1
|
Stoyell-Conti FF, Suresh Kumar M, Zigmond ZM, Rojas MG, Santos Falcon N, Martinez L, Vazquez-Padron RI. Gene inactivation of lysyl oxidase in smooth muscle cells reduces atherosclerosis burden and plaque calcification in hyperlipidemic mice. Atherosclerosis 2024; 397:118582. [PMID: 39260002 PMCID: PMC11465391 DOI: 10.1016/j.atherosclerosis.2024.118582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS Lysyl oxidase (LOX) catalyzes the crosslinking of collagen and elastin to maintain tensile strength and structural integrity of the vasculature. Excessive LOX activity increases vascular stiffness and the severity of occlusive diseases. Herein, we investigated the mechanisms by which LOX controls atherogenesis and osteogenic differentiation of vascular smooth muscle cells (SMC) in hyperlipidemic mice. METHODS Gene inactivation of Lox in SMC was achieved in conditional knockout mice after tamoxifen injections. Atherosclerosis burden and vascular calcification were assessed in hyperlipidemic conditional [Loxf/fMyh11-CreERT2ApoE-/-] and sibling control mice [Loxwt/wtMyh11-CreERT2ApoE-/-]. Mechanistic studies were performed with primary aortic SMC from Lox mutant and wild type mice. RESULTS Inactivation of Lox in SMCs decreased > 70 % its RNA expression and protein level in the aortic wall and significantly reduced LOX activity without compromising vascular structure and function. Moreover, LOX deficiency protected mice against atherosclerotic burden (13 ± 2 versus 23 ± 1 %, p < 0.01) and plaque calcification (5 ± 0.4 versus 11.8 ± 3 %, p < 0.05) compared to sibling controls. Interestingly, gene inactivation of Lox in SMCs preserved the contractile phenotype of vascular SMC under hyperlipidemic conditions as demonstrated by single-cell RNA sequencing and immunofluorescence. Mechanistically, the absence of LOX in SMC prevented excessive collagen crosslinking and the subsequent activation of the pro-osteogenic FAK/β-catenin signaling axis. CONCLUSIONS Lox inactivation in SMC protects mice against atherosclerosis and plaque calcification by reducing SMC modulation and FAK/β-catenin signaling.
Collapse
MESH Headings
- Animals
- Protein-Lysine 6-Oxidase/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/enzymology
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Vascular Calcification/enzymology
- Vascular Calcification/prevention & control
- Vascular Calcification/metabolism
- Plaque, Atherosclerotic
- Hyperlipidemias/genetics
- Hyperlipidemias/enzymology
- Hyperlipidemias/complications
- Hyperlipidemias/metabolism
- Disease Models, Animal
- Mice, Knockout
- Mice
- Osteogenesis
- Cells, Cultured
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/prevention & control
- Aortic Diseases/metabolism
- Aorta/pathology
- Aorta/enzymology
- Aorta/metabolism
- Male
- Mice, Inbred C57BL
- beta Catenin/metabolism
- Signal Transduction
- Extracellular Matrix Proteins
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maya Suresh Kumar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Miguel G Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
2
|
Henni Mansour AS, Ragues M, Brevier J, Borowczyk C, Grevelinger J, Laroche-Traineau J, Garaude J, Marais S, Jacobin-Valat MJ, Gerbaud E, Clofent-Sanchez G, Ottones F. Phenotypic, Metabolic, and Functional Characterization of Experimental Models of Foamy Macrophages: Toward Therapeutic Research in Atherosclerosis. Int J Mol Sci 2024; 25:10146. [PMID: 39337629 PMCID: PMC11432604 DOI: 10.3390/ijms251810146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. The present study assessed whether optical differences correlated with phenotypic and functional differences, potentially guiding diagnostic and therapeutic strategies. Phenotypic differences were investigated using three-dimensional principal component analysis and multi-color flow cytometry. Functional analyses focused on cytokine production, metabolic profiles, and cellular oxidative stress, in LDL dose-dependent assays, to understand the origin of AF in the FAD spectrum and assess FM ability to transition toward an immunoregulatory phenotype and function. Phenotypic studies revealed that FM models generated with acetylated LDL (Mac) were closer to immunoregulatory Mφ, while those generated with oxidized LDL (Mox) more closely resembled inflammatory Mφ. The metabolic analysis confirmed that inflammatory Mφ primarily used glycolysis, while immunoregulatory Mφ mainly depended on mitochondrial respiration. FM models employed both pathways; however, FM models generated with high doses of modified LDL showed reduced mitochondrial respiration, particularly Mox FM. Thus, the high AF in the FAD spectrum in Mox was not linked to increased mitochondrial respiration, but correlated with the dose of oxidized LDL, leading to increased production of reactive oxygen species (ROS) and lysosomal ceroid accumulation. High FAD-like AF, ROS, and ceroid accumulation were reduced by incubation with α-tocopherol. The cytokine profiles supported the phenotypic analysis, indicating that Mox FM exhibited greater inflammatory activity than Mac FM, although both could be redirected toward immunoregulatory functions, albeit to different degrees. In conclusion, in the context of immunoregulatory therapies for atherosclerosis, it is crucial to consider FM, given their prevalence in plaques and our results, as potential targets, regardless of their inflammatory status, alongside non-foamy inflammatory Mφ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sébastien Marais
- Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France
| | | | - Edouard Gerbaud
- Centre de Recherche Cardio Thoracique, INSERM U 1045, 33000 Bordeaux, France
| | | | | |
Collapse
|
3
|
Nyárády BB, Dósa E, Kőhidai L, Pállinger É, Gubán R, Szőnyi Á, Kiss LZ, Bagyura Z. Associations between Various Inflammatory Markers and Carotid Findings in a Voluntary Asymptomatic Population Sample. Int J Mol Sci 2024; 25:9656. [PMID: 39273602 PMCID: PMC11394953 DOI: 10.3390/ijms25179656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and atherosclerosis is the key factor promoting its development. Carotid intima-media thickening and the presence of carotid plaques are important indices of cardiovascular risk. In addition, inflammation is a major and complex factor in the development of atherosclerosis. The relationships between carotid atherosclerosis and certain inflammatory markers have rarely been studied in healthy individuals. Therefore, we aimed to investigate the associations between subclinical carotid atherosclerosis and various inflammatory biomarkers in a large Caucasian population free of evident CVD. In addition to recording study participants' demographic characteristics, anthropometric characteristics, and atherosclerotic risk factors, laboratory tests were performed to measure levels of hemoglobin A1c (HbA1c), high-sensitivity C-reactive protein, and inflammatory cytokines/chemokines, including interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33, interferon (IFN)-α2, IFN-γ, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP)-1. This study included 264 asymptomatic individuals with a median age of 61.7 years (interquartile range, 54.5-67.5 years); 45.7% of participants were male. Participants were divided into two groups according to their carotid status: the normal carotid group, comprising 120 participants; and the pathological carotid group, comprising 144 participants. Compared with the normal carotid group, hypertension and diabetes mellitus were significantly more common and serum levels of HbA1c, IL-8, and MCP-1 were significantly higher in the pathological carotid group. Multivariate regression analysis revealed significant positive associations between pathological carotid findings and serum levels of IL-8 (highest tertile, OR: 2.4, p = 0.030) and MCP-1 (highest tertile, OR: 2.4, p = 0.040). Our results suggest that IL-8 and MCP-1 may serve as early indicators of subclinical atherosclerosis, thereby helping to identify individuals at increased risk of CVD before the onset of clinical symptoms.
Collapse
Affiliation(s)
| | - Edit Dósa
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Renáta Gubán
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Ádám Szőnyi
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Loretta Zsuzsa Kiss
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Institute for Clinical Data Management, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Institute for Clinical Data Management, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Zhang Y, Li Y, Han Z, Huo Q, Ji L, Liu X, Li H, Zhu X, Hao Z. miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis. BMB Rep 2024; 57:375-380. [PMID: 38919016 PMCID: PMC11362139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis. [BMB Reports 2024; 57(8): 375-380].
Collapse
Affiliation(s)
- Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingke Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhisheng Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Qingyang Huo
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Xuejia Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
- Department of Respiratory and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, First Affiliated Hospital, Bengbu Medical University, Bengbu 233004, China
| | - Zhipeng Hao
- Department of Thoracic Surgery of Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Maaniitty E, Jalkanen J, Sinisilta S, Gunn J, Vasankari T, Biancari F, Jalkanen S, Airaksinen KEJ, Hollmen M, Kiviniemi T. Differential circulating cytokine profiles in acute coronary syndrome versus stable coronary artery disease. Sci Rep 2024; 14:17269. [PMID: 39068298 PMCID: PMC11283453 DOI: 10.1038/s41598-024-68333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Chronic inflammation plays a crucial role in coronary artery disease (CAD), but differences in specific cytokine profiles between acute coronary syndrome (ACS) and stable CAD remain unknown. We investigated cytokine differences between these two manifestations of CAD. The study included 308 patients with angiographically detected, hemodynamically significant CAD: 150 patients undergone angiography for ACS, 158 patients undergone angiography for stable CAD. To assess dynamic changes, 116 patients had index angiogram at least 3 months earlier. We measured the serum concentrations of 48 circulating cytokines. The ACS group had decreased interleukin (IL) 4 (p = 0.005), and increased IL-8 (p = 0.008), hepatocyte growth factor (HGF) (p < 0.001) and macrophage colony-stimulating factor (M-CSF) (p = 0.002) levels compared with the stable CAD group. Multivariable logistic regression revealed increased levels of HGF (OR 18.050 [95% CI 4.372-74.517], p < 0.001), M-CSF (OR 2.257 [1.375-3.705], p = 0.001) and IL-6 (OR 1.586 [1.131-2.224], p = 0.007), independently associated with ACS. In the post-angiography group, only diminished platelet-derived growth factor-BB levels in ACS-manifested patients were observed (OR 0.478, [0.279-0.818], p = 0.007). Cytokine profiles differ between ACS and stable CAD. Such differences seem to be mainly reversible within 3 months after ACS. Thus, targeting one or two cytokines only might not offer one-size fits all-therapeutic approach for CAD-associated inflammation.Trial registration: NCT03444259.
Collapse
Affiliation(s)
- Eveliina Maaniitty
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland.
| | - Juho Jalkanen
- Vascular Surgery, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Sami Sinisilta
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Jarmo Gunn
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Tuija Vasankari
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Fausto Biancari
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
- Department of Medicine, South Karelia Central Hospital, University of Helsinki, Valto Käkelän Katu 1, 53130, Lappeenranta, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - K E Juhani Airaksinen
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland
| | - Maija Hollmen
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, POB 52, 20521, Turku, Finland.
| |
Collapse
|
6
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Peng D, Zhuge F, Wang M, Zhang B, Zhuang Z, Zhou R, Zhang Y, Li J, Yu Z, Shi J. Morus alba L. (Sangzhi) alkaloids mitigate atherosclerosis by regulating M1/M2 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155526. [PMID: 38564921 DOI: 10.1016/j.phymed.2024.155526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Dandan Peng
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binbin Zhang
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, China
| | - Run Zhou
- College of Nursing, Hangzhou Normal University, Zhejiang, China
| | - Yuanyuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Zhenqiu Yu
- Guizhou Medical University, Guiyang, Guizhou, China; The Department of Hypertension, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
9
|
Tian Y, Luan X, Yang K. Chronotherapy involving rosiglitazone regulates the phenotypic switch of vascular smooth muscle cells by shifting the phase of TNF-α rhythm through triglyceride accumulation in macrophages. Heliyon 2024; 10:e30708. [PMID: 38803898 PMCID: PMC11128472 DOI: 10.1016/j.heliyon.2024.e30708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives Vascular diseases are often caused by the interaction between macrophages and vascular smooth muscle cells (VSMCs). This study aims to elucidate whether chronotherapy with rosiglitazone (RSG) can regulate the secretion rhythm of macrophages, thereby controlling the phenotypic switch of VSMCs and clarifying the potential molecular mechanisms, providing a chronotherapeutic approach for the treatment of vascular diseases. Methods RAW264.7 cells and A7r5 cells were synchronized via a 50 % FBS treatment. M1-type macrophages were induced through Lipopolysaccharide (LPS) exposure. Additionally, siRNA and plasmids targeting PPARγ were transfected into macrophages. The assessment encompassed cell viability, migration, inflammatory factor levels, lipid metabolites, clock gene expression, and relative protein expression. Results We revealed that, in alignment with core clock genes Bmal1 and CLOCK, RSG administration at ZT2 advanced the phase of TNF-α release rhythm, while ZT12 administration shifted it backward. Incubation with TNF-α at ZT2 significantly promoted the phenotype switch of VSMCs. This effect diminished when incubated at ZT12, implicating the involvement of the clock-MAPK pathway in VSMCs. Furthermore, RSG administration at ZT2 advanced the phases of PPARγ and Bmal1 genes, whereas ZT12 administration shifted them backward. Additionally, PPARγ overexpression significantly induced triglyceride (TG) accumulation in macrophages. Exogenous TG upregulated Bmal1 and CLOCK gene expression in macrophages and significantly increased TNF-α release. Conclusion Chronotherapy involving RSG induces TG accumulation within macrophages, resulting in alterations in circadian gene rhythms. These changes, in turn, modulate the phase of rhythmic TNF-α release and play a regulatory role in VSMCs phenotype switch. Our study establishes a theoretical foundation for chronotherapy of PPARγ agonists.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241001. PR China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, PR China
| |
Collapse
|
10
|
Juaiti M, Feng Y, Tang Y, Liang B, Zha L, Yu Z. Integrated bioinformatics analysis and experimental animal models identify a robust biomarker and its correlation with the immune microenvironment in pulmonary arterial hypertension. Heliyon 2024; 10:e29587. [PMID: 38660271 PMCID: PMC11040037 DOI: 10.1016/j.heliyon.2024.e29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) represents a substantial global risk to human health. This study aims to identify diagnostic biomarkers for PAH and assess their association with the immune microenvironment through the utilization of sophisticated bioinformatics techniques. Methods Based on two microarray datasets, differentially expressed genes (DEGs) were detected, and hub genes underwent a sequence of machine learning analyses. After pathways associated with PAH were assessed by gene enrichment analysis, the identified genes were validated using external datasets and confirmed in a monocrotaline (MCT)-induced rat model. In addition, three algorithms were employed to estimate the proportions of various immune cell types, and the link between hub genes and immune cells was substantiated. Results Using SVM, LASSO, and WGCNA, we identified seven hub genes, including (BPIFA1, HBA2, HBB, LOC441081, PI15, S100A9, and WIF1), of which only BPIFA1 remained stable in the external datasets and was validated in an MCT-induced rat model. Furthermore, the results of the functional enrichment analysis established a link between PAH and both metabolism and the immune system. Correlation assessment showed that BPIFA1 expression in the MCP-counter algorithm was negatively associated with various immune cell types, positively correlated with macrophages in the ssGSEA algorithm, and correlated with M1 and M2 macrophages in the CIBERSORT algorithm. Conclusion BPIFA1 serves as a modulator of PAH, with the potential to impact the immune microenvironment and disease progression, possibly through its regulatory influence on both M1 and M2 macrophages.
Collapse
Affiliation(s)
- Mukamengjiang Juaiti
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
11
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Ji M, Mao L, Wei Y, Zhu B, Zhai Y, Zhou X, Tao W, Wang W, Wu H. The Anti-Atherosclerotic Effects of Buyang Huanwu Decoction through M1 and M2 Macrophage Polarization in an ApoE Knockout Mouse Model. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:79-87. [PMID: 38780292 DOI: 10.4103/ejpi.ejpi-d-23-00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACT Arteriosclerosis (AS) is a chronic inflammatory disease and Buyang Huanwu decoction (BHD) has been identified as an anti-atherosclerosis effect, and the study is aimed to investigate the underlying mechanism. The E4 allele of Apolipoprotein E (ApoE) is associated with both metabolic dysfunction and an enhanced pro-inflammatory response, ApoE-knockout (ApoE-/-) mice were fed with a high-fat diet to establish an arteriosclerosis model and treated with BHD or atorvastatin (as a positive control). The atherosclerotic plaque in each mouse was evaluated using Oil red O Staining. Elisa kits were used to evaluate blood lipid, interleukin-6 (IL-6), IL-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and tumor growth factor beta (TGF-β) contents, while Western blot was applicated to measure inducible nitric oxide synthase (iNOS), arginase I (Arg-1) expression. Meanwhile, pyruvate kinase M2 (PKM2), hypoxia-inducible factor-1 alpha (HIF-1α) and its target genes glucose transporter type 1 (GLUT1), lactate dehydrogenase A (LDHA), and 3-phosphoinositide-dependent kinase 1 (PDK1), as well as IL-6, IL-1β, TNF-α, IL-4, IL-10, and TGF-β were evaluated by the quantitative reverse transcription-polymerase chain reaction. BHD treatment significantly reduced body weight and arteriosclerosis plaque area and blood lipid levels including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Meanwhile, BHD demonstrated a significant suppression of M1 polarization, by decreased secretion of iNOS and pro-inflammatory factors (IL-6, IL-1β, and TNF-α) in ApoE-/- mice. The present study also revealed that BHD promotes the activation of M2 polarization, characterized by the expression of Arg-1 and anti-inflammatory factors (IL-4 and IL-10). In addition, PKM2/HIF-1α signaling was improved by M1/M2 macrophages polarization induced by BHD. The downstream target genes (GLUT1, LDHA, and PDK1) expression was significantly increased in high fat feeding ApoE-/- mice, and those of which were recused by BHD and Atorvastatin. These results suggested that M1/M2 macrophages polarization produce the inflammatory response against AS progress after BHD exposure.
Collapse
Affiliation(s)
- Mengjiao Ji
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Mao
- Experimental Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Wei
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boran Zhu
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhai
- Experimental Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhou
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Yan Z, Liu Z, Yang B, Zhu X, Song E, Song Y. Long-term pulmonary iron oxide nanoparticles exposure disrupts hepatic iron-lipid homeostasis and increases plaque vulnerability in ApoE -/- mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122905. [PMID: 37951529 DOI: 10.1016/j.envpol.2023.122905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have attracted great attention due to their extensive applications, which warranted their environmental concerns. Although recent advances have proposed the relevance of Fe3O4 NPs to cardiovascular disease, the intrinsic mechanisms underlying the effects of NPs remain indistinct. ApoE-/- mice were chosen as a long-term exposure model to explore the immanent association between respiratory exposure to Fe3O4 NPs and the development of cardiovascular diseases. Pulmonary exposure to 20 nm and 200 nm Fe3O4 NPS resulted in significant lung injury, and pulmonary histopathological examination displayed inflammatory cell infiltration, septal thickening and alveolar congestion. Intriguingly, liver iron deposition and variations in the hepatic lipid homeostasis were found in Fe3O4 NPs-exposed mice, eventually leading to dyslipidemia, hinting the potential cardiovascular toxicity of Fe3O4 NPs. In addition, we not only found that Fe3O4 NPs exposure increased aortic plaque area, but also increased M1 macrophages in the plaque, which yielding plaque vulnerability in ApoE-/- mice Of note, 20 nm Fe3O4 NPs showed enhanced capability on the progression of atherosclerosis than 200 nm Fe3O4 NPs. This study may propose the potential mechanism for adverse cardiovascular disease induced by Fe3O4 NPs and provide convincing evidence for the safety evaluation of Fe3O4 NPs.
Collapse
Affiliation(s)
- Ziyi Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zixuan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
14
|
Chowdhury FA, Colussi N, Sharma M, Wood KC, Xu JZ, Freeman BA, Schopfer FJ, Straub AC. Fatty acid nitroalkenes - Multi-target agents for the treatment of sickle cell disease. Redox Biol 2023; 68:102941. [PMID: 37907055 PMCID: PMC10632539 DOI: 10.1016/j.redox.2023.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hematological disease with high morbidity and mortality rates worldwide. Despite being monogenic, SCD patients display a plethora of disease-associated complications including anemia, oxidative stress, sterile inflammation, vaso-occlusive crisis-related pain, and vasculopathy, all of which contribute to multiorgan dysfunction and failure. Over the past decade, numerous small molecule drugs, biologics, and gene-based interventions have been evaluated; however, only four disease-modifying drug therapies are presently FDA approved. Barriers regarding effectiveness, accessibility, affordability, tolerance, and compliance of the current polypharmacy-based disease-management approaches are challenging. As such, there is an unmet pharmacological need for safer, more efficacious, and logistically accessible treatment options for SCD patients. Herein, we evaluate the potential of small molecule nitroalkenes such as nitro-fatty acid (NO2-FA) as a therapy for SCD. These agents are electrophilic and exert anti-inflammatory and tissue repair effects through an ability to transiently post-translationally bind to and modify transcription factors, pro-inflammatory enzymes and cell signaling mediators. Preclinical and clinical studies affirm safety of the drug class and a murine model of SCD reveals protection against inflammation, fibrosis, and vascular dysfunction. Despite protective cardiac, renal, pulmonary, and central nervous system effects of nitroalkenes, they have not previously been considered as therapy for SCD. We highlight the pathways targeted by this drug class, which can potentially prevent the end-organ damage associated with SCD and contrast their prospective therapeutic benefits for SCD as opposed to current polypharmacy approaches.
Collapse
Affiliation(s)
- Fabliha A Chowdhury
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Colussi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Malini Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Z Xu
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA.
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
16
|
Witzel R, Block A, Pollmann S, Oetzel L, Fleck F, Bonaterra GA, Kinscherf R, Schwarz A. PACAP regulates VPAC1 expression, inflammatory processes and lipid homeostasis in M1- and M2-macrophages. Front Cardiovasc Med 2023; 10:1264901. [PMID: 37900572 PMCID: PMC10611464 DOI: 10.3389/fcvm.2023.1264901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as an anti-atherogenic neuropeptide and plays an important role in cytoprotective, as well as inflammatory processes, and cardiovascular regulation. Therefore, the aim of this study is to investigate the regulatory effects of PACAP and its receptor VPAC1 in relation to inflammatory processes and lipid homeostasis in different macrophage (MΦ) subtypes. Methods To investigate the role of PACAP deficiency in the pathogenesis of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Lumen stenosis in the aortic arch and different MΦ-subtypes were analyzed in atherosclerotic plaques by quantitative immunohistochemistry. Undifferentiated bone marrow-derived cells (BMDC) from 30-weeks-old ApoE-/- and PACAP-/-/ApoE-/- mice were isolated, differentiated into BMDM1- and BMDM2-MΦ, and incubated with oxidized low-density lipoprotein (oxLDL). In addition, PMA-differentiated human THP-1 MΦ were further differentiated into M1-/M2-MΦ and subsequently treated with PACAP38, the VPAC1 agonist [(Ala11,22,28)VIP], the antagonist (PG 97-269), and/or oxLDL. Uptake/accumulation of oxLDL was analyzed by oxLDL-DyLight™488 and Bodipy™ 493/503. The mRNA expression was analyzed by qRT-PCR, protein levels by Western blot, and cytokine release by ELISA. Results In vivo, after 30 weeks of SC, PACAP-/-/ApoE-/- mice showed increased lumen stenosis compared with ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice under CED, immunoreactive areas of VPAC1, CD86, and CD163 were increased compared with ApoE-/- mice. In vitro, VPAC1 protein levels were increased in PACAP-/-/ApoE-/- BMDM compared with ApoE-/- BMDM, resulting in increased TNF-α mRNA expression in BMDM1-MΦ and decreased TNF-α release in BMDM2-MΦ. Concerning lipid homeostasis, PACAP deficiency decreased the area of lipid droplets in BMDM1-/M2-MΦ with concomitant increasing adipose differentiation-related protein level. In THP-1 M1-/M2-MΦ, the VPAC1 antagonist increased the uptake of oxLDL, whereas the VPAC1 agonist decreased the oxLDL-induced intracellular triglyceride content. Conclusion Our data suggest that PACAP via VPAC1 signaling plays an important regulatory role in inflammatory processes in atherosclerotic plaques and in lipid homeostasis in different MΦ-subtypes, thereby affecting foam cell formation. Therefore, VPAC1 agonists or PACAP may represent a new class of anti-atherogenic therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anja Schwarz
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
17
|
Gao S, Chen H. Therapeutic potential of apelin and Elabela in cardiovascular disease. Biomed Pharmacother 2023; 166:115268. [PMID: 37562237 DOI: 10.1016/j.biopha.2023.115268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongping Chen
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
18
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
19
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
20
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
21
|
Zhang L, Li L, Li Y, Jiang H, Sun Z, Zang G, Qian Y, Shao C, Wang Z. Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis. Diab Vasc Dis Res 2023; 20:14791641231159009. [PMID: 36803109 PMCID: PMC9941604 DOI: 10.1177/14791641231159009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
AIMS Diabetes will lead to serious complications, of which atherosclerosis is the most dangerous. This study aimed to explore the mechanisms of diabetic atherosclerosis. METHODS ApoE-/- mice were fed with an high-fat diet diet and injected with streptozotocin to establish an in vivo diabetic atherosclerotic model. RAW 264.7 cells were treated with oxidized low-density lipoprotein particles (ox-LDL) and high glucose to produce an in vitro diabetic atherosclerotic model. RESULTS In this study, we showed that diabetes promoted the progression of atherosclerosis in ApoE-/- mice and that high glucose potentiates macrophage proinflammatory activation and foam cell formation. Mechanistically, Copper metabolism MURR1 domain-containing 1(COMMD1) deficiency increased proinflammatory activation and foam cell formation, characterized by increased glycolysis, and then accelerated the process of atherosclerosis. Furthermore, 2-Deoxy-D-glucose (2-DG) reversed this effect. CONCLUSION Taken together, we provided evidence that the lack of COMMD1 accelerates diabetic atherosclerosis via mediating the metabolic reprogramming of macrophages. Our study provides evidence of a protective role for COMMD1 and establishes COMMD1 as a potential therapeutic strategy in patients with diabetic atherosclerosis.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Zhongqun Wang, Department of Cardiology, Affiliated Hospital of Jiangsu University, 438 Jiefang, Zhenjiang 212001, China.
| |
Collapse
|
22
|
Chen J, Zhang H, Li L, Zhang X, Zhao D, Wang L, Wang J, Yang P, Sun H, Liu K, Chen W, Li L, Lin F, Li Z, Chen YE, Zhang J, Pang D, Ouyang H, He Y, Fan J, Tang X. Lp-PLA 2 (Lipoprotein-Associated Phospholipase A 2) Deficiency Lowers Cholesterol Levels and Protects Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol 2023; 43:e11-e28. [PMID: 36412196 DOI: 10.1161/atvbaha.122.317898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated plasma Lp-PLA2 (lipoprotein-associated phospholipase A2) activity is closely associated with an increased risk of cardiovascular events. However, whether and how Lp-PLA2 is directly involved in the pathogenesis of atherosclerosis is still unclear. To examine the hypothesis that Lp-PLA2 could be a potential preventative target of atherosclerosis, we generated Lp-PLA2 knockout rabbits and investigated the pathophysiological functions of Lp-PLA2. METHODS Lp-PLA2 knockout rabbits were generated using CRISPR/Cas9 system to assess the role of Lp-PLA2 in plasma lipids regulation and identify its underlying molecular mechanisms. Homozygous knockout rabbits along with wild-type rabbits were fed a cholesterol-rich diet for up to 14 weeks and their atherosclerotic lesions were compared. Moreover, the effects of Lp-PLA2 deficiency on the key cellular behaviors in atherosclerosis were assessed in vitro. RESULTS When rabbits were fed a standard diet, Lp-PLA2 deficiency led to a significant reduction in plasma lipids. The decreased protein levels of SREBP2 (sterol regulatory element-binding protein 2) and HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) in livers of homozygous knockout rabbits indicated that the cholesterol biosynthetic pathway was impaired with Lp-PLA2 deficiency. In vitro experiments further demonstrated that intracellular Lp-PLA2 efficiently enhanced SREBP2-related cholesterol biosynthesis signaling independently of INSIGs (insulin-induced genes). When fed a cholesterol-rich diet, homozygous knockout rabbits exhibited consistently lower level of hypercholesterolemia, and their aortic atherosclerosis lesions were significantly reduced by 60.2% compared with those of wild-type rabbits. The lesions of homozygous knockout rabbits were characterized by reduced macrophages and the expression of inflammatory cytokines. Macrophages of homozygous knockout rabbits were insensitive to M1 polarization and showed reduced DiI-labeled lipoprotein uptake capacity compared with wild-type macrophages. Lp-PLA2 deficiency also inhibited the adhesion between monocytes and endothelial cells. CONCLUSIONS These results demonstrate that Lp-PLA2 plays a causal role in regulating blood lipid homeostasis and Lp-PLA2 deficiency protects against dietary cholesterol-induced atherosclerosis in rabbits. Lp-PLA2 could be a potential target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Xinwei Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Dazhong Zhao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Lingyu Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Kun Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Lin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Zhanjun Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Y Eugene Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (Y.E.C., J.Z.)
| | - Jifeng Zhang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (Y.E.C., J.Z.)
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Japan (J.F.)
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| |
Collapse
|
23
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|
24
|
Ahmadi J, Hosseini E, Kargar F, Ghasemzadeh M. Stable CAD patients show higher levels of platelet-borne TGF-β1 associated with a superior pro-inflammatory state than the pro-aggregatory status; Evidence highlighting the importance of platelet-derived TGF-β1 in atherosclerosis. J Thromb Thrombolysis 2023; 55:102-115. [PMID: 36352058 DOI: 10.1007/s11239-022-02729-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
Activated platelets are involved in the atherogenic stage of atherosclerosis, while they can also progress it to atherothrombosis which may cause an ischemic state and organ failure. In general, coronary artery disease (CAD) is considered as common and severe clinical consequence of atherosclerosis, manifesting as a chronic inflammatory condition with the release of platelet mediators, among which the importance of platelet-borne TGF-β1 is not yet well understood. Hence, for the first time, this study aimed to examine platelet level of TGF-β1 (latent/mature) in CAD-patients and its association with the expression of platelet pro-inflammatory molecules. Platelet from stable CAD-patients candidate for CABG and healthy controls were subjected to flowcytometry analysis to evaluate P-selectin and CD40L expressions and PAC-1 binding. Platelet-borne and soluble TGF-β1, both mature/active and latent forms were also examined with western blotting. Higher expression levels of P-selectin and CD40L in patients with CAD than in controls were associated with comparable levels of PAC-1 binding in both groups. Platelet TGF-β1 levels were also significantly higher in patients, while their platelets showed clear bands of mature TGF-β1 that were barely visible in healthy individuals. Soluble TGF-β1 was also higher in patients. Significant correlations between mature/active TGF-β1 and platelet pro-inflammatory markers (P-selectin and CD40L) as well as common indicators of inflammation (CRP and ESR) were observed in CAD patients. In this study, given the insignificant changes in pro-aggregatory potentials in stable CAD, the pro-inflammatory state of platelets may be more involved in disease development and progression. Direct correlations between active platelet-borne TGF-β1 and pro-inflammatory markers with its presence in CAD-patients, which was almost absent in the platelets of healthy individuals, may also underscore the significant contribution of platelet-borne TGF-β1 to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Javad Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Faranak Kargar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. .,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Next to the Milad Tower, Hemmat Exp. Way, P.O.Box:14665-1157, Tehran, Iran.
| |
Collapse
|
25
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
26
|
Kong L, Liang C, Li P, Zhang Y, Feng S, Zhang D, Yao R, Yang L, Hao Z, Zhang H, Tian X, Guo C, Du B, Dong J, Zhang Y. Myotubularin‐Related Protein14 Prevents Neointima Formation and Vascular Smooth Muscle Cell Proliferation by Inhibiting Polo‐Like Kinase1. J Am Heart Assoc 2022; 11:e026174. [DOI: 10.1161/jaha.122.026174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background
Restenosis is one of the main bottlenecks in restricting the further development of cardiovascular interventional therapy. New signaling molecules involved in the progress have continuously been discovered; however, the specific molecular mechanisms remain unclear. MTMR14 (myotubularin‐related protein 14) is a novel phosphoinositide phosphatase that has a variety of biological functions and is involved in diverse biological processes. However, the role of MTMR14 in vascular biology remains unclear. Herein, we addressed the role of MTMR14 in neointima formation and vascular smooth muscle cell (VSMC) proliferation after vessel injury.
Methods and Results
Vessel injury models were established using SMC‐specific conditional MTMR14‐knockout and ‐transgenic mice. Neointima formation was assessed by histopathological methods, and VSMC proliferation and migration were assessed using fluorescence ubiquitination‐based cell cycle indicator, transwell, and scratch wound assay. Neointima formation and the expression of MTMR14 was increased after injury. MTMR14 deficiency accelerated neointima formation and promoted VSMC proliferation after injury, whereas MTMR14 overexpression remarkably attenuated this process. Mechanistically, we demonstrated that MTMR14 suppressed the activation of PLK1 (polo‐like kinase 1) by interacting with it, which further leads to the inhibition of the activation of MEK/ERK/AKT (mitogen‐activated protein kinase kinase/extracellular‐signal‐regulated kinase/protein kinase B), thereby inhibiting the proliferation of VSMC from the medial to the intima and thus preventing neointima formation.
Conclusions
MTMR14 prevents neointima formation and VSMC proliferation by inhibiting PLK1. Our findings reveal that MTMR14 serves as an inhibitor of VSMC proliferation and establish a link between MTMR14 and PLK1 in regulating VSMC proliferation. MTMR14 may become a novel potential therapeutic target in the treatment of restenosis.
Collapse
Affiliation(s)
- Ling‐Yao Kong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Peng‐Cheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yi‐Wei Zhang
- The Second School of Clinical Medicine Southern Medical University Guangzhou China
| | - Sheng‐Dong Feng
- Department of Cardiology The 7th People’s Hospital of Zhengzhou Zhengzhou China
| | - Dian‐Hong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lu‐Lu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zheng‐Yang Hao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Hao Zhang
- Department of Thoracic Surgery Union Hospital Wuhan China
- Department of Cardiovascular Surgery Union Hospital Wuhan China
| | - Xiao‐Xu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Chen‐Ran Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Bin‐Bin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Jian‐Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University National Clinical Research Centre for Cardiovascular Diseases Beijing China
| | - Yan‐Zhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| |
Collapse
|
27
|
Chen Z, Xu J, Zha B, Li J, Li Y, Ouyang H. A construction and comprehensive analysis of the immune-related core ceRNA network and infiltrating immune cells in peripheral arterial occlusive disease. Front Genet 2022; 13:951537. [PMID: 36186432 PMCID: PMC9521039 DOI: 10.3389/fgene.2022.951537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peripheral arterial occlusive disease (PAOD) is a peripheral artery disorder that increases with age and often leads to an elevated risk of cardiovascular events. The purposes of this study were to explore the underlying competing endogenous RNA (ceRNA)-related mechanism of PAOD and identify the corresponding immune cell infiltration patterns.Methods: An available gene expression profile (GSE57691 datasets) was downloaded from the GEO database. Differentially expressed (DE) mRNAs and lncRNAs were screened between 9 PAOD and 10 control samples. Then, the lncRNA-miRNA-mRNA ceRNA network was constructed on the basis of the interactions generated from the miRcode, TargetScan, miRDB, and miRTarBase databases. The functional enrichment and protein–protein interaction analyses of mRNAs in the ceRNA network were performed. Immune-related core mRNAs were screened out through the Venn method. The compositional patterns of the 22 types of immune cell fraction in PAOD were estimated through the CIBERSORT algorithm. The final ceRNA network and immune infiltration were validated using clinical tissue samples. Finally, the correlation between immune cells and mRNAs in the final ceRNA network was analyzed.Results: Totally, 67 DE_lncRNAs and 1197 DE_mRNAs were identified, of which 130 DE_mRNAs (91 downregulated and 39 upregulated) were lncRNA-related. The gene ontology enrichment analysis showed that those down- and upregulated genes were involved in dephosphorylation and regulation of translation, respectively. The final immune-related core ceRNA network included one lncRNA (LINC00221), two miRNAs (miR-17-5p and miR-20b-5p), and one mRNA (CREB1). Meanwhile, we found that monocytes and M1 macrophages were the main immune cell subpopulations in PAOD. After verification, these predictions were consistent with experimental results. Moreover, CREB1 was positively correlated with naive B cells (R = 0.55, p = 0.035) and monocytes (R = 0.52, p = 0.049) and negatively correlated with M1 macrophages (R = −0.72, p = 0.004), resting mast cells (R = −0.66, p = 0.009), memory B cells (R = −0.55, p = 0.035), and plasma cells (R = −0.52, p = 0.047).Conclusion: In general, we proposed that the immune-related core ceRNA network (LINC00221, miR-17-5p, miR-20b-5p, and CREB1) and infiltrating immune cells (monocytes and M1 macrophages) could help further explore the molecular mechanisms of PAOD.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahui Xu
- Department of General Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| | - Huan Ouyang
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| |
Collapse
|
28
|
Looking beyond the Skin: Pathophysiology of Cardiovascular Comorbidity in Psoriasis and the Protective Role of Biologics. Pharmaceuticals (Basel) 2022; 15:ph15091101. [PMID: 36145322 PMCID: PMC9503011 DOI: 10.3390/ph15091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease associated with a higher incidence of cardiovascular disease, especially in patients with moderate to severe psoriasis. It has been estimated that severe psoriasis confers a 25% increase in relative risk of cardiovascular disease, regardless of traditional risk factors. Although the underlying pathogenic mechanisms relating psoriasis to increased cardiovascular risk are not clear, atherosclerosis is emerging as a possible link between skin and vascular affection. The hypothesis that the inflammatory cascade activated in psoriasis contributes to the atherosclerotic process provides the underlying basis to suggest that an anti-inflammatory therapy that improved atherosclerosis would also reduce the risk of MACEs. In this sense, the introduction of biological drugs which specifically target cytokines implicated in the inflammatory cascade have increased the expectations of control over the cardiovascular comorbidity present in psoriasis patients, however, their role in vascular damage processes remains controversial. The aim of this paper is to review the mechanistic link between psoriasis and cardiovascular disease development, as well as analyzing which of the biological treatments could also reduce the cardiovascular risk in these patients, fueling a growing debate on the modification of the general algorithm of treatment.
Collapse
|
29
|
Tian W, Zhang T, Wang X, Zhang J, Ju J, Xu H. Global research trends in atherosclerosis: A bibliometric and visualized study. Front Cardiovasc Med 2022; 9:956482. [PMID: 36082127 PMCID: PMC9445883 DOI: 10.3389/fcvm.2022.956482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIncreasing evidence has spurred a considerable evolution of concepts related to atherosclerosis, prompting the need to provide a comprehensive view of the growing literature. By retrieving publications in the Web of Science Core Collection (WoSCC) of Clarivate Analytics, we conducted a bibliometric analysis of the scientific literature on atherosclerosis to describe the research landscape.MethodsA search was conducted of the WoSCC for articles and reviews serving exclusively as a source of information on atherosclerosis published between 2012 and 2022. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to atherosclerosis. Through CiteSpace and VOSviewer, the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in atherosclerosis research, as well as co-citation analysis of references and keywords, were analyzed.ResultsA total of 20,014 publications were retrieved. In terms of publications, the United States remains the most productive country (6,390, 31,93%). The most publications have been contributed by Johns Hopkins Univ (730, 3.65%). ALVARO ALONSO produced the most published works (171, 0.85%). With a betweenness centrality of 0.17, ERIN D MICHOS was the most influential author. The most prolific journal was identified as Atherosclerosis (893, 4.46%). Circulation received the most co-citations (14,939, 2.79%). Keywords with the ongoing strong citation bursts were “nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome,” “short-chain fatty acids (SCFAs),” “exosome,” and “homeostasis,” etc.ConclusionThe research on atherosclerosis is driven mostly by North America and Europe. Intensive research has focused on the link between inflammation and atherosclerosis, as well as its complications. Specifically, the NLRP3 inflammasome, interleukin-1β, gut microbiota and SCFAs, exosome, long non-coding RNAs, autophagy, and cellular senescence were described to be hot issues in the field.
Collapse
Affiliation(s)
- Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianqing Ju,
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Xu,
| |
Collapse
|
30
|
Deletion of Macrophage-Specific Glycogen Synthase Kinase (GSK)-3α Promotes Atherosclerotic Regression in Ldlr−/− Mice. Int J Mol Sci 2022; 23:ijms23169293. [PMID: 36012557 PMCID: PMC9409307 DOI: 10.3390/ijms23169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
Recent evidence from our laboratory suggests that impeding ER stress–GSK3α/β signaling attenuates the progression and development of atherosclerosis in mouse model systems. The objective of this study was to determine if the tissue-specific genetic ablation of GSK3α/β could promote the regression of established atherosclerotic plaques. Five-week-old low-density lipoprotein receptor knockout (Ldlr−/−) mice were fed a high-fat diet for 16 weeks to promote atherosclerotic lesion formation. Mice were then injected with tamoxifen to induce macrophage-specific GSK3α/β deletion, and switched to standard diet for 12 weeks. All mice were sacrificed at 33 weeks of age and atherosclerosis was quantified and characterized. Female mice with induced macrophage-specific GSK3α deficiency, but not GSK3β deficiency, had reduced plaque volume (~25%) and necrosis (~40%) in the aortic sinus, compared to baseline mice. Atherosclerosis was also significantly reduced (~60%) in the descending aorta. Macrophage-specific GSK3α-deficient mice showed indications of increased plaque stability and reduced inflammation in plaques, as well as increased CCR7 and ABCA1 expression in lesional macrophages, consistent with regressive plaques. These results suggest that GSK3α ablation promotes atherosclerotic plaque regression and identify GSK3α as a potential target for the development of new therapies to treat existing atherosclerotic lesions in patients with cardiovascular disease.
Collapse
|
31
|
Wang D, Wang X. Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Des Devel Ther 2022; 16:2305-2323. [PMID: 35875677 PMCID: PMC9304635 DOI: 10.2147/dddt.s368836] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall associated with lipid metabolism imbalance and maladaptive immune response, which mediates most cardiovascular events. First-line drugs such as statins and antiplatelet drug aspirin have shown good effects against atherosclerosis but may lead to certain side effects. Thus, the development of new, safer, and less toxic agents for atherosclerosis is urgently needed. Diosgenin and its analogs have gained importance for their efficacy against life-threatening diseases, including cardiovascular, endocrine, nervous system diseases, and cancer. Diosgenin and its analogs are widely found in the rhizomes of Dioscore, Solanum, and other species and share similar chemical structures and pharmacological effects. Recent data suggested diosgenin plays an anti-atherosclerosis role through its anti-inflammatory, antioxidant, plasma cholesterol-lowering, anti-proliferation, and anti-thrombotic effects. However, a review of the effects of diosgenin and its natural structure analogs on AS is still lacking. This review summarizes the effects of diosgenin and its analogs on vascular endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation, migration and calcification, lipid metabolism, and inflammation, and provides a new overview of its anti-atherosclerosis mechanism. Besides, the structures, sources, safety, pharmacokinetic characteristics, and biological availability are introduced to reveal the limitations and challenges of current studies, hoping to provide a theoretical basis for the clinical application of diosgenin and its analogs and provide a new idea for developing new agents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, People’s Republic of China
- Correspondence: Xiaolong Wang, Tel +86 13501991450, Fax +86 21 51322445, Email
| |
Collapse
|
32
|
Leonova EI, Chirinskaite AV, Sopova JV. Atherosclerosis is a side effect of cellular senescence. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atherosclerosis is a systemic autoimmune disease of the arterial wall characterized by chronic inflammation, high blood pressure, oxidative stress, and progressive loss of cell and organ function with aging. An imbalance of macrophage polarization is associated with many aging diseases, including atherosclerosis. The polarization toward the pro-inflammatory M1 macrophage is a major promoter of the atheroma formation. It is known that efferocytosis, or ingestion of apoptotic cells, is stimulated by M2 macrophage polarization. A failure of efferocytosis leads to the prolongation of chronic pathology in tissue. In addition, fat-laden macrophages contribute to the plague progression by transforming into foam cells in response to excess lipid deposition in arteries. In spite of the generally accepted theory that macrophages capture oxidized low-density lipoprotein by phagocytosis and become foam cells, we postulate that the main source of lipid accumulation in foam cells are senescent erythrocytes. Senescent erythrocytes lose their plasticity, which affects the rheological blood properties. It is known that their membrane contains high levels of cholesterol. There is evidence that senescent erythrocytes play a pathogenic role in the atheroma formation after breaking down during flowing through an artery bifurcation. Here we review the current knowledge on the impact of age-associated immune cells and red blood cells modifications on atherogenesis.
Graphical abstract:
Collapse
|
33
|
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063346. [PMID: 35328769 PMCID: PMC8954705 DOI: 10.3390/ijms23063346] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.
Collapse
Affiliation(s)
- Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | | | - Iraide Alloza
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Koen Vandenbroeck
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| |
Collapse
|
34
|
Daeshiho-tang Attenuates Atherosclerosis by Regulating Cholesterol Metabolism and Inducing M2 Macrophage Polarization. Life (Basel) 2022; 12:life12020197. [PMID: 35207485 PMCID: PMC8879110 DOI: 10.3390/life12020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Dyslipidemia, the commonest cause of cardiovascular disease, leads to lipid deposits on the arterial wall, thereby aggravating atherosclerosis. DSHT (Daeshiho-tang) has long been used as an anti-dyslipidemia agent in oriental medicine. However, the anti-atherosclerotic effects of DSHT have not been fully investigated. Therefore, this study was designed to evaluate whether DSHT could exert beneficial anti-atherosclerotic effects. We fed apolipoprotein E-deficient (ApoE-/-) mice on a high-fat diet and treated them with atorvastatin (AT) or DSHT, or the combination of DSHT and AT for 12 weeks. To determine the role of DSHT, atherosclerotic lesions in the aorta, aortic root, and aortic arch; lipids and apolipoprotein levels in serum; and macrophage polarization markers in aorta tissues were examined. We show here that the DSHT decreased the atherosclerotic plaque ratio in the aortic arch, aorta, and aortic root. DSHT also regulated lipid levels by decreasing the ApoB level and increasing the ApoA1 level. Moreover, DSHT effectively regulated cholesterol metabolism by increasing the levels of PPARγ, ABCA1 and ABCG1, and the LDL receptor genes. We further found that DSHT promoted polarization to the M2 phenotype by increasing the levels of M2 macrophage (ARG1, CD163, and PPARγ) markers. Our data suggested that DSHT enhances the anti-atherosclerotic effect by regulating cholesterol metabolism through the activation of the PPARγ signaling pathway and by promoting anti-inflammatory M2 macrophage polarization.
Collapse
|
35
|
Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int 2022; 72:151-160. [PMID: 35076127 DOI: 10.1111/pin.13202] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerotic disease, such as myocardial infarction and stroke, is the number one killer worldwide. Atherosclerosis is considered to be caused by multiple factors, including genetic and environmental factors. In humans, it takes several decades until the clinical complications develop. There are many known risk factors for atherosclerosis, including hypercholesterolemia, hypertension, diabetes and smoking, which are involved in the pathogenesis of atherosclerosis; however, it is generally believed that atherosclerosis is vascular chronic inflammation initiated by interactions of these risk factors and arterial wall cells. In the past 30 years, the molecular mechanisms underlying the pathogenesis of atherosclerosis have been investigated extensively using genetically modified animals, and lipid-reducing drugs, such as statins, have been demonstrated as the most effective for the prevention and treatment of atherosclerosis. However, despite this progress, questions regarding the pathogenesis of atherosclerosis remain and there is a need to develop new animal models and novel therapeutics to treat patients who cannot be effectively treated by statins. In this review, we will focus on two topics of atherosclerosis, "pathology" and "pathogenesis," and discuss unanswered questions.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Teruo Watanabe
- Division of Laboratory Medicine and Pathology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| |
Collapse
|
36
|
Abdollahi E, Keyhanfar F, Delbandi AA, Falak R, Hajimiresmaiel SJ, Shafiei M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol 2022; 918:174715. [PMID: 35026193 DOI: 10.1016/j.ejphar.2021.174715] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Evidence has demonstrated that a new class of anti-diabetic drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors, could exert beneficial effects on atherosclerotic complications of diabetes. Atherosclerosis is widely accepted as an inflammatory disease. Therefore, we aimed to assess the direct anti-inflammatory effects of SGLT2 inhibitors dapagliflozin (DAPA) on two cell types involved in the process of atherogenesis. Human umbilical vein endothelial cells (HUVECs) and macrophages were exposed to DAPA and lipopolysaccharide (LPS 20 ng/mL) for 24 h under normal (5.5 mmol/L, NG) or high glucose (25 mmol/L, HG) conditions. Then, levels of TLR-4/p-NF-κB, inflammatory cytokines, inflammation-related miR-146a and miR-155 as well as alteration in the ratio of M1/M2 macrophage polarization was assessed. DAPA (0.5 μM) could significantly attenuate LPS-induced TLR-4 overexpression (23.9% and 33.1% under NG and HG conditions in HUVECs and 53.3% and 52.4% under NG and HG states in macrophages, respectively). NF-κB p65 phosphorylation was also significantly decreased to 30.1% under NG condition in HUVECs and 51.9% and 34.5% under NG and HG states in macrophages by 0.5 μM DAPA. Moreover, DAPA elevated expression levels of anti-inflammatory miR-146a, while values of miR-155 decreased in those cells. DAPA also caused a shift from inflammatory M1 macrophages toward M2-dominant macrophages. These data suggest that regardless of glucose concentrations, DAPA could exert direct anti-inflammatory effects, at least partly, by inhibiting the expression of TLR-4 and activation of NF-κB along with the secretion of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Elaheh Abdollahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | | | - Massoumeh Shafiei
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| |
Collapse
|
37
|
ABDELBASSET WK, NAMBI G, EL-SAKHAWY MAM, MAHMOUD MZ, ALRAWAILI BS, ELSAYED SH. Study on WSR-based community healthy food distribution design method. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Gopal NAMBI
- Prince Sattam bin Abdulaziz University, Saudi Arabia
| | | | | | | | | |
Collapse
|
38
|
Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021; 14:nu14010067. [PMID: 35010945 PMCID: PMC8746507 DOI: 10.3390/nu14010067] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization plays essential and diverse roles in most diseases, such as atherosclerosis, adipose tissue inflammation, and insulin resistance. Homeostasis dysfunction in M1/M2 macrophage polarization causes pathological conditions and inflammation. Neuroinflammation is characterized by microglial activation and the concomitant production of pro-inflammatory cytokines, leading to numerous neurodegenerative diseases and psychiatric disorders. Decreased neuroinflammation can be obtained by using natural compounds, including flavonoids, which are known to ameliorate inflammatory responses. Among flavonoids, quercetin possesses multiple pharmacological applications and regulates several biological activities. In the present study, we found that quercetin effectively inhibited the expression of lipocalin-2 in both macrophages and microglial cells stimulated by lipopolysaccharides (LPS). The production of nitric oxide (NO) and expression levels of the pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were also attenuated by quercetin treatment. Our results also showed that quercetin significantly reduced the expression levels of the M1 markers, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, in the macrophages and microglia. The M1 polarization-associated chemokines, C–C motif chemokine ligand (CCL)-2 and C-X-C motif chemokine ligand (CXCL)-10, were also effectively reduced by the quercetin treatment. In addition, quercetin markedly reduced the production of various reactive oxygen species (ROS) in the microglia. The microglial phagocytic ability induced by the LPS was also effectively reduced by the quercetin treatment. Importantly, the quercetin increased the expression levels of the M2 marker, IL-10, and the endogenous antioxidants, heme oxygenase (HO)-1, glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1). The enhancement of the M2 markers and endogenous antioxidants by quercetin was activated by the AMP-activated protein kinase (AMPK) and Akt signaling pathways. Together, our study reported that the quercetin inhibited the effects of M1 polarization, including neuroinflammatory responses, ROS production, and phagocytosis. Moreover, the quercetin enhanced the M2 macrophage polarization and endogenous antioxidant expression in both macrophages and microglia. Our findings provide valuable information that quercetin may act as a potential drug for the treatment of diseases related to inflammatory disorders in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| | - Guan-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Photonics and Communication Engineering, Asia University, Taichung 413305, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
- Biomedical Technology R&D Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 404328, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| |
Collapse
|
39
|
Singla B, Lin HP, Ahn W, Xu J, Ma Q, Sghayyer M, Dong K, Cherian-Shaw M, Zhou J, Huo Y, White J, Csányi G. Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovasc Res 2021; 118:3097-3111. [PMID: 34940829 PMCID: PMC9732525 DOI: 10.1093/cvr/cvab369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Inhibitors of the anti-phagocytic CD47-SIRPα immune checkpoint are currently in clinical development for a variety of haematological and solid tumours. Application of immune checkpoint inhibitors to the cardiovascular field is limited by the lack of preclinical studies using genetic models of CD47 and SIRPα inhibition. In this study, we comprehensively analysed the effects of global and cell-specific SIRPα and CD47 deletion on atherosclerosis development. METHODS AND RESULTS Here, we show that both SIRPα and CD47 expression are increased in human atherosclerotic arteries and primarily co-localize to CD68+ areas in the plaque region. Hypercholesterolaemic mice homozygous for a Sirpa mutant lacking the signalling cytoplasmic region (Sirpamut/mut) and myeloid cell-specific Sirpa-knockout mice are protected from atherosclerosis. Further, global Cd47-/- mice are protected from atherosclerosis but myeloid cell-specific deletion of Cd47 increased atherosclerosis development. Using a combination of techniques, we show that loss of SIRPα signalling in macrophages stimulates efferocytosis, reduces cholesterol accumulation, promotes lipid efflux, and attenuates oxidized LDL-induced inflammation in vitro and induces M2 macrophage phenotype and inhibits necrotic core formation in the arterial wall in vivo. Conversely, loss of myeloid cell CD47 inhibited efferocytosis, impaired cholesterol efflux, augmented cellular inflammation, stimulated M1 polarization, and failed to decrease necrotic core area in atherosclerotic vessels. Finally, comprehensive blood cell analysis demonstrated lower haemoglobin and erythrocyte levels in Cd47-/- mice compared with wild-type and Sirpamut/mut mice. CONCLUSION Taken together, these findings identify SIRPα as a potential target in atherosclerosis and suggest the importance of cell-specific CD47 inhibition as a future therapeutic strategy.
Collapse
Affiliation(s)
- Bhupesh Singla
- Present address: Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Hui-Ping Lin
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Moses Sghayyer
- Medical Scholars Program, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Mary Cherian-Shaw
- Department of Physiology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Joseph White
- Department of Pathology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Gábor Csányi
- Corresponding author. Tel: +1 706 721 1437; fax: +1 706 721 9799, E-mail:
| |
Collapse
|
40
|
Bonaterra GA, Struck N, Zuegel S, Schwarz A, Mey L, Schwarzbach H, Strelau J, Kinscherf R. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (Pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord 2021; 21:601. [PMID: 34920697 PMCID: PMC8684150 DOI: 10.1186/s12872-021-02420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is linked to inflammation, cancer, and atherosclerosis. GDF-15 is expressed in most tissues but is extremely induced under pathological conditions. Elevated serum levels are suggested as a risk factor and a marker for cardiovascular diseases. However, the cellular sources and the effects of GDF-15 on the cardiovascular system have not been completely elucidated including progression, and morphology of atherosclerotic plaques. Thus, this work aimed to characterize the influence of GDF-15 deficiency on the morphology of atherosclerotic plaques in blood vessels with low-oxygen blood and low blood pressure as the pulmonary trunk (PT), in hypercholesterolemic ApoE-/- mice. METHODS GDF-15-/- ApoE-/- mice were generated by crossbreeding of ApoE-/-- and GDF-15-/- mice. After feeding a cholesterol-enriched diet (CED) for 20 weeks, samples of the brachiocephalic trunk (BT) and PT were dissected and lumen stenosis (LS) was measured. Furthermore, changes in the cellularity of the PT, amounts of apoptosis-, autophagy-, inflammation- and proliferation-relevant proteins were immunohisto-morphometrically analyzed. Additionally, we examined an atherosclerotic plaque in a human post mortem sample of the pulmonary artery. RESULTS After CED the body weight of GDF-15-/-ApoE-/- was 22.9% higher than ApoE-/-. Double knockout mice showed also an 35.3% increase of plasma triglyceride levels, whereas plasma cholesterol was similar in both genotypes. LS in the BT and PT of GDF-15-/-ApoE-/- mice was significantly reduced by 19.0% and by 6.7% compared to ApoE-/-. Comparing LS in PT and BT of the same genotype revealed a significant 38.8% (ApoE-/-) or 26.4% (GDF-15-/-ApoE-/-) lower LS in the PT. Immunohistomorphometry of atherosclerotic lesions in PT of GDF-15-/-ApoE-/- revealed significantly increased levels (39.8% and 7.3%) of CD68 + macrophages (MΦ) and α-actin + smooth muscle cells than in ApoE-/-. The density of TUNEL + , apoptotic cells was significantly (32.9%) higher in plaques of PT of GDF-15-/-ApoE-/- than in ApoE-/-. Analysis of atherosclerotic lesion of a human pulmonary artery showed sm-α-actin, CD68+, TUNEL+, Ki67+, and APG5L/ATG+ cells as observed in PT. COX-2+ and IL-6+ immunoreactivities were predominantly located in endothelial cells and subendothelial space. In BT and PT of GDF15-/-ApoE-/- mice the necrotic area was 10% and 6.5% lower than in ApoE-/-. In BT and PT of GDF15-/-ApoE-/- we found 40% and 57% less unstable plaques than ApoE-/- mice. CONCLUSIONS Atherosclerotic lesions occur in both, BT and PT, however, the size is smaller in PT, possibly due to the effect of the low-oxygen blood and/or lower blood pressure. GDF-15 is involved in atherosclerotic processes in BT and PT, although different mechanisms (e.g. apoptosis) in these two vessels seem to exist.
Collapse
Affiliation(s)
- G A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany.
| | - N Struck
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - S Zuegel
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - A Schwarz
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - L Mey
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - H Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - J Strelau
- Department of Functional Neuroanatomy, University of Heidelberg, 69120, Heidelberg, Germany
| | - R Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
41
|
PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice. Atherosclerosis 2021; 338:23-29. [PMID: 34785428 DOI: 10.1016/j.atherosclerosis.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic cardiovascular disease is a metabolic and inflammatory disorder. In vitro studies have suggested that protein arginine methyltransferase 4 (PRMT4) may act as a transcriptional coactivator to modulate inflammatory and metabolic processes. Here we investigated the potential anti-atherogenic effect of PRMT4 inhibitor TP-064 in vivo. METHODS Male apolipoprotein E knockout mice fed a high cholesterol/high fat Western-type diet were intraperitoneally injected three times a week with 2.5 mg/kg (low dose) or 10 mg/kg (high dose) TP-064 or with DMSO control. RESULTS TP-064 induced a dose-dependent decrease in lipopolysaccharide-induced ex vivo blood monocyte Tnfα secretion (p < 0.05 for trend) in the context of unchanged blood monocyte concentrations and neutrophilia induction (p < 0.01 for trend). A dose-dependent decrease in gonadal white adipose tissue expression levels of PPARγ target genes was detected, which translated into a reduced body weight gain after high dose TP-064 treatment (p < 0.05). TP-064 treatment also dose-dependently downregulated gene expression of the glycogen metabolism related protein G6pc in the liver (p < 0.001 for trend). In addition, a trend towards lower plasma insulin and higher blood glucose levels was observed, which was paralleled by a reduction in hepatic mRNA expression levels of the insulin-responsive genes Fasn (-55%; p < 0.001) and Gck (-47%; p < 0.001) in high dose-treated mice. Plasma triglyceride levels were reduced by high dose TP-064 treatment (-30%; p < 0.05). However, no change was observed in the size or composition of aortic root atherosclerotic lesions. CONCLUSIONS The PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing atherosclerosis susceptibility of male apolipoprotein E knockout mice.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Lahaye C, Gladine C, Pereira B, Berger J, Chinetti-Gbaguidi G, Lainé F, Mazur A, Ruivard M. Does iron overload in metabolic syndrome affect macrophage profile? A case control study. J Trace Elem Med Biol 2021; 67:126786. [PMID: 34022567 DOI: 10.1016/j.jtemb.2021.126786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
AIMS Dysmetabolic iron overload syndrome (DIOS) is common but the clinical relevance of iron overload is not understood. Macrophages are central cells in iron homeostasis and inflammation. We hypothesized that iron overload in DIOS could affect the phenotype of monocytes and impair macrophage gene expression. METHODS This study compared 20 subjects with DIOS to 20 subjects with metabolic syndrome (MetS) without iron overload, and 20 healthy controls. Monocytes were phenotyped by Fluorescence-Activated Cell Sorting (FACS) and differentiated into anti-inflammatory M2 macrophages in the presence of IL-4. The expression of 38 genes related to inflammation, iron metabolism and M2 phenotype was assessed by real-time PCR. RESULTS FACS showed no difference between monocytes across the three groups. The macrophagic response to IL-4-driven differentiation was altered in four of the five genes of M2 phenotype (MRC1, F13A1, ABCA1, TGM2 but not FABP4), in DIOS vs Mets and controls demonstrating an impaired M2 polarization. The expression profile of inflammatory genes was not different in DIOS vs MetS. Several genes of iron metabolism presented a higher expression in DIOS vs MetS: SCL11A2 (a free iron transporter, +76 %, p = 0.04), SOD1 (an antioxidant enzyme, +27 %, p = 0.02), and TFRC (the receptor 1 of transferrin, +59 %, p = 0.003). CONCLUSIONS In DIOS, macrophage polarization toward the M2 alternative phenotype is impaired but not associated with a pro-inflammatory profile. The up regulation of transferrin receptor 1 (TFRC) in DIOS macrophages suggests an adaptive role that may limit iron toxicity in DIOS.
Collapse
Affiliation(s)
- Clément Lahaye
- Université Clermont Auvergne, CHU Clermont-Ferrand, Service de Médecine interne Hôpital Estaing, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Bruno Pereira
- Université Clermont Auvergne, CHU Clermont-Ferrand, Unité de biostatistiques, F-63000 Clermont-Ferrand, France.
| | - Juliette Berger
- Université Clermont Auvergne, CHU Clermont-Ferrand, Laboratoire d'Hématologie, Hôpital Estaing, F-63000 Clermont-Ferrand, France.
| | | | - Fabrice Lainé
- INSERM CIC 1414, and Liver Unit, CHU Rennes, 35000 Rennes, France.
| | - Andrzej Mazur
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Marc Ruivard
- Université Clermont Auvergne, CHU Clermont-Ferrand, Service de Médecine interne Hôpital Estaing, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
44
|
Schlegel M, Sharma M, Brown EJ, Newman AAC, Cyr Y, Afonso MS, Corr EM, Koelwyn GJ, van Solingen C, Guzman J, Farhat R, Nikain CA, Shanley LC, Peled D, Schmidt AM, Fisher EA, Moore KJ. Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circ Res 2021; 129:530-546. [PMID: 34289717 PMCID: PMC8529357 DOI: 10.1161/circresaha.121.319313] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale: Therapeutic efforts to decrease atherosclerotic cardiovascular disease risk have focused largely on reducing atherogenic lipoproteins, yet lipid-lowering therapies alone are insufficient to fully regress plaque burden. We postulate that arterial repair requires resolution of a maladaptive immune response and that targeting factors that hinder inflammation resolution will facilitate plaque regression. Objective: The guidance molecule Ntn1 (netrin-1) is secreted by macrophages in atherosclerotic plaques, where it sustains inflammation by enhancing macrophage survival and blocking macrophage emigration. We tested whether silencing Ntn1 in advanced atherosclerosis could resolve arterial inflammation and regress plaques. Methods and Results: To temporally silence Ntn1 in myeloid cells, we generated genetically modified mice in which Ntn1 could be selectively deleted in monocytes and macrophages using a tamoxifen-induced CX3CR1-driven cre recombinase (Ntn1fl/flCx3cr1creERT2+) and littermate control mice (Ntn1fl/flCx3cr1WT). Mice were fed Western diet in the setting of hepatic PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression to render them atherosclerotic and then treated with tamoxifen to initiate deletion of myeloid Ntn1 (MøΔNtn1) or not in controls (MøWT). Morphometric analyses performed 4 weeks later showed that myeloid Ntn1 silencing reduced plaque burden in the aorta (−50%) and plaque complexity in the aortic root. Monocyte-macrophage tracing experiments revealed lower monocyte recruitment, macrophage retention, and proliferation in MøΔNtn1 compared with MøWT plaques, indicating a restructuring of monocyte-macrophage dynamics in the artery wall upon Ntn1 silencing. Single-cell RNA sequencing of aortic immune cells before and after Ntn1 silencing revealed upregulation of gene pathways involved in macrophage phagocytosis and migration, including the Ccr7 chemokine receptor signaling pathway required for macrophage emigration from plaques and atherosclerosis regression. Additionally, plaques from MøΔNtn1 mice showed hallmarks of inflammation resolution, including higher levels of proresolving macrophages, IL (interleukin)-10, and efferocytosis, as compared to plaques from MøWT mice. Conclusion: Our data show that targeting Ntn1 in advanced atherosclerosis ameliorates atherosclerotic inflammation and promotes plaque regression.
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
- Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Germany (M. Schlegel)
| | - Monika Sharma
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emily J Brown
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Alexandra A C Newman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Yannick Cyr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Milessa Silva Afonso
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emma M Corr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Coen van Solingen
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Jonathan Guzman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Rubab Farhat
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Cyrus A Nikain
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Lianne C Shanley
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Daniel Peled
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Ann Marie Schmidt
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University (A.M.S.). K.J. Moore, M. Schlegel, M. Sharma, A.M. Schmidt, and E.A. Fisher designed the study and performed data analysis and interpretation. M. Schlegel, M. Sharma, M.S. Afonso, E.J. Brown, E.M. Corr, C. van Solingen, G.J. Koelwyn, A.A.C. Newman, Y. Cyr, R. Farhat, J. Guzman, L.C. Shanley, and D. Peled conducted experiments, acquired data, and performed analyses. E.J. Brown analyzed the RNA-sequencing data. K.J. Moore and M. Schlegel wrote the article with input from all authors
| | - Edward A Fisher
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| |
Collapse
|
45
|
Wu H, Wang M, Li X, Shao Y. The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Hum Cell 2021; 34:1617-1628. [PMID: 34324139 DOI: 10.1007/s13577-021-00580-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
Emergent studies reveal the roles of inflammatory cells and cytokines in the development of diabetic retinopathy (DR), which is gradually portrayed as a chronic inflammatory disease accompanied by metabolic disorder. Through the pathogenesis of DR, macrophages or microglia play a critical role in the inflammation, neovascularization, and neurodegeneration of the retina. Conventionally, macrophages are generally divided into M1 and M2 phenotypes which mainly rely on glycolysis and oxidative phosphorylation, respectively. Recently, studies have found that nutrients (including glucose and lipids) and metabolites (such as lactate), can not only provide energy for cells, but also act as signaling molecules to regulate the function and fate of cells. In this review, we discussed the intrinsic correlations among the metabolic status, polarization, and function of macrophage/microglia in DR. Hyperglycemia and hyperlipidemia could induce M1-like and M2-like macrophages polarization in different phases of DR. Targeting the regulation of microglial metabolic profile might be a promising therapeutic strategy to modulate the polarization and function of macrophages/microglia, thus attenuating the progression of DR.
Collapse
Affiliation(s)
- Honglian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
46
|
Chen S, Vurusaner B, Pena S, Thu CT, Mahal LK, Fisher EA, Canary JW. Two-Photon, Ratiometric, Quantitative Fluorescent Probe Reveals Fluctuation of Peroxynitrite Regulated by Arginase 1. Anal Chem 2021; 93:10090-10098. [PMID: 34269045 DOI: 10.1021/acs.analchem.1c00911] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peroxynitrite, a transient reactive oxygen species (ROS), is believed to play a deleterious role in physiological processes. Herein, we report a two-photon ratiometric fluorescent probe that selectively reacts with peroxynitrite yielding a >200-fold change upon reaction. The probe effectively visualized fluctuations in peroxynitrite generation by arginase 1 in vivo and in vitro. This provides evidence that arginase 1 is a critical regulator of peroxynitrite.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Beyza Vurusaner
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York 10016, United States
| | - Stephanie Pena
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York 10016, United States
| | - Chu T Thu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York 10016, United States
| | - James W Canary
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
47
|
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery, thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of these NPs from various perspectives including cellular and molecular ones.
Collapse
|
48
|
Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021; 8:679797. [PMID: 34026849 PMCID: PMC8138136 DOI: 10.3389/fmolb.2021.679797] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic disease starting with the entry of monocytes into the subendothelium and the subsequent differentiation into macrophages. Macrophages are the major immune cells in atherosclerotic plaques and are involved in the dynamic progression of atherosclerotic plaques. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. The heterogenicity and plasticity of atherosclerotic macrophages have been a hotspot in recent years. Studies demonstrated that lipids, cytokines, chemokines, and other molecules in the atherosclerotic plaque microenvironment regulate macrophage phenotype, contributing to the switch of macrophages toward a pro- or anti-atherosclerosis state. Of note, M1/M2 classification is oversimplified and only represent two extreme states of macrophages. Moreover, M2 macrophages in atherosclerosis are not always protective. Understanding the phenotypic diversity and functions of macrophages can disclose their roles in atherosclerotic plaques. Given that lipid-lowering therapy cannot completely retard the progression of atherosclerosis, macrophages with high heterogeneity and plasticity raise the hope for atherosclerosis regression. This review will focus on the macrophage phenotypic diversity, its role in the progression of the dynamic atherosclerotic plaque, and finally discuss the possibility of treating atherosclerosis by targeting macrophage microenvironment.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hong-Hai Ji
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
49
|
Fan Y, Hao Y, Gao D, Li G, Zhang Z. Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model. Physiol Res 2021; 70:213-226. [PMID: 33676385 PMCID: PMC8820576 DOI: 10.33549/physiolres.934456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) isa fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages inducedendothelial cellapoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell.These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
50
|
Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2021; 222:2041-2051. [PMID: 32852032 PMCID: PMC7661765 DOI: 10.1093/infdis/jiaa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Azadeh Nilchian
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Estelle Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata M Parniewska
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ana Santiago
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aránzazu Rossignoli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|