in field crops and even to control domestic pests. To address the goals of the study, biochemical, cellular, and molecular analyses of different concentrations of fipronil in cell cultures were investigated, after 24 h of incubation. Relevant metabolites such as triglycerides, glucose levels, β-oxidation processes, and gene expression of relevant elements correlated with lipid and metabolism of xenobiotics were investigated. The results suggested that at 20 μM, the pesticide increased the accumulation of triglycerides and neutral lipids by reducing fatty acid oxidation and increasing de novo lipogenesis. In addition, changes were observed in genes that control oxidative stress and the xenobiotic metabolism. Together, the results suggest that the metabolic changes caused by the insecticide fipronil may be deleterious if persistent, favoring the establishment of hepatic steatosis.
Collapse
Affiliation(s)
- Camila C Pansa
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Letícia R Molica
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fabiano C de Oliveira Júnior
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Lara C Santello
- Laboratório de Microbiologia Ambiental, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
4
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
6
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
7
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Lefever DE, Miedel MT, Pei F, DiStefano JK, Debiasio R, Shun TY, Saydmohammed M, Chikina M, Vernetti LA, Soto-Gutierrez A, Monga SP, Bataller R, Behari J, Yechoor VK, Bahar I, Gough A, Stern AM, Taylor DL. A Quantitative Systems Pharmacology Platform Reveals NAFLD Pathophysiological States and Targeting Strategies. Metabolites 2022; 12:528. [PMID: 35736460 PMCID: PMC9227696 DOI: 10.3390/metabo12060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.
Collapse
Affiliation(s)
- Daniel E. Lefever
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute TGen, Phoenix, AZ 85004, USA;
| | - Richard Debiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Manush Saydmohammed
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Satdarshan P. Monga
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramon Bataller
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
| | - Jaideep Behari
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
- UPMC Liver Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vijay K. Yechoor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ivet Bahar
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
It Is High Time Physicians Thought of Natural Products for Alleviating NAFLD. Is There Sufficient Evidence to Use Them? Int J Mol Sci 2021; 22:ijms222413424. [PMID: 34948230 PMCID: PMC8706322 DOI: 10.3390/ijms222413424] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease all over the world due to the obesity pandemic; currently, therapeutic options for NAFLD are scarce, except for diet recommendations and physical activity. NAFLD is characterized by excessive accumulation of fat deposits (>5%) in the liver with subsequent inflammation and fibrosis. Studies in the literature show that insulin resistance (IR) may be considered as the key mechanism in the onset and progression of NAFLD. Recently, using natural products as an alternative approach in the treatment of NAFLD has drawn growing attention among physicians. In this review, the authors present the most recent randomized controlled trials (RCTs) and lines of evidence from animal models about the efficacy of nutraceutics in alleviating NAFLD. Among the most studied substances in the literature, the following molecules were chosen because of their presence in the literature of both clinical and preclinical studies: spirulina, oleuropein, garlic, berberine, resveratrol, curcumin, ginseng, glycyrrhizin, coffee, cocoa powder, epigallocatechin-3-gallate, and bromelain.
Collapse
|
10
|
Exploring the Gamut of Receptor Tyrosine Kinases for Their Promise in the Management of Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9121776. [PMID: 34944593 PMCID: PMC8698495 DOI: 10.3390/biomedicines9121776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, non-alcoholic fatty liver disease (NAFLD) has emerged as a predominant health concern affecting approximately a quarter of the world’s population. NAFLD is a spectrum of liver ailments arising from nascent lipid accumulation and leading to inflammation, fibrosis or even carcinogenesis. Despite its prevalence and severity, no targeted pharmacological intervention is approved to date. Thus, it is imperative to identify suitable drug targets critical to the development and progression of NAFLD. In this quest, a ray of hope is nestled within a group of proteins, receptor tyrosine kinases (RTKs), as targets to contain or even reverse NAFLD. RTKs control numerous vital biological processes and their selective expression and activity in specific diseases have rendered them useful as drug targets. In this review, we discuss the recent advancements in characterizing the role of RTKs in NAFLD progression and qualify their suitability as pharmacological targets. Available data suggests inhibition of Epidermal Growth Factor Receptor, AXL, Fibroblast Growth Factor Receptor 4 and Vascular Endothelial Growth Factor Receptor, and activation of cellular mesenchymal-epithelial transition factor and Fibroblast Growth Factor Receptor 1 could pave the way for novel NAFLD therapeutics. Thus, it is important to characterize these RTKs for target validation and proof-of-concept through clinical trials.
Collapse
|
11
|
Salter DM, Wei W, Nahar PP, Marques E, Slitt AL. Perfluorooctanesulfonic Acid (PFOS) Thwarts the Beneficial Effects of Calorie Restriction and Metformin. Toxicol Sci 2021; 182:82-95. [PMID: 33844015 DOI: 10.1093/toxsci/kfab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A combination of calorie restriction (CR), dietary modification, and exercise is the recommended therapy to reverse obesity and nonalcoholic fatty liver disease. In the liver, CR shifts hepatic metabolism from lipid storage to lipid utilization pathways, such as AMP-activated protein kinase (AMPK). Perfluorooctanesulfonic acid (PFOS), a fluorosurfactant previously used in stain repellents and anti-stick materials, can increase hepatic lipids in mice following relatively low-dose exposures. To test the hypothesis that PFOS administration interferes with CR, adult male C57BL/6N mice were fed ad libitum or a 25% reduced calorie diet concomitant with either vehicle (water) or 100 μg PFOS/kg/day via oral gavage for 6 weeks. CR alone improved hepatic lipids and glucose tolerance. PFOS did not significantly alter CR-induced weight loss, white adipose tissue mass, or liver weight over 6 weeks. However, PFOS increased hepatic triglyceride accumulation, in both mice fed ad libitum and subjected to CR. This was associated with decreased phosphorylated AMPK expression in liver. Glucagon (100 nM) treatment induced glucose production in hepatocytes, which was further upregulated with PFOS (2.5 μM) co-treatment. Next, to explore whether the observed changes were related to AMPK signaling, HepG2 cells were treated with metformin or AICAR alone or in combination with PFOS (25 μM). PFOS interfered with glucose-lowering effects of metformin, and AICAR treatment partially impaired PFOS-induced increase in glucose production. In 3T3-L1 adipocytes, metformin was less effective with PFOS co-treatment. Overall, PFOS administration disrupted hepatic lipid and glucose homeostasis and interfered with beneficial glucose-lowering effects of CR and metformin.
Collapse
Affiliation(s)
- Deanna M Salter
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Pragati P Nahar
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
12
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
13
|
Zhang Q, Qu Z, Zhou Y, Zhou J, Yang J, Li S, Xu Q, Zhou X. In vitro study on the effect of cornin on the activity of cytochrome P450 enzymes. BMC Complement Med Ther 2021; 21:138. [PMID: 33966625 PMCID: PMC8108370 DOI: 10.1186/s12906-021-03309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.
Collapse
Affiliation(s)
- Qun Zhang
- Shanghai Baoshan Aged-nursing hospital, Shanghai, 201900, China
| | - Zengqiang Qu
- Department of Invasive Technology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.,Clinical research center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.,Clinical research center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Junwei Yang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.,Clinical research center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Shengjian Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.,Clinical research center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Qiuping Xu
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.
| | - Xuedong Zhou
- Clinical research center, Shanghai Baoshan Luodian Hospital, No.121 Luoxi Road, Baoshan District, Shanghai, 201908, China.
| |
Collapse
|
14
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
15
|
Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158849. [PMID: 33157278 PMCID: PMC7610134 DOI: 10.1016/j.bbalip.2020.158849] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Cholesterol is being recognized as a molecule involved in regulating the entry of the SARS-CoV-2 virus into the host cell. However, the data about the possible role of cholesterol carrying lipoproteins and their receptors in relation to infection are scarce and the connection of lipid-associated pathologies with COVID-19 disease is in its infancy. Herein we provide an overview of lipids and lipid metabolism in relation to COVID-19, with special attention on different forms of cholesterol. Cholesterol enriched lipid rafts represent a platform for viruses to enter the host cell by endocytosis. Generally, higher membrane cholesterol coincides with higher efficiency of COVID-19 entry. Inversely, patients with COVID-19 show lowered levels of blood cholesterol, high-density lipoproteins (HDL) and low-density lipoproteins. The modulated efficiency of viral entry can be explained by availability of SR-B1 receptor. HDL seems to have a variety of roles, from being itself a scavenger for viruses, an immune modulator and mediator of viral entry. Due to inverse roles of membrane cholesterol and lipoprotein cholesterol in COVID-19 infected patients, treatment of these patients with cholesterol lowering statins needs more attention. In conclusion, cholesterol and lipoproteins are potential markers for monitoring the viral infection status, while the lipid metabolic pathways and the composition of membranes could be targeted to selectively inhibit the life cycle of the virus as a basis for antiviral therapy.
Collapse
Affiliation(s)
- Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
The 2-hydroxy-nevirapine metabolite as a candidate for boosting apolipoprotein A1 and for modulating anti-HDL antibodies. Pharmacol Res 2021; 165:105446. [PMID: 33515705 DOI: 10.1016/j.phrs.2021.105446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
The antiretroviral nevirapine (NVP) is associated to a reduction of atherosclerotic lesions and increases in high-density lipoprotein (HDL)-cholesterol. Despite being a hepatotoxic drug, which forbids its re-purposing to other therapeutic areas, not all NVP metabolites have the same potential to induce toxicity. Our aim was to investigate the effects of NVP and its metabolites in an exploratory study, towards the identification of a candidate to boost HDL. A pilot prospective (n = 11) and a cross-sectional (n = 332) clinical study were performed with the following endpoints: HDL-cholesterol and apolipoprotein A1 (ApoA1) levels, anti-HDL and anti-ApoA1 antibodies titers, paraoxonase, arylesterase and lactonase activities of paraoxonase-1, and NVP's metabolite profile. NVP treatment increased HDL-cholesterol, ApoA1 and paraoxonase-1 activities, and lowered anti-HDL and anti-ApoA1 titers. In the prospective study, the temporal modulation induced by NVP was different for each HDL-related endpoint. The first observation was a decrease in the anti-HDL antibodies titers. In the cross-sectional study, the lower titers of anti-HDL antibodies were associated to the proportion of 2-hydroxy-NVP (p = 0.03). In vitro models of hepatocytes were employed to clarify the individual contribution of NVP's metabolites for ApoA1 modulation. Long-term incubations of NVP and 2-hydroxy-NVP in the metabolically competent 3D model caused an increase in ApoA1 reaching 43 % (p < 0.05) and 86 % (p < 0.001), respectively. These results support the contribution of drug biotransformation for NVP-induced HDL modulation, highlighting the role of 2-hydroxy-NVP as ApoA1 booster and its association to lower anti-HDL titers. This biotransformation-guided approach allowed us to identify a non-toxic NVP metabolite as a candidate for targeting HDL.
Collapse
|
17
|
Hull MB, Schermerhorn T, Vieson MD, Reinhart JM. Feasibility of hepatic fine needle aspiration as a minimally invasive sampling method for gene expression quantification of pharmacogenetic targets in dogs. Vet Med Sci 2021; 7:41-45. [PMID: 32951355 PMCID: PMC7840213 DOI: 10.1002/vms3.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/14/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Quantifying hepatic gene expression is important for many pharmacogenetic studies. However, this usually requires biopsy (BX), which is invasive. OBJECTIVES The objectives of this study were to determine the feasibility of using minimally invasive fine needle aspirate (FNA) to quantify hepatic gene expression and to assess expression variability between different sampling sites. METHODS Biopsy and FNA samples were acquired from central and peripheral locations of the right and left lateral liver lobes of a dog. Relative expression of ABCB1, GSTT1 and CYP3A12 were measured via reverse transcriptase, quantitative PCR. The effect of sampling method, lobe and location within the lobe on gene expression was assessed using a three-way ANOVA. RESULTS Relative expression of ABCB1 and GSTT1 were not statistically different between sampling methods but CYP3A12 expression was higher in samples collected by BX (p = .013). Lobe sampled affected ABCB1 expression (p = .001) and site within lobe affected ABCB1 (p = .018) and GSTT1 (p = .025) expression. CONCLUSIONS FNA appears to be a feasible technique for minimally invasive evaluation of hepatic gene expression but results should not be directly compared to biopsy samples. Sampling location impacts expression of some targets; combination of FNAs from multiple sites may reduce variation.
Collapse
Affiliation(s)
- Matthew B. Hull
- The Department of Veterinary Clinical MedicineCollege of Veterinary MedicineUniversity of IllinoisUrbanaILUSA
- Present address:
Hill’s Pet NutritionTopekaKSUSA
| | - Thomas Schermerhorn
- The Department of Small Animal Clinical ScienceCollege of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miranda D. Vieson
- The Department of Veterinary Clinical MedicineCollege of Veterinary MedicineUniversity of IllinoisUrbanaILUSA
| | - Jennifer M. Reinhart
- The Department of Veterinary Clinical MedicineCollege of Veterinary MedicineUniversity of IllinoisUrbanaILUSA
| |
Collapse
|
18
|
Ji X, Ding B, Wu X, Liu F, Yang F. In vitro study on the effect of ophiopogonin D on the activity of cytochrome P450 enzymes. Xenobiotica 2020; 51:262-267. [PMID: 33115303 DOI: 10.1080/00498254.2020.1842941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ophiopogonin D is a commonly used herb in cardiology and pediatrics for its variuos pharmacological effects. It is necessary to investigate the effect of ophiopogonin D on the activity of cytochrome P450 enzymes (CYP450s) to provide more guidance for the clinical application of ophiopogonin D. Eight isoforms of CYP450s, including CYP1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 were incubated with 100 μM ophiopogonin D in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Ophiopogonin D exerted a significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 8.08, 12.92, and 22.72 μM, respectively (p < 0.05). The inhibition of CYP3A4 by ophiopogonin D was performed non-competitively and time-dependently with the Ki value of 4.08 μM and the KI/Kinact value of 5.02/0.050 min-1·μM-1. Whereas, ophiopogonin D acts as a competitive inhibitor of CYP2E1 and 2C9 with the Ki value of 6.69 and 11.07 μM, respectively. The inhibitory effect of ophiopogonin D on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between ophiopogonin D and drugs metabolized by these CYP450s, which needs further in vivo investigation and validation.
Collapse
Affiliation(s)
- Xiaofei Ji
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Baodong Ding
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Xiaoyou Wu
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Fengyi Liu
- Qingzhou Dongxia Central Health Center, Weifang, China
| | - Fengqi Yang
- Department of Pediatrics, Qujing First People's Hospital at Kunming Medical University, Qujing, China
| |
Collapse
|
19
|
Wang X, Li Q, Pang J, Lin J, Liu Y, Xu Z, Zhang H, Shen T, Chen X, Ma J, Xu X, Ling W, Chen Y. Associations between serum total, free and bioavailable testosterone and non-alcoholic fatty liver disease in community-dwelling middle-aged and elderly women. DIABETES & METABOLISM 2020; 47:101199. [PMID: 33058967 DOI: 10.1016/j.diabet.2020.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is considered both a cause and consequence of the metabolic syndrome (MetS). While emerging evidence has indicated that testosterone is associated with MetS, the relationship between testosterone and NAFLD in women remains unclear. Therefore, this study investigated the associations between serum testosterone levels and NAFLD prevalence risk in a community-based cross-sectional study. METHODS A total of 2117 adult women were included in the analysis. Serum total testosterone (TT) was measured by chemiluminescence immunoassay, and other testosterone-related indices, such as concentrations and percentages of calculated free testosterone (cFT) and bioavailable testosterone (BioT), and free androgen index (FAI), were also calculated. NAFLD was diagnosed by clinical criteria. Logistic regression was used to explore these associations. RESULTS There were significant differences in TT, FAI, cFT and BioT between women with and without NAFLD (all P<0.001). Multivariate logistic-regression analyses demonstrated that both absolute concentrations and percentages of cFT and BioT were positively associated with NAFLD risk prevalence in all models. Adjusted ORs (95% CI) for quartile 4 vs quartile 1 of % cFT and % BioT were 5.94 (4.29-8.22) and 5.21 (3.79-7.17) in model 2, and 4.35 (3.07-6.18) and 3.58 (2.55-5.03) in model 3 (all P<0.001 for trend). In addition, quartiles of TT, FAI, cFT and BioT were significantly correlated with degree of hepatic steatosis. ROC analysis also showed that % cFT and % BioT were more accurate for predicting NAFLD prevalence than was TT. CONCLUSION Serum cFT and BioT were positively associated with NAFLD risk, and elevated levels of cFT and BioT could be independent risk factors of NAFLD prevalence in middle-aged and elderly women.
Collapse
Affiliation(s)
- Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Jiesheng Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yao Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Zhongliang Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Hanyue Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Tianran Shen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Jing Ma
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Xiping Xu
- Guangdong Engineering Technology Centre of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China.
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
20
|
Yu Z, Wang S, Hou H, Ma L, Zhu Y. Lipidomic Profiling Reveals the Effect of Egg Components on Nonalcoholic Steatosis in HepG2 Cells and Its Involved Mechanisms. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Shiyao Wang
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Huaming Hou
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Ling Ma
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| | - Yingchun Zhu
- College of Food Science and Engineering Shanxi Agricultural University Taigu Shanxi 030801 China
| |
Collapse
|
21
|
Fu L, Zhou L, Geng S, Li M, Lu W, Lu Y, Feng Z, Zhou X. Catalpol coordinately regulates phase I and II detoxification enzymes of Triptolide through CAR and NRF2 pathways to reduce Triptolide-induced hepatotoxicity. Biomed Pharmacother 2020; 129:110379. [PMID: 32563148 DOI: 10.1016/j.biopha.2020.110379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 01/17/2023] Open
Abstract
Triptolide (TP), as the main component of Tripterygium Wilfordii (TW), can induce obvious liver injury when exerting the therapeutic effect. However, in our previous study, Catalpol (CAT), the main active ingredient of Rehmannia Glutinosa (RG), was shown to increase the drug clearance rate of TP and to attenuate TP-induced hepatotoxicity. Thus the present study aims to address the roles of phase I and II metabolic enzymes and the nuclear receptors in the detoxification process of TP, to analyze the mechanism of CAT reducing hepatotoxicity. For this purpose, SD rats and human liver cell line L-02 and HepG2 cells were selected, and treated with TP or the combination of TP and CAT in our study. Then the effect of CAT on detoxification of TP was analyzed, and the roles of phase I metabolic enzymes cytochrome P450 3A2/4 (CYP3A2/4) and phase II metabolic enzyme UDP-glucuronosyltransferase 1A6 (UGT1A6) and their related nuclear receptor regulations were evaluated. It was found that TP inhibited the transcription of CYP3A2/4. And through the constitutive androstane receptor (CAR) pathway, CAT not only significantly changed this inhibition and increased the expression of CYP3A2/4 but also increased the expression of CYP2C9, both of which are phase I detoxification enzymes of TP. And with the gene-silenced experiment, it was confirmed that this regulation was CAR-dependent. We also found that CAT could continue to exert a certain protective effect after CAR was silenced, with UGT1A6, the phase II detoxification enzyme of TP, significantly induced. And this was closely related to the enhanced transcriptional regulation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway. In conclusion, our results reveal that CAT can induce TP's phase I detoxification enzymes CYP3A2/4 and CYP2C9 through the CAR pathway, and induce TP's phase II detoxification enzyme UGT1A6 via the NRF2 pathway when CAR is strongly inhibited. And this coordinate regulation of CAT may be an important source of the effect for CAT to increase TP metabolic conversion and reduce TP hepatotoxicity.
Collapse
Affiliation(s)
- Ling Fu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingling Zhou
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan Geng
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Sichuan Kelun Pharmaceutical CO., LTD., Chengdu 610071, China
| | - Ming Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Lu
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Lu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Zhe Feng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Gore E, Bigaeva E, Oldenburger A, Kim YO, Rippmann JF, Schuppan D, Boersema M, Olinga P. PI3K inhibition reduces murine and human liver fibrogenesis in precision-cut liver slices. Biochem Pharmacol 2019; 169:113633. [PMID: 31494146 DOI: 10.1016/j.bcp.2019.113633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Liver fibrosis results from continuous inflammation and injury. Despite its high prevalence worldwide, no approved antifibrotic therapies exist. Omipalisib is a selective inhibitor of the PI3K/mTOR pathway that controls nutrient metabolism, growth and proliferation. It has shown antifibrotic properties in vitro. While clinical trials for idiopathic pulmonary fibrosis have been initiated, an in-depth preclinical evaluation is lacking. We evaluated omipalisib's effects on fibrogenesis using the ex vivo model of murine and human precision-cut tissue slices (PCTS). METHODS Murine and human liver and jejunum PCTS were incubated with omipalisib up to 10 μM for 48 h. PI3K pathway activation was assessed through protein kinase B (Akt) phosphorylation and antifibrotic efficacy was determined via a spectrum of fibrosis markers at the transcriptional and translational level. RESULTS During incubation of PCTS the PI3K pathway was activated and incubation with omipalisib prevented Akt phosphorylation (IC50 = 20 and 1.5 nM for mouse and human, respectively). Viability of mouse and human liver PCTS was compromised only at the high concentration of 10 and 1-5 μM, respectively. However, viability of jejunum PCTS decreased with 0.1 (mouse) and 0.01 μM (human). Spontaneously increased fibrosis related genes and proteins were significantly and similarly suppressed in mouse and in human liver PCTS. CONCLUSIONS Omipalisib has antifibrotic properties in ex vivo mouse and human liver PCTS, but higher concentrations showed toxicity in jejunum PCTS. While the PI3K/mTOR pathway appears to be a promising target for the treatment of liver fibrosis, PCTS revealed likely side effects in the intestine at higher doses.
Collapse
Affiliation(s)
- Emilia Gore
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Emilia Bigaeva
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss 88397, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Obere Zahlbacherstraße 63, Mainz 55131, Germany
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss 88397, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Obere Zahlbacherstraße 63, Mainz 55131, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215, USA
| | - Miriam Boersema
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands.
| |
Collapse
|
23
|
Tsoulfas G. Hepatocellular carcinoma and metabolic syndrome: The times are changing and so should we. World J Gastroenterol 2019; 25:3842-3848. [PMID: 31413522 PMCID: PMC6689805 DOI: 10.3748/wjg.v25.i29.3842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is as prevalent as ever as a cancer-related mortality, and some would even argue that it is increasing, the pattern of its etiologies has been changing. Specifically, the domination of viral hepatitis C virus is being overcome, partly because of the emergence of the antiviral treatments, and partly because of the significant increase, especially in developed countries, of the combination of obesity, diabetes, metabolic syndrome, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. This editorial will explore the interconnection of this group of diseases and how they are linked to HCC. More importantly, it will argue that this shift in HCC etiology essentially means that we have to change how we approach the treatment of HCC, by changing our focus (and resources) to earlier stages of the disease development in order to prevent the appearance and progression of HCC.
Collapse
Affiliation(s)
- Georgios Tsoulfas
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
24
|
Cangelosi D, Resaz R, Petretto A, Segalerba D, Ognibene M, Raggi F, Mastracci L, Grillo F, Bosco MC, Varesio L, Sica A, Colombo I, Eva A. A Proteomic Analysis of GSD-1a in Mouse Livers: Evidence for Metabolic Reprogramming, Inflammation, and Macrophage Polarization. J Proteome Res 2019; 18:2965-2978. [PMID: 31173686 DOI: 10.1021/acs.jproteome.9b00309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Davide Cangelosi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Roberta Resaz
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Daniela Segalerba
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Federica Raggi
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), Anatomic Pathology Unit, University of Genova, Viale Benedetto XV n. 6, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, National Cancer Research Institute, Largo Rosanna Benzi n. 10, 16132 Genova, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC), Anatomic Pathology Unit, University of Genova, Viale Benedetto XV n. 6, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, National Cancer Research Institute, Largo Rosanna Benzi n. 10, 16132 Genova, Italy
| | - Maria Carla Bosco
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Luigi Varesio
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Guido Donegani n. 2, 28100 Novara, Italy
- Humanitas Clinical and Research Center, Via Alessandro Manzoni n. 56, 20089 Rozzano, Italy
| | - Irma Colombo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti n. 9, 20133 Milano, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Via G. Gaslini n. 5, 16147 Genova, Italy
| |
Collapse
|
25
|
Pandey A, Dhabade P, Kumarasamy A. Inflammatory Effects of Subacute Exposure of Roundup in Rat Liver and Adipose Tissue. Dose Response 2019; 17:1559325819843380. [PMID: 31205454 PMCID: PMC6537504 DOI: 10.1177/1559325819843380] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Roundup is a popular herbicide containing glyphosate as an active ingredient. The formulation of Roundup is speculated to have critical toxic effects, one among which is chronic inflammation. The present study analyzed adverse inflammatory effects in the liver and adipose tissue of rats after a subacute exposure of Roundup. Adult male rats were exposed to various doses of Roundup (0, 5, 10, 25, 50, 100 and 250 mg/kg bodyweight [bw] glyphosate) orally, everyday for 14 days. On day 15, liver and adipose tissues from dosed rats were analyzed for inflammation markers. C-reactive protein in liver, cytokines IL-1β, TNF-α, IL-6, and inflammatory response marker, and prostaglandin–endoperoxide synthase were upregulated in liver and adipose of rats exposed to higher (100 and 250 mg/kg bw/d) doses of Roundup. Cumulatively, our data suggest development of inflammation in lipid and hepatic organs upon exposure to Roundup. Furthermore, liver histological studies showed formation of vacuoles, fibroid tissue, and glycogen depletion in the groups treated with doses of higher Roundup. These observations suggest progression of fatty liver disease in Roundup-treated adult rats. In summary, our data suggest progression of multiorgan inflammation, liver scarring, and dysfunction post short-term exposure of Roundup in adult male rats.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prachi Dhabade
- Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Anand Kumarasamy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
26
|
ANXA2, PRKCE, and OXT are critical differentially genes in Nonalcoholic fatty liver disease. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:131-137. [PMID: 31191837 PMCID: PMC6536018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
AIM Identification of prominent genes which are involved in onset and progress of steatosis stage of Nonalcoholic fatty liver disease (NAFLD) is the aim of this study. BACKGROUND NAFLD is characterized by accumulation of lipids in hepatocytes. The patients with steatosis (the first stage of NAFLD) will come across nonalcoholic steatohepatitis (NASH) and finally hepatic cirrhosis. There is correlation between cirrhosis and hepatic cancer. However, ultrasonography is used to diagnose NAFLD, biopsy is the precise diagnostic method. METHODS Gene expression profiles of 14 steatosis patients and 14 controls are retrieved from gene expression omnibus (GEO) and after statistical validation top 250 differentially expressed genes (DEGs) were determined. The characterized DEGs were included in network analysis and the central DEGs were identified. Gene ontology (GO) performed by ClueGO analysis of DEGs to determine critical biological terms. Role of prominent DEGs in steatosis is discussed in details. RESULTS Numbers of 31 significant DEGs including 20 up-regulated and 11 down-regulated ones were determined. Nine biological groups including 27 terms were recognized. Negative regulation of low-density lipoprotein particle receptor catabolic process, TRAM-dependent toll-like receptor signaling pathway, and regulation of hindgut contraction which were related to ANXA2, PRKCE, and OXT respectively were determined as critical biological term groups and DEGS. CONCLUSION Deregulation of ANXA2, PRKCE, and OXT is a critical event in steatosis. It seems these three genes are suitable biomarker to diagnosis of steatosis.
Collapse
|
27
|
Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, Bucher S, Burel A, Podechard N, Appenzeller BMR, Fromenty B, Grova N, Sergent O, Lagadic-Gossmann D. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med 2018; 129:323-337. [PMID: 30268890 DOI: 10.1016/j.freeradbiomed.2018.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.
Collapse
Affiliation(s)
- Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Brice M R Appenzeller
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000 Rennes, France
| | - Nathalie Grova
- HBRU, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
28
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
29
|
Chang WC, Huang DW, Chen JA, Chang YF, Swi-Bea Wu J, Shen SC. Protective effect of Ruellia tuberosa L. extracts against abnormal expression of hepatic detoxification enzymes in diabetic rats. RSC Adv 2018; 8:21596-21605. [PMID: 35539960 PMCID: PMC9080929 DOI: 10.1039/c8ra03321h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Ruellia tuberosa L. (RTL) has been used as a folk medicine for curing diabetes mellitus in East Asia decades. This study investigated the effect of RTL on hepatic detoxification enzyme expression in diabetic rats. Male Wistar rats were fed a high fat diet (HFD) and intraperitoneally injected with streptozotocin (STZ) to induce diabetes. Subsequently, rats received oral administrations of 100 or 400 mg kg-1 body weight RTL extract, in either water (RTLW) or ethanol (RTLE), once a day for 4 weeks. The real-time PCR analyses showed that abnormality of hepatic phase I and II detoxification enzyme expression was observed in diabetic rats. However, both RTLW and RTLE significantly normalized the expression of hepatic phase I detoxification enzymes such as CYP 2E1, and expression of phase II detoxification enzymes such as UGT 1A7 and GST M1 in diabetic rats. Furthermore, we found that fasting serum glucose, hemoglobin A1C (HbA1C) and the area under the curve of oral glucose tolerance test (AUCOGTT) levels were significantly reduced in both RTLW and RTLE treated diabetic rats. Moreover, both RTLW and RTLE significantly increased the activity of hepatic anti-oxidative enzymes such as superoxide dismutase (SOD) in diabetic rats. The present study suggests that RTL may ameliorate abnormal hepatic detoxification function via alleviating hyperglycemia and enhancing hepatic antioxidant capacity in HFD/STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Graduate Institute of Food Science and Technology, National Taiwan University P.O. Box 23-14 Taipei 10672 Taiwan
| | - Da-Wei Huang
- Department of Food and Beverage Management, China University of Science and Technology No.245, Sec. 3, Academia Rd. Taipei 11581 Taiwan
| | - Jou-An Chen
- Department of Human Development and Family Studies, National Taiwan Normal University No. 162, Sec. 1, Heping East Rd. Taipei 10610 Taiwan +886-2-23639635 +886-2-77341437
| | - Yu-Fang Chang
- Department of Human Development and Family Studies, National Taiwan Normal University No. 162, Sec. 1, Heping East Rd. Taipei 10610 Taiwan +886-2-23639635 +886-2-77341437
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University P.O. Box 23-14 Taipei 10672 Taiwan
| | - Szu-Chuan Shen
- Department of Human Development and Family Studies, National Taiwan Normal University No. 162, Sec. 1, Heping East Rd. Taipei 10610 Taiwan +886-2-23639635 +886-2-77341437
| |
Collapse
|
30
|
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin MA, Sergent O, Fromenty B, Lagadic-Gossmann D. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8:5963. [PMID: 29654281 PMCID: PMC5899096 DOI: 10.1038/s41598-018-24403-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.
Collapse
Affiliation(s)
- Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dounia Le Guillou
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cédric Coulouarn
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Morgane Fernier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Quentin Hamdaoui
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Marie-Anne Robin
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
31
|
Tanner N, Kubik L, Luckert C, Thomas M, Hofmann U, Zanger UM, Böhmert L, Lampen A, Braeuning A. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metab Dispos 2018; 46:326-335. [DOI: 10.1124/dmd.117.078675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
|
32
|
Wang C, Gong J, Wu H. Development of gene polymorphisms in meditators of nonalcoholic fatty liver disease. Biomed Rep 2017; 7:95-104. [PMID: 28804621 DOI: 10.3892/br.2017.926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, the morbidity of which closely correlates with diversity of ethnicity, minority, family and location. Its histology spans from simple steatosis, to nonalcoholic steatohepatitis, which ultimately results in fibrosis, cirrhosis and hepatocellular carcinoma. The accelerating prevalence of NAFLD is due to an incremental incidence of metabolic syndrome that is distinguished by dyslipidemia, glucose impairment, obesity, excessive oxidative stress and adipocytokine impairment. Additionally, the pathogenesis of NAFLD is thought to be a multifactorial and complicated disease associated with lifestyle habits, nutritional factors and genetics. However, the pathogenesis and underlying mechanism in the development of NAFLD caused by genetics remains unclear. People have been increasingly emphasizing on the relationship between NAFLD and gene polymorphisms in recent years, with the aim of having a comprehensive elucidation of associated gene polymorphisms influencing the pathogenesis of the disease. In the current article, the authors attempted to critically summarize the most recently identified gene polymorphisms from the facets of glucose metabolism, fatty acid metabolism, oxidative stress and related cytokines in NAFLD that contribute to promoting the progression of the disease.
Collapse
Affiliation(s)
- Chun Wang
- Department of General Surgery, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing 402161, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
33
|
Rusli F, Lute C, Boekschoten MV, van Dijk M, van Norren K, Menke AL, Müller M, Steegenga WT. Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice. Mol Nutr Food Res 2017; 61:1600677. [PMID: 27995741 PMCID: PMC6120141 DOI: 10.1002/mnfr.201600677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
SCOPE Calorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can (1) provide long-term beneficial effects and (2) counteract diet-induced obesity in male aging mice. METHODS AND RESULTS In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight, and liver health markers in 24-month-old male mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR- than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. CONCLUSION Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet.
Collapse
Affiliation(s)
- Fenni Rusli
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Carolien Lute
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Miriam van Dijk
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
- Nutricia ResearchUtrechtThe Netherlands
| | | | - Michael Müller
- Nutrigenomics and Systems Nutrition Group, Norwich Medical SchoolUniversity of East AngliaNorwich NR4 7UQUK
| | - Wilma T. Steegenga
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
34
|
Dietrich CG, Rau M, Jahn D, Geier A. Changes in drug transport and metabolism and their clinical implications in non-alcoholic fatty liver disease. Expert Opin Drug Metab Toxicol 2017; 13:625-640. [PMID: 28359183 DOI: 10.1080/17425255.2017.1314461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The incidence of non-alcoholic fatty liver disease (NAFLD) is rising, especially in Western countries. Drug treatment in patients with NAFLD is common since it is linked to other conditions like diabetes, obesity, and cardiovascular disease. Consequently, changes in drug metabolism may have serious clinical implications. Areas covered: A literature search for studies in animal models or patients with obesity, fatty liver, non-alcoholic steatohepatitis (NASH) or NASH cirrhosis published before November 2016 was performed. After discussing epidemiology and animal models for NAFLD, we summarized both basic as well as clinical studies investigating changes in drug transport and metabolism in NAFLD. Important drug groups were assessed separately with emphasis on clinical implications for drug treatment in patients with NAFLD. Expert opinion: Given the frequency of NAFLD even today, a high degree of drug treatment in NAFLD patients appears safe and well-tolerated despite considerable changes in hepatic uptake, distribution, metabolism and transport of drugs in these patients. NASH causes changes in biliary excretion, systemic concentrations, and renal handling of drugs leading to alterations in drug efficacy or toxicity under specific circumstances. Future clinical drug studies should focus on this special patient population in order to avoid serious adverse events in NAFLD patients.
Collapse
Affiliation(s)
- Christoph G Dietrich
- a Bethlehem Center of Health , Department of Medicine , Stolberg/Rhineland , Germany
| | - Monika Rau
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| | - Daniel Jahn
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| | - Andreas Geier
- b Division of Hepatology, Department of Medicine II , University of Würzburg , Würzburg , Germany
| |
Collapse
|
35
|
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 2017; 49:197-211. [PMID: 28303724 DOI: 10.1080/03602532.2017.1293683] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5% of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a "three-hit" process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 has been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may result in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 is more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 is up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major DMEs and transporters. We also discuss the potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Enoch Cobbina
- a Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences , University of Rhode Island , Kingston , RI , USA
| | - Fatemeh Akhlaghi
- a Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences , University of Rhode Island , Kingston , RI , USA
| |
Collapse
|
36
|
Wahlang B, Perkins JT, Petriello MC, Hoffman JB, Stromberg AJ, Hennig B. A compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology 2017; 380:11-22. [PMID: 28163111 DOI: 10.1016/j.tox.2017.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/10/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022]
Abstract
Exposure to environmental toxicants namely polychlorinated biphenyls (PCBs) is correlated with multiple health disorders including liver and cardiovascular diseases. The liver is important for both xenobiotic and endobiotic metabolism. However, the responses of an injured liver to subsequent environmental insults has not been investigated. The current study aims to evaluate the role of a compromised liver in PCB-induced toxicity and define the implications on overall body homeostasis. Male C57Bl/6 mice were fed either an amino acid control diet (CD) or a methionine-choline deficient diet (MCD) during the 12-week study. Mice were subsequently exposed to either PCB126 (4.9mg/kg) or the PCB mixture, Arcolor1260 (20mg/kg) and analyzed for inflammatory, calorimetry and metabolic parameters. Consistent with the literature, MCD diet-fed mice demonstrated steatosis, indicative of a compromised liver. Mice fed the MCD-diet and subsequently exposed to PCB126 showed observable wasting syndrome leading to mortality. PCB126 and Aroclor1260 exposure worsened hepatic fibrosis exhibited by the MCD groups. Interestingly, PCB126 but not Aroclor1260 induced steatosis and inflammation in CD-fed mice. Mice with liver injury and subsequently exposed to PCBs also manifested metabolic disturbances due to alterations in hepatic gene expression. Furthermore, PCB exposure in MCD-fed mice led to extra-hepatic toxicity such as upregulated circulating inflammatory biomarkers, implicating endothelial cell dysfunction. Taken together, these results indicate that environmental pollution can exacerbate toxicity caused by diet-induced liver injury which may be partially due to dysfunctional energy homeostasis. This is relevant to PCB-exposed human cohorts who suffer from alcohol or diet-induced fatty liver diseases.
Collapse
Affiliation(s)
- Banrida Wahlang
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordan T Perkins
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA; Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Arnold J Stromberg
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA; Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
37
|
Cichocki JA, Furuya S, Konganti K, Luo YS, McDonald TJ, Iwata Y, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Impact of Nonalcoholic Fatty Liver Disease on Toxicokinetics of Tetrachloroethylene in Mice. J Pharmacol Exp Ther 2017; 361:17-28. [PMID: 28148637 DOI: 10.1124/jpet.116.238790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lifestyle factors and chronic pathologic states are important contributors to interindividual variability in susceptibility to xenobiotic-induced toxicity. Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that can dramatically affect chemical metabolism. We examined the effect of NAFLD on toxicokinetics of tetrachloroethylene (PERC), a ubiquitous environmental contaminant that requires metabolic activation to induce adverse health effects. Mice (C57Bl/6J, male) were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, steatosis, or nonalcoholic steatohepatitis (NASH), respectively. After 8 weeks, mice were orally administered a single dose of PERC (300 mg/kg) or vehicle (aqueous Alkamuls-EL620) and euthanized at various time points (1-36 hours). Levels of PERC and its metabolites were measured in blood/serum, liver, and fat. Effects of diets on liver gene expression and tissue:air partition coefficients were evaluated. We found that hepatic levels of PERC were 6- and 7.6-fold higher in HFD- and MCD-fed mice compared with LFD-fed mice; this was associated with an increased PERC liver:blood partition coefficient. Liver and serum Cmax for trichloroacetate (TCA) was lower in MCD-fed mice; however, hepatic clearance of TCA was profoundly reduced by HFD or MCD feeding, leading to TCA accumulation. Hepatic mRNA/protein expression and ex vivo activity assays revealed decreased xenobiotic metabolism in HFD- and MCD-, compared with LFD-fed, groups. In conclusion, experimental NAFLD was associated with modulation of xenobiotic disposition and metabolism and increased hepatic exposure to PERC and TCA. Underlying NAFLD may be an important susceptibility factor for PERC-associated hepatotoxicity.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Kranti Konganti
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Thomas J McDonald
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - David W Threadgill
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Igor P Pogribny
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| |
Collapse
|
38
|
Nachshon A, Abu-Toamih Atamni HJ, Steuerman Y, Sheikh-Hamed R, Dorman A, Mott R, Dohm JC, Lehrach H, Sultan M, Shamir R, Sauer S, Himmelbauer H, Iraqi FA, Gat-Viks I. Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains. Front Genet 2016; 7:172. [PMID: 27761138 PMCID: PMC5050206 DOI: 10.3389/fgene.2016.00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/09/2016] [Indexed: 12/26/2022] Open
Abstract
A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences.
Collapse
Affiliation(s)
- Aharon Nachshon
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| | - Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel- Aviv University Tel-Aviv, Israel
| | - Yael Steuerman
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| | - Roa'a Sheikh-Hamed
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel- Aviv University Tel-Aviv, Israel
| | - Alexandra Dorman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel- Aviv University Tel-Aviv, Israel
| | - Richard Mott
- Genetics Institute, University College of London London, UK
| | - Juliane C Dohm
- Genomics Unit, Center for Genomic RegulationBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU)Vienna, Austria
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University Tel Aviv, Israel
| | - Sascha Sauer
- Department of Vertebrate Genomics, Max Planck Institute for Molecular GeneticsBerlin, Germany; CU Systems Medicine, University of WürzburgWürzburg, Germany
| | - Heinz Himmelbauer
- Genomics Unit, Center for Genomic RegulationBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU)Vienna, Austria
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel- Aviv University Tel-Aviv, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
39
|
Lorbek G, Urlep Ž, Rozman D. Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics 2016; 17:1273-1288. [PMID: 27377717 DOI: 10.2217/pgs-2016-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a raising liver disease with increasing prevalence due to the epidemics of obesity and diabetes, with end points in cirrhosis or hepatocellular carcinoma. A multitude of genetic and metabolic perturbations, together with environmental factors, likely drive the disease. However, to date only a few genes, primarily PNPLA3 and TM6SF2, associate with NAFLD and there is no specific treatment. In this review we focus on the therapeutical aspects of NAFLD, taking into account drugs and lifestyle interventions. Sex also influences disease progression and treatment outcomes. Lastly, we discuss the present and potential future of personalized approaches to tackle NAFLD and how the known polymorphisms of NAFLD associated genes influence the choice and success of therapy.
Collapse
Affiliation(s)
- Gregor Lorbek
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
40
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Clarke JD, Cherrington NJ. Nonalcoholic steatohepatitis in precision medicine: Unraveling the factors that contribute to individual variability. Pharmacol Ther 2015; 151:99-106. [PMID: 25805597 DOI: 10.1016/j.pharmthera.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/17/2015] [Indexed: 01/14/2023]
Abstract
There are numerous factors in individual variability that make the development and implementation of precision medicine a challenge in the clinic. One of the main goals of precision medicine is to identify the correct dose for each individual in order to maximize therapeutic effect and minimize the occurrence of adverse drug reactions. Many promising advances have been made in identifying and understanding how factors such as genetic polymorphisms can influence drug pharmacokinetics (PK) and contribute to variable drug response (VDR), but it is clear that there remain many unidentified variables. Underlying liver diseases such as nonalcoholic steatohepatitis (NASH) alter absorption, distribution, metabolism, and excretion (ADME) processes and must be considered in the implementation of precision medicine. There is still a profound need for clinical investigation into how NASH-associated changes in ADME mediators, such as metabolism enzymes and transporters, affect the pharmacokinetics of individual drugs known to rely on these pathways for elimination. This review summarizes the key PK factors in individual variability and VDR and highlights NASH as an essential underlying factor that must be considered as the development of precision medicine advances. A multifactorial approach to precision medicine that considers the combination of two or more risk factors (e.g. genetics and NASH) will be required in our effort to provide a new era of benefit for patients.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
42
|
SteatoNet: the first integrated human metabolic model with multi-layered regulation to investigate liver-associated pathologies. PLoS Comput Biol 2014; 10:e1003993. [PMID: 25500563 PMCID: PMC4263370 DOI: 10.1371/journal.pcbi.1003993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an approach most commonly applied in automotive and process industries, whereby individual objects correspond to functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation. SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of glucose, lipids and ketone bodies) where changes in flux distribution drive the healthy liver towards hepatic steatosis, the primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with complex hepatic metabolic disorders.
Collapse
|
43
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
44
|
Friedman SL. Transporting pharmacogenomics into clinical practice. J Hepatol 2014; 61:1-2. [PMID: 24703955 DOI: 10.1016/j.jhep.2014.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
45
|
|
46
|
Clarke JD, Hardwick RN, Lake AD, Canet MJ, Cherrington NJ. Experimental nonalcoholic steatohepatitis increases exposure to simvastatin hydroxy acid by decreasing hepatic organic anion transporting polypeptide expression. J Pharmacol Exp Ther 2014; 348:452-8. [PMID: 24403518 DOI: 10.1124/jpet.113.211284] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Simvastatin (SIM)-induced myopathy is a dose-dependent adverse drug reaction (ADR) that has been reported to occur in 18.2% of patients receiving a 40- to 80-mg dose. The pharmacokinetics of SIM hydroxy acid (SIMA), the bioactive form of SIM, and the occurrence of SIM-induced myopathy are linked to the function of the organic anion transporting polypeptide (Oatp) hepatic uptake transporters. Genetic polymorphisms in SLCO1B1, the gene for human hepatic OATP1B1, cause decreased elimination of SIMA and increased risk of developing myopathy. Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease, and is known to alter drug transporter expression and drug disposition. The purpose of this study was to assess the metabolism and disposition of SIM in a diet-induced rodent model of NASH. Rats were fed a methionine- and choline-deficient diet for 8 weeks to induce NASH and SIM was administered intravenously. Diet-induced NASH caused increased plasma retention and decreased biliary excretion of SIMA due to decreased protein expression of multiple hepatic Oatps. SIM exhibited increased volume of distribution in NASH as evidenced by increased muscle, decreased plasma, and no change in biliary concentrations. Although Cyp3a and Cyp2c11 proteins were decreased in NASH, no alterations in SIM metabolism were observed. These data, in conjunction with our previous data showing that human NASH causes a coordinated downregulation of hepatic uptake transporters, suggest that NASH-mediated transporter regulation may play a role in altered SIMA disposition and the occurrence of myopathy.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | | | | | | | | |
Collapse
|
47
|
Gerhard GS, Benotti P, Wood GC, Chu X, Argyropoulos G, Petrick A, Strodel WE, Gabrielsen JD, Ibele A, Still CD, Kingsley C, DiStefano J. Identification of novel clinical factors associated with hepatic fat accumulation in extreme obesity. J Obes 2014; 2014:368210. [PMID: 25610640 PMCID: PMC4290025 DOI: 10.1155/2014/368210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The accumulation of lipids stored as excess triglycerides in the liver (steatosis) is highly prevalent in obesity and has been associated with several clinical characteristics, but most studies have been based on relatively small sample sizes using a limited set of variables. We sought to identify clinical factors associated with liver fat accumulation in a large cohort of patients with extreme obesity. METHODS We analyzed 2929 patients undergoing intraoperative liver biopsy during a primary bariatric surgery. Univariate and multivariate regression modeling was used to identify associations with over 200 clinical variables with the presence of any fat in the liver and with moderate to severe versus mild fat accumulation. RESULTS A total of 19 data elements were associated with the presence of liver fat and 11 with severity of liver fat including ALT and AST, plasma lipid, glucose, and iron metabolism variables, several medications and laboratory measures, and sleep apnea. The accuracy of a multiple logistic regression model for presence of liver fat was 81% and for severity of liver fat accumulation was 77%. CONCLUSIONS A limited set of clinical factors can be used to model hepatic fat accumulation with moderate accuracy and may provide potential mechanistic insights in the setting of extreme obesity.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
- *Glenn S. Gerhard:
| | - Peter Benotti
- Geisinger Obesity Research Institute, Danville, PA 17822, USA
| | - G. Craig Wood
- Geisinger Obesity Research Institute, Danville, PA 17822, USA
| | - Xin Chu
- Geisinger Obesity Research Institute, Danville, PA 17822, USA
| | | | - Anthony Petrick
- Geisinger Obesity Research Institute, Danville, PA 17822, USA
| | | | | | - Anna Ibele
- Geisinger Obesity Research Institute, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
48
|
Naik A, Košir R, Rozman D. Genomic aspects of NAFLD pathogenesis. Genomics 2013; 102:84-95. [PMID: 23545492 DOI: 10.1016/j.ygeno.2013.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most predominant liver disease worldwide and hepatic manifestation of the metabolic syndrome. Its histology spectrum ranges from steatosis, to steatohepatitis (NASH) that can further progress to cirrhosis and hepatocellular carcinoma (HCC). The increasing incidence of NAFLD has contributed to rising numbers of HCC occurrences. NAFLD progression is governed by genetic susceptibility, environmental factors, lifestyle and features of the metabolic syndrome, many of which overlap with HCC. Gene expression profiling and genome wide association studies have identified novel disease pathways and polymorphisms in genes that may be potential biomarkers of NAFLD progression. However, the multifactorial nature of NAFLD and the limited number of sufficiently powered studies are among the current limitations for validated biomarkers of clinical utility. Further studies incorporating the links between circadian regulation and hepatic metabolism might represent an additional direction in the search for predictive biomarkers of liver disease progression and treatment outcomes.
Collapse
Affiliation(s)
- Adviti Naik
- Faculty of Computer Sciences and Informatics, Tržaška Cesta 25, Ljubljana 1000, University of Ljubljana, Slovenia
| | | | | |
Collapse
|