1
|
Aziz F, Hisatsune J, Ono HK, Kajimura J, Yu L, Masuda K, Kitagawa H, Sato'o Y, Yahara K, Yamaoka M, Nakane A, Kawasaki H, Obata S, Fukushima-Nomura A, Ito Y, Aung MS, Amagai M, Salasia SIO, Ohge H, Kusunoki Y, Sugai M. Genomic analysis and identification of a novel superantigen, SargEY, in Staphylococcus argenteus isolated from atopic dermatitis lesions. mSphere 2024; 9:e0050524. [PMID: 38990001 PMCID: PMC11288046 DOI: 10.1128/msphere.00505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
During surveillance of Staphylococcus aureus in lesions from patients with atopic dermatitis (AD), we isolated Staphylococcus argenteus, a species registered in 2011 as a new member of the genus Staphylococcus and previously considered a lineage of S. aureus. Genome sequence comparisons between S. argenteus isolates and representative S. aureus clinical isolates from various origins revealed that the S. argenteus genome from AD patients closely resembles that of S. aureus causing skin infections. We previously reported that 17%-22% of S. aureus isolated from skin infections produce staphylococcal enterotoxin Y (SEY), which predominantly induces T-cell proliferation via the T-cell receptor (TCR) Vα pathway. Complete genome sequencing of S. argenteus isolates revealed a gene encoding a protein similar to superantigen SEY, designated as SargEY, on its chromosome. Population structure analysis of S. argenteus revealed that these isolates are ST2250 lineage, which was the only lineage positive for the SEY-like gene among S. argenteus. Recombinant SargEY demonstrated immunological cross-reactivity with anti-SEY serum. SargEY could induce proliferation of human CD4+ and CD8+ T cells, as well as production of TNF-α and IFN-γ. SargEY showed emetic activity in a marmoset monkey model. SargEY and SET (a phylogenetically close but uncharacterized SE) revealed their dependency on TCR Vα in inducing human T-cell proliferation. Additionally, TCR sequencing revealed other previously undescribed Vα repertoires induced by SEH. SargEY and SEY may play roles in exacerbating the respective toxin-producing strains in AD. IMPORTANCE Staphylococcus aureus is frequently isolated from active lesions of atopic dermatitis (AD) patients. We reported that 17%-22% of S. aureus isolated from AD patients produced a novel superantigen staphylococcal enterotoxin Y (SEY). Unlike many S. aureus superantigens that activate T cells via T-cell receptor (TCR) Vß, SEY activates T cells via TCR Vα and stimulates cytokine secretion. Staphylococcus argenteus was isolated from AD patients during the surveillance for S. aureus. Phylogenetic comparison of the genome indicated that the isolate was very similar to S. aureus causing skin infections. The isolate encoded a SEY-like protein, designated SargEY, which, like SEY, activated T cells via the TCR Vα. ST2250 is the only lineage positive for SargEY gene. ST2250 S. argenteus harboring a superantigen SargEY gene may be a novel staphylococcal clone that infects human skin and is involved in the exacerbation of AD.
Collapse
Affiliation(s)
- Fatkhanuddin Aziz
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima City, Hiroshima, Japan
- Veterinary Technology Program, Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Junzo Hisatsune
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima City, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Hisaya K. Ono
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Junko Kajimura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima City, Hiroshima, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Kanako Masuda
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima City, Hiroshima, Japan
| | - Hiroki Kitagawa
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima City, Hiroshima, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Mika Yamaoka
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima City, Hiroshima, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University, Hirosaki, Aomori, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Shijuku-ku, Tokyo, Japan
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory for Developmental Genetics, RIKEN, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shoko Obata
- Department of Dermatology, Keio University School of Medicine, Shijuku-ku, Tokyo, Japan
| | | | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Shijuku-ku, Tokyo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Shijuku-ku, Tokyo, Japan
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima City, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima City, Hiroshima, Japan
| | - Motoyuki Sugai
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima City, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
2
|
Rahman S, Saha S, Dasgupta SB, Das AK. Putative staphylococcal enterotoxin possesses two common structural motifs for MHC-II binding. Int J Biol Macromol 2024; 256:128437. [PMID: 38013079 DOI: 10.1016/j.ijbiomac.2023.128437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Staphylococcus aureus has become a significant cause of health risks in humankind. Staphylococcal superantigens (SAgs) or enterotoxins are the key virulent factors that can exhibit acute diseases to severe life-threatening conditions. Recent literature reports S. aureus has steadily gained new enterotoxin genes over the past few decades. In spite of current knowledge of the established SAgs, several questions on putative enterotoxins are still remaining unanswered. Keeping that in mind, this study sheds light on a putative enterotoxin SEl26 to characterize its structural and functional properties. In-silico analyses indicate its close relation with the conventional SAgs, especially the zinc-binding SAgs. Additionally, important residues that are vital for the T-cell receptor (TcR) and major histocompatibility complex class II (MHC-II) interaction were predicted and compared with established SAgs. Besides, our biochemical analyses exhibited the binding of this putative enterotoxin with MHC-II, followed by regulating pro-inflammatory and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Saradindu Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
3
|
Chand U, Priyambada P, Kushawaha PK. Staphylococcus aureus vaccine strategy: Promise and challenges. Microbiol Res 2023; 271:127362. [PMID: 36958134 DOI: 10.1016/j.micres.2023.127362] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading and crucial infectious threat to global public health due to the widespread emergence of antibiotic-resistant strains such as Methicillin-Resistant S. aureus (MRSA). MRSA infects immunocompromised patients and healthy individuals and has rapidly spread from the healthcare setting to the outside community. The development of flawless vaccines become a medical need worldwide against multi-drug resistant S. aureus. Therefore, protection by an immune-based strategy may provide valuable measures to contain the spread of invasive S. aureus infections. Several vaccine candidates have been prepared which are either in the preclinical phase or in the early clinical phase, whereas several candidates have failed to show a protective efficacy in human subjects. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Several approaches have also been made to the development of monoclonal or polyclonal antibodies for passive immunization to protect against S. aureus infections. In recent years, a multi-epitope vaccine has emerged as a novel platform for subunit vaccine design by using computational approaches. Therefore, in this review, we have summarized and discussed the mechanistic overview of different strategies used to develop potential vaccine candidates and passive interventions which are in different stages of clinical trials to fight multi-drug resistant S. aureus infections.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pragnya Priyambada
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
4
|
Tavalaei Z, Zeinalian M, Khanahmad H, Hejazi H. Anti-leishmaniasis Effect of Staphylococcus Aureus Protein A on the Size of the Lesion and Parasitic Load. Adv Biomed Res 2023; 12:61. [PMID: 37200745 PMCID: PMC10186034 DOI: 10.4103/abr.abr_291_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/29/2021] [Accepted: 02/02/2022] [Indexed: 05/20/2023] Open
Abstract
Background Many studies in the past have evaluated the role of immune system boosters in the treatment of leishmania major infection. Protein A (PA) is one of the structural components in peptidoglycan cell wall of gram-negative bacteria such as staphylococcus aurous which functions as a stimulator in the cellular immune system. The present study aims to evaluate the anti-inflammatory effect of PA on the recovery of leishmania major infection. Materials and Methods This study was conducted on 24 female Balb/c-infected mice. The experimental group received PA at a dose of 60 mg/kg for four weeks. There was no intervention for the negative control group; the third group received the solvent of PA and sterile H2O; and the positive control group received Amphotericin B at a dose of 1 mg/kg body weight. At the end of the treatment period, a real-time polymerase chain reaction (PCR) assay was performed to determine parasitic burden, and the size of the lesions was measured by caliper with an accuracy of 0.01 mm. Results Results showed that PA did slightly decrease the wound spread and growth but not to an extent that can be considered statistically significant. Also, differences in cycle threshold (Ct) values between the treated group and the untreated group was not impressive. Conclusions Although findings showed that PA isn't such a good candidate for leishmania treatment, it may still be suitable for therapies that use multiple drugs in combination to speed up the healing of leishmaniosis, an issue that merits evaluation in future studies.
Collapse
Affiliation(s)
- Zahra Tavalaei
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Mehrdad Zeinalian, Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Hossein Khanahmad
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hejazi
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Chi K, Zou Y, Liu C, Dong Z, Liu Y, Guo N. Staphylococcal enterotoxin A induces DNA damage in hepatocytes and liver tissues. Toxicon 2022; 221:106980. [DOI: 10.1016/j.toxicon.2022.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
6
|
Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front Immunol 2022; 13:941009. [PMID: 35874696 PMCID: PMC9300823 DOI: 10.3389/fimmu.2022.941009] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a febrile pediatric inflammatory disease that may develop weeks after initial SARS-CoV-2 infection or exposure. MIS-C involves systemic hyperinflammation and multiorgan involvement, including severe cardiovascular, gastrointestinal (GI) and neurological symptoms. Some clinical attributes of MIS-C-such as persistent fever, rashes, conjunctivitis and oral mucosa changes (red fissured lips and strawberry tongue)-overlap with features of Kawasaki disease (KD). In addition, MIS-C shares striking clinical similarities with toxic shock syndrome (TSS), which is triggered by bacterial superantigens (SAgs). The remarkable similarities between MIS-C and TSS prompted a search for SAg-like structures in the SARS-CoV-2 virus and the discovery of a unique SAg-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the SARS-CoV-2 spike 1 (S1) glycoprotein. Computational studies suggest that the SAg-like motif has a high affinity for binding T-cell receptors (TCRs) and MHC Class II proteins. Immunosequencing of peripheral blood samples from MIS-C patients revealed a profound expansion of TCR β variable gene 11-2 (TRBV11-2), which correlates with MIS-C severity and serum cytokine levels, consistent with a SAg-triggered immune response. Computational sequence analysis of SARS-CoV-2 spike further identified conserved neurotoxin-like motifs which may alter neuronal cell function and contribute to neurological symptoms in COVID-19 and MIS-C patients. Additionally, autoantibodies are detected during MIS-C, which may indicate development of post-SARS-CoV-2 autoreactive and autoimmune responses. Finally, prolonged persistence of SARS-CoV-2 RNA in the gut, increased gut permeability and elevated levels of circulating S1 have been observed in children with MIS-C. Accordingly, we hypothesize that continuous and prolonged exposure to the viral SAg-like and neurotoxin-like motifs in SARS-CoV-2 spike may promote autoimmunity leading to the development of post-acute COVID-19 syndromes, including MIS-C and long COVID, as well as the neurological complications resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Naveed M, Makhdoom SI, Abbas G, Safdari M, Farhadi A, Habtemariam S, Shabbir MA, Jabeen K, Asif MF, Tehreem S. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis. Mini Rev Med Chem 2022; 22:2608-2623. [DOI: 10.2174/1389557522666220413102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises of HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases along with the mode of action and treatment approaches have been discussed.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Farhadi
- Kavian Institute of Higher Education, Mashhad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Muhammad Farrukh Asif
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
8
|
Hamdy A, Leonardi A. Superantigens and SARS-CoV-2. Pathogens 2022; 11:390. [PMID: 35456065 PMCID: PMC9026686 DOI: 10.3390/pathogens11040390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
It has been posited SARS-CoV-2 contains at least one unique superantigen-like motif not found in any other SARS or endemic coronaviruses. Superantigens are potent antigens that can send the immune system into overdrive. SARS-CoV-2 causes many of the biological and clinical consequences of a superantigen, and, in the context of reinfection and waning immunity, it is important to better understand the impact of a widely circulating, airborne pathogen that may be a superantigen, superantigen-like or trigger a superantigenic host response. Urgent research is needed to better understand the long-term risks being taken by governments whose policies enable widespread transmission of a potential superantigenic pathogen, and to more clearly define the vaccination and public health policies needed to protect against the consequences of repeat exposure to the pathogen.
Collapse
Affiliation(s)
- Adam Hamdy
- Panres Pandemic Research, Newport TF10 8PG, UK
| | - Anthony Leonardi
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
9
|
Liu C, Shen Y, Yang M, Chi K, Guo N. Hazard of Staphylococcal Enterotoxins in Food and Promising Strategies for Natural Products against Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2450-2465. [PMID: 35170308 DOI: 10.1021/acs.jafc.1c06773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus frequently contaminate food and cause serious foodborne diseases but are ignored during food processing and even cold-chain storage. Notably, SEs are stable and resistant to harsh sterilization environments, which can induce more serious hazards to public health than the bacterium itself. Therefore, it is necessary to develop promising strategies to control SE contamination in food and improve food safety. Natural products not only have various pharmaceutical properties, such as antimicrobial and antitoxin activities, but they are also eco-friendly, safe, nutritive, and barely drug-resistant. Here, the hazards of SEs and the promising natural compounds with different inhibitory mechanisms are summarized and classified. The key points of future research and applications for natural products against bacterial toxin contamination in food are also prospected. Overall, this review may provide enlightening insights for screening effective natural compounds to prevent foodborne diseases caused by bacterial toxins.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
10
|
Duan L, Zhang J, Chen Z, Gou Q, Xiong Q, Yuan Y, Jing H, Zhu J, Ni L, Zheng Y, Liu Z, Zhang X, Zeng H, Zou Q, Zhao Z. Antibiotic Combined with Epitope-Specific Monoclonal Antibody Cocktail Protects Mice Against Bacteremia and Acute Pneumonia from Methicillin-Resistant Staphylococcus aureus Infection. J Inflamm Res 2021; 14:4267-4282. [PMID: 34511967 PMCID: PMC8415768 DOI: 10.2147/jir.s325286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose We previously reported that monoclonal antibody (mAb) cocktail improves survival in Staphylococcus aureus infection. In this study, we used acute pneumonia model and lethal sepsis model to investigate the efficacy of antibiotic combined with epitope-specific mAb cocktail in treating MRSA252 infection. Methods MRSA252 was challenged by tail vein injection or tracheal intubation to establish sepsis model or pneumonia model. One hour after infection, the mice received a single intravenous injection of normal saline, vancomycin, and vancomycin combined monoclonal antibody, linezolid alone or linezolid combined monoclonal antibody. Daily record survival rate (total 7 days), bacterial load, histology, cytokine analysis of serum and alveolar lavage fluid, and in vitro determination of the neutralizing ability of antibodies to SEB toxin and Hla toxin explained the mechanism of antibody action. Results The mAb cocktail combined with low doses of vancomycin or linezolid improved survival rates in acute pneumonia model (70%, 80%) and lethal sepsis model (80%, 80%). Epitope-specific monoclonal antibodies reduced bacterial colonization in the kidneys and lungs of mice and inhibited the biological functions of the toxins Hla and SEB in vitro. Compared to the antibiotic alone or PBS groups, the combination group had higher levels of IL-1α, IL-1β and IFN-γ and lower levels of IL-6, IL-10, TNF-α. Further, the combination of antibiotic and mAb cocktail improved infection survival against the clinical MRSA isolates in a lethal sepsis model. Conclusion This study demonstrates a novel method to treat people with low immunity against drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- LianLi Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qingshan Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Li Ni
- Obstetrics and Gynecology, The First People's Hospital of Jiulongpo District, Chongqing, 400050, People's Republic of China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
11
|
Rasooly R, Do P, He X, Hernlem B. Human Leukemia T-Cell Lines as Alternatives to Animal Use for Detecting Biologically Active Staphylococcal Enterotoxin Type B. Toxins (Basel) 2021; 13:toxins13050300. [PMID: 33922450 PMCID: PMC8145393 DOI: 10.3390/toxins13050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current methods for the detection of biologically active SEB rely upon its ability to cause emesis when administered to live kittens or monkeys. This technique suffers from poor reproducibility and low sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data presented here show the first successful implementation of an alternative method to live animal testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals, we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji B-cells. We presented this SEB–MHC class II complex to specific Vβ5.3 regions of the human T-cell line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation than the splenocyte cells containing the highest concentration of APC cells.
Collapse
|
12
|
Ali SS, Moawad MS, Hussein MA, Azab M, Abdelkarim EA, Badr A, Sun J, Khalil M. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets. Int J Food Microbiol 2021; 344:109116. [PMID: 33676332 DOI: 10.1016/j.ijfoodmicro.2021.109116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is among the most common zoonotic pathogens originating from animals consumed as food, especially raw chicken meat (RCM). As far as we know, this might be the first report that explores the efficacy of metal oxide nanoparticles (MONPs), such as zinc peroxide nanoparticles (ZnO2-NPs), zinc oxide nanoparticles (ZnO-NPs), and titanium dioxide nanoparticles (TiO2-NPs) against multidrug resistant (MDR) and/or pandrug resistant (PDR) S. aureus strains with a strong biofilm-producing ability isolated from RCM and giblets. The overall prevalence of coagulase-positive staphylococci was 21%, with a contamination level range between 102 and 104 CFU/g. The incidence of virulence genes See (21/36), pvl (16/36), clfA (15/36), sec (12/36), tst (12/36), and sea (11/36) among S. aureus strains were relatively higher those of seb, sed, fnbA, and fnbB. For antimicrobial resistance gene distribution, most strains harbored the blaZ gene (25/36), aacA-aphD gene (24/36), mecA gene (22/36), vanA gene (20/36), and apmA gene (20/36) confirmed the prevalence of MDR among S. aureus of RCM products. However, cfr (11/36), spc (9/36), and aadE (7/36) showed a relatively lower existence. The data of antibiogram resistance profiles was noticeably heterogeneous (25 patterns) with 32 MDR and four PDR S. aureus strains. All tested strains had a very high MAR index value (>0.2) except the P11 pattern (GEN, MXF, PMB), which showed a MAR index of 0.19. Among the strong biofilm-producing ability (BPA), 14 (70%) strains were isolated from wet markets, while only six strong BPA strains were isolated from supermarkets. The mean values of BPA ranged from 2.613 ± 0.04 to 11.013 ± 0.05. Clearly, ZnO2-NPs show significant inhibitory activity against S. aureus strains compared with those produced by the action of ZnO-NPs and TiO2-NPs. The results of anti-inflammatory activity suggest ZnO2-NPs as a lead compound for designing an alternative antimicrobial agent against drug-resistant and strong biofilm-producing S. aureus isolates from retail RCM and giblets.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Sciences, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Hussein
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Maha Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
Mujtaba MG, Johnson HM, Parrish JM. Staphylococcal Enterotoxin Superantigens Induce Prophylactic Antiviral Activity Against Encephalomyocarditis Virus In Vivo and In Vitro. Viral Immunol 2021; 34:392-400. [PMID: 33566741 DOI: 10.1089/vim.2020.0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The staphylococcal enterotoxins (SEs) are classified as superantigens due to their potent stimulation of the immune system resulting in T cell activation and prodigious cytokine production and toxicity. This study examined the ability of superantigens to induce prophylactic antiviral activity in vivo and in vitro and evaluated potential superantigen mimetic peptides. Prophylactic treatment of mice in vivo with intraperitoneal injections of SE superantigens SEA and SEB (both at 20 μg/day for 3 days) prevented encephalomyocarditis virus (EMCV)-induced lethality in 100% and 80% of mice, respectively, as compared with control saline-treated groups in which EMCV was lethal to all mice. Furthermore, SEA (2 μg/mL) and SEB (1 μg/mL) induced antiviral activity in mouse splenocytes to produce an antiviral factor since their supernatant prevented EMCV lysis of L929 cells in tissue culture. It was found that superantigens do not directly prevent EMCV infection, but rather indirectly through inducing interferon gamma (IFNγ) production in cells as the antiviral factor. Evaluation of various superantigen mimetic peptides showed that one peptide (SEA3) had superantigen-like activity by inducing IFNγ production in cells but without the cellular proliferation, as associated with superantigens. However, the induction of IFNγ activation by the SEA3 peptide was not as pronounced, and took a much higher peptide concentration, when compared with the parent superantigen. If the negative side effects of superantigens can be eliminated, their beneficial properties can be harnessed for prophylactic treatment of viral infections and other pathologies requiring a robust immune response.
Collapse
Affiliation(s)
- Mustafa G Mujtaba
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jordan M Parrish
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
14
|
Pinheiro-Torres AS, Ferreira-Duarte AP, Takeshita WM, Gushiken VO, Roncalho-Buck IA, Anhê GF, Antunes E, DeSouza IA. Airways exposure of bacterial superantigen SEB enhances bone marrow eosinophil population and facilitates its egress to blood and lung tissue. Life Sci 2020; 264:118685. [PMID: 33137369 DOI: 10.1016/j.lfs.2020.118685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Differentiation of bone marrow eosinophils (BM-EO) and its trafficking to peripheral blood and respiratory mucosa are a hallmark of inflammatory diseases. Staphylococcal enterotoxin B (SEB) has been shown to aggravate airways eosinophilic inflammation. This study aimed to investigate the effects of mouse airways SEB exposure on BM-EO population, as well as its adhesive properties and release of cytokines/chemokines that orchestrate BM-EO trafficking to lungs. METHODS Male BALB/c mice were intranasally exposed to SEB (1 μg), and at 4, 16, 24 and 48 h thereafter, bone marrow (BM), circulating blood and bronchoalveolar lavage (BAL) fluid were collected. Levels of cytokines/chemokines and expressions of VLA-4 and CCR3 in BM were evaluated. Adhesion of BM to ICAM-1 and VCAM-1 were also evaluated. RESULTS SEB exposure promoted a marked eosinophil influx to BAL at 16 and 24 h after exposure, which was accompanied by significant increases in counts of immature (16 h) and mature (4 to 48 h) forms of eosinophil in BM, along with blood eosinophilia (16 h). In BM, higher levels of eotaxin, IL-5, IL-4, IL-3 and IL-7 were detected at 16 to 48 h. SEB also significantly increased CCR3 expression and calcium levels in BM-EO, and enhanced the cell adhesion to ICAM-1 (24 h) and ICAM-1 (48 h). CONCLUSION Airways SEB exposure increases the number of eosinophils in BM by mechanisms involving a network of cytokine and chemokine release, facilitating the BM-EO adhesion to ICAM-1 and VCAM-1 to gain access to the peripheral blood and lung tissues.
Collapse
Affiliation(s)
- A S Pinheiro-Torres
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - A P Ferreira-Duarte
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - W M Takeshita
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - V O Gushiken
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - I A Roncalho-Buck
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil
| | - G F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - E Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - I A DeSouza
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil.
| |
Collapse
|
15
|
Mohammed A, Alghetaa H, Sultan M, Singh NP, Nagarkatti P, Nagarkatti M. Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity. Front Pharmacol 2020; 11:893. [PMID: 32612530 PMCID: PMC7308536 DOI: 10.3389/fphar.2020.00893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury. Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice. While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs). THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R. Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Xu R, Shears RK, Sharma R, Krishna M, Webb C, Ali R, Wei X, Kadioglu A, Zhang Q. IL-35 is critical in suppressing superantigenic Staphylococcus aureus-driven inflammatory Th17 responses in human nasopharynx-associated lymphoid tissue. Mucosal Immunol 2020; 13:460-470. [PMID: 31896761 PMCID: PMC7181393 DOI: 10.1038/s41385-019-0246-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The human nasopharynx is frequently exposed to microbial pathogens, including superantigen-producing Staphylococcus aureus (SAg-Sau), which activates potent pro-inflammatory T cell responses. However, cellular mechanisms that control SAg-Sau-driven T cell activation are poorly understood. Using human nasopharynx-associated lymphoid tissue (NALT), we show that SAg-Sau drove a strong Th17 activation, which was associated with an impaired CD4+ T cell-mediated immune regulation. This impairment of immune control correlated with a significant downregulation of interleukin-35 (IL-35) expression in tonsillar CD4+ T cells by SAg-Sau. Supplementing recombinant IL-35 suppressed SAg-Sau-activated Th17 responses, and this IL-35-mediated suppression positively correlated with the level of Th17 activation. Interestingly, SAg-Sau stimulation induced Foxp3+ Treg expansion and interleukin-10 (IL-10) production, which effectively suppressed the Th1 response, but failed to control the activation of Th17 cells. Overall, our results reveal an aberrant T cell regulation on SAg-Sau-driven Th17 activation and identify IL-35 as a critical cytokine to control superantigenic S.aureus-activated Th17 responses.
Collapse
Affiliation(s)
- Rong Xu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Rebecca K. Shears
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ravi Sharma
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Madhan Krishna
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Christopher Webb
- 0000 0004 0421 1585grid.269741.fENT Department, Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Richard Ali
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Xiaoqing Wei
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Aras Kadioglu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Qibo Zhang
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Tsai HC, Huang TY, Chen JS, Chen WJ, Lin CY, Hsu BM. Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus in long-term care facilities in eastern Taiwan. Tzu Chi Med J 2019; 31:222-231. [PMID: 31867250 PMCID: PMC6905247 DOI: 10.4103/tcmj.tcmj_136_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Objective: The prevention of infections is crucial in long-term care programs. Investigations of the occurrence and sources of pathogens in long-term care facilities (LTCFs) are still lacking, especially in eastern Taiwan. In this study, we conducted a surveillance of two common pathogens, Acinetobacter baumannii (AB) and methicillin-resistant Staphylococcus aureus (MRSA), in LTCFs in Hualien. Materials and Methods: Pathogenic assays including isolation, identification, and antimicrobial susceptibility tests were conducted for AB and MRSA at LTCFs in Eastern Taiwan. Staphylococcal cassette chromosome mec typing assays were done to understand the relatedness of clonal strains of MRSA. Results: All AB-positive samples in the LTCFs were mainly from water-rich samples and were drug susceptible. Our data indicated that the AB strains from LTCFs were similar to those from Puzi River watersheds in Taiwan, which were not drug resistant to commonly used antibiotics. On the other hand, the drug resistance analysis of MRSA indicated that the genotypes from the LTCFs were similar to those from nearby hospitals. Eight strains of MRSA were isolated from four LTCFs, of which five were identified as hospital-acquired strains according to SSCmed typing assays. Conclusion: These findings suggest that MRSA in LTCFs might propagate from hospitals and could be transmitted between hospitals and LTCFs. Health authorities should be aware of this risk. The long-term follow-up of MRSA is recommended in local medical institutions as well as in LTCFs for correlative analysis.
Collapse
Affiliation(s)
- Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Psychiatry, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tung-Yi Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Jen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chong-Yen Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
18
|
Radcliff FJ, Waldvogel-Thurlow S, Clow F, Mahadevan M, Johnston J, Li G, Proft T, Douglas RG, Fraser JD. Impact of Superantigen-Producing Bacteria on T Cells from Tonsillar Hyperplasia. Pathogens 2019; 8:pathogens8030090. [PMID: 31252586 PMCID: PMC6789895 DOI: 10.3390/pathogens8030090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus and Group A Streptococcus (GAS) are common occupants of the tonsils and many strains produce potent exotoxins (mitogens) that directly target T cells, which could be a driver for tonsillar hyperplasia. Tonsil tissues from 41 patients were tested for these bacteria in conjunction with profiling of B and T cells by flow cytometry. S. aureus and GAS were detected in tonsil tissue from 44% and 7%, respectively, of patients by bacteriological culture; immuno-histology showed bacteria in close proximity to both B and T lymphocytes. The presence of tonsillar S. aureus did not alter B or T cell populations, whereas peripheral blood mucosal-associated invariant T (MAIT) cells were significantly increased in S. aureus culture positive individuals (p < 0.006). Alterations of tonsil CD4+ TCR Vβ family members relative to peripheral blood were evident in 29 patients. Three patients had strong TCR Vβ skewing indicative of recent exposure to superantigens, their tonsils contained mitogenic bacteria, and supernatants from these bacteria were used to partially recapitulate the skewing profile in vitro, supporting the notion that superantigens can target tonsillar T cells in situ. Tonsils are a reservoir for superantigen-producing bacteria with the capacity to alter the composition and function of key immune cells.
Collapse
Affiliation(s)
- Fiona J Radcliff
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand.
| | | | - Fiona Clow
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Murali Mahadevan
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
| | - James Johnston
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
| | - Gen Li
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Richard G Douglas
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
19
|
Ansari S, Jha RK, Mishra SK, Tiwari BR, Asaad AM. Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infect Drug Resist 2019; 12:1243-1255. [PMID: 31190912 PMCID: PMC6526327 DOI: 10.2147/idr.s175014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus normally colonizes the nasal cavity and pharynx. After breaching the normal habitat, the organism is able to cause a number of infections at any site of the body. The development of antibiotic resistance has created a global challenge for treating infections. Therefore, protection by vaccines may provide valuable measures. Currently, several vaccine candidates have been prepared which are either in preclinical phase or in early clinical phase, whereas several candidates have failed to show a protective efficacy in human subjects. Approaches have also been made in the development of monoclonal or polyclonal antibodies for passive immunization to protect from S. aureus infections. Therefore, in this review we have summarized the findings of recently published scientific literature to make a concise report.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur, Chitwan, Nepal
| | - Rajesh Kumar Jha
- Department of Systems and Diseases (Pharmacology), Saba University School of Medicine, Saba, Dutch Caribbean
| | - Shyam Kumar Mishra
- Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | - Ahmed Morad Asaad
- Department of Microbiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Biological Toxins as the Potential Tools for Bioterrorism. Int J Mol Sci 2019; 20:E1181. [PMID: 30857127 PMCID: PMC6429496 DOI: 10.3390/ijms20051181] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as "Chemicals produced by living organisms that have toxic properties for another organism". Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins. In this paper we focused on six most danger toxins: botulinum toxin, staphylococcal enterotoxins, Clostridium perfringens toxins, ricin, abrin and T-2 toxin. We hope that this paper will help in understanding the problem of availability and potential of biological toxins.
Collapse
Affiliation(s)
- Edyta Janik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Ceremuga
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
21
|
Kadhim S, Singh NP, Zumbrun EE, Cui T, Chatterjee S, Hofseth L, Abood A, Nagarkatti P, Nagarkatti M. Resveratrol-Mediated Attenuation of Staphylococcus aureus Enterotoxin B-Induced Acute Liver Injury Is Associated With Regulation of microRNA and Induction of Myeloid-Derived Suppressor Cells. Front Microbiol 2018; 9:2910. [PMID: 30619104 PMCID: PMC6304356 DOI: 10.3389/fmicb.2018.02910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (RES) is a polyphenolic compound found abundantly in plant products including red grapes, peanuts, and mulberries. Because of potent anti-inflammatory properties of RES, we investigated whether RES can protect from Staphylococcal enterotoxin B (SEB)-induced acute liver injury in mice. SEB is a potent super antigen that induces robust inflammation and releases inflammatory cytokines that can be fatal. We observed that SEB caused acute liver injury in mice with increases in enzyme aspartate transaminase (AST) levels, and massive infiltration of immune cells into the liver. Treatment with RES (100 mg/kg body weight) attenuated SEB-induced acute liver injury, as indicated by decreased AST levels and cellular infiltration in the liver. Interestingly, RES treatment increased the number of myeloid derived suppressor cells (MDSCs) in the liver. RES treatment led to alterations in the microRNA (miR) profile in liver mononuclear cells (MNCs) of mice exposed to SEB, and pathway analysis indicated these miRs targeted many inflammatory pathways. Of these, we identified miR-185, which was down-regulated by RES, to specifically target Colony Stimulating Factor (CSF1) using transfection studies. Moreover, the levels of CSF1 were significantly increased in RES-treated SEB mice. Because CSF1 is critical in MDSC induction, our studies suggest that RES may induce MDSCs by down-regulating miR-185 leading to increase the expression of CSF1. The data presented demonstrate for the first time that RES can effectively attenuates SEB-induced acute liver injury and that this may result from its action on miRs and induction of MDSCs.
Collapse
Affiliation(s)
- Sabah Kadhim
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Elizabeth E. Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Lorne Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Abduladheem Abood
- College of Dental Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
22
|
Tuffs SW, Haeryfar SMM, McCormick JK. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018; 7:pathogens7020053. [PMID: 29843476 PMCID: PMC6027230 DOI: 10.3390/pathogens7020053] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON N6A 3K7, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
23
|
Direct Manipulation of T Lymphocytes by Proteins of Gastrointestinal Bacterial Pathogens. Infect Immun 2018; 86:IAI.00683-17. [PMID: 29339462 DOI: 10.1128/iai.00683-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal bacterial infection represents a significant threat to human health, as well as a burden on food animal production and welfare. Although there is advanced knowledge about the molecular mechanisms underlying pathogenesis, including the development of immune responses to these pathogens, gaps in knowledge persist. It is well established that gastrointestinal bacterial pathogens produce a myriad of proteins that affect the development and effectiveness of innate immune responses. However, relatively few proteins that directly affect lymphocytes responsible for humoral or cell-mediated immunity and memory have been identified. Here, we review factors produced by gastrointestinal bacterial pathogens that have direct T cell interactions and what is known about their functions and mechanisms of action. T cell-interacting bacterial proteins that have been identified to date mainly target three major T cell responses: activation and expansion, chemotaxis, or apoptosis. Further, the requirement for more focused studies to identify and understand additional mechanisms used by bacteria to directly affect the T cell immune response and how these may contribute to pathogenesis is highlighted. Increased knowledge in this area will help to drive development of better interventions in prevention and treatment of gastrointestinal bacterial infection.
Collapse
|
24
|
Characterization of Human Type C Enterotoxin Produced by Clinical S. epidermidis Isolates. Toxins (Basel) 2018; 10:toxins10040139. [PMID: 29584685 PMCID: PMC5923305 DOI: 10.3390/toxins10040139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal Enterotoxins (SEs) are superantigens (SAg) originally produced by S. aureus, but their presence in coagulase negative staphylococci (CNS) has long been suspected. This study aims to better characterize a novel C-like enterotoxin expressed by clinical S. epidermidis strains, called SECepi. We isolated and characterized SECepi for its molecular and functional properties. The toxin was structurally modeled according to its significant similarity with S. aureus SEC3. Most of SEC amino acid residues important for the formation of the trimolecular Major Histocompatibility Complex II MHCII-SEC-T Cell Receptor TCR complex are conserved in SECepi. The functional properties of SECepi were estimated after cloning, expression in E. coli, and purification. The recombinant SECepi toxin exhibits biological characteristics of a SAg including stimulation of human T-cell mitogenicity, inducing and releasing high cytokines levels: IL-2, -4, -6, -8, -10, IFN-γ, TNF-α and GM-CSF at a dose as low as 3.7 pM. Compared to SECaureus, the production of pro-sepsis cytokine IL-6 is significantly higher with SECepi-activated lymphocytes. Furthermore, SECepi is stable to heat, pepsin or trypsin hydrolysis. The SECepi superantigen produced by CNS is functionally very close to that of S. aureus, possibly inducing a systemic inflammatory response at least comparable to that of SECaureus, and may account for S. epidermidis pathogenicity.
Collapse
|
25
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Davis MF, Ludwig S, Brigham EP, McCormack MC, Matsui EC. Effect of home exposure to Staphylococcus aureus on asthma in adolescents. J Allergy Clin Immunol 2017; 141:402-405.e10. [PMID: 28739287 DOI: 10.1016/j.jaci.2017.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Meghan F Davis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md.
| | - Shanna Ludwig
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | | | - Meredith C McCormack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md
| | - Elizabeth C Matsui
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md
| |
Collapse
|
27
|
Hudson Reichenberg LC, Garg R, Fernalld R, Bost KL, Piller KJ. Systemic cytokine and chemokine responses in immunized mice challenged with staphylococcal enterotoxin B. Toxicon 2017; 133:82-90. [PMID: 28478060 PMCID: PMC5534135 DOI: 10.1016/j.toxicon.2017.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The cytokine storm induced by staphylococcal enterotoxin B (SEB) describes the rapid and dramatic induction of mediators which are likely responsible for the toxin's deleterious effects. However despite the use of numerous animal models for investigating SEB related illness in humans, mechanisms of toxicity and correlates of protection remain unclear. In the present study, we used an LPS-potentiated model of SEB lethality to investigate the toxin-induced cytokine and chemokine responses in untreated and immunized mice. Of 30 separate mediators analyzed, serum levels for 28 or 27 of these cytokines and chemokines were elevated following administration of dosages of 3 or 30 LD50 of native SEB, respectively. Mice immunized with a non-toxic SEB vaccine candidate expressed in either E. coli or transgenic soy expression systems were protected from lethality when challenged with potentiated SEB. The majority of SEB-induced cytokines and chemokines (21 of 28 or 23 of 27 following challenge with dosages of 3 or 30 LD50 of native SEB, respectively) were significantly decreased in mice immunized with an SEB vaccine candidate when compared to control animals. Together, these studies provide the most comprehensive evaluation of the cytokine storm induced in this LPS-potentiated model of SEB lethality to date. As with other animal models, the identification of those mediators which are necessary and sufficient for SEB-induced toxicity remains unclear.
Collapse
Affiliation(s)
- Laura C Hudson Reichenberg
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA.
| | - Renu Garg
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA.
| | | | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; SoyMeds, Inc., Davidson, NC, USA
| |
Collapse
|
28
|
Szabo PA, Goswami A, Mazzuca DM, Kim K, O'Gorman DB, Hess DA, Welch ID, Young HA, Singh B, McCormick JK, Haeryfar SMM. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2805-2818. [PMID: 28219889 PMCID: PMC6635948 DOI: 10.4049/jimmunol.1601366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Ankur Goswami
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Delfina M Mazzuca
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Kyoungok Kim
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - David B O'Gorman
- Cell and Molecular Biology Laboratory, Roth | McFarlane Hand and Upper Limb Centre, Western University, London, Ontario N6A 4V2, Canada
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Department of Surgery, Western University, London, Ontario N6A 4V2, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Ian D Welch
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada;
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada
| |
Collapse
|
29
|
Abstract
Staphylococcus aureus, although generally identified as a commensal, is also a common cause of human bacterial infections, including of the skin and other soft tissues, bones, bloodstream, and respiratory tract. The history of S. aureus treatment is marked by the development of resistance to each new class of antistaphylococcal antimicrobial drugs, including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy. S. aureus isolates identified in the 1960s were sometimes resistant to methicillin, a ß-lactam antimicrobial active initially against a majority S. aureus strains. These MRSA isolates, resistant to nearly all ß-lactam antimicrobials, were first largely confined to the health care environment and the patients who attended it. However, in the mid-1990s, new strains, known as community-associated (CA-) MRSA strains, emerged. CA-MRSA organisms, compared with health care-associated (HA-) MRSA strain types, are more often susceptible to multiple classes of non ß-lactam antimicrobials. While infections caused by methicillin-susceptible S. aureus (MSSA) strains are usually treated with drugs in the ß-lactam class, such as cephalosporins, oxacillin or nafcillin, MRSA infections are treated with drugs in other antimicrobial classes. The glycopeptide drug vancomycin, and in some countries teicoplanin, is the most common drug used to treat severe MRSA infections. There are now other classes of antimicrobials available to treat staphylococcal infections, including several that have been approved after 2009. The antimicrobial management of invasive and noninvasive S. aureus infections in the ambulatory and in-patient settings is the topic of this review. Also discussed are common adverse effects of antistaphylococcal antimicrobial agents, advantages of one agent over another for specific clinical syndromes, and the use of adjunctive therapies such as surgery and intravenous immunoglobulin. We have detailed considerations in the therapy of noninvasive and invasive S. aureus infections. This is followed by sections on specific clinical infectious syndromes including skin and soft tissue infections, bacteremia, endocarditis and intravascular infections, pneumonia, osteomyelitis and vertebral discitis, epidural abscess, septic arthritis, pyomyositis, mastitis, necrotizing fasciitis, orbital infections, endophthalmitis, parotitis, staphylococcal toxinoses, urogenital infections, and central nervous system infections.
Collapse
|
30
|
Abstract
The increasing insight into pathomechanisms of dysregulated host response in several inflammatory diseases led to the implementation of the term “cytokine storm” in the literature more than 20 years ago. Direct toxic effects as well as indirect immunomodulatory mechanisms during cytokine storm have been described and were the basis for the rationale to use several substances and devices in life-threatening infections and hyperinflammatory states. Clinical trials have been performed, most of them in the form of minor, investigator-initiated protocols; major clinical trials focused mostly on sepsis and septic shock. The following review tries to summarize the background, pathophysiology, and results of clinical investigations that had implications for the development of therapeutic strategies and international guidelines for the management of hyperinflammation during syndromes of cytokine storm in adult patients, predominantly in septic shock.
Collapse
Affiliation(s)
- Herwig Gerlach
- Department of Anesthesia, Critical Care Medicine, and Pain Management, Vivantes - Klinikum Neukoelln, Klinik fuer Anaesthesie, operative Intensivmedizin und Schmerztherapie, Berlin, Germany
| |
Collapse
|
31
|
Krogman A, Tilahun A, David CS, Chowdhary VR, Alexander MP, Rajagopalan G. HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 2016; 89:20-28. [PMID: 27863161 DOI: 10.1111/tan.12930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome toxin-1 (TSST-1) is a potent superantigen produced by Staphylococcus aureus. In addition to menstrual and nonmenstrual toxic shock syndromes, TSST-1 is also implicated in the immunopathogenesis of pneumonia, infective endocarditis, neonatal exanthematous disease, and atopic dermatitis among others. Superantigens first bind to major histocompatibility complex (MHC) class II molecules and then activate a large proportion of T cells by cross-linking their T cell receptor. As binding to MHC class II molecules is a critical step in the robust activation of the immune system by TSST-1 and other superantigens, polymorphic variations between different HLA-DR alleles could potentially influence the magnitude of immune activation and immunopathology caused by TSST-1. As TSST-1 is highly toxic to humans and given that multiple variations of alleles of HLA-DR and HLA-DQ are expressed in each individual, it is difficult to determine how HLA-DR polymorphisms quantitatively and qualitatively impact immune activation caused by TSST-1 in humans. However, such investigations can be conducted on transgenic mice lacking all endogenous MHC class II molecules and expressing specific HLA class II alleles. Therefore, transgenic mice expressing different HLA-DRB1 alleles (HLA-DRB1*15:01, HLA-DRB1*15:02, HLA-DRB1*03:01, HLA-DRB1*04:01), and sharing HLA-A1*01:01 chain, were systemically challenged with purified TSST-1 and multiple immune parameters were assessed. Among the HLA-DR alleles, mice expressing HLA-DRB1*15:01 allele elicited a significantly higher serum cytokine/chemokine response; greater splenic T cell expansion and most severe organ pathology. Our study highlights the potential utility of human leukocyte antigen (HLA) transgenic mice in understanding the impact of HLA polymorphisms on the outcomes of diseases caused by TSST-1 and other superantigens.
Collapse
Affiliation(s)
- A Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Tilahun
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C S David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - G Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|