1
|
Parker ME, Mehta NU, Liao TC, Tomaszewski WH, Snyder SA, Busch J, Ciofani M. Restriction of innate Tγδ17 cell plasticity by an AP-1 regulatory axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618522. [PMID: 39463970 PMCID: PMC11507935 DOI: 10.1101/2024.10.15.618522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
IL-17-producing γδ T (Tγδ17) cells are innate-like mediators of intestinal barrier immunity. While Th17 cell and ILC3 plasticity have been extensively studied, the mechanisms governing Tγδ17 cell effector flexibility remain undefined. Here, we combined type 3 fate-mapping with single cell ATAC/RNA-seq multiome profiling to define the cellular features and regulatory networks underlying Tγδ17 cell plasticity. During homeostasis, Tγδ17 cell effector identity was stable across tissues, including for intestinal T-bet+ Tγδ17 cells that restrained IFNγ production. However, S. typhimurium infection induced intestinal Vγ6+ Tγδ17 cell conversion into type 1 effectors, with loss of IL-17A production and partial RORγt downregulation. Multiome analysis revealed a trajectory along Vγ6+ Tγδ17 effector conversion, with TIM-3 marking ex-Tγδ17 cells with enhanced type 1 functionality. Lastly, we characterized and validated a critical AP-1 regulatory axis centered around JunB and Fosl2 that controls Vγ6+ Tγδ17 cell plasticity by stabilizing type 3 identity and restricting type 1 effector conversion.
Collapse
Affiliation(s)
- Morgan E Parker
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Naren U Mehta
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William H Tomaszewski
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie A Snyder
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Julia Busch
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Bridge J, Johnson MJ, Kim J, Wenthe S, Krueger J, Wick B, Kluesner M, Crane AT, Bell J, Skeate JG, Moriarity BS, Webber BR. Efficient multiplex non-viral engineering and expansion of polyclonal γδ CAR-T cells for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611042. [PMID: 39464114 PMCID: PMC11507710 DOI: 10.1101/2024.09.03.611042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gamma delta (γδ) T cells are defined by their unique ability to recognize a limited repertoire of non-peptide, non-MHC-associated antigens on transformed and pathogen-infected cells. In addition to their lack of alloreactivity, γδ T cells exhibit properties distinct from other lymphocyte subsets, prompting significant interest in their development as an off-the-shelf cellular immunotherapeutic. However, their low abundance in circulation, heterogeneity, limited methods for ex vivo expansion, and under-developed methodologies for genetic modification have hindered basic study and clinical application of γδ T cells. Here, we implement a feeder-free, scalable approach for ex vivo manufacture of polyclonal, non-virally modified, gene edited chimeric antigen receptor (CAR)-γδ T cells in support of therapeutic application. Engineered CAR-γδ T cells demonstrate high function in vitro and and in vivo. Longitudinal in vivo pharmacokinetic profiling of adoptively transferred polyclonal CAR-γδ T cells uncover subset-specific responses to IL-15 cytokine armoring and multiplex base editing. Our results present a robust platform for genetic modification of polyclonal CAR-γδ T cells and present unique opportunities to further define synergy and the contribution of discrete, engineered CAR-γδ T cell subsets to therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Jacob Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Wenthe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joshua Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Kluesner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
4
|
Berillo O, Comeau K, Caillon A, Leclerc S, Shokoples BG, Mahmoud AUM, Andelfinger G, Paradis P, Schiffrin EL. CD28-expressing δ T cells are increased in perivascular adipose tissue of hypertensive mice and in subcutaneous adipose tissue of obese humans. J Hypertens 2024; 42:1256-1268. [PMID: 38704218 DOI: 10.1097/hjh.0000000000003725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
OBJECTIVES γδ T-lymphocytes play a role in angiotensin II (AngII)-induced hypertension, vascular injury and T-cell infiltration in perivascular adipose tissue (PVAT) in mice. Mesenteric arteries of hypertensive mice and subcutaneous arteries from obese humans present similar remodeling. We hypothesized that γδ T-cell subtypes in mesenteric vessels with PVAT (MV/PVAT) from hypertensive mice and subcutaneous adipose tissue (SAT) from obese humans, who are prone to develop hypertension, would be similar. METHODS Mice were infused with AngII for 14 days. MV/PVAT T-cells were used for single-cell RNA-sequencing (scRNA-seq). scRNA-seq data (GSE155960) of SAT CD45 + cells from three lean and three obese women were downloaded from the Gene Expression Omnibus database. RESULTS δ T-cell subclustering identified six δ T-cell subtypes. AngII increased T-cell receptor δ variable 4 ( Trdv4 ) + γδ T-effector memory cells and Cd28high δ T EM -cells, changes confirmed by flow cytometry. δ T-cell subclustering identified nine δ T-cell subtypes in human SAT. CD28 expressing δ T-cell subclustering demonstrated similar δ T-cell subpopulations in murine MV/PVAT and human SAT. Cd28+ γδ NKT EM and Cd28high δ T EM -cells increased in MV/PVAT from hypertensive mice and CD28high δ T EM -cells in SAT from obese women compared to the lean women. CONCLUSION Similar CD28 + δ T-cells were identified in murine MV/PVAT and human SAT. CD28 high δ T EM -cells increased in MV/PVAT in hypertensive mice and in SAT from humans with obesity, a prehypertensive condition. CD28 + δ T-lymphocytes could have a pathogenic role in human hypertension associated with obesity, and could be a potential target for therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gregor Andelfinger
- Research Center, Sainte-Justine University Health Center
- Department of Pediatrics, University of Montreal, Montréal, Québec, Canada
| | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| |
Collapse
|
5
|
Li W, Zhao X, Ren C, Gao S, Han Q, Lu M, Li X. The therapeutic role of γδT cells in TNBC. Front Immunol 2024; 15:1420107. [PMID: 38933280 PMCID: PMC11199784 DOI: 10.3389/fimmu.2024.1420107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that presents significant therapeutic challenges due to the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. As a result, conventional hormonal and targeted therapies are largely ineffective, underscoring the urgent need for novel treatment strategies. γδT cells, known for their robust anti-tumor properties, show considerable potential in TNBC treatment as they can identify and eliminate tumor cells without reliance on MHC restrictions. These cells demonstrate extensive proliferation both in vitro and in vivo, and can directly target tumors through cytotoxic effects or indirectly by promoting other immune responses. Studies suggest that expansion and adoptive transfer strategies targeting Vδ2 and Vδ1 γδT cell subtypes have shown promise in preclinical TNBC models. This review compiles and discusses the existing literature on the primary subgroups of γδT cells, their roles in cancer therapy, their contributions to tumor cell cytotoxicity and immune modulation, and proposes potential strategies for future γδT cell-based immunotherapies in TNBC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chuanxin Ren
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shang Gao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Min Lu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
6
|
Ruchti F, Tuor M, Mathew L, McCarthy NE, LeibundGut-Landmann S. γδ T cells respond directly and selectively to the skin commensal yeast Malassezia for IL-17-dependent fungal control. PLoS Pathog 2024; 20:e1011668. [PMID: 38215167 PMCID: PMC10810444 DOI: 10.1371/journal.ppat.1011668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Stable microbial colonization of the skin depends on tight control by the host immune system. The lipid-dependent yeast Malassezia typically colonizes skin as a harmless commensal and is subject to host type 17 immunosurveillance, but this fungus has also been associated with diverse skin pathologies in both humans and animals. Using a murine model of Malassezia exposure, we show that Vγ4+ dermal γδ T cells expand rapidly and are the major source of IL-17A mediating fungal control in colonized skin. A pool of memory-like Malassezia-responsive Vγ4+ T cells persisted in the skin, were enriched in draining lymph nodes even after fungal clearance, and were protective upon fungal re-exposure up to several weeks later. Induction of γδT17 immunity depended on IL-23 and IL-1 family cytokine signalling, whereas Toll-like and C-type lectin receptors were dispensable. Furthermore, Vγ4+ T cells from Malassezia-exposed hosts were able to respond directly and selectively to Malassezia-derived ligands, independently of antigen-presenting host cells. The fungal moieties detected were shared across diverse species of the Malassezia genus, but not conserved in other Basidiomycota or Ascomycota. These data provide novel mechanistic insight into the induction and maintenance of type 17 immunosurveillance of skin commensal colonization that has significant implications for cutaneous health.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meret Tuor
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Liya Mathew
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Neil E McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Bhat SA, Elnaggar M, Hall TJ, McHugo GP, Reid C, MacHugh DE, Meade KG. Preferential differential gene expression within the WC1.1 + γδ T cell compartment in cattle naturally infected with Mycobacterium bovis. Front Immunol 2023; 14:1265038. [PMID: 37942326 PMCID: PMC10628470 DOI: 10.3389/fimmu.2023.1265038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. γδ T cell subsets are classified based on expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB disease may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 189 genes were significantly differentially expressed in the M. bovis-infected compared to the control groups for the WC1.1+ γδ T cell compartment (absolute log2 FC ≥ 1.5 and FDR P adj. ≤ 0.1). The majority of these DEGs (168) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factors (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM, and GZMH) and multiple killer cell immunoglobulin-like receptor (KIR) proteins indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis, and cytotoxicity of lymphocytes. In conclusion, γδ T cells have important inflammatory and regulatory functions in cattle, and we provide evidence for preferential differential activation of the WC1.1+ specific subset in cattle naturally infected with M. bovis.
Collapse
Affiliation(s)
- Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Mahmoud Elnaggar
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Thomas J. Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gillian P. McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Cian Reid
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Comeau K, Shokoples B, Caillon A, Paradis P, Schiffrin EL. Angiotensin II-Induced Memory γδ T Cells Sensitize Mice to a Mild Hypertensive Stimulus. Am J Hypertens 2023; 36:619-628. [PMID: 37549970 PMCID: PMC10570659 DOI: 10.1093/ajh/hpad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Memory T cells develop during an initial hypertensive episode, sensitizing mice to develop hypertension from further mild hypertensive challenges. We hypothesized that memory γδ T cells develop after a hypertensive challenge and sensitize mice to develop hypertension in response to a subsequent mild hypertensive challenge. METHODS The first aim was to profile memory γδ T cells after a 14-day pressor dose angiotensin II (AngII) infusion (490 ng/kg/min, subcutaneously) in male mice. The second aim was to deplete γδ T cells during a second 14-day subpressor dose AngII challenge (140 ng/kg/min, subcutaneously) in mice pre-exposed to an initial pressor dose AngII challenge. The third aim was to transfer 2.5 × 105 live pre-activated or not γδ T cells from mice that had received a 14-day pressor dose AngII infusion or sham treatment, to naive recipient mice stimulated with a subpressor dose AngII infusion. RESULTS Effector memory γδ T cells increased 5.2-fold in mesenteric vessels and perivascular adipose tissue, and 1.8-fold in mesenteric lymph nodes in pressor dose AngII-infused mice compared with sham-treated mice. Mice depleted of γδ T cells had 14 mm Hg lower systolic blood pressure (SBP) elevation than control mice from day 7 to 14 of subpressor dose AngII infusion. Adoptive transfer of γδ T cells from hypertensive mice induced an 18 mm Hg higher SBP elevation compared with a subpressor dose AngII infusion vs. γδ T cells transferred from sham-treated mice. CONCLUSIONS Memory γδ T cells develop in response to hypertensive stimuli, and contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Kevin Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Brandon Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Assy L, Khalil SM, Attia M, Salem ML. IL-12 conditioning of peripheral blood mononuclear cells from breast cancer patients promotes the zoledronate-induced expansion of γδ T cells in vitro and enhances their cytotoxic activity and cytokine production. Int Immunopharmacol 2023; 114:109402. [PMID: 36481526 DOI: 10.1016/j.intimp.2022.109402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a series of our preclinical studies, we have reported that conditioning of α/β CD8+ T cells in vitro with interleukin-12 (IL-12) during their expansion improves their homing phenotype and anti-tumor cytolytic function upon their adoptive transfer in vivo. Vγ9+Vδ2+ T cells can also be expanded in vitro with amino bisphosphonates such as zoledronate (ZOL) for the purpose of adoptive therapy. AIM We aimed in this study to use IL-12 to enhance the expansion and cytotoxic functions of ZOL-expanded Vγ9+Vδ2+T cells. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were separated from healthy donors and stage II breast cancer patients. PBMCs (1 × 106 cells/mL) were cultured and treated with ZOL/IL2, ZOL/IL2/IL12, or IL2/IL12. Cultured cells were harvested on days 7 and 14 of culture and their numbers, phenotype, and cytolytic activity were assessed. The levels of pro- and inflammatory cytokines/chemokines in the plasma and supernatants of the cultured cells were analyzed by Luminex. RESULTS In healthy subjects, the addition of IL-12 to ZOL/IL2-stimulated PBMCs increased the expansion and the cytotoxic activity of Vγ9+Vδ2+ T cells on days 7 and 14 of culture. The latter was measured by the expression level of the cytolytic molecules granzyme B (GZB) and perforin (PER). Of note, αβ CD8 + T cells were also activated under the same condition but with a lesser extent addition of IL-12 to ZOL/IL2-stimulated PBMCs from cancer patients also induced similar effects but were lower than in control subjects. Interestingly, ZOL/IL2/IL12-treated PBMCs showed higher levels of cytokines/chemokines, in particular, CCL, CCL4, GM-CSF, IL-1rα; IL-12, IL-13, TNF, and IFNγ measured on days 7 and 14. CONCLUSION The addition of IL12 at the start of the expansion protocol can enhance the activity of γδ T cells which might be mediated in part by the activation of αβ T cells.
Collapse
Affiliation(s)
- Lobna Assy
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Sohaila M Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt.
| |
Collapse
|
11
|
Boucher JC, Yu B, Li G, Shrestha B, Sallman D, Landin AM, Cox C, Karyampudi K, Anasetti C, Davila ML, Bejanyan N. Large Scale Ex Vivo Expansion of γδ T cells Using Artificial Antigen-presenting Cells. J Immunother 2023; 46:5-13. [PMID: 36378147 PMCID: PMC9722378 DOI: 10.1097/cji.0000000000000445] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Higher γδ T cell counts in patients with malignancies are associated with better survival. However, γδ T cells are rare in the blood and functionally impaired in patients with malignancies. Promising results are reported on the treatment of various malignancies with in vivo expansion of autologous γδ T cells using zoledronic acid (zol) and interleukin-2 (IL-2). Here we demonstrated that zol and IL-2, in combination with a novel genetically engineered K-562 CD3scFv/CD137L/CD28scFv/IL15RA quadruplet artificial antigen-presenting cell (aAPC), efficiently expand allogeneic donor-derived γδ T cells using a Good Manufacturing Practice (GMP) compliant protocol sufficient to achieve cell doses for future clinical use. We achieved a 633-fold expansion of γδ T cells after day 10 of coculture with aAPC, which exhibited central (47%) and effector (43%) memory phenotypes. In addition, >90% of the expanded γδ T cells expressed NKG2D, although they have low cell surface expression of PD1 and LAG3 inhibitory checkpoint receptors. In vitro real-time cytotoxicity analysis showed that expanded γδ T cells were effective in killing target cells. Our results demonstrate that large-scale ex vivo expansion of donor-derived γδ T cells in a GMP-like setting can be achieved with the use of quadruplet aAPC and zol/IL-2 for clinical application.
Collapse
Affiliation(s)
- Justin C. Boucher
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Bin Yu
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Gongbo Li
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Bishwas Shrestha
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | | | | | - Cheryl Cox
- Cell Therapy Facility, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Claudio Anasetti
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Marco L. Davila
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Nelli Bejanyan
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| |
Collapse
|
12
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
13
|
You H, Zhu H, Zhao Y, Guo J, Gao Q. TIGIT-expressing zoledronate-specific γδ T cells display enhanced antitumor activity. J Leukoc Biol 2022; 112:1691-1700. [PMID: 36353851 DOI: 10.1002/jlb.5ma0822-759r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Human γδ T cells hold a pivotal role in tumor immunosurveillance through their prompt activation and cytokine secretion and have received much attention in adoptive immunotherapy of clear cell renal cell carcinoma (ccRCC). However, the therapeutic effects are limited in ccRCC. Therefore, it is now critical to improve therapeutic strategies based on γδ T cells, especially identification of functional γδ T cell subsets. In this study, we aimed to identify γδ T cells that might have enhanced responses against ccRCC. Bioinformatic analysis showed that ccRCC patients with high T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression had higher levels of effector molecules. Then, we examined the changes in the TIGIT+ γδ T cell percentages of 6 ccRCC patients and 14 healthy subjects through zoledronate (ZOL) stimulation. Results indicated that percentages of TIGIT+ γδ T cells were positively correlated with activated γδ T cells in early activation stage. Further study demonstrated that TIGIT+ γδ T cells exhibited enhanced activation, contained more terminally differentiated effector γδ T cells and produced higher cytokine compared with TIGIT- γδ T cells. Finally, we investigated the functions and found that TIGIT+ γδ T cells exhibited stronger tumor reactivities and higher cytotoxicity when challenged by tumor cells. Above results imply that TIGIT+ γδ T cells are the main effectors in ZOL recognition and tumor cells challenging. The results of the present study serve as basis for future functional studies on TIGIT+ γδ T cells and provide a promising approach of immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Hongqin You
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Huifang Zhu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yajie Zhao
- Department of Breast, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jindong Guo
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Quanli Gao
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
14
|
Ren H, Li W, Liu X, Zhao N. γδ T cells: The potential role in liver disease and implications for cancer immunotherapy. J Leukoc Biol 2022; 112:1663-1668. [PMID: 36098208 DOI: 10.1002/jlb.5mr0822-733rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Indexed: 01/04/2023] Open
Abstract
The γδ T cell subset was discovered over 30 years ago, yet continues to be an exciting and challenging component of the adaptive immune response. While γδ T cells represent a very small fraction of all T cells in humans, γδ T cells have a vital effect on human immunity, serving as a bridge between the innate and adaptive immune systems. The characteristics of γδ T cells include recognition of non-MHC restrictive antigens, as well as the ability to secrete an abundance of cytokines, suggesting that γδ T cells have high antitumor activity. As such, they have gained ample attention with respect to tumor immunotherapy in the last decade. The γδ T cell subset comprises up to ∼15-20% of the T-lymphocyte population in the liver, although the liver is recognized as an immune organ with primary immune functions, the role of γδ T cells in liver disease has not been established. Herein, we present a comprehensive overview of molecular mechanisms underlying immune γδ T cell activity in liver disease, including immune liver injury, viral hepatitis, cirrhosis, and hepatocellular carcinoma, and review γδ T cell-based clinical immunotherapeutic approaches.
Collapse
Affiliation(s)
- He Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - WanJing Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
16
|
Choi H, Lee Y, Park SA, Lee JH, Park J, Park JH, Lee HK, Kim TG, Jeun SS, Ahn S. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands. Oncoimmunology 2022; 11:2138152. [PMID: 36338147 PMCID: PMC9629076 DOI: 10.1080/2162402x.2022.2138152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell-mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,CONTACT Stephen Ahn Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul06591, Republic of Korea
| |
Collapse
|
17
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
18
|
Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z, Kuball J. γ9δ2 T-Cell Expansion and Phenotypic Profile Are Reflected in the CDR3δ Repertoire of Healthy Adults. Front Immunol 2022; 13:915366. [PMID: 35874769 PMCID: PMC9301380 DOI: 10.3389/fimmu.2022.915366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
γ9δ2T cells fill a distinct niche in human immunity due to the unique physiology of the phosphoantigen-reactive γ9δ2TCR. Here, we highlight reproducible TCRδ complementarity-determining region 3 (CDR3δ) repertoire patterns associated with γ9δ2T cell proliferation and phenotype, thus providing evidence for the role of the CDR3δ in modulating in vivo T-cell responses. Features that determine γ9δ2TCR binding affinity and reactivity to the phosphoantigen-induced ligand in vitro appear to similarly underpin in vivo clonotypic expansion and differentiation. Likewise, we identify a CDR3δ bias in the γ9δ2T cell natural killer receptor (NKR) landscape. While expression of the inhibitory receptor CD94/NKG2A is skewed toward cells bearing putative high-affinity TCRs, the activating receptor NKG2D is expressed independently of the phosphoantigen-sensing determinants, suggesting a higher net NKR activating signal in T cells with TCRs of low affinity. This study establishes consistent repertoire–phenotype associations and justifies stratification for the T-cell phenotype in future research on γ9δ2TCR repertoire dynamics.
Collapse
Affiliation(s)
- Anna Vyborova
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anke Janssen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lucrezia Gatti
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Austin Yonika
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper Sanders
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Jürgen Kuball,
| |
Collapse
|
19
|
Qu G, Wang S, Zhou Z, Jiang D, Liao A, Luo J. Comparing Mouse and Human Tissue-Resident γδ T Cells. Front Immunol 2022; 13:891687. [PMID: 35757696 PMCID: PMC9215113 DOI: 10.3389/fimmu.2022.891687] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Circulating immune cell compartments have been extensively studied for decades, but limited access to peripheral tissue and cell yield have hampered our understanding of tissue-based immunity, especially in γδ T cells. γδ T cells are a unique subset of T cells that are rare in secondary lymphoid organs, but enriched in many peripheral tissues including the skin, uterus, and other epithelial tissues. In addition to immune surveillance activities, recent reports have revealed exciting new roles for γδ T cells in homeostatic tissue physiology in mice and humans. It is therefore important to investigate to what extent the developmental rules described using mouse models transfer to human γδ T cells. Besides, it will be necessary to understand the differences in the development and biogenesis of human and mouse γδ T cells; to understand how γδ T cells are maintained in physiological and pathological circumstances within different tissues, as well as characterize the progenitors of different tissue-resident γδ T cells. Here, we summarize current knowledge of the γδ T phenotype in various tissues in mice and humans, describing the similarities and differences of tissue-resident γδ T cells in mice and humans.
Collapse
Affiliation(s)
- Guanyu Qu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Wang
- School of Basic Medicine, Jinan University, Guangzhou, China
| | - Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
de Lima Pereira Dos Santos C, Vacani-Martins N, Cascabulho CM, Pereira MCDS, Crispe IN, Henriques-Pons A. In the Acute Phase of Trypanosoma cruzi Infection, Liver Lymphoid and Myeloid Cells Display an Ambiguous Phenotype Combining Pro- and Anti-Inflammatory Markers. Front Immunol 2022; 13:868574. [PMID: 35720410 PMCID: PMC9204308 DOI: 10.3389/fimmu.2022.868574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple cell populations, cellular biochemical pathways, and the autonomic nervous system contribute to maintaining the immunological tolerance in the liver. This tolerance is coherent because the organ is exposed to high levels of bacterial pathogen-associated molecular pattern (PAMP) molecules from the intestinal microbiota, such as lipopolysaccharide endotoxin (LPS). In the case of Trypanosoma cruzi infection, although there is a dramatic acute immune response in the liver, we observed intrahepatic cell populations combining pro- and anti-inflammatory markers. There was loss of fully mature Kupffer cells and an increase in other myeloid cells, which are likely to include monocytes. Among dendritic cells (DCs), the cDC1 population expanded relative to the others, and these cells lost both some macrophage markers (F4/80) and immunosuppressive cytokines (IL-10, TGF-β1). In parallel, a massive T cell response occured with loss of naïve cells and increase in several post-activation subsets. However, these activated T cells expressed both markers programmed cell death protein (PD-1) and cytokines consistent with immunosuppressive function (IL-10, TGF-β1). NK and NK-T cells broadly followed the pattern of T cell activation, while TCR-γδ cells appeared to be bystanders. While no data were obtained concerning IL-2, several cell populations also synthesized IFN-γ and TNF-α, which has been linked to host defense but also to tissue injury. It therefore appears that T. cruzi exerts control over liver immunity, causing T cell activation via cDC1 but subverting multiple populations of T cells into immunosuppressive pathways. In this way, T. cruzi engages a mechanism of hepatic T cell tolerance that is familiar from liver allograft tolerance, in which activation and proliferation are followed by T cell inactivation.
Collapse
Affiliation(s)
| | - Natalia Vacani-Martins
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cynthia Machado Cascabulho
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ian Nicholas Crispe
- Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Andrea Henriques-Pons
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Belghali MY, El Moumou L, Hazime R, Brahimi M, El Marrakchi M, Belaid HA, Benali SA, Khouchani M, Ba-M'hamed S, Admou B. Phenotypic characterization of human peripheral γδT-Cell subsets in glioblastoma. Microbiol Immunol 2022; 66:465-476. [PMID: 35718749 DOI: 10.1111/1348-0421.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The anti-tumoral contribution of γδT cells depends on their activation and differentiation into effectors. This depends on different molecules and membrane receptors, which conditions their physiology. We aimed to determine the phenotypic characteristics of γδT cells in glioblastoma (GBM) according to five layers of membrane receptors. METHODS Among ten GBM cases initially enrolled, five of them who had been confirmed by pathological examination and ten healthy controls underwent phenotyping of peripheral γδT cells by flow cytometry, using the following staining: αβTCR, γδTCR, CD3, CD4, CD8, CD16, CD25, CD27, CD28, CD45, CD45RA, CD56, NKG2D, CD272(BTLA) and CD279(PD-1). RESULTS Compared to controls, our results showed no significant change in the number of γδT cells. However, we noted a decrease of double-negative (CD4- CD8- ) Tγδ cells and an increase of naive γδT cells, a lack of CD25 expression, a decrease of the expression of CD279 and a remarkable, but not significant increase in the expression of the CD27 and CD28 costimulation markers. Among γδT cell subsets, the number of Vδ2 decreased in GBM and showed no significant difference in the expression of CD16, CD56 and NKG2D. In contrast, the number of Vδ1 increased in GBM with overexpression of CD16, CD56 and NKG2D. CONCLUSION Our results showed that γδT cells are prone to adopt a pro-inflammatory profile in the GBM's context, which suggests that they might be a potential tool to consider in T cell-based immunotherapy in GBM. However, this requires additional investigation on larger sample size. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Moulay Yassine Belghali
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | | | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | - Maroua Brahimi
- Laboratory of pathology, Mohammed V Hospital, Safi, Morocco
| | - Malak El Marrakchi
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Hasna Ait Belaid
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Ait Benali
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Mouna Khouchani
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco.,Bioscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
22
|
Kolbe K, Wittner M, Hartjen P, Hüfner AD, Degen O, Ackermann C, Cords L, Stellbrink HJ, Haag F, Schulze zur Wiesch J. Inversed Ratio of CD39/CD73 Expression on γδ T Cells in HIV Versus Healthy Controls Correlates With Immune Activation and Disease Progression. Front Immunol 2022; 13:867167. [PMID: 35529864 PMCID: PMC9074873 DOI: 10.3389/fimmu.2022.867167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background γδ T cells are unconventional T cells that have been demonstrated to be crucial for the pathogenesis and potentially for the cure of HIV-1 infection. The ectonucleotidase CD39 is part of the purinergic pathway that regulates immune responses by degradation of pro-inflammatory ATP in concert with CD73. Few studies on the expression of the ectoenzymes CD73 and CD39 on human γδ T cells in HIV have been performed to date. Methods PBMC of n=86 HIV-1-infected patients were compared to PBMC of n=26 healthy individuals using 16-color flow cytometry determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 T cells in association with differentiation (CD45RA, CD28, CD27), activation and exhaustion (TIGIT, PD-1, CD38, and HLA-DR), and assessing the intracellular production of pro- and anti-inflammatory cytokines (IL-2, TGF-ß, TNF-α, Granzyme B, IL-10, IFN-γ) after in vitro stimulation with PMA/ionomycin. Results CD39 and CD73 expression on γδ T cells were inversed in HIV infection which correlated with HIV disease progression and immune activation. CD39, but not CD73 expression on γδ T cells of ART-treated patients returned to levels comparable with those of healthy individuals. Only a small subset (<1%) of γδ T cells co-expressed CD39 and CD73 in healthy or HIV-infected individuals. There were significantly more exhausted and terminally differentiated CD39+ Vδ1 T cells regardless of the disease status. Functionally, IL-10 was only detectable in CD39+ γδ T cells after in vitro stimulation in all groups studied. Viremic HIV-infected patients showed the highest levels of IL-10 production. The highest percentage of IL-10+ cells was found in the small CD39/CD73 co-expressing γδ T-cell population, both in healthy and HIV-infected individuals. Also, CD39+ Vδ2 T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all individuals regardless of the HIV status. Conclusions Our results point towards a potential immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic HIV infection that needs further investigation.
Collapse
Affiliation(s)
- Katharina Kolbe
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Melanie Wittner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
- *Correspondence: Melanie Wittner,
| | - Philip Hartjen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja-Dorothee Hüfner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|
23
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
24
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
25
|
Wang H, Chen H, Liu S, Zhang J, Lu H, Somasundaram R, Choi R, Zhang G, Ou L, Scholler J, Tian S, Dong L, Yeye G, Huang L, Connelly T, Li L, Huang A, Mitchell TC, Fan Y, June CH, Mills GB, Guo W, Herlyn M, Xu X. Costimulation of γδTCR and TLR7/8 promotes Vδ2 T-cell antitumor activity by modulating mTOR pathway and APC function. J Immunother Cancer 2021; 9:jitc-2021-003339. [PMID: 34937742 PMCID: PMC8705233 DOI: 10.1136/jitc-2021-003339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
Background Gamma delta (γδ) T cells are attractive effector cells for cancer immunotherapy. Vδ2 T cells expanded by zoledronic acid (ZOL) are the most commonly used γδ T cells for adoptive cell therapy. However, adoptive transfer of the expanded Vδ2 T cells has limited clinical efficacy. Methods We developed a costimulation method for expansion of Vδ2 T cells in PBMCs by activating γδ T-cell receptor (γδTCR) and Toll-like receptor (TLR) 7/8 using isopentenyl pyrophosphate (IPP) and resiquimod, respectively, and tested the functional markers and antitumoral effects in vitro two-dimensional two-dimensional and three-dimensional spheroid models and in vivo models. Single-cell sequencing dataset analysis and reverse-phase protein array were employed for mechanistic studies. Results We find that Vδ2 T cells expanded by IPP plus resiquimod showed significantly increased cytotoxicity to tumor cells with lower programmed cell death protein 1 (PD-1) expression than Vδ2 T cells expanded by IPP or ZOL. Mechanistically, the costimulation enhanced the activation of the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB/Akt)–the mammalian target of rapamycin (mTOR) pathway and the TLR7/8–MyD88 pathway. Resiquimod stimulated Vδ2 T-cell expansion in both antigen presenting cell dependent and independent manners. In addition, resiquimod decreased the number of adherent inhibitory antigen-presenting cells (APCs) and suppressed the inhibitory function of APCs by decreasing PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in these cells during in vitro Vδ2 T-cell expansion. Finally, we showed that human Vδ2 T cells can be expanded from PBMCs and spleen of humanized NSG mice using IPP plus resiquimod or ZOL, demonstrating that humanized mice are a promising preclinical model for studying human γδ T-cell development and function. Conclusions Vδ2 T cells expanded by IPP and resiquimod demonstrate improved anti-tumor function and have the potential to increase the efficacy of γδ T cell-based therapies.
Collapse
Affiliation(s)
- Huaishan Wang
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jie Zhang
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | | | - Robin Choi
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perlman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shifu Tian
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liyun Dong
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo Yeye
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Connelly
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ling Li
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Alexander Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Fan
- Department of Radiation Oncology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, Perlman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon B Mills
- Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Wei Guo
- Department of Biology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
27
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
29
|
Kathamuthu GR, Kumar NP, Moideen K, Menon PA, Babu S. Decreased Frequencies of Gamma/Delta T Cells Expressing Th1/Th17 Cytokine, Cytotoxic, and Immune Markers in Latent Tuberculosis-Diabetes/Pre-Diabetes Comorbidity. Front Cell Infect Microbiol 2021; 11:756854. [PMID: 34765568 PMCID: PMC8577793 DOI: 10.3389/fcimb.2021.756854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen-specific gamma-delta (γδ) T cells are important in exhibiting anti-mycobacterial immunity, but their role in latent tuberculosis (LTB) with diabetes mellitus (DM) or pre-DM (PDM) and non-DM comorbidities have not been studied. Thus, we have studied the baseline, mycobacterial (PPD, WCL), and positive control antigen-stimulated γδ T cells expressing Th1 (IFNγ, TNFα, IL-2) and Th17 (IL-17A, IL-17F, IL-22) cytokine as well as cytotoxic (perforin [PFN], granzyme [GZE B], granulysin [GNLSN]) and immune (GMCSF, PD-1, CD69) markers in LTB (DM, PDM, NDM) comorbidities by flow cytometry. In the unstimulated (UNS) condition, we did not observe any significant difference in the frequencies of γδ T cells expressing Th1 and Th17 cytokine, cytotoxic, and immune markers. In contrast, upon PPD antigen stimulation, the frequencies of γδ T cells expressing Th1 (IFNγ, TNFα) and Th17 (IL-17F, IL-22) cytokine, cytotoxic (PFN, GZE B, GNLSN), and immune (CD69) markers were significantly diminished in LTB DM and/or PDM individuals compared to LTB NDM individuals. Similarly, upon WCL antigen stimulation, the frequencies of γδ T cells expressing Th1 (TNFα) and Th17 (IL-17A, IL-22) cytokine, cytotoxic (PFN), and immune (PD-1, CD69) markers were significantly diminished in LTB DM and/or PDM individuals compared to LTB NDM individuals. Finally, upon P/I stimulation we did not observe any significant difference in the γδ T cell frequencies expressing cytokine, cytotoxic, and immune markers between the study populations. The culture supernatant levels of IFNγ, TNFα, and IL-17A cytokines were significantly increased in LTB DM and PDM after stimulation with Mtb antigens compared to LTB NDM individuals. Therefore, diminished γδ T cells expressing cytokine, cytotoxic, and other immune markers and elevated levels of cytokines in the supernatants is a characteristic feature of LTB PDM/DM co-morbidities.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Nathella Pavan Kumar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Pradeep A Menon
- Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
T Cell Subsets and Natural Killer Cells in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms222212190. [PMID: 34830072 PMCID: PMC8623596 DOI: 10.3390/ijms222212190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by hepatic accumulation of excess lipids. T cells are commonly classified into various subsets based on their surface markers including T cell receptors, type of antigen presentation and pathophysiological functions. Several studies have implicated various T cell subsets and natural killer (NK) cells in the progression of NAFLD. While NK cells are mainly components of the innate hepatic immune system, the majority of T cell subsets can be part of both the adaptive and innate systems. Several studies have reported that various stages of NAFLD are accompanied by the accumulation of distinct T cell subsets and NK cells with different functions and phenotypes observed usually resulting in proinflammatory effects. More importantly, the overall stimulation of the intrahepatic T cell subsets is directly influenced by the homeostasis of the gut microbiota. Similarly, NK cells have been found to accumulate in the liver in response to pathogens and tumors. In this review, we discussed the nature and pathophysiological roles of T cell subsets including γδ T cells, NKT cells, Mucosal-associated invariant T (MAIT) cells as well as NK cells in NAFLD.
Collapse
|
31
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
32
|
Maurice NJ, Taber AK, Prlic M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:455-462. [PMID: 33468558 DOI: 10.4049/jimmunol.2000937] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Immunology, University of Washington, Seattle, WA 98109; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
33
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Choi H, Lee Y, Hur G, Lee SE, Cho HI, Sohn HJ, Cho BS, Kim HJ, Kim TG. γδ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with γδ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy 2021; 23:908-917. [PMID: 34312069 DOI: 10.1016/j.jcyt.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Immunotherapeutic approaches using γδ T cells have emerged as the function of γδ T cells in tumor surveillance and clearance has been discovered. In vitro expansion methods of γ9δ2 T cells have been based on phosphoantigens and cytokines, but expansion methods using feeder cells to generate larger numbers of γδ T cells have also been studied recently. However, there are no studies that directly compare γδ T cells cultured with phosphoantigens with those cultured with feeder cells. Therefore, this study aimed to compare the expansion, characteristics and effector functions of γδ T cells stimulated with K562-based artificial antigen-presenting cells (aAPCs) (aAPC-γδ T cells) and γδ T cells stimulated with only zoledronic acid (ZA) (ZA-γδ T cells). METHODS Peripheral blood mononuclear cells were stimulated with ZA for 7 days, and aAPC-γδ T cells were stimulated weekly with K562-based aAPCs expressing CD32, CD80, CD83, 4-1BBL, CD40L and CD70, whereas ZA-γδ T cells were stimulated with only IL-2. Cultured γδ T cells were analyzed by flow cytometry for the expression of co-stimulatory molecules, activating receptors and checkpoint inhibitors. Differentially expressed gene (DEG) analysis was also performed to determine the difference in gene expression between aAPC-γδ T cells and ZA-γδ T cells. In vitro cytotoxicity assay was performed with calcein AM release assay, and in vivo anti-tumor effect was compared using a U937 xenograft model. RESULTS Fold expansion on day 21 was 690.7 ± 413.1 for ZA-γδ T cells and 1415.2 ± 1016.8 for aAPC- γδ T cells. Moreover, aAPC-γδ T cells showed continuous growth, whereas ZA-γδ T cells showed a decline in growth after day 21. The T-cell receptor Vγ9+δ2+ percentages (mean ± standard deviation) on day 21 were 90.0 ± 2.7% and 87.0 ± 4.5% for ZA-γδ T cells and aAPC-γδ T cells, respectively. CD25 and CD86 expression was significantly higher in aAPC-γδ T cells. In DEG analysis, aAPC-γδ T cells and ZA-γδ T cells formed distinct clusters, and aAPC-γδ T cells showed upregulation of genes associated with metabolism and cytokine pathways. In vitro cytotoxicity revealed superior anti-tumor effects of aAPC-γδ T cells compared with ZA-γδ T cells on Daudi, Raji and U937 cell lines. In addition, in the U937 xenograft model, aAPC-γδ T-cell treatment increased survival, and a higher frequency of aAPC-γδ T cells was shown in bone marrow compared with ZA-γδ T cells. CONCLUSIONS Overall, this study demonstrates that aAPC-γδ T cells show long-term proliferation, enhanced activation and anti-tumor effects compared with ZA-γδ T cells and provides a basis for using aAPC-γδ T cells in further studies, including clinical applications and genetic engineering of γδ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gaeun Hur
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Eun Lee
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Il Cho
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Erratum: Systemic Characterization of Novel Immune Cell Phenotypes in Recurrent Pregnancy Loss. Front Immunol 2021; 12:722805. [PMID: 34249023 PMCID: PMC8262454 DOI: 10.3389/fimmu.2021.722805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
|
36
|
Giri S, Lal G. Differentiation and functional plasticity of gamma-delta (γδ) T cells under homeostatic and disease conditions. Mol Immunol 2021; 136:138-149. [PMID: 34146759 DOI: 10.1016/j.molimm.2021.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute <5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
37
|
Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, Ruffieux H, De Sa A, Huhn O, Morgan MD, Gerber PP, Wills MR, Baker S, Calero-Nieto FJ, Doffinger R, Dougan G, Elmer A, Goodfellow IG, Gupta RK, Hosmillo M, Hunter K, Kingston N, Lehner PJ, Matheson NJ, Nicholson JK, Petrunkina AM, Richardson S, Saunders C, Thaventhiran JED, Toonen EJM, Weekes MP, Göttgens B, Toshner M, Hess C, Bradley JR, Lyons PA, Smith KGC. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 2021; 54:1257-1275.e8. [PMID: 34051148 PMCID: PMC8125900 DOI: 10.1016/j.immuni.2021.05.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023]
Abstract
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.
Collapse
Affiliation(s)
- Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Aloka De Sa
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Oisín Huhn
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael D Morgan
- Cancer Research UK - Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kelvin Hunter
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nathalie Kingston
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge, UK
| | - Jeremy K Nicholson
- The Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Western Australia WA 6150, Australia
| | - Anna M Petrunkina
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Caroline Saunders
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James E D Thaventhiran
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK
| | - Erik J M Toonen
- R&D Department, Hycult Biotech, 5405 PD Uden, the Netherlands
| | - Michael P Weekes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland; Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
38
|
Chen ELY, Lee CR, Thompson PK, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Ontogenic timing, T cell receptor signal strength, and Notch signaling direct γδ T cell functional differentiation in vivo. Cell Rep 2021; 35:109227. [PMID: 34107257 PMCID: PMC8256923 DOI: 10.1016/j.celrep.2021.109227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | - David L Wiest
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michele K Anderson
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Holmen Olofsson G, Idorn M, Carnaz Simões AM, Aehnlich P, Skadborg SK, Noessner E, Debets R, Moser B, Met Ö, thor Straten P. Vγ9Vδ2 T Cells Concurrently Kill Cancer Cells and Cross-Present Tumor Antigens. Front Immunol 2021; 12:645131. [PMID: 34149689 PMCID: PMC8208807 DOI: 10.3389/fimmu.2021.645131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The human Vγ9Vδ2 T cell is a unique cell type that holds great potential in immunotherapy of cancer. In particular, the therapeutic potential of this cell type in adoptive cell therapy (ACT) has gained interest. In this regard optimization of in vitro expansion methods and functional characterization is desirable. We show that Vγ9Vδ2 T cells, expanded in vitro with zoledronic acid (Zometa or ZOL) and Interleukin-2 (IL-2), are efficient cancer cell killers with a trend towards increased killing efficacy after prolonged expansion time. Thus, Vγ9Vδ2 T cells expanded for 25 days in vitro killed prostate cancer cells more efficiently than Vγ9Vδ2 T cells expanded for 9 days. These data are supported by phenotype characteristics, showing increased expression of CD56 and NKG2D over time, reaching above 90% positive cells after 25 days of expansion. At the early stage of expansion, we demonstrate that Vγ9Vδ2 T cells are capable of cross-presenting tumor antigens. In this regard, our data show that Vγ9Vδ2 T cells can take up tumor-associated antigens (TAA) gp100, MART-1 and MAGE-A3 - either as long peptide or recombinant protein - and then present TAA-derived peptides on the cell surface in the context of HLA class I molecules, demonstrated by their recognition as targets by peptide-specific CD8 T cells. Importantly, we show that cross-presentation is impaired by the proteasome inhibitor lactacystin. In conclusion, our data indicate that Vγ9Vδ2 T cells are broadly tumor-specific killers with the additional ability to cross-present MHC class I-restricted peptides, thereby inducing or supporting tumor-specific αβTCR CD8 T cell responses. The dual functionality is dynamic during in vitro expansion, yet, both functions are of interest to explore in ACT for cancer therapy.
Collapse
Affiliation(s)
- Gitte Holmen Olofsson
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Manja Idorn
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ana Micaela Carnaz Simões
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Signe Koggersbøl Skadborg
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Elfriede Noessner
- Helmholtz Zentrum München, Germany Research Center for Environmental Health, Immunoanalytics, Research Group Tissue control of immunocytes, Munich, Germany
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, Netherlands
| | - Bernhard Moser
- Division of Infection & Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Özcan Met
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Liu H, Lin XX, Huang XB, Huang DH, Song S, Chen YJ, Tang J, Tao D, Yin ZN, Mor G, Liao AH. Systemic Characterization of Novel Immune Cell Phenotypes in Recurrent Pregnancy Loss. Front Immunol 2021; 12:657552. [PMID: 34122414 PMCID: PMC8195235 DOI: 10.3389/fimmu.2021.657552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a disturbing disease in women, and 50% of RPL is reported to be associated with immune dysfunction. Most previous studies of RPL focused mainly on the relationship between RPL and either T cells or natural killer (NK) cells in peripheral blood and the decidua; few studies presented the systemic profiles of the peripheral immune cell subsets in RPL women. Herein, we simultaneously detected 63 immune cell phenotypes in the peripheral blood from nonpregnant women (NPW), women with a history of normal pregnancy (NP) and women with a history of RPL (RPL) by multi-parameter flow cytometry. The results demonstrated that the percentages of naïve CD4+ T cells, central memory CD4+ T cells, naïve CD8+ T cells, mature NK cells, Vδ1+ T cells and the ratio of Vδ1+ T cells/Vδ2+ T cells were significantly higher in the RPL group than those in the NPW and NP groups, whereas the percentages of terminal differentiated CD4+ T cells, effective memory CD4+ T cells, immature NK cells and Vδ2+ T cells were significantly lower in the RPL group than those in the NPW and NP groups. Interestingly, we found that peripheral T helper (TPH) cells were more abundant in the NPW group than in the NP and RPL groups. In addition, we also determined the 5th percentile lower limit and 95th percentile upper limit of the significantly changed immunological parameters based on the files of the NPW group. Taken together, this is the first study to simultaneously characterize the multiple immune cell subsets in the peripheral blood at a relatively large scale in RPL, which might provide a global readout of the immune status for clinicians to identify clinically-relevant immune disorders and guide them to make clear and individualized advice and treatment plans.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Hui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Song
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Jiao Chen
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Tang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ding Tao
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhi-Nan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Signatures of immune dysfunction in HIV and HCV infection share features with chronic inflammation in aging and persist after viral reduction or elimination. Proc Natl Acad Sci U S A 2021; 118:2022928118. [PMID: 33811141 PMCID: PMC8040665 DOI: 10.1073/pnas.2022928118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is thought to be a major cause of morbidity and mortality in aging, but whether similar mechanisms underlie dysfunction in infection-associated chronic inflammation is unclear. Here, we profiled the immune proteome, and cellular composition and signaling states in a cohort of aging individuals versus a set of HIV patients on long-term antiretroviral therapy therapy or hepatitis C virus (HCV) patients before and after sofosbuvir treatment. We found shared alterations in aging-associated and infection-associated chronic inflammation including T cell memory inflation, up-regulation of intracellular signaling pathways of inflammation, and diminished sensitivity to cytokines in lymphocytes and myeloid cells. In the HIV cohort, these dysregulations were evident despite viral suppression for over 10 y. Viral clearance in the HCV cohort partially restored cellular sensitivity to interferon-α, but many immune system alterations persisted for at least 1 y posttreatment. Our findings indicate that in the HIV and HCV cohorts, a broad remodeling and degradation of the immune system can persist for a year or more, even after the removal or drastic reduction of the pathogen load and that this shares some features of chronic inflammation in aging.
Collapse
|
42
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
43
|
Barragué H, Fontaine J, Abravanel F, Mauré E, Péron JM, Alric L, Dubois M, Izopet J, Champagne E. Mobilization of γδ T Cells and IL-10 Production at the Acute Phase of Hepatitis E Virus Infection in Cytomegalovirus Carriers. THE JOURNAL OF IMMUNOLOGY 2021; 206:1027-1038. [PMID: 33483348 DOI: 10.4049/jimmunol.2000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Alterations in the γδ T cell compartment have been reported in immunocompromised individuals infected with hepatitis E virus (HEV)-g3. We now report the analysis of blood γδ T cells from acutely HEV-infected individuals in the absence of immunosuppression. In these patients, non-Vδ2 (ND2) γδ T cells outnumbered otherwise predominant Vδ2 cells selectively in human CMV (HCMV)-seropositive patients and were higher than in HCMVpos controls, mimicking HCMV reactivation, whereas their serum was PCR-negative for HCMV. Stimulation of their lymphocytes with HEV-infected hepatocarcinoma cells led to an HEV-specific response in γδ subsets of HCMVpos individuals. HEV infection was associated with a lowered expression of TIGIT, LAG-3, and CD160 immune checkpoint markers on ND2 effector memory cells in HCMVneg but not in HCMVpos HEV patients. γδ cell lines, predominantly ND2, were generated from patients after coculture with hepatocarcinoma cells permissive to HEV and IL-2/12/18. Upon restimulation with HEV-infected or uninfected cells and selected cytokines, these cell lines produced IFN-γ and IL-10, the latter being induced by IL-12 in IFN-γ-producing cells and upregulated by HEV and IL-18. They were also capable of suppressing the proliferation of CD3/CD28-activated CD4 cells in transwell experiments. Importantly, IL-10 was detected in the plasma of 10 of 10 HCMVpos HEV patients but rarely in controls or HCMVneg HEV patients, implying that γδ cells are probably involved in IL-10 production at the acute phase of infection. Our data indicate that HEV mobilizes a pool of ND2 memory cells in HCMV carriers, promoting the development of an immunoregulatory environment.
Collapse
Affiliation(s)
- Hugo Barragué
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jessica Fontaine
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Florence Abravanel
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Emilie Mauré
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jean-Marie Péron
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Laurent Alric
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Martine Dubois
- CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Jacques Izopet
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Eric Champagne
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France; .,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| |
Collapse
|
44
|
Wang Q, Sun Q, Chen Q, Li H, Liu D. Expression of CD27 and CD28 on γδ T cells from the peripheral blood of patients with allergic rhinitis. Exp Ther Med 2020; 20:224. [PMID: 33193838 PMCID: PMC7646692 DOI: 10.3892/etm.2020.9354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The costimulatory receptors CD27 and CD28 have pivotal and non-redundant roles in the activation and differentiation of γδ T-cells. However, the roles of CD27 and CD28 on γδ T-cells in allergic rhinitis (AR) have remained elusive. The aim of the present study was to investigate the expression of CD27 and CD28 on γδ T cells in patients with AR. Peripheral blood mononuclear cells from 14 patients with AR and 12 healthy subjects were isolated and analyzed by flow cytometry to determine the percentage of γδ T cells and regulatory T cells (Tregs), and the expression of IFN-γ, IL-17A, CD27 and CD28 on γδ T cells. The correlations between the expression of CD27 and CD28, and the percentages of IFN-γ+ and IL-17A+ γδ T-cell subsets and Tregs in AR were analyzed. It was observed that the percentages of γδ T cells, and the IL-17A+, CD27-CD28+ and CD27-CD28- γδ T-cell subsets were significantly increased, while the percentages of Tregs and IFN-γ+ and CD27+CD28+ γδ T-cell subsets were significantly decreased in AR. Of note, the percentage of CD27+CD28+ γδ T-cell subsets was positively correlated with that of the IFN-γ+ γδ T-cell subset and the percentage of the CD27-CD28+ γδ T-cell subset was positively correlated with that of the IL-17A+ γδ T-cell subset. Furthermore, the percentages of γδ T cells and the CD27-CD28+ γδ T-cell subset were both negatively correlated with that of Tregs. Therefore, the results of the present study indicate that CD27 and CD28 may be the key signals for activation of different γδ T-cell subsets and may contribute to the immune regulatory function of γδ T cells in the peripheral blood of patients with AR.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Qun Sun
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Qiguo Chen
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Hao Li
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Ding Liu
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| |
Collapse
|
45
|
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020; 17:174. [PMID: 33183352 PMCID: PMC7659406 DOI: 10.1186/s12985-020-01449-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together. Upon infection with influenza virus, production of cytokines and chemokines including CCL3, CCL4, and CCL5 from respiratory epithelium recruits γδ T cells at the site of infection in a CCR5 receptor-dependent fashion. Next, γδ T cells become activated in response to influenza virus infection and produce large amounts of proinflammatory cytokines, especially IL-17A. Regardless of γδ T cells' roles in triggering the adaptive arm of the immune system, they also protect the respiratory epithelium by cytolytic and non-cytolytic antiviral mechanisms, as well as by enhancing neutrophils and natural killer cells recruitment to the infection site. CONCLUSION In this review, we explored varied strategies of γδ T cells in defense to influenza virus infection and how they can potentially provide balanced protective immune responses against infected cells. The results may provide a potential window for the incorporation of intact or engineered γδ T cells for developing novel antiviral approaches or for immunotherapeutic purposes.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehran Mahooti
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
46
|
Story JY, Zoine JT, Burnham RE, Hamilton JAG, Spencer HT, Doering CB, Raikar SS. Bortezomib enhances cytotoxicity of ex vivo-expanded gamma delta T cells against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Cytotherapy 2020; 23:12-24. [PMID: 33168453 DOI: 10.1016/j.jcyt.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
Engagement between the natural killer group 2, member D (NKG2D) receptor and its ligands is one of the main mechanisms used by immune cells to target stressed cells for cell death. NKG2D ligands are known markers of cellular stress and are often upregulated on tumor cells. Certain drugs can further increase NKG2D ligand levels, thereby making tumor cells more susceptible to immune cell detection and destruction. However, the effectiveness of this approach appears to be limited with drug treatment alone, possibly due to immune dysregulation in the setting of malignancies. We hypothesized that a more effective approach would be a combination of NKG2D ligand-inducing drugs, such as the proteasome inhibitor bortezomib, and ex vivo-expanded peripheral blood γδ T cells (i.e., Vγ9Vδ2 T cells). Acute myeloid leukemia (AML) is a high-risk hematologic malignancy, and treatment has shown limited benefit with the addition of bortezomib to standard chemotherapy regimens. Two AML cells lines, Nomo-1 and Kasumi-1, were treated with increasing concentrations of bortezomib, and changes in NKG2D ligand expression were measured. Bortezomib treatment significantly increased expression of the NKG2D ligand UL16 binding protein (ULBP) 2/5/6 in both cell lines. Vγ9Vδ2 T cells were expanded and isolated from peripheral blood of healthy donors to generate a final cellular product with a mean of 96% CD3+/γδ T-cell receptor-positive cells. Combination treatment of the AML cell lines with γδ T cells and bortezomib resulted in significantly greater cytotoxicity than γδ T cells alone, even at lower effector-to-target ratios. Based on the positive results against AML and the generalizable mechanism of this combination approach, it was also tested against T-cell acute lymphoblastic leukemia (T-ALL), another high-risk leukemia. Similarly, bortezomib increased ULBP 2/5/6 expression in T-ALL cell lines, Jurkat and MOLT-4 and improved the cytotoxicity of γδ T cells against each line. Collectively, these results show that bortezomib enhances γδ T-cell-mediated killing of both AML and T-ALL cells in part through increased NKG2D ligand-receptor interaction. Furthermore, proof-of-concept for the combination of ex vivo-expanded γδ T cells with stress ligand-inducing drugs as a therapeutic platform for high-risk leukemias is demonstrated.
Collapse
Affiliation(s)
- Jamie Y Story
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jaquelyn T Zoine
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rebecca E Burnham
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jamie A G Hamilton
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Christopher B Doering
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
47
|
Castro CD, Boughter CT, Broughton AE, Ramesh A, Adams EJ. Diversity in recognition and function of human γδ T cells. Immunol Rev 2020; 298:134-152. [PMID: 33136294 DOI: 10.1111/imr.12930] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αβ T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Augusta E Broughton
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Kaminski H, Marsères G, Cosentino A, Guerville F, Pitard V, Fournié JJ, Merville P, Déchanet-Merville J, Couzi L. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol Rev 2020; 298:264-288. [PMID: 33091199 DOI: 10.1111/imr.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αβ and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Marsères
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Anaïs Cosentino
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Florent Guerville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,CHU Bordeaux, Pôle de gérontologie, Bordeaux, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Merville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Lionel Couzi
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
49
|
Kumarasingha R, Ioannidis LJ, Abeysekera W, Studniberg S, Wijesurendra D, Mazhari R, Poole DP, Mueller I, Schofield L, Hansen DS, Eriksson EM. Transcriptional Memory-Like Imprints and Enhanced Functional Activity in γδ T Cells Following Resolution of Malaria Infection. Front Immunol 2020; 11:582358. [PMID: 33154754 PMCID: PMC7591758 DOI: 10.3389/fimmu.2020.582358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022] Open
Abstract
γδ T cells play an essential role in the immune response to many pathogens, including Plasmodium. However, long-lasting effects of infection on the γδ T cell population still remain inadequately understood. This study focused on assessing molecular and functional changes that persist in the γδ T cell population following resolution of malaria infection. We investigated transcriptional changes and memory-like functional capacity of malaria pre-exposed γδ T cells using a Plasmodiumchabaudi infection model. We show that multiple genes associated with effector function (chemokines, cytokines and cytotoxicity) and antigen-presentation were upregulated in P. chabaudi-exposed γδ T cells compared to γδ T cells from naïve mice. This transcriptional profile was positively correlated with profiles observed in conventional memory CD8+ T cells and was accompanied by enhanced reactivation upon secondary encounter with Plasmodium-infected red blood cells in vitro. Collectively our data demonstrate that Plasmodium exposure result in "memory-like imprints" in the γδ T cell population and also promotes γδ T cells that can support antigen-presentation during subsequent infections.
Collapse
Affiliation(s)
- Rasika Kumarasingha
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J. Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Studniberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Dinidu Wijesurendra
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ramin Mazhari
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel P. Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Louis Schofield
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Diana S. Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M. Eriksson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Joalland N, Scotet E. Emerging Challenges of Preclinical Models of Anti-tumor Immunotherapeutic Strategies Utilizing Vγ9Vδ2 T Cells. Front Immunol 2020; 11:992. [PMID: 32528477 PMCID: PMC7256197 DOI: 10.3389/fimmu.2020.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/02/2022] Open
Abstract
Despite recent advances, the eradication of cancers still represents a challenge which justifies the exploration of additional therapeutic strategies such as immunotherapies, including adoptive cell transfers. Human peripheral Vγ9Vδ2 T cells, which constitute a major transitional immunity lymphocyte subset, represent attractive candidates because of their broad and efficient anti-tumor functions, as well as their lack of alloreactivity and easy handling. Vγ9Vδ2 T cells act like immune cell stress sensors that can, in a tightly controlled manner but through yet incompletely understood mechanisms, detect subtle changes of levels of phosphorylated metabolites of isoprenoid synthesis pathways. Consequently, various anti-tumor immunotherapeutic strategies have been proposed to enhance their reactivity and cytotoxicity, as well as to reduce the deleterious events. In this review, we expose these advances based on different strategies and their validation in preclinical models. Importantly, we next discuss advantages and limits of each approach, by highlighting the importance of the use of relevant preclinical model for evaluation of safety and efficacy. Finally, we propose novel perspectives and strategies that should be explored using these models for therapeutic improvements.
Collapse
Affiliation(s)
- Noémie Joalland
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|