1
|
Nowak-Kiczmer M, Niedziela N, Czuba ZP, Sowa P, Wierzbicki K, Lubczyński M, Adamczyk-Sowa M. Assessment of serum inflammatory parameters in RRMS and SPMS patients. Neurol Res 2024; 46:495-504. [PMID: 38697017 DOI: 10.1080/01616412.2024.2337503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease. Patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) differ in their responses to treatment; therefore, the correct diagnosis of the particular type of MS is crucial, and biomarkers that can differentiate between the forms of MS need to be identified. The aim of this study was to compare the levels of inflammatory parameters in serum samples from patients with RRMS and SPMS. METHODS The study group consisted of 60 patients with diagnosed MS. The patients were divided into RRMS and SPMS groups. In the RRMS patients, the usage of disease-modifying treatment was included in our analysis. The serum levels of inflammatory parameters were evaluated. RESULTS The serum levels of BAFF, gp130 and osteopontin were significantly higher in SPMS patients than in RRMS patients. The serum levels of BAFF correlated with age in both RRMS and SPMS patients. The serum levels of MMP-2 were significantly higher in RRMS patients than in SPMS patients and correlated with the number of past relapses. The serum levels of IL-32 were significantly higher in RRMS treatment-naïve patients than in RRMS patients treated with disease-modifying therapy. DISCUSSION Significant differences were found in BAFF, gp130, MMP-2 and osteopontin levels between RRMS and SPMS patients. Serum IL-32 levels were statistically lower in RRMS patients treated with disease-modifying therapy than in treatment-naïve patients.
Collapse
Affiliation(s)
- Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Lubczyński
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
2
|
Wang X, Xiong W, Li M, Wu L, Zhang Y, Zhu C, Lin W, Chen S, Huang H. Role of inflammatory cytokine in mediating the effect of plasma lipidome on epilepsy: a mediation Mendelian randomization study. Front Neurol 2024; 15:1388920. [PMID: 38872823 PMCID: PMC11169836 DOI: 10.3389/fneur.2024.1388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background Epilepsy is one of the most prevalent serious brain disorders globally, impacting over 70 million individuals. Observational studies have increasingly recognized the impact of plasma lipidome on epilepsy. However, establishing a direct causal link between plasma lipidome and epilepsy remains elusive due to inherent confounders and the complexities of reverse causality. This study aims to investigate the causal relationship between specific plasma lipidome and epilepsy, along with their intermediary mediators. Methods We conducted a two-sample Mendelian randomization (MR) and mediation MR analysis to evaluate the causal effects of 179 plasma lipidomes and epilepsy, with a focus on the inflammatory cytokine as a potential mediator based on the genome-wide association study. The primary methodological approach utilized inverse variance weighting, complemented by a range of other estimators. A set of sensitivity analyses, including Cochran's Q test, I 2 statistics, MR-Egger intercept test, MR-PRESSO global test and leave-one-out sensitivity analyses was performed to assess the robustness, heterogeneity and horizontal pleiotropy of results. Results Our findings revealed a positive correlation between Phosphatidylcholine (18:1_18:1) levels with epilepsy risk (OR = 1.105, 95% CI: 1.036-1.178, p = 0.002). Notably, our mediation MR results propose Tumor necrosis factor ligand superfamily member 12 levels (TNFSF12) as a mediator of the relationship between Phosphatidylcholine (18,1_18:1) levels and epilepsy risk, explaining a mediation proportion of 4.58% [mediation effect: (b = 0.00455, 95% CI: -0.00120-0.01030), Z = 1.552]. Conclusion Our research confirms a genetic causal relationship between Phosphatidylcholine (18:1_18:1) levels and epilepsy, emphasizing the potential mediating role of TNFSF12 and provide valuable insights for future clinical investigations into epilepsy.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenting Xiong
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Man Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shenggen Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Mo W, Cui Z, Zhao J, Xian X, Huang M, Liu J. The predictive value of TNF family for pulmonary tuberculosis: a pooled causal effect analysis of multiple datasets. Front Immunol 2024; 15:1398403. [PMID: 38835752 PMCID: PMC11148272 DOI: 10.3389/fimmu.2024.1398403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Despite extensive research on the relationship between pulmonary tuberculosis (PTB) and inflammatory factors, more robust causal evidence has yet to emerge. Therefore, this study aims to screen for inflammatory proteins that may contribute to the susceptibility to PTB in different populations and to explain the diversity of inflammatory and immune mechanisms of PTB in different ethnicity. Methods The inverse variance weighted (IVW) model of a two-sample Mendelian Randomization (MR) study was employed to conduct causal analysis on data from a genome-wide association study (GWAS). This cohort consisting PTB GWAS datasets from two European and two East Asian populations, as well as 91 human inflammatory proteins collected from 14,824 participants. Colocalization analysis aimed to determine whether the input inflammatory protein and PTB shared the same causal single nucleotide polymorphisms (SNPs) variation within the fixed region, thereby enhancing the robustness of the MR Analysis. Meta-analyses were utilized to evaluate the combined causal effects among different datasets. Results In this study, we observed a significant negative correlation between tumor necrosis factor-beta levels (The alternative we employ is Lymphotoxin-alpha, commonly referred to as LT) (P < 0.05) and tumor necrosis factor receptor superfamily member 9 levels (TNFRSF9) (P < 0.05). These two inflammatory proteins were crucial protective factors against PTB. Additionally, there was a significant positive correlation found between interleukin-20 receptor subunit alpha levels (IL20Ra) (P < 0.05), which may elevate the risk of PTB. Colocalization analysis revealed that there was no overlap in the causal variation between LT and PTB SNPs. A meta-analysis further confirmed the significant combined effect of LT, TNFRSF9, and IL20Ra in East Asian populations (P < 0.05). Conclusions Levels of specific inflammatory proteins may play a crucial role in triggering an immune response to PTB. Altered levels of LT and TNFRSF9 have the potential to serve as predictive markers for PTB development, necessitating further clinical validation in real-world settings to ascertain the impact of these inflammatory proteins on PTB.
Collapse
Affiliation(s)
- Wenxiu Mo
- School of Public Health and Management, Youjiang Medical University for Nationalities, Baise, China
| | - Zhezhe Cui
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Jingming Zhao
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Xiaomin Xian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Minying Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, China
| | - Jun Liu
- Department of Neurosurgery, Liuzhou People’s Hospital, Liuzhou, China
| |
Collapse
|
4
|
Bitterli T, Schmid D, Ettinger L, Krupkova O, Bach FC, Tryfonidou MA, Meij BP, Pozzi A, Steffen F, Wuertz‐Kozak K, Smolders LA. Targeted screening of inflammatory mediators in spontaneous degenerative disc disease in dogs reveals an upregulation of the tumor necrosis superfamily. JOR Spine 2024; 7:e1292. [PMID: 38222814 PMCID: PMC10782068 DOI: 10.1002/jsp2.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Background The regulation of inflammatory mediators in the degenerating intervertebral disc (IVD) and corresponding ligamentum flavum (LF) is a topic of emerging interest. The study aimed to investigate the expression of a broad array of inflammatory mediators in the degenerated LF and IVD using a dog model of spontaneous degenerative disc disease (DDD) to determine potential treatment targets. Methods LF and IVD tissues were collected from 22 normal dogs (Pfirrmann grades I and II) and 18 dogs affected by DDD (Pfirrmann grades III and IV). A qPCR gene array was used to investigate the expression of 80 inflammatory genes for LF and IVD tissues, whereafter targets of interest were investigated in additional tissue samples using qPCR, western blot (WB), and immunohistochemistry. Results Tumor necrosis factor superfamily (TNFSF) signaling was identified as a regulated pathway in DDD, based on the significant regulation (n-fold ± SD) of various TNFSF members in the degenerated IVD, including nerve growth factor (NGF; -8 ± 10), CD40LG (464 ± 442), CD70 (341 ± 336), TNFSF Ligand 10 (9 ± 8), and RANKL/TNFSF Ligand 11 (85 ± 74). In contrast, TNFSF genes were not significantly affected in the degenerated LF compared to the control LF. Protein expression of NGF (WB) was significantly upregulated in both the degenerated LF (4.4 ± 0.5) and IVD (11.3 ± 5.6) compared to the control group. RANKL immunopositivity was significantly upregulated in advanced stages of degeneration (Thompson grades IV and V) in the nucleus pulposus and annulus fibrosus of the IVD, but not in the LF. Conclusions DDD involves a significant upregulation of various TNFSF members, with tissue-specific expression profiles in LF and IVD tissues. The differential involvement of TNFSF members within multiple spinal tissues from the same individual provides new insights into the inflammatory processes involved in DDD and may provide a basis to formulate hypotheses for the determination of potential treatment targets.
Collapse
Affiliation(s)
- Thomas Bitterli
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - David Schmid
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Ladina Ettinger
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Olga Krupkova
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Spine SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of Basel & University Hospital Basel, Tissue EngineeringBaselSwitzerland
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Antonio Pozzi
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Frank Steffen
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Karin Wuertz‐Kozak
- Institute for Biomechanics, ETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
- Schön Clinic Munich Harlaching, Spine CenterAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria)MunichGermany
| | - Lucas A. Smolders
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
6
|
Nathani A, Sun L, Khan I, Aare M, Bagde A, Li Y, Singh M. Combined Role of Interleukin-15 Stimulated Natural Killer Cell-Derived Extracellular Vesicles and Carboplatin in Osimertinib-Resistant H1975 Lung Cancer Cells with EGFR Mutations. Pharmaceutics 2024; 16:83. [PMID: 38258094 PMCID: PMC10821370 DOI: 10.3390/pharmaceutics16010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis, and atomic force microscopy imaging revealed vesicles with a spherical form and sizes meeting the criteria of exosomal EVs. Further, Western blot studies demonstrated the presence of regular EV markers along with specific NK markers (perforin and granzyme). EVs were also characterized by proteomic analysis, which demonstrated that EVs had proteins for natural killer cell-mediated cytotoxicity (Granzyme B) and T cell activation (perforin and plastin-2). Gene oncology analysis showed that these differentially expressed proteins are involved in programmed cell death and positive regulation of cell death. Further, isolated NK-EVs were cytotoxic to H1975R cells in vitro in 2D and 3D cell cultures. CBP's IC50 was reduced by approximately in 2D and 3D cell cultures when combined with NK-EVs. The EVs were then combined with CBP and administered by i.p. route to H1975R tumor xenografts, and a significant reduction in tumor volume in vivo was observed. Our findings show for the first time that NK-EVs target the PD-L1/PD-1 immunological checkpoint to induce apoptosis and anti-inflammatory response by downregulation of SOD2, PARP, BCL2, SET, NF-κB, and TGF-ß. The ability to isolate functional NK-EVs on a large scale and use them with platinum-based drugs may lead to new clinical applications. The results of the present study suggest the possibility of the combination of NK-cell-derived EVs and CBP as a viable immunochemotherapeutic strategy for resistant cancers.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (I.K.); (M.A.); (A.B.)
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (I.K.); (M.A.); (A.B.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (I.K.); (M.A.); (A.B.)
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (I.K.); (M.A.); (A.B.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (I.K.); (M.A.); (A.B.)
| |
Collapse
|
7
|
Sævik ÅB, Ueland G, Åkerman AK, Methlie P, Quinkler M, Jørgensen AP, Höybye C, Debowska AWJ, Nedrebø BG, Dahle AL, Carlsen S, Tomkowicz A, Sollid ST, Nermoen I, Grønning K, Dahlqvist P, Grimnes G, Skov J, Finnes T, Valland SF, Wahlberg J, Holte SE, Kämpe O, Bensing S, Husebye ES, Øksnes M. Altered biomarkers for cardiovascular disease and inflammation in autoimmune Addison's disease - a cross-sectional study. Eur J Endocrinol 2023; 189:438-447. [PMID: 37807083 DOI: 10.1093/ejendo/lvad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Increased prevalence of cardiovascular disease has been reported in autoimmune Addison's disease (AAD), but pathomechanisms are poorly understood. DESIGN Cross-sectional study. METHODS We compared serum levels of 177 cardiovascular and inflammatory biomarkers in 43 patients with AAD at >18-h glucocorticoid withdrawal and 43 matched controls, overall and stratified for sex. Biomarker levels were correlated with the frequency of adrenal crises and quality of life (QoL) by AddiQoL-30. Finally, we investigated changes in biomarker levels following 250 µg tetracosactide injection in patients without residual adrenocortical function (RAF) to explore glucocorticoid-independent effects of high ACTH. RESULTS Nineteen biomarkers significantly differed between patients with AAD and controls; all but 1 (ST1A1) were higher in AAD. Eight biomarkers were significantly higher in female patients compared with controls (IL6, MCP1, GAL9, SPON2, DR4, RAGE, TNFRSF9, and PGF), but none differed between male patients and controls. Levels of RAGE correlated with the frequency of adrenal crises (r = 0.415, P = .006) and AddiQoL-30 scores (r = -0.347, P = .028) but not after correction for multiple testing. PDL2 and leptin significantly declined 60 min after injection of ACTH in AAD without RAF (-0.15 normalized protein expression [NPX], P = .0001, and -0.25 NPX, P = .0003, respectively). CONCLUSIONS We show that cardiovascular and inflammatory biomarkers are altered in AAD compared with controls, particularly in women. RAGE might be a marker of disease severity in AAD, associated with more adrenal crises and reduced QoL. High ACTH reduced PDL2 and leptin levels in a glucocorticoid-independent manner but the overall effect on biomarker profiles was small.
Collapse
Affiliation(s)
- Åse Bjorvatn Sævik
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
| | - Grethe Ueland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Anna-Karin Åkerman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Medicine, Örebro University Hospital, Örebro 702 17, Sweden
| | - Paal Methlie
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Marcus Quinkler
- Practice for Endocrinology and Nephrology, Endocrinology in Charlottenburg, Berlin 10627, Germany
| | | | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
| | | | | | - Anne Lise Dahle
- Department of Internal Medicine, Haugesund Hospital, Haugesund 5528, Norway
| | - Siri Carlsen
- Department of Endocrinology, Stavanger University Hospital, Stavanger 4019, Norway
| | - Aneta Tomkowicz
- Department of Medicine, Sørlandet Hospital, Kristiansand 4604, Norway
| | - Stina Therese Sollid
- Department of Medicine, Drammen Hospital, Vestre Viken Health Trust, Drammen 3004, Norway
| | - Ingrid Nermoen
- Department of Endocrinology, Akershus University Hospital, Lørenskog 1478, Norway
| | - Kaja Grønning
- Department of Endocrinology, Akershus University Hospital, Lørenskog 1478, Norway
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 907 37, Sweden
| | - Guri Grimnes
- Division of Internal Medicine, University Hospital of North Norway, Tromsø 9019, Norway
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø 9019, Norway
| | - Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Trine Finnes
- Section of Endocrinology, Innlandet Hospital Trust, Hamar 2318, Norway
| | - Susanna F Valland
- Section of Endocrinology, Innlandet Hospital Trust, Hamar 2318, Norway
| | - Jeanette Wahlberg
- Department of Endocrinology, Linköping University, Linköping 581 85, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping 581 85, Sweden
| | | | - Olle Kämpe
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
8
|
Rocha SM, Kirkley KS, Chatterjee D, Aboellail TA, Smeyne RJ, Tjalkens RB. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/sequestosome-1-dependent autophagy in the rotenone model of Parkinson's disease. Glia 2023; 71:2154-2179. [PMID: 37199240 PMCID: PMC10330367 DOI: 10.1002/glia.24385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide, with a greater prevalence in men than women. The etiology of PD is largely unknown, although environmental exposures and neuroinflammation are linked to protein misfolding and disease progression. Activated microglia are known to promote neuroinflammation in PD, but how environmental agents interact with specific innate immune signaling pathways in microglia to stimulate conversion to a neurotoxic phenotype is not well understood. To determine how nuclear factor kappa B (NF-κB) signaling dynamics in microglia modulate neuroinflammation and dopaminergic neurodegeneration, we generated mice deficient in NF-κB activation in microglia (CX3CR1-Cre::IKK2fl/fl ) and exposed them to 2.5 mg/kg/day of rotenone for 14 days, followed by a 14-day post-lesioning incubation period. We postulated that inhibition of NF-κB signaling in microglia would reduce overall inflammatory injury in lesioned mice. Subsequent analysis indicated decreased expression of the NF-κB-regulated autophagy gene, sequestosome 1 (p62), in microglia, which is required for targeting ubiquitinated α-synuclein (α-syn) for lysosomal degradation. Knock-out animals had increased accumulation of misfolded α-syn within microglia, despite an overall reduction in neurodegeneration. Interestingly, this occurred more prominently in males. These data suggest that microglia play key biological roles in the degradation and clearance of misfolded α-syn and this process works in concert with the innate immune response associated with neuroinflammation. Importantly, the accumulation of misfolded α-syn protein aggregates alone did not increase neurodegeneration following exposure to rotenone but required the NF-κB-dependent inflammatory response in microglia.
Collapse
Affiliation(s)
- Savannah M. Rocha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Kelly S. Kirkley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Debotri Chatterjee
- Jefferson Comprehensive Parkinson’s Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Tawfik A. Aboellail
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Richard J. Smeyne
- Jefferson Comprehensive Parkinson’s Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
9
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Cardoso MGDF, de Barros JLVM, de Queiroz RAB, Rocha NP, Silver C, da Silva AS, da Silva EWM, Roque IG, Carvalho JDL, Dos Santos LF, Cota LB, Lemos LM, Miranda MF, Miranda MF, Vianna PP, Oliveira RA, de Oliveira Furlam T, Soares TSS, Pedroso VSP, Faleiro RM, Vieira ÉLM, Teixeira AL, de Souza LC, de Miranda LS. Potential Biomarkers of Impulsivity in Mild Traumatic Brain Injury: A Pilot Study. Behav Brain Res 2023; 449:114457. [PMID: 37116663 DOI: 10.1016/j.bbr.2023.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Very few studies have investigated cognition and impulsivity following mild traumatic brain injury (mTBI) in the general population. Furthermore, the neurobiological mechanisms underlying post-TBI neurobehavioral syndromes are complex and remain to be fully clarified. Herein, we took advantage of machine learning based-modeling to investigate potential biomarkers of mTBI-associated impulsivity. Twenty-one mTBI patients were assessed within one-month post-TBI and their data were compared to 19 healthy controls on measures of impulsivity (Barratt Impulsiveness Scale - BIS), executive functioning, episodic memory, self-report cognitive failures and blood biomarkers of inflammation, vascular and neuronal damage. mTBI patients were significantly more impulsive than controls in BIS total and subscales. Serum levels of sCD40L, Cathepsin D, IL-4, Neuropilin-1, IFN-α2, and Copeptin were associated with impulsivity in mTBI patients. Besides showing that mTBI are associated with impulsivity in non-military people, we unveiled different pathophysiological pathways potentially implicated in mTBI-related impulsivity.
Collapse
Affiliation(s)
- Maíra Glória de Freitas Cardoso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Alves Bonfim de Queiroz
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto-UFOP, Ouro Preto, MG, Brasil
| | - Natalia Pessoa Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carlisa Silver
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Agnes Stéphanie da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - Ewelin Wasner Machado da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Isadora Gonçalves Roque
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Júlia de Lima Carvalho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Laura Ferreira Dos Santos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Bitencourt Cota
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Lucas Miranda Lemos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Mariana Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Millena Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Parenti Vianna
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Arantes Oliveira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Tiago de Oliveira Furlam
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Túlio Safar Sarquis Soares
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Vinicius Sousa Pietra Pedroso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rodrigo Moreira Faleiro
- Hospital João XXIII, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG. Belo Horizonte, Minas Gerais, Brasil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Centre for Addiction and Mental Health - CAMH, Toronto, Canada
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston. Houston, Texas; Faculdade Santa Casa BH, Belo Horizonte, Brasil
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, MG, Brasil.
| | - Line Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brasil.
| |
Collapse
|
11
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Saini S, Khurana S, Saini D, Rajput S, Thakur CJ, Singh J, Jaswal A, Kapoor Y, Kumar V, Saini A. In silico analysis of genomic landscape of SARS-CoV-2 and its variant of concerns (Delta and Omicron) reveals changes in the coding potential of miRNAs and their target genes. Gene 2023; 853:147097. [PMID: 36470485 PMCID: PMC9721428 DOI: 10.1016/j.gene.2022.147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 related morbidities and mortalities are still continued due to the emergence of new variants of SARS-CoV-2. In the last few years, viral miRNAs have been the centre of study to understand the disease pathophysiology. In this work, we aimed to predict the change in coding potential of the viral miRNAs in SARS-CoV-2's VOCs, Delta and Omicron compared to the Reference (Wuhan origin) strain using bioinformatics tools. After ab-intio based screening by the Vmir tool and validation, we retrieved 22, 6, and 6 pre-miRNAs for Reference, Delta, and Omicron. Most of the predicted unique pre-miRNAs of Delta and Omicron were found to be encoded from the terminal and origin of the genomic sequence, respectively. Mature miRNAs identified by MatureBayes from the unique pre-miRNAs were used for target identification using miRDB. A total of 1786, 216, and 143 high-confidence target genes were captured for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The GO and KEGG pathways terms analysis revealed the involvement of Delta miRNAs targeted genes in the pathways such as Human cytomegalovirus infection, Breast cancer, Apoptosis, Neurotrophin signaling, and Axon guidance whereas the Sphingolipid signaling pathway was found for the Omicron. Furthermore, we focussed our analysis on target genes that were validated through GEO's (Gene Expression Omnibus) DEGs (Differentially Expressed Genes) dataset, in which FGL2, TNSF12, OGN, GDF11, and BMP11 target genes were found to be down-regulated by Reference miRNAs and YAE1 and RSU1 by Delta. Few genes were also observed to be validated among in up-regulated gene set of the GEO dataset, in which MMP14, TNFRSF21, SGMS1, and TMEM192 were related to Reference whereas ZEB2 was detected in all three strains. This study thus provides an in-silico based analysis that deciphered the unique pre-miRNAs in Delta and Omicron compared to Reference. However, the findings need future wet lab studies for validation.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India; Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Savi Khurana
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Dikshant Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Saru Rajput
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Jeevisha Singh
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Akanksha Jaswal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Yogesh Kapoor
- Department of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varinder Kumar
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
14
|
Proestou DA, Sullivan ME, Lundgren KM, Ben-Horin T, Witkop EM, Hart KM. Understanding Crassostrea virginica tolerance of Perkinsus marinus through global gene expression analysis. Front Genet 2023; 14:1054558. [PMID: 36741318 PMCID: PMC9892467 DOI: 10.3389/fgene.2023.1054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.
Collapse
Affiliation(s)
- Dina A. Proestou
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Mary E. Sullivan
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Kathryn Markey Lundgren
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Erin M. Witkop
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Keegan M. Hart
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| |
Collapse
|
15
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
17
|
Liu L, Khan A, Sanchez-Rodriguez E, Zanoni F, Li Y, Steers N, Balderes O, Zhang J, Krithivasan P, LeDesma RA, Fischman C, Hebbring SJ, Harley JB, Moncrieffe H, Kottyan LC, Namjou-Khales B, Walunas TL, Knevel R, Raychaudhuri S, Karlson EW, Denny JC, Stanaway IB, Crosslin D, Rauen T, Floege J, Eitner F, Moldoveanu Z, Reily C, Knoppova B, Hall S, Sheff JT, Julian BA, Wyatt RJ, Suzuki H, Xie J, Chen N, Zhou X, Zhang H, Hammarström L, Viktorin A, Magnusson PKE, Shang N, Hripcsak G, Weng C, Rundek T, Elkind MSV, Oelsner EC, Barr RG, Ionita-Laza I, Novak J, Gharavi AG, Kiryluk K. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat Commun 2022; 13:6859. [PMID: 36369178 PMCID: PMC9651905 DOI: 10.1038/s41467-022-34456-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A (IgA) mediates mucosal responses to food antigens and the intestinal microbiome and is involved in susceptibility to mucosal pathogens, celiac disease, inflammatory bowel disease, and IgA nephropathy. We performed a genome-wide association study of serum IgA levels in 41,263 individuals of diverse ancestries and identified 20 genome-wide significant loci, including 9 known and 11 novel loci. Co-localization analyses with expression QTLs prioritized candidate genes for 14 of 20 significant loci. Most loci encoded genes that produced immune defects and IgA abnormalities when genetically manipulated in mice. We also observed positive genetic correlations of serum IgA levels with IgA nephropathy, type 2 diabetes, and body mass index, and negative correlations with celiac disease, inflammatory bowel disease, and several infections. Mendelian randomization supported elevated serum IgA as a causal factor in IgA nephropathy. African ancestry was consistently associated with higher serum IgA levels and greater frequency of IgA-increasing alleles compared to other ancestries. Our findings provide novel insights into the genetic regulation of IgA levels and its potential role in human disease.
Collapse
Affiliation(s)
- Lili Liu
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Atlas Khan
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Elena Sanchez-Rodriguez
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Francesca Zanoni
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Yifu Li
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Nicholas Steers
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Olivia Balderes
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Junying Zhang
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Priya Krithivasan
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Robert A. LeDesma
- grid.16750.350000 0001 2097 5006Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ USA
| | - Clara Fischman
- grid.25879.310000 0004 1936 8972Department of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Scott J. Hebbring
- grid.280718.40000 0000 9274 7048Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI USA
| | - John B. Harley
- grid.239573.90000 0000 9025 8099Center of Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.413848.20000 0004 0420 2128US Department of Veterans Affairs Medical Center, Cincinnati, OH USA
| | - Halima Moncrieffe
- grid.239573.90000 0000 9025 8099Center of Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Leah C. Kottyan
- grid.239573.90000 0000 9025 8099Center of Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Bahram Namjou-Khales
- grid.239573.90000 0000 9025 8099Center of Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Theresa L. Walunas
- grid.16753.360000 0001 2299 3507Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rachel Knevel
- grid.62560.370000 0004 0378 8294Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Soumya Raychaudhuri
- grid.62560.370000 0004 0378 8294Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Elizabeth W. Karlson
- grid.62560.370000 0004 0378 8294Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Joshua C. Denny
- grid.152326.10000 0001 2264 7217Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Ian B. Stanaway
- grid.34477.330000000122986657Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA USA
| | - David Crosslin
- grid.34477.330000000122986657Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA USA
| | - Thomas Rauen
- grid.1957.a0000 0001 0728 696XDepartment of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Jürgen Floege
- grid.1957.a0000 0001 0728 696XDepartment of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Frank Eitner
- grid.1957.a0000 0001 0728 696XDepartment of Nephrology, RWTH University of Aachen, Aachen, Germany ,grid.420044.60000 0004 0374 4101Kidney Diseases Research, Bayer Pharma AG, Wuppertal, Germany
| | - Zina Moldoveanu
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Colin Reily
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Barbora Knoppova
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Stacy Hall
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Justin T. Sheff
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Bruce A. Julian
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Robert J. Wyatt
- grid.267301.10000 0004 0386 9246Division of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, TN USA
| | - Hitoshi Suzuki
- grid.258269.20000 0004 1762 2738Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jingyuan Xie
- grid.16821.3c0000 0004 0368 8293Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- grid.16821.3c0000 0004 0368 8293Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xujie Zhou
- grid.11135.370000 0001 2256 9319Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Hong Zhang
- grid.11135.370000 0001 2256 9319Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Lennart Hammarström
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K. E. Magnusson
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ning Shang
- grid.21729.3f0000000419368729Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - George Hripcsak
- grid.21729.3f0000000419368729Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Chunhua Weng
- grid.21729.3f0000000419368729Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Tatjana Rundek
- grid.26790.3a0000 0004 1936 8606Department of Neurology, University of Miami, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL USA
| | - Mitchell S. V. Elkind
- grid.21729.3f0000000419368729Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Elizabeth C. Oelsner
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - R. Graham Barr
- grid.21729.3f0000000419368729Division of General Medicine, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA
| | - Iuliana Ionita-Laza
- grid.21729.3f0000000419368729Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY USA
| | - Jan Novak
- grid.265892.20000000106344187Department of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ali G. Gharavi
- grid.21729.3f0000000419368729Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
19
|
Hadi N, Seifati SM, Nateghi B, Ravaghi P, Khosravian F, Namazi F, Fotouhi Firouzabad M, Shaygannejad V, Salehi M. Study of The Correlation between miR-106a, miR-125b, and miR-330 on Multiple Sclerosis Patients by Targeting TNFSF4 and SP1 in NF-кb/TNF-α Pathway: A Case-Control Study. CELL JOURNAL 2022; 24:403-409. [PMID: 36043408 PMCID: PMC9428476 DOI: 10.22074/cellj.2022.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a complex multifactorial neuro-inflammatory disorder. This complexity arises from the evidence suggesting that MS is developed by interacting with environmental and genetic factors. This study aimed to evaluate the miR-106a, miR-125b, and miR330- expression levels in relapsing-remitting multiple sclerosis (RRMS) patients. The miRNAs' impact on TNFSF4 and Sp1 genes through the NF-кB/TNF-α signaling pathway was analyzed by measuring the expression levels in case and controls. MATERIALS AND METHODS In this in silico-experimental study, we evaluated the association of miR-106a, miR- 125b, and miR330- with TNFSF4 and SP1 gene expression levels in 60 RRMS patients and 30 healthy controls by real-time polymerase chain reaction (PCR). RESULTS The expression levels of miR-330, miR-106a, and miR125-b in blood samples of RRMS patients were predominantly reduced. The expression of TNFSF4 in patients demonstrated a significant enhancement, in contrast to the diminishing Sp1 gene expression level in controls. CONCLUSION Our findings indicated an association between miR-106a and miR-330 and miR125-b expression and RRMS in our study population. Our data suggested that the miR106-a, miR125-b, and mir330- expression are correlated with TNFSF4 and Sp1 gene expression levels.
Collapse
Affiliation(s)
- Nasrin Hadi
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Behnaz Nateghi
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran,Cellular, Molecular, and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Ravaghi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farinaz Khosravian
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran,Cellular, Molecular, and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Namazi
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Maryam Fotouhi Firouzabad
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Vahid Shaygannejad
- Department of Neurology, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran,Cellular, Molecular, and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,P.O.Box: 81746-73461Department of Genetics and Molecular BiologySchool of MedicineIsfahan University of
Medical SciencesIsfahanIran
| |
Collapse
|
20
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
21
|
Lohrasbi M, Taghian F, Jalali Dehkordi K, Hosseini SA. The functional mechanisms of synchronizing royal jelly consumption and physical activity on rat with multiple sclerosis-like behaviors hallmarks based on bioinformatics analysis, and experimental survey. BMC Neurosci 2022; 23:34. [PMID: 35676653 PMCID: PMC9175490 DOI: 10.1186/s12868-022-00720-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background Natural nutrition and physical training have been defined as non-pharmacochemical complementary and alternative medicines to prevent and treat various pathogenesis. Royal jelly possesses various pharmacological properties and is an effective therapeutic supplement for halting neurodegeneration. Multiple sclerosis is a prevalent neurodegenerative disorder that manifests as a progressive neurological condition. Inflammation, hypoxia, and oxidative stress have been identified as significant hallmarks of multiple sclerosis pathology. Results In the present study, based on artificial intelligence and bioinformatics algorithms, we marked hub genes, molecular signaling pathways, and molecular regulators such as non-coding RNAs involved in multiple sclerosis. Also, microRNAs as regulators can affect gene expression in many processes. Numerous pathomechanisms, including immunodeficiency, hypoxia, oxidative stress, neuroinflammation, and mitochondrial dysfunction, can play a significant role in the MSc pathogenesis that results in demyelination. Furthermore, we computed the binding affinity of bioactive compounds presented in Royal Jelly on macromolecules surfaces. Also, we predicted the alignment score of bioactive compounds over the pharmacophore model of candidate protein as a novel therapeutic approach. Based on the q-RT-PCR analysis, the expression of the Dnajb1/Dnajb1/Foxp1/Tnfsf14 and Hspa4 networks as well as miR-34a-5p and miR155-3p were regulated by the interaction of exercise training and 100 mg/kg Royal Jelly (ET-100RJ). Interestingly, characteristics, motor function, a proinflammatory cytokine, and demyelination were ameliorated by ET-100RJ. Discussion Here, we indicated that interaction between exercise training and 100 mg/kg Royal jelly had a more effect on regulating the microRNA profiles and hub genes in rats with Multiple sclerosis.
Collapse
Affiliation(s)
- Maryam Lohrasbi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Seyed Ali Hosseini
- Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
22
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
23
|
Fineschi S, Klar J, Gustafsson KA, Jonsson K, Karlsson B, Dahl N. Inflammation and Interferon Signatures in Peripheral B-Lymphocytes and Sera of Individuals With Fibromyalgia. Front Immunol 2022; 13:874490. [PMID: 35693781 PMCID: PMC9177944 DOI: 10.3389/fimmu.2022.874490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fibromyalgia (FM) is an idiopathic chronic disease characterized by widespread musculoskeletal pain, hyperalgesia and allodynia, often accompanied by fatigue, cognitive dysfunction and other symptoms. Autoimmunity and neuroinflammatory mechanisms have been suggested to play important roles in the pathophysiology of FM supported by recently identified interferon signatures in affected individuals. However, the contribution of different components in the immune system, such as the B-lymphocytes, in the progression to FM are yet unknown. Furthermore, there is a great need for biomarkers that may improve diagnostics of FM. Herein, we investigated the gene expression profile in peripheral B-cells, as well as a panel of inflammatory serum proteins, in 30 FM patients and 23 healthy matched control individuals. RNA sequence analysis revealed 60 differentially expressed genes when comparing the two groups. The group of FM patients showed increased expression of twenty-five interferon-regulated genes, such as S100A8 and S100A9, VCAM, CD163, SERPINA1, ANXA1, and an increased interferon score. Furthermore, FM was associated with elevated levels of 19 inflammatory serum proteins, such as IL8, AXIN1, SIRT2 and STAMBP, that correlated with the FM severity score. Together, the results shows that FM is associated with an interferon signature in B-cells and increased levels of a set of inflammatory serum proteins. Our findings bring further support for immune activation in the pathogenesis of FM and highlight candidate biomarkers for diagnosis and intervention in the management of FM.
Collapse
Affiliation(s)
- Serena Fineschi
- Östhammar Health Care Centre, Östhammar, Sweden
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
- *Correspondence: Serena Fineschi,
| | - Joakim Klar
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| | - Kristin Ayoola Gustafsson
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| | - Kent Jonsson
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
- Department of Geriatric and Rehabilitation Medicine, Nyköping Hospital, Nyköping, Sweden
| | - Bo Karlsson
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Yang H, Wang L, Zhang J. Leukocyte modulation by natural products from herbal medicines and potential as cancer immunotherapy. J Leukoc Biol 2022; 112:185-200. [PMID: 35612275 DOI: 10.1002/jlb.3ru0222-087rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer constitutes a kind of life-threatening disease that is prevalent throughout the world. In light of limitations in conventional chemotherapies or radiotherapies, cancer immunotherapy has emerged as a potent strategy in treating cancer. In cancer immunotherapy, preliminary studies have demonstrated that cancer immune surveillance serves a crucial role in tumor initiation, progression, and metastasis. Herbal medicines and natural products, which serve as alternative medicines, are involved in the modulation of tumor immunosurveillance to enhance antitumor activity. Accordingly, this review aimed to summarize the modulation function of herbal medicines and natural products on tumor immunosurveillance while providing scientific insight into further research on its molecular mechanism and potential clinical applications.
Collapse
Affiliation(s)
- Huihai Yang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China.,Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lulu Wang
- Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China
| | - Jing Zhang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
Musumeci T, Di Benedetto G, Carbone C, Bonaccorso A, Amato G, Lo Faro MJ, Burgaletto C, Puglisi G, Bernardini R, Cantarella G. Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer's Disease. Biomedicines 2022; 10:985. [PMID: 35625722 PMCID: PMC9138905 DOI: 10.3390/biomedicines10050985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively compromises cognitive functions. Tumor necrosis factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL), a proinflammatory cytokine belonging to the TNF superfamily, appears to be a key player in the inflammatory/immune orchestra of the AD brain. Despite the ability of an anti-TRAIL monoclonal antibody to reach the brain producing beneficial effects in AD mice, we attempted to develop such a TRAIL-neutralizing monoclonal antibody adsorbed on lipid and polymeric nanocarriers, for intranasal administration, in a valid approach to overcome issues related to both high dose and drug transport across the blood-brain barrier. The two types of nanomedicines produced showed physico-chemical characteristics appropriate for intranasal administration. As confirmed by enzyme-linked immunosorbent assay (ELISA), both nanomedicines were able to form a complex with the antibody with an encapsulation efficiency of ≈99%. After testing in vitro the immunoneutralizing properties of the nanomedicines, the latter were intranasally administered in AD mice. The antibody-nanocarrier complexes were detectable in the brain in substantial amounts at concentrations significantly higher compared to the free form of the anti-TRAIL antibody. These data support the use of nanomedicine as an optimal method for the delivery of the TRAIL neutralizing antibody to the brain through the nose-to-brain route, aiming to improve the biological attributes of anti-TRAIL-based therapy for AD treatment.
Collapse
Affiliation(s)
- Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy;
- CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (T.M.); (C.C.); (A.B.); (G.A.); (G.P.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (G.D.B.); (C.B.); (G.C.)
| |
Collapse
|
26
|
Demirci Y, Heger G, Katkat E, Papatheodorou I, Brazma A, Ozhan G. Brain Regeneration Resembles Brain Cancer at Its Early Wound Healing Stage and Diverges From Cancer Later at Its Proliferation and Differentiation Stages. Front Cell Dev Biol 2022; 10:813314. [PMID: 35223842 PMCID: PMC8868567 DOI: 10.3389/fcell.2022.813314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most frequent type of brain cancers and characterized by continuous proliferation, inflammation, angiogenesis, invasion and dedifferentiation, which are also among the initiator and sustaining factors of brain regeneration during restoration of tissue integrity and function. Thus, brain regeneration and brain cancer should share more molecular mechanisms at early stages of regeneration where cell proliferation dominates. However, the mechanisms could diverge later when the regenerative response terminates, while cancer cells sustain proliferation. To test this hypothesis, we exploited the adult zebrafish that, in contrast to the mammals, can efficiently regenerate the brain in response to injury. By comparing transcriptome profiles of the regenerating zebrafish telencephalon at its three different stages, i.e., 1 day post-lesion (dpl)-early wound healing stage, 3 dpl-early proliferative stage and 14 dpl-differentiation stage, to those of two brain cancers, i.e., low-grade glioma (LGG) and glioblastoma (GBM), we reveal the common and distinct molecular mechanisms of brain regeneration and brain cancer. While the transcriptomes of 1 dpl and 3 dpl harbor unique gene modules and gene expression profiles that are more divergent from the control, the transcriptome of 14 dpl converges to that of the control. Next, by functional analysis of the transcriptomes of brain regeneration stages to LGG and GBM, we reveal the common and distinct molecular pathways in regeneration and cancer. 1 dpl and LGG and GBM resemble with regard to signaling pathways related to metabolism and neurogenesis, while 3 dpl and LGG and GBM share pathways that control cell proliferation and differentiation. On the other hand, 14 dpl and LGG and GBM converge with respect to developmental and morphogenetic processes. Finally, our global comparison of gene expression profiles of three brain regeneration stages, LGG and GBM exhibit that 1 dpl is the most similar stage to LGG and GBM while 14 dpl is the most distant stage to both brain cancers. Therefore, early convergence and later divergence of brain regeneration and brain cancer constitutes a key starting point in comparative understanding of cellular and molecular events between the two phenomena and development of relevant targeted therapies for brain cancers.
Collapse
Affiliation(s)
- Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Irene Papatheodorou
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
- *Correspondence: Gunes Ozhan,
| |
Collapse
|
27
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
28
|
Segués A, van Duijnhoven SMJ, Parade M, Driessen L, Vukovic N, Zaiss D, Sijts AJAM, Berraondo P, van Elsas A. Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. J Immunol Methods 2021; 499:113173. [PMID: 34699840 DOI: 10.1016/j.jim.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Aina Segués
- Aduro Biotech Europe, Oss, the Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | | | | | | | - Nataša Vukovic
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Dietmar Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom; Institute of Immune Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
29
|
Tumor Necrosis Receptor Superfamily Interact with Fusion and Fission of Mitochondria of Adipose Tissue in Obese Patients without Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9091260. [PMID: 34572446 PMCID: PMC8470627 DOI: 10.3390/biomedicines9091260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Interactions between receptors and ligands of the tumor necrosis factor superfamily (TNFSF) provide costimulatory signals that control the survival, proliferation, differentiation, and effector function of immune cells. All components of the TNF superfamily are associated with NF-kB functions that are not limited to cell death and may promote survival in the face of adipose tissue inflammation in obesity. Inflammation dysfunction of mitochondria is a key factor associated with insulin resistance in obesity. The aim of the study was to analyze the relationship of soluble forms of receptors and ligands of the TNF superfamily in blood plasma with mitochondrial dynamics in adipose tissue (greater omentum (GO) and subcutaneous adipose tissue (Sat)) of obese patients with and without type 2 diabetes mellitus (T2DM). Increased plasma sTNF-R1, sTNF-R2, sTNFRSF8 receptors, and ligands TNFSF12, TNFSF13, TNFSF13B are characteristic of obese patients without T2DM. The TNF-a levels in blood plasma were associated with a decrease in MFN2 gene expression in GO and IL-10 in blood plasma. The TNFSF12 levels contributed to a decrease in glucose levels, a decrease in BMI, and an increase in IL-10 levels by influencing the MFN2 gene expression in GO, which supports mitochondrial fusion.
Collapse
|
30
|
Moldovan LI, Tsoi LC, Ranjitha U, Hager H, Weidinger S, Gudjonsson JE, Kjems J, Kristensen LS. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp Dermatol 2021; 30:1187-1196. [PMID: 33113213 DOI: 10.1111/exd.14227] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) and psoriasis are two common chronic inflammatory skin diseases that are associated with various comorbidities. Circular RNA (circRNA) constitutes a major class of non-coding RNAs that have been implicated in many human diseases, although their potential involvement in inflammatory skin diseases remains elusive. Here, we compare and contrast the circRNA expression landscapes in paired lesional and non-lesional skin from psoriasis and AD patients relative to skin from unaffected individuals using high-depth RNA-seq data. CircRNAs and their cognate linear transcripts were quantified using the circRNA detection algorithm, CIRI2, and in situ hybridization and Sanger sequencing was used for validation purposes. We identified 39,286 circRNAs among all samples and found that psoriasis and AD lesional skin could be distinguished from non-lesional and healthy skin based on circRNA expression landscapes. In general, circRNAs were less abundant in lesional relative to non-lesional and healthy skin. Differential expression analyses revealed many significantly downregulated circRNAs, mainly in psoriasis lesional skin, and a strong correlation between psoriasis and AD-related circRNA expression changes was observed. Two individual circRNAs, ciRS-7 (also known as CDR1as) and circZRANB1, were specifically dysregulated in psoriasis and show promise as biomarkers for discriminating AD from psoriasis. In conclusion, the circRNA transcriptomes of psoriasis and AD share expression features, including a global downregulation relative to healthy skin, but this is most pronounced in psoriasis, and only psoriasis is characterized by several circRNAs being dysregulated independently of their cognate linear transcripts. Finally, specific circRNAs could potentially be used to distinguish AD from psoriasis.
Collapse
Affiliation(s)
- Liviu I Moldovan
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Uppala Ranjitha
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henrik Hager
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Lasse S Kristensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Arhus C, Denmark
| |
Collapse
|
31
|
Lv L, Jiang H, Chen X, Wang Q, Wang K, Ye J, Li Y, Fang D, Lu Y, Yang L, Gu S, Chen J, Diao H, Yan R, Li L. The Salivary Microbiota of Patients With Primary Biliary Cholangitis Is Distinctive and Pathogenic. Front Immunol 2021; 12:713647. [PMID: 34367180 PMCID: PMC8335641 DOI: 10.3389/fimmu.2021.713647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
The role of host-microbiota interactions in primary biliary cholangitis (PBC) has received increased attention. However, the impact of PBC on the oral microbiota and contribution of the oral microbiota to PBC are unclear. In this study, thirty-nine PBC patients without other diseases and 37 healthy controls (HCs) were enrolled and tested for liver functions and haematological variables. Saliva specimens were collected before and after brushing, microbiota was determined using 16S rDNA sequencing, metabolomics was profiled using Gas Chromatography-Mass Spectrometer (GC-MS), 80 cytokines were assayed using biochips, and inflammation inducibility was evaluated using OKF6 keratinocytes and THP-1 macrophages. Finally, the effect of ultrasonic scaling on PBC was estimated. Compared with HCs, PBC saliva had enriched taxa such as Bacteroidetes, Campylobacter, Prevotella and Veillonella and depleted taxa such as Enterococcaceae, Granulicatella, Rothia and Streptococcus. PBC saliva also had enriched sCD163, enriched metabolites such as 2-aminomalonic acid and 1-dodecanol, and depleted metabolites such as dodecanoic acid and propylene glycol. sCD163, 4-hydroxybenzeneacetic acid and 2-aminomalonic acid were significantly correlated with salivary cytokines, bacteria and metabolites. Salivary Veillonellaceae members, 2-aminomalonic acid, and sCD163 were positively correlated with liver function indicators such as serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PBC salivary microbes induced more soluble interleukin (IL)-6 receptor α (sIL-6Rα), sIL-6Rβ and tumour necrosis factor ligand superfamily (TNFSF)13B from OKF6 keratinocytes, and PBC salivary supernatant induced more IL-6, IL-10, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine (C-C motif) ligand (CCL)13, C-X-C motif chemokine (CXC)L1 and CXCL16 from THP-1 macrophages. Toothbrushing significantly reduced the expression of inflammatory cytokines such as IL-1β, IL-8 and TNF-α and harmful metabolites such as cadaverine and putrescine in PBC but not HC saliva after P-value correction. The levels of ALP and bilirubin in PBC serum were decreased after ultrasonic scaling. Together, PBC patients show significant alterations in their salivary microbiota, likely representing one cause and treatment target of oral inflammation and worsening liver functions.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
33
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
34
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
35
|
Oso BJ, Oyewo EB, Oladiji AT. Homology modelling and analysis of structure predictions of human tumour necrosis factor ligand superfamily member 8. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumour necrosis factor ligand superfamily member 8 (TNFL8) is a cytokine that plays vital roles in immune activations and inflammatory responses through its interaction with the tumour necrosis factor superfamily member. Despite multiple studies on the involvement of its receptor in the inflammatory response, there is limited information on the molecular characterization and structural elucidation of the cytokine. Considering the significance of the cytokine, the three-dimensional structure of TNFL8 model was generated by homology modelling through the Iterative Threading ASSEmbly Refinement (I-TASSER) server and validated through PROCHECK and Qualitative Model Energy Analysis (QMEAN) servers.
Results
The predicted structure has 90.00% of residues in the most favoured region of the Ramachandran plot while the QMEAN value gives − 3.06. The sequence and structural alignment between the generated model of the cytokine and template (1XU2) reveal that similar active site residues such as ILE-142, THR-175, GLU-178, and PHE-228 could be involved in binding pocket formation. However, docking studies of the 3D model of TNFL8 with eight phytochemicals from the extract of Xylopia aethiopica (Dunal) A. Rich revealed the phytochemical bound to two different binding sites which could be the active regions of the cytokine that could be essential for inhibition. More so, the docking analysis showed most of the phytochemicals have good binding affinity to the cytokine with ellagic acid showing the highest affinity with a binding energy of − 6.58 ± 0.18 kcal/mol.
Conclusion
The proposed model may shed light on the mechanisms of TNFL8 binding and provide insights into the identification of potential molecular targets for the development of the novel compound for the regulation of the functional activities of the cytokine.
Collapse
|
36
|
Ihara K, Skupien J, Krolewski B, Md Dom ZI, O'Neil K, Satake E, Kobayashi H, Rashidi NM, Niewczas MA, Krolewski AS. A profile of multiple circulating tumor necrosis factor receptors associated with early progressive kidney decline in Type 1 Diabetes is similar to profiles in autoimmune disorders. Kidney Int 2021; 99:725-736. [PMID: 32717193 PMCID: PMC7891866 DOI: 10.1016/j.kint.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
This study comprehensively evaluated the association between known circulating tumor necrosis factor (TNF) superfamily ligands and receptors and the development of early progressive kidney decline (PKD) leading to end-stage kidney disease (ESKD) in Type 1 diabetes. Participants for the study were from the Macro-Albuminuria Study (198 individuals), and the Micro-Albuminuria Study (148 individuals) of the Joslin Kidney Study. All individuals initially had normal kidney function and were followed for seven-fifteen years to determine the slope of the estimate glomerular filtration rate and to ascertain onset of ESKD. Plasma concentrations of 25 TNF superfamily proteins were measured using proximity extension assay applied in the OLINK proteomics platform. In the both studies risk of early PKD, determined as estimated glomerular filtration rate loss greater than or equal to three ml/min/1.73m2/year, was associated with elevated circulating levels of 13 of 19 TNF receptors examined. In the Macro-Albuminuria Study, we obtained similar findings for risk of progression to ESKD. These receptors comprised: TNF-R1A, -R1B, -R3, -R4, -R6, -R6B, -R7, -R10A, -R10B, -R11A, -R14, -R21, and -R27. Serial measurements showed that circulating levels of these TNF receptors had increased before the onset of PKD. In contrast, none of the six measured TNF ligands showed association with risk of early PKD. Of significance, the disease process that underlies PKD leading to ESKD in Type 1 diabetes has a profile also seen in autoimmune disorders. The mechanisms of this enrichment may be causally related to the development of PKD in Type 1 diabetes and must be investigated further. Thus, some of these receptors may be used as new risk predictors of ESKD.
Collapse
Affiliation(s)
- Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Skupien
- Department of Metabolic Diseases, Jagellonian University Medical College, Krakow, Poland
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina O'Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrzej S Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
37
|
Zinni M, Mairesse J, Pansiot J, Fazio F, Iacovelli L, Antenucci N, Orlando R, Nicoletti F, Vaiman D, Baud O. mGlu3 receptor regulates microglial cell reactivity in neonatal rats. J Neuroinflammation 2021; 18:13. [PMID: 33407565 PMCID: PMC7789385 DOI: 10.1186/s12974-020-02049-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perinatal inflammation is a key factor of brain vulnerability in neonates born preterm or with intra-uterine growth restriction (IUGR), two leading conditions associated with brain injury and responsible for neurocognitive and behavioral disorders. Systemic inflammation is recognized to activate microglia, known to be the critical modulators of brain vulnerability. Although some evidence supports a role for metabotropic glutamate receptor 3 (mGlu3 receptor) in modulation of neuroinflammation, its functions are still unknown in the developing microglia. METHODS We used a double-hit rat model of perinatal brain injury induced by a gestational low-protein diet combined with interleukin-1β injections (LPD/IL-1β), mimicking both IUGR and prematurity-related inflammation. The effect of LPD/IL-1β on mGlu3 receptor expression and the effect of mGlu3 receptor modulation on microglial reactivity were investigated using a combination of pharmacological, histological, and molecular and genetic approaches. RESULTS Exposure to LPD/IL-1β significantly downregulated Grm3 gene expression in the developing microglia. Both transcriptomic analyses and pharmacological modulation of mGlu3 receptor demonstrated its central role in the control of inflammation in resting and activated microglia. Microglia reactivity to inflammatory challenge induced by LPD/IL-1β exposure was reduced by an mGlu3 receptor agonist. Conversely, both specific pharmacological blockade, siRNA knock-down, and genetic knock-out of mGlu3 receptors mimicked the pro-inflammatory phenotype observed in microglial cells exposed to LPD/IL-1β. CONCLUSIONS Overall, these data show that Grm3 plays a central role in the regulation of microglial reactivity in the immature brain. Selective pharmacological activation of mGlu3 receptors may prevent inflammatory-induced perinatal brain injury.
Collapse
Affiliation(s)
- Manuela Zinni
- Inserm UMR1141 NeuroDiderot, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Mairesse
- Inserm UMR1141 NeuroDiderot, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Julien Pansiot
- Inserm UMR1141 NeuroDiderot, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Nico Antenucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Olivier Baud
- Inserm UMR1141 NeuroDiderot, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France. .,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland. .,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
38
|
Abstract
Tumor necrosis factor superfamily (TNFSF) ligands and receptors have distinctive structural characters that link them to cell growth, cell survival, or cell death. Some of these can activate both inflammatory and apoptotic pathways, depending on target cell types and other extrinsic stimuli. Many of the TNF receptor superfamily molecules are expressed in cells of the immune system, which may be central to autoimmune and inflammatory diseases as well as cancer. However, the function of TNFSF members is not just restricted to immune cells. Members of TNFSF have been linked to an array of pathophysiologies, including cancer, neurologic, cardiovascular, pulmonary, autoimmune, and metabolic diseases. TNF-α of TNFSF is a pro-inflammatory cytokine produced by macrophages/monocytes, widely implicated in the pathogenesis of inflammatory disorders. In view of these facts, TNF-α has been recommended as an important target for discovering drugs for autoimmune and inflammatory diseases and cancer. Various cell-based assays to understand the role of TNF-α in inflammation and to estimate the concentrations of TNF-α levels in body fluids such as plasma, synovium, etc., are being followed by researchers. In this chapter, methods of cell viability assay, ELISA assay, RT-PCR, and western blot analysis for estimating LPS-induced TNF-α protein expressions are described in detail.
Collapse
|
39
|
Jiang S, Baba K, Okuno T, Kinoshita M, Choong CJ, Hayakawa H, Sakiyama H, Ikenaka K, Nagano S, Sasaki T, Shimamura M, Nagai Y, Hagihara K, Mochizuki H. Go-sha-jinki-Gan Alleviates Inflammation in Neurological Disorders via p38-TNF Signaling in the Central Nervous System. Neurotherapeutics 2021; 18:460-473. [PMID: 33083995 PMCID: PMC8116410 DOI: 10.1007/s13311-020-00948-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/14/2023] Open
Abstract
Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine. In clinical practice, GJG is effective against neuropathic pain and hypersensitivity induced by chemotherapy or diabetes. In our previous study using a chronic constriction injury mouse model, we showed that GJG inhibited microglia activation by suppressing the expression of tumor necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (p38 MAPK) in the peripheral nervous system. To investigate whether GJG can suppress inflammation in the central nervous system (CNS) in the context of neurological disorders, we examined the effect of GJG on the activation of resident glial cells and on p38-TNF signaling in two mouse models of neurological disorders: the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. GJG administration relieved the severity of clinical EAE symptoms and MPTP-induced inflammation by decreasing the number of microglia and the production of TNF-α in the spinal cord of EAE mice and the substantia nigra of MPTP-treated mice. Accordingly, GJG suppressed the phosphorylation of p38 in glial cells of these two mouse models. We conclude that GJG attenuates inflammation of the CNS by suppressing glial cell activation, followed by a decrease in the production of TNF-α via p38-TNF signaling.
Collapse
Affiliation(s)
- Shiying Jiang
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideki Hayakawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Sakiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Munehisa Shimamura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
40
|
Human APRIL and FGF-21 and adhesion molecules in relation to cognitive function in elderly diabetic patients. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
42
|
Regner GG, Torres ILS, de Oliveira C, Pflüger P, da Silva LS, Scarabelot VL, Ströher R, de Souza A, Fregni F, Pereira P. Transcranial direct current stimulation (tDCS) affects neuroinflammation parameters and behavioral seizure activity in pentylenetetrazole-induced kindling in rats. Neurosci Lett 2020; 735:135162. [PMID: 32569808 DOI: 10.1016/j.neulet.2020.135162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
Abstract
Despite the introduction of new antiepileptic drugs, about 30 % of patients with epilepsy are refractory to drug therapy. Thus, the search for non-pharmacological interventions such as transcranial direct current stimulation (tDCS) may be an alternative, either alone or in combination with low doses of anticonvulsants. This study evaluated the effect of anodal (a-tDCS) and cathodal tDCS (c-tDCS) on seizure behavior and neuroinflammation parameters. Rats were submitted to the kindling model induced by pentylenetetrazole (PTZ) using diazepam (DZP) as anticonvulsant standard. tDCS groups were submitted to 10 sessions of a-tDCS or c-tDCS or SHAM-tDCS. Every 3 days they received saline (SAL), low dose of DZP (alone or in combination with tDCS) or effective dose of DZP 30 min before administration of PTZ, totaling 16 days of protocol. Neither a-tDCS nor c-tDCS reduced the occurrence of clonic forelimb seizures (convulsive motor seizures - stage 3 by the adapted Racine scale we based on). Associated with DZP, c-tDCS (c-tDCS/DZP0.15) increased the latency to first clonic forelimb seizure on the 10th and 16th days. Hippocampal IL-1β levels were reduced by c-tDCS and c-tDCS/DZP0.15. In contrast, these treatments induced an increase in cortical IL-1β levels. Hippocampal TNF-α levels were not altered by c-tDCS or a-tDCS, but c-tDCS and c-tDCS/DZP0.15 increased those levels in cerebral cortex. Cortical NGF levels were increased by c-tDCS and c-tDCS/DZP0.15. a-tDCS/DZP0.15 reduced hippocampal BDNF levels and c-tDCS/DZP0.15 increased these levels in cerebral cortex. In conclusion, c-tDCS alone or in combination with a low dose of DZP showed to affect neuroinflammation, improving central neurotrophin levels and decreasing hippocampal IL-1β levels after PTZ-induced kindling without statistically significant effect on seizure behavior.
Collapse
Affiliation(s)
- Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Andressa de Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
43
|
Abstract
Epilepsy is considered a major serious chronic neurological disorder, characterized by recurrent seizures. It is usually associated with a history of a lesion in the nervous system. Irregular activation of inflammatory molecules in the injured tissue is an important factor in the development of epilepsy. It is unclear how the imbalanced regulation of inflammatory mediators contributes to epilepsy. A recent research goal is to identify interconnected inflammation pathways which may be involved in the development of epilepsy. The clinical use of available antiepileptic drugs is often restricted by their limitations, incidence of several side effects, and drug interactions. So development of new drugs, which modulate epilepsy through novel mechanisms, is necessary. Alternative therapies and diet have recently reported positive treatment outcomes in epilepsy. Vitamin D (Vit D) has shown prophylactic and therapeutic potential in different neurological disorders. So, the aim of current study was to review the associations between different brain inflammatory mediators and epileptogenesis, to strengthen the idea that targeting inflammatory pathway may be an effective therapeutic strategy to prevent or treat epilepsy. In addition, neuroprotective effects and mechanisms of Vit D in clinical and preclinical studies of epilepsy were reviewed.
Collapse
|
44
|
Olesen MN, Wuolikainen A, Nilsson AC, Wirenfeldt M, Forsberg K, Madsen JS, Lillevang ST, Brandslund I, Andersen PM, Asgari N. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e697. [PMID: 32123048 PMCID: PMC7136052 DOI: 10.1212/nxi.0000000000000697] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate inflammatory cytokines in patients with motor neuron disease (MND) evaluating the putative contribution of amyotrophic lateral sclerosis (ALS)-causing gene variants. METHODS This study is a retrospective case series with prospective follow-up (1994-2016) of 248 patients with MND, of whom 164 had ALS who were screened for mutations in the genes for SOD1 and C9orf72. Paired CSF and plasma were collected at the diagnostic evaluation before treatment. A panel of cytokines were measured blindly via digital ELISA on the Simoa platform. RESULTS Time from disease onset to death was longer for patients with ALS-causing SOD1 mutations (mSOD1, n = 24) than those with C9orf72 hexanucleotide repeat expansion (C9orf72HRE) ALS (n = 19; q = 0.001) and other ALS (OALS) (n = 119; q = 0.0008). Patients with OALS had higher CSF tumor necrosis factor alpha (TNF-α) compared with those with C9orf72HRE ALS (q = 0.014). Patients with C9orf72HRE ALS had higher CSF interferon alpha compared with those with OALS and mSOD1 ALS (q = 0.042 and q = 0.042). In patients with ALS, the survival was negatively correlated with plasma interleukin (IL) 10 (hazard ratio [HR] 1.17, 95% CI 1.05-1.30). Plasma TNF-α, IL-10, and TNF-related apoptosis-inducing ligand (TRAIL) (HR 1.01 [1.00-1.02], 1.15 [1.02-1.30], and 1.01 [1.00-1.01], respectively) of patients with OALS, plasma IL-1β (HR 5.90 [1.27-27.5]) of patients with C9orf72HRE ALS, and CSF TRAIL (10.5 [1.12-98.6]) of patients with mSOD1 ALS all correlated negatively with survival. CONCLUSIONS Differences in survival times in ALS subtypes were correlated with cytokine levels, suggesting specific immune responses related to ALS genetic variants.
Collapse
Affiliation(s)
- Mads Nikolaj Olesen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Wuolikainen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Christine Nilsson
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Martin Wirenfeldt
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Karin Forsberg
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Jonna Skov Madsen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Soeren Thue Lillevang
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Ivan Brandslund
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Peter Munch Andersen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Nasrin Asgari
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark.
| |
Collapse
|
45
|
Identification of Multiple Sclerosis key genetic factors through multi-staged data mining. Mult Scler Relat Disord 2020; 39:101446. [PMID: 31874362 DOI: 10.1016/j.msard.2019.101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022]
|
46
|
Smagina IV, Elchaninova SA, Palashchenko AS, Galaktionova LP. [Pathological and protective effects of tumor necrosis factor-alpha in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:14-20. [PMID: 31934984 DOI: 10.17116/jnevro20191191014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The immunomodulatory cytokine tumor necrosis factor-alpha (TNF-α) is involved in the regulation of both physiological and pathological processes in the central nervous system (CNS). The effects of TNF-α on CNS reported in clinical trials and experimental studies, evidence of involvement of this cytokine in the pathogenesis of multiple sclerosis are analyzed. Possible causes of failures of non-selective pharmacological inhibition of TNF-α effects in MS are considered in view of current concepts on mechanisms of TNF-α action.
Collapse
Affiliation(s)
- I V Smagina
- Altai State Medical University, Barnaul, Russia; Regional Clinical Hospital, Barnaul, Russia
| | | | - A S Palashchenko
- Altai State Medical University, Barnaul, Russia; Regional Clinical Hospital, Barnaul, Russia
| | | |
Collapse
|
47
|
The Effect of Protein-Rich Extract from Bombyx Batryticatus against Glutamate-Damaged PC12 Cells Via Regulating γ-Aminobutyric Acid Signaling Pathway. Molecules 2020; 25:molecules25030553. [PMID: 32012896 PMCID: PMC7037904 DOI: 10.3390/molecules25030553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Bombyx Batryticatus (BB) is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, etc. in China for thousands of years. This study is aimed at investigating optimum extraction of protein-rich extracts from BB (BBPs) using response surface methodology (RSM) and exploring the protective effects of BBPs against nerve growth factor (NGF)-induced PC12 cells injured by glutamate (Glu) and their underlying mechanisms. The results indicated optimum process of extraction was as follows: extraction time 1.00 h, ratio of liquid to the raw material 3.80 mL/g and ultrasonic power 230.0 W. The cell viability of PC12 cells stimulated by Glu was determined by CCK-8 assay. The levels of γ-aminobutyric (GABA), interleukin-1β (IL-1β), interleukin-4 (IL-4), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT) and glucocorticoid receptor alpha (GR) in PC12 cells were assayed by ELISA. Furthermore, the Ca2+ levels in PC12 cells were determined by flow cytometry analysis. Protein and mRNA expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 in PC12 cells were evaluated by real-time polymerase chain reaction (RT-PCR) and Western blotting assays. Results revealed that BBPs decreased toxic effects due to Glu treatment and decreased Ca2+ levels in PC12 cells. After BBPs treatments, levels of GABA and 5-HT were increased and contents of TNF-α, IL-4 and IL-1β were decreased in NGF-induced PC12 cells injured by Glu. Moreover, BBPs up-regulated the expressions of GABAA-Rα1, GAD 65 and GAD 67, whereas down-regulated that of NMDAR1 GAT 1 and GAT 3. These findings suggested that BBPs possessed protective effects on NGF-induced PC12 cells injured by Glu via γ-Aminobutyric Acid (GABA) signaling pathways, which demonstrated that BBPs has potential anti-epileptic effect in vitro. These findings may be useful in the development of novel medicine for the treatment of epilepsy.
Collapse
|
48
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
50
|
Mahaki H, Jabarivasal N, Sardanian K, Zamani A. Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2019; 11:24-32. [PMID: 31647056 PMCID: PMC7024597 DOI: 10.15171/ijoem.2020.1572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Background: Extremely low-frequency electromagnetic fields (ELF-EMFs) are abundantly produced in modern societies. In recent years, interest in the possible effects of ELF-EMFs on the immune system has progressively increased. Objective: To examine the effects of ELF-EMFs with magnetic flux densities of 1, 100, 500, and 2000 µT on the serum levels of interleukin (IL)-9, IL-10, and tumor necrosis factor-alpha (TNF-α). Methods: 80 adult male rats were exposed to ELF-EMFs at a frequency of 50 Hz for 2 h/day for 60 days. The serum cytokines were measured at two phases of pre- and post-stimulation of the immune system by human serum albumin (HSA). Results: Serum levels of IL-9 and TNF-α, as pro-inflammatory cytokines, were decreased due to 50 Hz EMFs exposure compared with the controls in the pre- and post-stimulation phases. On the contrary, exposures to 1 and 100 µT 50 Hz EMFs increased the levels of antiinflammatory cytokine, and IL-10 only in the pre-stimulation phase. In the post-stimulation phase, the mean level of serum IL-10 was not changed in the experimental groups. Conclusion: The magnetic flux densities of 1 and 100 µT 50 Hz EMFs had more immunological effects than EMFs with higher densities. Exposure to 50 Hz EMFs may activate anti-inflammatory effects in rats, by down-modulation of pro-inflammatory cytokines (IL-9 and TNF-α) and induction of the anti-inflammatory cytokine (IL-10).
Collapse
Affiliation(s)
- Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naghi Jabarivasal
- Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khosro Sardanian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Molecular Immunology Research Group, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|