1
|
Naranjo-Millán JA, Echeverri A, Aguirre-Valencia D, Granados-Sánchez AM, Moreno-Arango I, Mejía-Quiñones V, Orejuela-Zapata JF. Cognitive dysfunction in systemic lupus erythematosus: Its relationship with intracerebral volumes and antiphospholipid antibody profile. Case series. Med Clin (Barc) 2025:S0025-7753(24)00737-1. [PMID: 39875258 DOI: 10.1016/j.medcli.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 01/30/2025]
Abstract
INTRODUCTION The incidence of cognitive compromise in systemic lupus erythematosus is variable; it presents early and is usually asymptomatic. Our study evaluated the frequency of cognitive impairment in patients without a previous diagnosis of neuropsychiatric lupus and compared the differences in intracerebral size in subgroups with cognitive alterations and positive autoantibodies. METHODS This is a cross-sectional study. Patients with systemic lupus erythematosus without a previous diagnosis of neuropsychiatric lupus treated between July 2018 and October 2019 were included. Neuropsychological tests and brain imaging were performed by magnetic resonance imaging (MRI) measuring brain volumes. The variables, including antiphospholipid syndrome (APS) antibodies, were compared between subgroups of patients with and without neuropsychological alterations. RESULTS Six patients were included. Patients who tested positive in more than two abnormal neuropsychiatric assessments showed reduced brain volumes in the right (6.1 versus 5.31) and left (6.2 versus 5.38) frontal lobes, the right (0.66 versus 0.65) and left (0.67 versus 0.6) cingulate cortices, the right (3.63 versus 3.38) and left (3.67 versus 3.4) temporal lobes, the right (3.96 versus 3.8) and left (3.87 versus 3.7) parietal lobes, and the right (0.49 versus 0.41) and left (0.46 versus 0.42) insula. A comparison of median normalized brain volumes revealed that most patients testing positive for antiphospholipid antibodies had reduced brain volumes. CONCLUSIONS A relationship was observed between neurocognitive compromise, antiphospholipid antibodies and brain volumes measured by cerebral magnetic resonance. These findings occur in asymptomatic neuropsychiatric patients.
Collapse
Affiliation(s)
| | - Alex Echeverri
- Fundación Valle del Lili, Unidad de Reumatología, Cali, Colombia.
| | | | - Ana M Granados-Sánchez
- Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia; Fundación Valle del Lili, Departamento de Radiología, Cali, Colombia
| | | | - Valentina Mejía-Quiñones
- Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia; Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | | |
Collapse
|
2
|
Xiang P, Latif R, Morshed S, Davies TF. Hypothyroidism Induced by a TSH Receptor Peptide-Implications for Thyroid Autoimmunity. Thyroid 2024; 34:1513-1521. [PMID: 39435685 DOI: 10.1089/thy.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Background: The "neutral" thyrotropin receptor autoantibodies (N-TSHR-Ab) directed at the TSHR ectodomain's hinge region have been shown to induce thyroid cell damage in vitro. During these earlier studies, we developed a mouse monoclonal antibody (MC1) specific for a peptide (amino acid 322-340) in the region (MC1-Mab) which was able to induce thyroid cell stress and apoptosis when administered in vivo. Methods: In order to examine the effect of in vivo generated N-TSHR-Abs, rather than an acutely administered monoclonal antibody, we immunized Balb/c mice with the hinge region peptide over 18 weeks. Serum TSHR antibodies, specific TSHR hinge region antibodies, serum thyroglobulin (TG) and anti-TG as well as thyroxine and thyrotropin (TSH) levels were examined to evaluate the response to the immunization. Histological examination of the thyroid glands and flow cytometry of spleen T cells, B cells and macrophages were also performed to explore the underlying mechanisms. Results: We found that TSHR-peptide immunized mice developed N-TSHR-Abs against the peptide which resulted in thyroid damage shown by thyroid follicular destruction with follicular cell apoptosis, M1 macrophage infiltration, thyroglobulin release, and induction of thyroglobulin antibodies. This resulted in hypothyroidism with increased TSH levels. Conclusion: This study demonstrated that endogenous neutral antibodies to the TSHR could induce thyroid cell damage from apoptosis and M1 macrophage infiltration and resulted in hypothyroidism.
Collapse
Affiliation(s)
- Pingping Xiang
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, New York, New York, USA
| | - Syed Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, New York, New York, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- James J. Peters VA Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Ghadirzade Arani L, Advani S, Mardani G, Moslemi Haghighi S, Abdollahimajd F, Robati RM, Mozafari N, Moravvej H, Gheisari M, Nasiri S, Dadkhahfar S. Mild cognitive impairment in pemphigus. Int J Dermatol 2024; 63:1761-1766. [PMID: 38702904 DOI: 10.1111/ijd.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Pemphigus is a group of autoimmune blistering disorders that have been associated with dementia in previous studies. Mild cognitive impairment (MCI) can be the first stage of progression into dementia. The objective of the present study was to evaluate the frequency of MCI in pemphigus patients compared to a control group. METHODS This case-control study included 80 patients with pemphigus referred to the dermatology clinics of Shohadaye Tajrish and Loghman Hakim hospitals, Tehran, Iran, in 2021. A group of 80 individuals without pemphigus who visited the same clinics for cosmetic consultation or interventions were regarded as controls. Age, sex, marital status, and education were recorded for all participants. Disease duration, medications, and severity were noted for pemphigus patients. The Persian version of the Montreal Cognitive Assessment (MoCA) test was used to assess cognitive function. RESULTS MCI was significantly more frequent in pemphigus patients than in controls (55% vs. 37.5%, P = 0.026). Furthermore, the total MoCA score was significantly lower in pemphigus patients compared to controls (23.98 ± 3.77 vs. 25.21 ± 3.45, P = 0.032); however, among MoCA's different domains, only the executive functions score was significantly lower in pemphigus patients (P = 0.010). After adjustment, multivariable logistic regression analysis revealed that every 1-year higher education in patients decreased the odds of MCI by 52% (adjusted odds ratio = 0.483, 95% confidence interval 0.326; 0.715, P < 0.001). CONCLUSIONS The frequency of MCI was found to be significantly higher, and overall scores of the MoCA test, as well as its executive function domain, were significantly lower among pemphigus patients in this study compared to the control group. Additionally, a higher level of education was associated with decreased odds of MCI in pemphigus patients. Identifying pemphigus patients with MCI through the use of the MoCA test can facilitate early intervention, enabling them to seek help and support.
Collapse
Affiliation(s)
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Mardani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Nasiri
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R, Shafiei-Irannejad V. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol 2024; 61:9993-10005. [PMID: 38057641 DOI: 10.1007/s12035-023-03749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.
Collapse
Affiliation(s)
- Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Golsa Babapour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Tooba Mohammadi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
6
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Menendez CM, Zuccolo J, Swedo SE, Reim S, Richmand B, Ben-Pazi H, Kovoor A, Cunningham MW. Dopamine receptor autoantibody signaling in infectious sequelae differentiates movement versus neuropsychiatric disorders. JCI Insight 2024; 9:e164762. [PMID: 39325550 PMCID: PMC11601707 DOI: 10.1172/jci.insight.164762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Despite growing recognition, neuropsychiatric diseases associated with infections are a major unsolved problem worldwide. Group A streptococcal (GAS) infections can cause autoimmune sequelae characterized by movement disorders, such as Sydenham chorea, and neuropsychiatric disorders. The molecular mechanisms underlying these diseases are not fully understood. Our previous work demonstrates that autoantibodies (AAbs) can target dopaminergic neurons and increase dopamine D2 receptor (D2R) signaling. However, AAb influence on dopamine D1 receptor (D1R) activity is underexplored. We found evidence that suggests GAS-induced cross-reactive AAbs promote autoimmune encephalitis of the basal ganglia, a region of high dopamine receptor density. Here, we report a mechanism whereby neuropsychiatric syndromes are distinguished from movement disorders by differences in D1R and D2R AAb titers, signaling, receiver operating characteristic curves, and immunoreactivity with D1R and D2R autoreactive epitopes. D1R AAb signaling was observed through patient serum AAbs and novel patient-derived monoclonal antibodies (mAbs), which induced both D1R G protein- and β-arrestin-transduced signals. Furthermore, patient AAbs and mAbs enhanced D1R signaling mechanisms mediated by the neurotransmitter dopamine. Our findings suggest that AAb-mediated D1R signaling may contribute to the pathogenesis of neuropsychiatric sequelae and inform new options for diagnosis and treatment of GAS sequelae and related disorders.
Collapse
Affiliation(s)
- Chandra M. Menendez
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan Zuccolo
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Susan E. Swedo
- Intramural Research Program of the National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Sean Reim
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Brian Richmand
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hilla Ben-Pazi
- Department of Pediatric Neurology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Multidisciplinary Movement Disorders Clinic, Orthopedic Department, Assuta Ashdod, Ashdod, Israel
| | - Abraham Kovoor
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
9
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Ferat-Osorio E, Maldonado-García JL, Pavón L. How inflammation influences psychiatric disease. World J Psychiatry 2024; 14:342-349. [PMID: 38617981 PMCID: PMC11008389 DOI: 10.5498/wjp.v14.i3.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Recent studies highlight the strong correlation between infectious diseases and the development of neuropsychiatric disorders. In this editorial, we comment on the article "Anti-infective therapy durations predict psychological stress and laparoscopic surgery quality in pelvic abscess patients" by Zhang et al, published in the recent issue of the World Journal of Psychiatry 2023; 13 (11): 903-911. Our discussion highlighted the potential consequences of anxiety, depression, and psychosis, which are all linked to bacterial, fungal, and viral infections, which are relevant to the impact of inflammation on the sequelae in mental health as those we are observing after the coronavirus disease 2019 pandemic. We focus specifically on the immune mechanisms triggered by inflammation, the primary contributor to psychiatric complications. Importantly, pathophysiological mechanisms such as organ damage, post-injury inflammation, and infection-induced endocrine alterations, including hypocortisolism or autoantibody formation, significantly contribute to the development of chronic low-grade inflammation, promoting the emergence or development of psychiatric alterations in susceptible individuals. As inflammation can have long-term effects on patients, a multidisciplinary treatment plan can avoid complications and debilitating health issues, and it is crucial to recognize and address the mental health implications.
Collapse
Affiliation(s)
- Eduardo Ferat-Osorio
- División de Investigación Clínica de la Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| |
Collapse
|
11
|
Garg P, Würtz F, Hobbie F, Buttgereit K, Aich A, Leite K, Rehling P, Kügler S, Bähr M. Human serum-derived α-synuclein auto-antibodies mediate NMDA receptor-dependent degeneration of CNS neurons. J Neuroinflammation 2024; 21:62. [PMID: 38419079 PMCID: PMC10902935 DOI: 10.1186/s12974-024-03050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB). FINDINGS The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES. CONCLUSION These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.
Collapse
Affiliation(s)
- Pretty Garg
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| | - Franziska Würtz
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Fabian Hobbie
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Klemens Buttgereit
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Abhishek Aich
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Kristian Leite
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Peter Rehling
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| |
Collapse
|
12
|
Justiz-Vaillant AA, Gopaul D, Soodeen S, Arozarena-Fundora R, Barbosa OA, Unakal C, Thompson R, Pandit B, Umakanthan S, Akpaka PE. Neuropsychiatric Systemic Lupus Erythematosus: Molecules Involved in Its Imunopathogenesis, Clinical Features, and Treatment. Molecules 2024; 29:747. [PMID: 38398500 PMCID: PMC10892692 DOI: 10.3390/molecules29040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an idiopathic chronic autoimmune disease that can affect any organ in the body, including the neurological system. Multiple factors, such as environmental (infections), genetic (many HLA alleles including DR2 and DR3, and genes including C4), and immunological influences on self-antigens, such as nuclear antigens, lead to the formation of multiple autoantibodies that cause deleterious damage to bodily tissues and organs. The production of autoantibodies, such as anti-dsDNA, anti-SS(A), anti-SS(B), anti-Smith, and anti-neuronal DNA are characteristic features of this disease. This autoimmune disease results from a failure of the mechanisms responsible for maintaining self-tolerance in T cells, B cells, or both. Immune complexes, circulating antibodies, cytokines, and autoreactive T lymphocytes are responsible for tissue injury in this autoimmune disease. The diagnosis of SLE is a rheumatological challenge despite the availability of clinical criteria. NPSLE was previously referred to as lupus cerebritis or lupus sclerosis. However, these terms are no longer recommended because there is no definitive pathological cause for the neuropsychiatric manifestations of SLE. Currently, the treatment options are primarily based on symptomatic presentations. These include the use of antipsychotics, antidepressants, and anxiolytic medications for the treatment of psychiatric and mood disorders. Antiepileptic drugs to treat seizures, and immunosuppressants (e.g., corticosteroids, azathioprine, and mycophenolate mofetil), are directed against inflammatory responses along with non-pharmacological interventions.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | - Odette Arozarena Barbosa
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
| | - Chandrashehkar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Bijay Pandit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Srikanth Umakanthan
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| |
Collapse
|
13
|
Lotfi N, Rezaei N, Rastgoo E, Khodadoustan Shahraki B, Zahedi G, Jafarinia M. Schizophrenia Etiological Factors and Their Correlation with the Imbalance of the Immune System: An Update. Galen Med J 2023; 12:1-16. [PMID: 39553412 PMCID: PMC11568428 DOI: 10.31661/gmj.v12i.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2024] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder associated with a dysregulation of the immune system. Immune-related genes and environmental factors including stress, food, infections, and microbiota, alter the immune system's homeostasis and play a role in SZ pathogenesis. The most distinctive feature in the pathophysiology of the disease is a shift in the T helper 1(Th1)/Th2 balance toward Th2 dominance in the immune system. Also, microglial and Th17 cell activation cause inflammatory responses in the central nervous system (CNS). Antibodies play a role in the pathophysiology of SZ and give more evidence of a link between humoral immune reactivity and the disease. Accordingly, an imbalance in cytokine activities and neuroinfl ammation has been considered the main contributor to the pathogenesis of the SZ. Overall, the deregulation of the immune system caused by genetic, environmental, and neurochemical effects may all play a role in the etiology of SZ. This review summarized the etiological factors for SZ and discussed the role of immune responses and their interaction with genetic and environmental factors in SZ pathogenesis.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical
Sciences, Khorramabad, Iran
| | - Elham Rastgoo
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences,
Shiraz, Iran
| | | | - Ghazaleh Zahedi
- Department of General Psychology, Iran University of Medical Sciences, Thran, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
14
|
Shiwaku H, Katayama S, Gao M, Kondo K, Nakano Y, Motokawa Y, Toyoda S, Yoshida F, Hori H, Kubota T, Ishikawa K, Kunugi H, Ikegaya Y, Okazawa H, Takahashi H. Analyzing schizophrenia-related phenotypes in mice caused by autoantibodies against NRXN1α in schizophrenia. Brain Behav Immun 2023; 111:32-45. [PMID: 37004758 DOI: 10.1016/j.bbi.2023.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.
Collapse
Affiliation(s)
- Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Mengxuan Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Tokyo 113-8510, Japan
| | - Yuri Nakano
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Yukiko Motokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Saori Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Tokyo 187-8553, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Tokyo 187-8553, Japan
| | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Ibaraki 300-0051, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Tokyo 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| |
Collapse
|
15
|
Gagliano A, Carta A, Tanca MG, Sotgiu S. Pediatric Acute-Onset Neuropsychiatric Syndrome: Current Perspectives. Neuropsychiatr Dis Treat 2023; 19:1221-1250. [PMID: 37251418 PMCID: PMC10225150 DOI: 10.2147/ndt.s362202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) features a heterogeneous constellation of acute obsessive-compulsive disorder (OCD), eating restriction, cognitive, behavioral and/or affective symptoms, often followed by a chronic course with cognitive deterioration. An immune-mediated etiology is advocated in which the CNS is hit by different pathogen-driven (auto)immune responses. This narrative review focused on recent clinical (ie, diagnostic criteria, pre-existing neurodevelopmental disorders, neuroimaging) and pathophysiological (ie, CSF, serum, genetic and autoimmune findings) aspects of PANS. We also summarized recent points to facilitate practitioners with the disease management. Relevant literature was obtained from PubMed database which included only English-written, full-text clinical studies, case reports, and reviews. Among a total of 1005 articles, 205 were pertinent to study inclusion. Expert opinions are converging on PANS as the effect of post-infectious events or stressors leading to "brain inflammation", as it is well-established for anti-neuronal psychosis. Interestingly, differentiating PANS from either autoimmune encephalitides and Sydenham's chorea or from alleged "pure" psychiatric disorders (OCD, tics, Tourette's syndrome), reveals several overlaps and more analogies than differences. Our review highlights the need for a comprehensive algorithm to help both patients during their acute distressing phase and physicians during their treatment decision. A full agreement on the hierarchy of each therapeutical intervention is missing owing to the limited number of randomized controlled trials. The current approach to PANS treatment emphasizes immunomodulation/anti-inflammatory treatments in association with both psychotropic and cognitive-behavioral therapies, while antibiotics are suggested when an active bacterial infection is established. A dimensional view, taking into account the multifactorial origin of psychiatric disorders, should suggest neuro-inflammation as a possible shared substrate of different psychiatric phenotypes. Hence, PANS and PANS-related disorders should be considered as a conceptual framework describing the etiological and phenotypical complexity of many psychiatric disorders.
Collapse
Affiliation(s)
- Antonella Gagliano
- Department of Health Science, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Alessandra Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| | - Marcello G Tanca
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Stefano Sotgiu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| |
Collapse
|
16
|
Malle L, Patel RS, Martin-Fernandez M, Stewart OJ, Philippot Q, Buta S, Richardson A, Barcessat V, Taft J, Bastard P, Samuels J, Mircher C, Rebillat AS, Maillebouis L, Vilaire-Meunier M, Tuballes K, Rosenberg BR, Trachtman R, Casanova JL, Notarangelo LD, Gnjatic S, Bush D, Bogunovic D. Autoimmunity in Down's syndrome via cytokines, CD4 T cells and CD11c + B cells. Nature 2023; 615:305-314. [PMID: 36813963 PMCID: PMC9945839 DOI: 10.1038/s41586-023-05736-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
Abstract
Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.
Collapse
Affiliation(s)
- Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel S Patel
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - O Jay Stewart
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vanessa Barcessat
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julie Samuels
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Trachtman
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Bush
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Marinoska T, Möckel T, Triantafyllias K, Boegel S, Dreher M, Luessi F, Schwarting A. NMDA Receptors in Health and Diseases: New Roles and Signaling Pathways-Anti-N-Methyl-D-Aspartate Receptor (NMDAR) Autoantibodies as Potential Biomarkers of Fatigue in Patients with Rheumatic Diseases. Int J Mol Sci 2023; 24:ijms24043560. [PMID: 36834970 PMCID: PMC9964077 DOI: 10.3390/ijms24043560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Fatigue is a widespread and complex symptom with motor and cognitive components; it is diagnosed predominantly by questionnaire. We recently published a correlation between anti-N-methyl-D-aspartate receptor (NMDAR) antibodies and fatigue in patients with SLE (systemic lupus erythematosus). In the present study, we examined whether this association also applies to patients with other rheumatic diseases. Serum samples of 88 patients with different rheumatic diseases were analyzed for the presence of anti-NR2 antibodies and Neurofilament light chain (NfL) protein. The severity of fatigue was determined according to the FSMC questionnaire (Fatigue Scale for Motor and Cognitive Functions) and correlated with the circulating antibody titer and NfL level accordingly. Positive titers of anti-NR2 antibodies were detected in patients with both autoimmune and non-autoimmune rheumatic diseases. These patients suffer predominantly from severe fatigue. The circulating NfL level did not correlate with the anti-NR2 titer and the fatigue severity in all patient groups. The association of severe fatigue with circulating anti-NR2 antibodies in patients with rheumatic diseases, independently from the main disease, suggests an individual role of these autoantibodies in fatigue pathophysiology. Thus, the detection of these autoantibodies might be a helpful diagnostic tool in rheumatic patients with fatigue.
Collapse
Affiliation(s)
- Tatjana Marinoska
- Center for Rheumatic Disease Rhineland-Palatinate, 55543 Bad Kreuznach, Germany
- Correspondence: (T.M.); (A.S.); Tel.: +49-152-54139669 (T.M.)
| | - Tamara Möckel
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Konstantinos Triantafyllias
- Center for Rheumatic Disease Rhineland-Palatinate, 55543 Bad Kreuznach, Germany
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Sebastian Boegel
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias Dreher
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- University Center for Autoimmune Disease, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Felix Luessi
- University Center for Autoimmune Disease, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Division of Neurology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andreas Schwarting
- Center for Rheumatic Disease Rhineland-Palatinate, 55543 Bad Kreuznach, Germany
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- University Center for Autoimmune Disease, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Correspondence: (T.M.); (A.S.); Tel.: +49-152-54139669 (T.M.)
| |
Collapse
|
18
|
Du Y, Zhao C, Liu J, Li C, Yan Q, Li L, Hao Y, Yao D, Si H, Zhao Y, Zhang W. Simplified regimen of combined low-dose rituximab for autoimmune encephalitis with neuronal surface antibodies. J Neuroinflammation 2022; 19:259. [PMID: 36273158 PMCID: PMC9587594 DOI: 10.1186/s12974-022-02622-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Autoimmune encephalitis (AE) with neuronal surface antibodies (NSAbs) presents pathogenesis mediated by B cell-secreting antibodies. Rituximab is a second-line choice for the treatment for AE with NSAbs, which can cause B cell depletion via targeting CD20. However, the optimal protocol and dosage of rituximab combined with first-line therapy for NSAbs-associated AE remains unclear so far. In this study, we explored the efficacy and safety of low-dose rituximab combined with first-line treatment for NSAbs-associated AE. Methods Fifty-nine AE patients with NSAbs were enrolled, and retrospectively divided into common first-line therapy (41 patients) and combined low-dose rituximab (100 mg induction weekly with 3 circles, followed by 100 mg reinfusion every 6 months) with first-line therapy (18 patients). Outcome measures included changes in the Clinical Assessment Scale for Autoimmune Encephalitis (CASE) score (primary endpoint), changes in the modified Rankin Scale (mRS), the Mini-mental State Examination (MMSE), the patient and caregiver Neuropsychiatric Inventory (NPI) score at each visit (baseline, discharge, 6 months, 12 months and last follow-up) between two groups (secondary endpoint), as well as oral prednisone dosage, relapse and adverse effects during follow-up. Results Compared with traditional first-line therapy group, for primary outcome, CASE scores at last follow-up were significantly improved in combined rituximab group, as well as markedly improving changes of CASE scores between baseline and each visit. While changes of mRS, MMSE and NPI scores, as secondary endpoint, were all markedly accelerating improvement between baseline and each visit, as well as both oral prednisone dosage and relapse were also greatly reduced during follow-up. Meanwhile, longitudinal analysis in combination of rituximab cohort also revealed persistently marked amelioration in a series of scales from baseline even more than 1 year. Moreover, analysis in rituximab subgroup showed no difference in any clinical outcomes between combination with single first-line and with repeated first-line treatment (≥ 2 times), while compared to delayed combination with rituximab (> 3 months), early initiation of combination (≤ 3 months) might achieve better improvements in CASE and MMSE assessment even 1 year later. No rituximab-correlated serious adverse events have been reported in our patients. Conclusions Our simplified regimen of combined low-dose rituximab firstly showed significantly accelerating short-term recovery and long-term improvement for AE with NSAbs, in parallel with markedly reduced prednisone dosage and clinical relapses. Moreover, opportunity of protocol showed earlier initiation (≤ 3 months) with better long-term improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02622-8.
Collapse
Affiliation(s)
- Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Chao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Juntong Liu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Chuan Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qi Yan
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Lin Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Yunfeng Hao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Dan Yao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Huaxing Si
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361005, China.
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| |
Collapse
|
19
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
20
|
Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, Fujita K, Tamaki H, Takebayashi H, Terasaki O, Nagase Y, Nagase T, Kubota T, Ishikawa K, Okazawa H, Takahashi H. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med 2022; 3:100597. [PMID: 35492247 PMCID: PMC9043990 DOI: 10.1016/j.xcrm.2022.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia. Some patients with schizophrenia are positive for anti-NCAM1 autoantibodies Anti-NCAM1 antibody from schizophrenia patients inhibits NCAM1-NCAM1 interactions Anti-NCAM1 antibody from schizophrenia patients reduces spines and synapses in mice Anti-NCAM1 antibody from patients induces schizophrenia-related behavior in mice
Collapse
Affiliation(s)
- Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuri Nakano
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruna Tamaki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | | | | | | | | | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Ibaraki 300-0051, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| |
Collapse
|
21
|
Neuropsychological Evaluations in Limbic Encephalitis. Brain Sci 2021; 11:brainsci11050576. [PMID: 33947002 PMCID: PMC8145692 DOI: 10.3390/brainsci11050576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Limbic encephalitis (LE) can cause dynamic and permanent impairment of cognition and behavior. In clinical practice, the question arises as to which cognitive and behavioral domains are affected by LE and which assessment is suited to monitor the disease progress and the success of treatment. Current findings on cognition and behavior in LE are reviewed and discussed based on current guidelines and consensus papers. In addition, we outline approaches for the neuropsychological monitoring of LE and its treatment. Dependent on disease acuity and severity, LE leads to episodic long-term memory dysfunction in different variants (e.g., anterograde memory impairment, accelerated long-term forgetting, and affection of autobiographical memory) and executive deficits. In addition, affective disorders are very common. More severe psychiatric symptoms may occur as well. In the course of the disease, dynamic phases with functional recovery must be differentiated from residual defect states. Evidence-based neuropsychological diagnostics should be conducted ideally before treatment initiation and reassessments are indicated when any progress is suggested, and when decisive anti-seizure or immunomodulatory treatment changes are made. Cognition and behavior may but must not run in synchrony with seizures, MRI pathology, or immune parameters. Cognitive and behavioral problems are integral aspects of LE and represent important biomarkers of disease acuity, progress, and therapy response beyond and in addition to parameters of immunology, neurological symptoms, and brain imaging. Thus, evidence-based neuropsychological assessments are essential for the diagnostic workup of patients with suspected or diagnosed limbic encephalitis, for treatment decisions, and disease and treatment monitoring.
Collapse
|
22
|
Lin CH, Lai JN, Lee IC, Chou IC, Lin WD, Lin MC, Hong SY. Association Between Kawasaki Disease and Childhood Epilepsy: A Nationwide Cohort Study in Taiwan. Front Neurol 2021; 12:627712. [PMID: 33889123 PMCID: PMC8055829 DOI: 10.3389/fneur.2021.627712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Kawasaki disease is a common vasculitis of childhood in East Asia. The complications following Kawasaki disease mostly included cardiovascular sequelae; non-cardiac complications have been reported but less studied. This study investigated potential epilepsy following Kawasaki disease in Taiwanese children. Objectives: Through National Health Insurance Research Database, we retrospectively analyzed the data of children aged <18 years with clinically diagnosed Kawasaki disease from January 1, 2000 to December 31, 2012 in Taiwan. These patients were followed up to estimate the incidence of epilepsy in the Kawasaki cohort in comparison with that in the non-Kawasaki cohort in Taiwan. Results: A total of 8,463 and 33,872 patients in the Kawasaki and non-Kawasaki cohorts were included in the study, respectively. Of the total eligible study subjects, 61.1% were boys and 38.9% were girls; most patients with newly diagnosed Kawasaki disease were aged <5 years [88.1%]. Patients with Kawasaki disease showed a higher incidence rate [47.98 vs. 27.45 every 100,000 person years] and significantly higher risk [adjusted hazard ratio = 1.66, 95% confidence interval = 1.13–2.44] of epilepsy than those without the disease. Additionally, female sex [adjusted hazard ratio = 2.30, 95% confidence interval = 1.31–4.04] and age <5 years [adjusted hazard ratio = 1.82, 95% confidence interval = 1.22–2.72] showed a significantly higher risk of epilepsy in the Kawasaki cohort. Conclusion: Results revealed a higher incidence rate and significant risk of epilepsy in Taiwanese children with Kawasaki disease than in those without the disease. Therefore, children diagnosed with Kawasaki disease are recommended follow-up as they have a high risk of epilepsy and seizure disorders.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatrics Pulmonology, China Medical University, Children's Hospital, Taichung, Taiwan.,Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Nien Lai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Inn-Chi Lee
- Department of Pediatrics, School of Medicine, Chung Shan Medical University Hospital and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University, Children's Hospital, Taichung, Taiwan.,College of Chinese Medicine, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University, Children's Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Bowler S, Mitchell BI, Kallianpur KJ, Chow D, Jiang W, Shikuma CM, Ndhlovu LC. Plasma anti-CD4 IgG is associated with brain abnormalities in people with HIV on antiretroviral therapy. J Neurovirol 2021; 27:334-339. [PMID: 33710596 DOI: 10.1007/s13365-021-00966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Anti-CD4 IgG autoantibodies have been implicated in CD4+ T cell reconstitution failure, leaving people with HIV (PWH) at heightened risk of HIV-associated comorbidities, such as neurocognitive impairment. Seventeen PWH on stable anti-retroviral therapy (ART) and 10 HIV seronegative controls had plasma anti-CD4 IgG antibodies measured by enzyme-linked immunosorbent assay. Neuropsychological (NP) tests assessed cognitive performance, and brain volumes were measured by structural magnetic resonance imaging. Anti-CD4 IgG levels were elevated (p = 0.04) in PWH compared with controls. Anti-CD4 IgG correlated with global NP z-scores (rho = - 0.51, p = 0.04). A relationship was observed between anti-CD4 IgG and putamen (β = - 0.39, p = 0.02), pallidum (β = - 0.38, p = 0.03), and amygdala (β = - 0.42, p = 0.05) regional brain volumes. The results of this study suggest the existence of an antibody-mediated relationship with neurocognitive impairment and brain abnormalities in an HIV-infected population.
Collapse
Affiliation(s)
- Scott Bowler
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA.
- Department of Quantitative Health Sciences, University of Hawai'i, Honolulu, HI, USA.
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA.
| | | | - Kalpana J Kallianpur
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA
- Center for Translational Research On Aging, Kuakini Medical Center, Honolulu, HI, USA
| | - Dominic Chow
- Hawaii Center for AIDS, University of Hawai'i, Honolulu, HI, USA
- The Queen's Medical Center, Honolulu, HI, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, University of Hawai'i, Honolulu, HI, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Ramesh R, Sundaresh A, Rajkumar RP, Negi VS, Vijayalakshmi MA, Krishnamoorthy R, Tamouza R, Leboyer M, Kamalanathan AS. DNA hydrolysing IgG catalytic antibodies: an emerging link between psychoses and autoimmunity. NPJ SCHIZOPHRENIA 2021; 7:13. [PMID: 33637732 PMCID: PMC7910540 DOI: 10.1038/s41537-021-00143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022]
Abstract
It is not uncommon to observe autoimmune comorbidities in a significant subset of patients with psychotic disorders, namely schizophrenia (SCZ) and bipolar disorder (BPD). To understand the autoimmune basis, the DNA abyzme activity mediated by serum polyclonal IgG Abs were examined in psychoses patients, quantitatively, by an in-house optimized DNase assay. A similar activity exhibited by IgG Abs from neuropsychiatric-systemic lupus erythematosus (NP-SLE) patients was used as a comparator. Our data revealed that the IgG DNase activity of SCZ was close to that of NP-SLE and it was twofold higher than the healthy controls. Interestingly, the association between DNase activity with PANSS (positive, general and total scores) and MADRS were noted in a subgroup of SCZ and BPD patients, respectively. In our study group, the levels of IL-6 and total IgG in BPD patients were higher than SCZ and healthy controls, indicating a relatively inflammatory nature in BPD, while autoimmune comorbidity was mainly observed in SCZ patients.
Collapse
Affiliation(s)
- Rajendran Ramesh
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Aparna Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - M A Vijayalakshmi
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | | | - Ryad Tamouza
- Fondation FondaMental, Créteil, France.,Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, Créteil, France.,University Paris-Est-Créteil, UPEC, Creteil, France.,INSERM, U955, Mondor Institute for Biomedical Research, IMRB, Translational Psychiatry, Créteil, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, Créteil, France.,University Paris-Est-Créteil, UPEC, Creteil, France.,INSERM, U955, Mondor Institute for Biomedical Research, IMRB, Translational Psychiatry, Créteil, France
| | - A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
25
|
Abstract
Neuropsychiatric lupus (NPSLE) comprises a disparate collection of syndromes affecting the central and peripheral nervous systems. Progress in the attribution of neuropsychiatric syndromes to SLE-related mechanisms and development of targeted treatment strategies has been impeded by a lack of objective imaging biomarkers that reflect specific neuropsychiatric syndromes and/or pathologic mechanisms. The present review addresses recent publications of neuroimaging techniques in NPSLE.
Collapse
|
26
|
Gupta S, Banerjee A, Syed P, Srivastava S. Profiling Autoantibody Responses to Devise Novel Diagnostic and Prognostic Markers Using High-Density Protein Microarrays. Methods Mol Biol 2021; 2344:191-208. [PMID: 34115361 DOI: 10.1007/978-1-0716-1562-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein microarrays are a diverse and high-throughput platform for screening biomolecular interactions, autoantigens, and protein expression profiles across tissues, etc. Autoantibodies produced against aberrant protein expression are often observed in malignancies which makes protein microarrays a powerful platform to elucidate biomarkers of translational interest. Early diagnosis of malignancies is an enduring clinical problem that has a direct impact on disease prognosis. Here, we provide an overview of a method employed to screen autoantibodies using patient sera in brain tumors. In case of brain malignancies, early diagnosis is particularly challenging and often requires highly invasive brain biopsies as a confirmatory test. This chapter summarizes the various considerations for applying a serum-based autoantibody biomarker discovery pipeline that could provide a minimally invasive initial diagnostic screen, potentiating classical diagnostic approaches.
Collapse
Affiliation(s)
- Shabarni Gupta
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
27
|
Czarnecka D, Oset M, Karlińska I, Stasiołek M. Cognitive impairment in NMOSD-More questions than answers. Brain Behav 2020; 10:e01842. [PMID: 33022898 PMCID: PMC7667314 DOI: 10.1002/brb3.1842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is a type of central nervous system antibody-mediated disease which affects mainly optic nerves and spinal cord, but may also present with acute brainstem syndrome, acute diencephalic syndrome, and cerebral syndrome with typical brain lesions. One of the most disabling symptoms, diagnosed in 29%-67% of cases, is cognitive dysfunction, with such processes as memory, processing speed, executive function, attention, and verbal fluency being predominantly affected. However, description of cognition in NMOSD patients is still a relatively new area of research. METHODS A systematic MEDLINE search was performed to retrieve all studies that investigated cognitive impairment and its clinical correlates in patients with NMOSD. RESULTS We summarize the current knowledge on cognitive impairment profile, neuropsychological tests used to examine NMOSD patients, clinical and demographical variables affecting cognition, and magnetic resonance imaging correlates. We provide a comparison of cognitive profile of patients with multiple sclerosis and NMOSD. CONCLUSION Patients with NMOSD are at significant risk of cognitive deficits. However, the knowledge of cognitive symptoms in NMOSD and potential modifying interventions is still scarce. Further accumulation of clinical data may facilitate effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Magdalena Oset
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | - Iwona Karlińska
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
28
|
Parkhouse RME, Carpio A, Cortez MM, von Kriegsheim A, Fesel C. Anti-brain protein autoantibodies are detectable in extraparenchymal but not parenchymal neurocysticercosis. J Neuroimmunol 2020; 344:577234. [DOI: 10.1016/j.jneuroim.2020.577234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022]
|
29
|
Th17 lymphocytes drive vascular and neuronal deficits in a mouse model of postinfectious autoimmune encephalitis. Proc Natl Acad Sci U S A 2020; 117:6708-6716. [PMID: 32161123 DOI: 10.1073/pnas.1911097117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibodies against neuronal receptors and synaptic proteins are associated with a group of ill-defined central nervous system (CNS) autoimmune diseases termed autoimmune encephalitides (AE), which are characterized by abrupt onset of seizures and/or movement and psychiatric symptoms. Basal ganglia encephalitis (BGE), representing a subset of AE syndromes, is triggered in children by repeated group A Streptococcus (GAS) infections that lead to neuropsychiatric symptoms. We have previously shown that multiple GAS infections of mice induce migration of Th17 lymphocytes from the nose into the brain, causing blood-brain barrier (BBB) breakdown, extravasation of autoantibodies into the CNS, and loss of excitatory synapses within the olfactory bulb (OB). Whether these pathologies induce functional olfactory deficits, and the mechanistic role of Th17 lymphocytes, is unknown. Here, we demonstrate that, whereas loss of excitatory synapses in the OB is transient after multiple GAS infections, functional deficits in odor processing persist. Moreover, mice lacking Th17 lymphocytes have reduced BBB leakage, microglial activation, and antibody infiltration into the CNS, and have their olfactory function partially restored. Th17 lymphocytes are therefore critical for selective CNS entry of autoantibodies, microglial activation, and neural circuit impairment during postinfectious BGE.
Collapse
|
30
|
Shimasaki C, Frye RE, Trifiletti R, Cooperstock M, Kaplan G, Melamed I, Greenberg R, Katz A, Fier E, Kem D, Traver D, Dempsey T, Latimer ME, Cross A, Dunn JP, Bentley R, Alvarez K, Reim S, Appleman J. Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol 2019; 339:577138. [PMID: 31884258 DOI: 10.1016/j.jneuroim.2019.577138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This retrospective study examined whether changes in patient pre- and post-treatment symptoms correlated with changes in anti-neuronal autoantibody titers and the neuronal cell stimulation assay in the Cunningham Panel in patients with Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection (PANDAS), and Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). METHODS In an analysis of all tests consecutively performed in Moleculera Labs' clinical laboratory from April 22, 2013 to December 31, 2016, we identified 206 patients who were prescribed at least one panel prior to and following treatment, and who met the PANDAS/PANS diagnostic criteria. Patient follow-up was performed to collect symptoms and treatment or medical intervention. Of the 206 patients, 58 met the inclusion criteria of providing informed consent/assent and documented pre- and post-treatment symptoms. Clinician and parent-reported symptoms after treatment or medical intervention were categorized as "Improved/Resolved" (n = 34) or "Not-Improved/Worsened" (n = 24). These were analyzed for any association between changes in clinical status and changes in Cunningham panel test results. Clinical assay performance was also evaluated for reproducibility and reliability. RESULTS Comparison of pre- and post-treatment status revealed that the Cunningham Panel results correlated with changes in patient's neuropsychiatric symptoms. Based upon the change in the number of positive tests, the overall accuracy was 86%, the sensitivity and specificity were 88% and 83% respectively, and the Area Under the Curve (AUC) was 93.4%. When evaluated by changes in autoantibody levels, we observed an overall accuracy of 90%, a sensitivity of 88%, a specificity of 92% and an AUC of 95.7%. Assay reproducibility for the calcium/calmodulin-dependent protein kinase II (CaMKII) revealed a correlation coefficient of 0.90 (p < 1.67 × 10-6) and the ELISA assays demonstrated test-retest reproducibility comparable with other ELISA assays. CONCLUSION This study revealed a strong positive association between changes in neuropsychiatric symptoms and changes in the level of anti-neuronal antibodies and antibody-mediated CaMKII human neuronal cell activation. These results suggest there may be clinical utility in monitoring autoantibody levels and stimulatory activity against these five neuronal antigen targets as an aid in the diagnosis and treatment of infection-triggered autoimmune neuropsychiatric disorders. Future prospective studies should examine the feasibility of predicting antimicrobial and immunotherapy responses with the Cunningham Panel.
Collapse
Affiliation(s)
- Craig Shimasaki
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America.
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, 1919 East Thomas Rd, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States of America
| | - Rosario Trifiletti
- The PANS/PANDAS Institute, 545 Island Road, Suite 1D, Ramsey, NJ 07446, United States of America
| | - Michael Cooperstock
- Division of Infectious Diseases, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Gary Kaplan
- The Kaplan Center for Integrative Medicine, 6828 Elm Street, Suite 300, McLean, VA 22101, United States of America
| | - Isaac Melamed
- IMMUNOe Health and Research Centers, 6801 South Yosemite Street, Centennial, CO 80112, United States of America
| | - Rosalie Greenberg
- Medical Arts Psychotherapy Associates, P.A., 33 Overlook Road, Suite 406, Summit, NJ 07901, United States of America
| | - Amiram Katz
- Private Practice Neurology, 325 Boston Post Rd., Suite 1D, Orange, CT 06477, United States of America
| | - Eric Fier
- TherapyWorks ATL, 621 North Avenue NE, Atlanta, GA 30308, United States of America
| | - David Kem
- Section of Endocrinology and Diabetes, University of Oklahoma Department of Medicine, 1000 N Lincoln Blvd., Oklahoma City, OK 73104, United States of America
| | - David Traver
- 1261 E. Hillsdale Blvd., Foster City, CA 94404, United States of America
| | - Tania Dempsey
- Armonk Integrative Medicine, Private Practice, Pediatrics, 99 Business Park Drive, Armonk, NY 10504, United States of America
| | - M Elizabeth Latimer
- Latimer Neurology Center, 1101 30th Street NW Suite #320, Washington, DC 20007, United States of America
| | - Amy Cross
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Joshua P Dunn
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Rebecca Bentley
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| | - Kathy Alvarez
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America; The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Sean Reim
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - James Appleman
- Moleculera Labs, Inc., 755 Research Parkway, Suite 410, Oklahoma City, OK 73104, United States of America
| |
Collapse
|
31
|
Treatable causes of adult-onset rapid cognitive impairment. Clin Neurol Neurosurg 2019; 187:105575. [PMID: 31715517 DOI: 10.1016/j.clineuro.2019.105575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Acute and subacute cognitive decline, defined collectively as rapid cognitive impairment (RCI), is attributed to diverse disorders and brings great challenges for differential diagnosis. In this study we investigated the RCI patients to determine the underlying causes and the cognitive outcome of the treatable RCI. PATIENTS AND METHODS We reviewed medical records of consecutively hospitalized patients (n = 346) with significant and new cognitive dysfunction between January 2014 and December 2015. Based on the duration of their cognitive dysfunction, patients were divided into two groups with the RCI (< 12 months) and the chronic cognitive impairment (CCI, ≥ 12 months), respectively. Etiologies of the RCI and the CCI were analyzed; the cognitive outcomes of the RCI patients with the treatable disorders were assessed in the follow-up visits. RESULTS Potentially treatable or reversible causes were identified in 134 (72%) of 187 RCI patients and in 34 (21%) of 159 CCI patients. The causes in the 134 (72%) RCI patients were immune/inflammation (50, 37%), infection (30, 22%), vascular diseases (29, 22%), neoplasm (16, 12%), metabolic/toxic disorders (7, 5%), and others (2, 1%). The treatable disorders found in both the RCI and the CCI patients were vascular diseases, autoimmune encephalitis, viral encephalitis, inflammatory demyelinating diseases, Hashimoto encephalopathy, neurosyphilis, hydrocephalus, and Vitamin B12 deficiency. Total 114 RCI patients with the treatable disorders were followed up for 6∼39 (median 21) months. Poor cognitive outcomes were found in 24 (21%) of the 114 followed-up patients, comprising patients with infection (1, 3%), immune/inflammation (12, 25%), vascular diseases (8, 28%), and metabolic/toxic disorders (3, 43%). CONCLUSIONS Treatable or reversible causes are common underlying RCI. Poor outcomes with severe cognitive deficits are considerably present in the treatable RCI patients and result in permanent dementia.
Collapse
|
32
|
Luciano-Jaramillo J, Sandoval-García F, Vázquez-Del Mercado M, Gutiérrez-Mercado YK, Navarro-Hernández RE, Martínez-García EA, Pizano-Martínez O, Corona-Meraz FI, Bañuelos-Pineda J, Floresvillar-Mosqueda JF, Martín-Márquez BT. Downregulation of hippocampal NR2A/2B subunits related to cognitive impairment in a pristane-induced lupus BALB/c mice. PLoS One 2019; 14:e0217190. [PMID: 31498792 PMCID: PMC6733477 DOI: 10.1371/journal.pone.0217190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/18/2019] [Indexed: 01/10/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is associated with learning and memory deficit. Murine model of lupus induced by pristane in BALB/c mice is an experimental model that resembles some clinical and immunological SLE pathogenesis. Nevertheless, there is no experimental evidence that relates this model to cognitive dysfunction associated with NR2A/2B relative expression. To evaluate cognitive impairment related to memory deficits in a murine model of lupus induced by pristane in BALB/c mice related to mRNA relative expression levels of NR2A/2B hippocampal subunits in short and long-term memory task at 7 and 12 weeks after LPS exposition in a behavioral test with the use of Barnes maze. A total of 54 female BALB/c mice 8–12 weeks old were included into 3 groups: 7 and 12 weeks using pristane alone (0.5 mL of pristane) by a single intraperitoneal (i.p.) injection. A control group (single i.p. injection of 0.5 mL NaCl 0.9%) and pristane plus LPS exposure using single i.p. pristane injection and LPS of E. coli O55:B5, in a dose of 3mg/kg diluted in NaCl 0.9% 16 weeks post-pristane administration. To determine cognitive dysfunction, mice were tested in a Barnes maze. Serum anti-Sm antibodies and relative expression of hippocampal NR2A/2B subunits (GAPDH as housekeeping gene) with SYBR green quantitative reverse transcription polymerase chain reaction and 2-ΔΔCT method were determined in the groups. Downregulation of hippocampal NR2A subunit was more evident than NR2B in pristane and pristane+LPS at 7 and 12 weeks of treatment and it is related to learning and memory disturbance assayed by Barnes maze. This is the first report using the murine model of lupus induced by pristane that analyzes the NMDA subunit receptors, finding a downregulation of NR2A subunit related to learning and memory disturbance being more evident when they were exposed to LPS.
Collapse
MESH Headings
- Animals
- Cognitive Dysfunction/chemically induced
- Cognitive Dysfunction/genetics
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/physiopathology
- Disease Models, Animal
- Down-Regulation
- Female
- Gene Expression
- Hippocampus/drug effects
- Hippocampus/metabolism
- Lipopolysaccharides/administration & dosage
- Lupus Erythematosus, Systemic/chemically induced
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/physiopathology
- Maze Learning
- Memory Disorders/chemically induced
- Memory Disorders/genetics
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Long-Term/drug effects
- Memory, Short-Term/drug effects
- Mice
- Mice, Inbred BALB C
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Terpenes/administration & dosage
Collapse
Affiliation(s)
- Jonatan Luciano-Jaramillo
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
| | - Flavio Sandoval-García
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Clínicas Médicas, Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Envejecimiento, inmuno-metabolismo y estrés oxidativo, Guadalajara, Jalisco, CP, México
| | - Mónica Vázquez-Del Mercado
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Hospital Civil de Guadalajara, Dr. Juan I. Menchaca, División de Medicina Interna, Servicio de Reumatología, Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Inmunología y Reumatología, Guadalajara, Jalisco, CP, México
- * E-mail: (BTMM); (MVM)
| | - Yanet Karina Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, CP, México
| | - Rosa Elena Navarro-Hernández
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Envejecimiento, inmuno-metabolismo y estrés oxidativo, Guadalajara, Jalisco, CP, México
| | - Erika Aurora Martínez-García
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Inmunología y Reumatología, Guadalajara, Jalisco, CP, México
| | - Oscar Pizano-Martínez
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Clínicas Médicas, Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Inmunología y Reumatología, Guadalajara, Jalisco, CP, México
| | - Fernanda Isadora Corona-Meraz
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Envejecimiento, inmuno-metabolismo y estrés oxidativo, Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Centro Universitario de Tonalá, Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Tonalá, Jalisco, CP, México
| | - Jacinto Bañuelos-Pineda
- Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Medicina Veterinaria, Zapopan, Jalisco, CP, México
| | | | - Beatriz Teresita Martín-Márquez
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Jalisco, CP, México
- Universidad de Guadalajara, Inmunología y Reumatología, Guadalajara, Jalisco, CP, México
- * E-mail: (BTMM); (MVM)
| |
Collapse
|
33
|
Schwarting A, Möckel T, Lütgendorf F, Triantafyllias K, Grella S, Boedecker S, Weinmann A, Meineck M, Sommer C, Schermuly I, Fellgiebel A, Luessi F, Weinmann-Menke J. Fatigue in SLE: diagnostic and pathogenic impact of anti-N-methyl-D-aspartate receptor (NMDAR) autoantibodies. Ann Rheum Dis 2019; 78:1226-1234. [PMID: 31186256 DOI: 10.1136/annrheumdis-2019-215098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We explored the impact of circulating anti-N-methyl-D-aspartate receptor (NMDAR) antibodies on the severity of fatigue in patients with systemic lupus erythematosus (SLE). METHODS Serum samples of 426 patients with SLE were analysed for the presence of antibodies to the NR2 subunit of the NMDAR. In parallel, the severity of fatigue was determined according to the Fatigue Scale for Motor and Cognitive functions questionnaire. In a subgroup of patients with SLE, the hippocampal volume was correlated with the levels of anti-NR2 antibodies. Isolated immunoglobulin G from patients with anti-NR2 antibodies were used for murine immunohistochemical experiments and functional assays on neuronal cell lines. Treatment effects were studied in 86 patients with lupus under belimumab therapy. RESULTS We found a close correlation between the titre of anti-NR2 antibodies, the severity of fatigue, the clinical disease activity index (Systemic Lupus Erythematosus Disease Activity Index 2000) and anti-double stranded DNA antibodies-independently of the presence of neuropsychiatric lupus manifestations. Pathogenic effects could be demonstrated by (1) detection of anti-NR2 antibodies in the cerebrospinal fluid, (2) in situ binding of anti-NR2 antibodies to NMDAR of the hippocampus area and (3) distinct functional effects in vitro: downregulating the energy metabolism of neuronal cells without enhanced cytotoxicity. Treatment with belimumab for at least 6 months affected both the severity of fatigue and the levels of anti-NR2 antibodies. CONCLUSION The presence of anti-NR2 antibodies in patients with SLE with fatigue is a helpful diagnostic tool and may offer a major approach in the therapeutic management of this important disabling symptom in patients with SLE.
Collapse
Affiliation(s)
- Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Tamara Möckel
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Freya Lütgendorf
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | | | - Sophia Grella
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Simone Boedecker
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arndt Weinmann
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Myriam Meineck
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingrid Schermuly
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int J Mol Sci 2019; 20:ijms20174149. [PMID: 31450692 PMCID: PMC6747411 DOI: 10.3390/ijms20174149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Mild cognitive impairment (MCI) is characterized by a level of cognitive impairment that is lower than normal for a person’s age, but a higher function than that that observed in a demented person. MCI represents a transitional state between normal aging and dementia disorders, especially Alzheimer’s disease (AD). Much effort has been made towards determining the prognosis of a person with MCI who will convert to AD. It is now clear that cerebrospinal fluid (CSF) levels of Aβ40, Aβ42, total tau and phosphorylated tau are useful for predicting the risk of progression from MCI to AD. This review highlights the advantages of the current blood-based biomarkers in MCI, and discusses some of these challenges, with an emphasis on recent studies to provide an overview of the current state of MCI.
Collapse
|
35
|
Neuronal BC RNA Transport Impairments Caused by Systemic Lupus Erythematosus Autoantibodies. J Neurosci 2019; 39:7759-7777. [PMID: 31405929 DOI: 10.1523/jneurosci.1657-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
The etiology of the autoimmune disorder systemic lupus erythematosus (SLE) remains poorly understood. In neuropsychiatric SLE (NPSLE), autoimmune responses against neural self-antigens find expression in neurological and cognitive alterations. SLE autoantibodies often target nucleic acids, including RNAs and specifically RNA domains with higher-order structural content. We report that autoantibodies directed against neuronal regulatory brain cytoplasmic (BC) RNAs were generated in a subset of SLE patients. By contrast, anti-BC RNA autoantibodies (anti-BC abs) were not detected in sera from patients with autoimmune diseases other than SLE (e.g., rheumatoid arthritis or multiple sclerosis) or in sera from healthy subjects with no evidence of disease. SLE anti-BC abs belong to the IgG class of immunoglobulins and target both primate BC200 RNA and rodent BC1 RNA. They are specifically directed at architectural motifs in BC RNA 5' stem-loop domains that serve as dendritic targeting elements (DTEs). SLE anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for DTE access and significantly diminish BC RNA delivery to synapto-dendritic sites of function. In vivo experiments with male BALB/c mice indicate that, upon lipopolysaccharide-induced opening of the blood-brain barrier, SLE anti-BC abs are taken up by CNS neurons where they significantly impede localization of endogenous BC1 RNA to synapto-dendritic domains. Lack of BC1 RNA causes phenotypic abnormalities including epileptogenic responses and cognitive dysfunction. The combined data indicate a role for anti-BC RNA autoimmunity in SLE and its neuropsychiatric manifestations.SIGNIFICANCE STATEMENT Although clinical manifestations of neuropsychiatric lupus are well recognized, the underlying molecular-cellular alterations have been difficult to determine. We report that sera of a subset of lupus patients contain autoantibodies directed at regulatory brain cytoplasmic (BC) RNAs. These antibodies, which we call anti-BC abs, target the BC RNA 5' domain noncanonical motif structures that specify dendritic delivery. Lupus anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for access to BC RNAs. As a result, hnRNP A2 is displaced, and BC RNAs are impaired in their ability to reach synapto-dendritic sites of function. The results reveal an unexpected link between BC RNA autoantibody recognition and dendritic RNA targeting. Cellular RNA dysregulation may thus be a contributing factor in the pathogenesis of neuropsychiatric lupus.
Collapse
|
36
|
Ploran E, Tang C, Mackay M, Small M, Anderson E, Storbeck J, Bascetta B, Kang S, Aranow C, Sartori C, Watson P, Volpe B, Diamond B, Eidelberg D. Assessing cognitive impairment in SLE: examining relationships between resting glucose metabolism and anti-NMDAR antibodies with navigational performance. Lupus Sci Med 2019; 6:e000327. [PMID: 31413849 PMCID: PMC6667777 DOI: 10.1136/lupus-2019-000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Resting Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) brain imaging and neuropsychological testing were used to investigate the usefulness of a spatial navigation task (SNT) as a performance benchmark for cognitive impairment related to anti-N-methyl D-aspartate (anti-NMDA) receptor antibodies (DNRAb) in SLE. METHODS Neuropsychological assessments, including a desktop 3-D virtual SNT, were performed on 19 SLE participants and 9 healthy control (HC) subjects. SLE participants had stable disease activity and medication doses and no history of neuropsychiatric illness or current use of mind-altering medications. Resting FDG-PET scans were obtained on all SLE participants and compared with a historical set from 25 age-matched and sex-matched HCs. Serum DNRAb titres were measured by ELISA. RESULTS 11/19 (58%) of SLE participants failed to complete the SNT (SNT-) compared with 2/9 (22%) of HCs. Compared with 7/9 (78%) in HCs, only 2/9 (22%; p=0.037) of SLE participants with high serum DNRAb titres completed the SNT, in contrast to 6/10 (60%; p=0.810) in SLE participants with low DNRAb titres. Voxel-wise comparison of FDG-PET scans between the 8 SLE participants successfully completing the SNT task (SNT+) and the 11 SNT- SLE participants revealed increased metabolism in the SNT+ participants (p<0.001) in the left anterior putamen/caudate, right anterior putamen, left prefrontal cortex (BA 9), right prefrontal cortex (BA 9/10) and left lateral and medial frontal cortex (BA 8). Compared with HCs, the SNT+ group demonstrated increased metabolism in all regions (p<0.02) except for the right prefrontal cortex (BA 9), whereas the SNT- group demonstrated either significantly decreased or similar metabolism in these seven regions. CONCLUSIONS SNT performance is associated with serum DNRAb titres and resting glucose metabolism in the anterior putamen/caudate and frontal cortex, suggesting compensatory neural recruitment in SNT-associated regions is necessary for successful completion of the task. The SNT therefore has potential for use as a marker for SLE-mediated cognitive impairment.
Collapse
Affiliation(s)
- Elisabeth Ploran
- Department of Psychology, Hofstra University, Hempstead, New York, USA
| | - Chris Tang
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Michael Small
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Erik Anderson
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Justin Storbeck
- Department of Psychology, Queens College, Flushing, New York, USA
| | | | - Simran Kang
- Department of Psychology, Queens College, Flushing, New York, USA
| | - Cynthia Aranow
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Carl Sartori
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Philip Watson
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York, USA
| | - Bruce Volpe
- Center for Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - David Eidelberg
- Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
37
|
Pardo E, Barake F, Godoy JA, Oyanadel C, Espinoza S, Metz C, Retamal C, Massardo L, Tapia-Rojas C, Inestrosa NC, Soza A, González A. GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Mol Neurobiol 2019; 56:7774-7788. [PMID: 31119556 DOI: 10.1007/s12035-019-1621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Galectin-8 (Gal-8) is a glycan-binding protein that modulates a variety of cellular processes interacting with cell surface glycoproteins. Neutralizing anti-Gal-8 antibodies that block Gal-8 functions have been described in autoimmune and inflammatory disorders, likely playing pathogenic roles. In the brain, Gal-8 is highly expressed in the choroid plexus and accordingly has been detected in human cerebrospinal fluid. It protects against central nervous system autoimmune damage through its immune-suppressive potential. Whether Gal-8 plays a direct role upon neurons remains unknown. Here, we show that Gal-8 protects hippocampal neurons in primary culture against damaging conditions such as nutrient deprivation, glutamate-induced excitotoxicity, hydrogen peroxide (H2O2)-induced oxidative stress, and β-amyloid oligomers (Aβo). This protective action is manifested even after 2 h of exposure to the harmful condition. Pull-down assays demonstrate binding of Gal-8 to selected β1-integrins, including α3 and α5β1. Furthermore, Gal-8 activates β1-integrins, ERK1/2, and PI3K/AKT signaling pathways that mediate neuroprotection. Hippocampal neurons in primary culture produce and secrete Gal-8, and their survival decreases upon incubation with human function-blocking Gal-8 autoantibodies obtained from lupus patients. Despite the low levels of Gal-8 expression detected by real-time PCR in hippocampus, compared with other brain regions, the complete lack of Gal-8 in Gal-8 KO mice determines higher levels of apoptosis upon H2O2 stereotaxic injection in this region. Therefore, endogenous Gal-8 likely contributes to generate a neuroprotective environment in the brain, which might be eventually counteracted by human function-blocking autoantibodies.
Collapse
Affiliation(s)
- Evelyn Pardo
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Barake
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sofía Espinoza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Soza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Alfonso González
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
38
|
Yang Z, Zhao Y, Li Q, Shao Y, Yu X, Cong W, Jia X, Qu W, Cheng L, Xue P, Zhou Z, He M, Zhang Y. Developmental exposure to mercury chloride impairs social behavior in male offspring dependent on genetic background and maternal autoimmune environment. Toxicol Appl Pharmacol 2019; 370:1-13. [PMID: 30862457 DOI: 10.1016/j.taap.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/03/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
To date, the connection between inorganic mercury (Hg) and social behavior remains incompletely understood. The aim of this study was to investigate the influence of maternal autoimmunity by inorganic Hg (Hg2+) exposure on social behavior of offspring. Wild-type (WT) and immunoglobulin deficient (Ig-/-) B10.S dams fertilized by male WT B10.S or SJL mice were treated with 50 μM Hg chloride (HgCl2). Non-pregnant female WT B10.S mice were used to investigate factors regulating HgCl2-induced autoimmunity to brain. HgCl2 selectively impaired social behavior in male offspring, but not female offspring from WT B10.S dams × male SJL, in that only male offspring displayed reduced time distribution with the stranger mouse, decreased sniffing to the stranger mouse and increased self-grooming. HgCl2 did not disrupt social behavior of male or female offspring from WT B10.S dams × male WT B10.S or Ig-/- B10.S dams × male SJL. The offspring from WT and Ig-/- B10.S dams × male SJL had equivalent autoimmunity to brain antigens during HgCl2 exposure, indicating that maternal, but not offspring-derived anti-brain antibodies (Ab) impaired social behavior of the offspring. Non-pregnant WT B10.S mice treated with HgCl2 had increased anti-brain Ab dependent on increase in CD4 T cell activation and IFNγ signaling to macrophages. IFNγ interaction with macrophages drove B cells and plasma cells to produce IgG. Therefore, HgCl2 selectively impaired social behavior in males with certain genetic background via maternally derived anti-brain Ab production, thus providing a novel insight into our current understanding of Hg toxicity.
Collapse
Affiliation(s)
- Zhengli Yang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Qian Li
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yiming Shao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Xinchun Yu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Wei Cong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Xiaodong Jia
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Longzhen Cheng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Abstract
Purpose of review Humoral autoimmunity has gained highest interest in neurology and psychiatry. Despite numerous recent articles on this hot topic, however, the biological significance of natural autoantibodies (AB) and the normal autoimmune repertoire of mammals remained quite obscure. AB may contribute to disorder-relevant phenotypes and are even believed to induce diseases themselves, but the circumstances under which AB become pathogenic are not fully understood. This review will focus on the highly frequent AB against the N-methyl-d-aspartate receptor 1 (NMDAR1-AB) as an illustrating example and provide a critical overview of current work (please note that the new nomenclature, GluN1, is disregarded here for consistency with the AB literature). In particular, it will demonstrate how little is known at this point and how many conclusions are drawn based on small numbers of individuals, fragmentary experimental approaches or missing controls. Recent findings NMDAR1-AB were investigated by clinicians world-wide with numerous small studies and case reports appearing yearly. Many publications were on ‘anti-NMDAR encephalitis’ cases or tried to separate those from other NMDAR1-AB associated conditions. Original exclusivity claims (e.g. electroencephalogram, EEG or functional magnetic resonance imaging, fMRI findings) turned out not to be exclusive for ‘anti-NMDAR encephalitis’. Systematic analyses of representative NMDAR1-AB positive sera of all immunoglobulin (Ig) classes showed comparable distribution of different epitopes, often polyspecific/polyclonal, across health and disease. Sophisticated imaging tools provided findings on synapse trafficking changes induced by NMDAR1-AB from psychotic subjects but still lack epitope data to support any claimed disorder link. Persistently high titers of NMDAR1-AB (IgG) in immunized mice with open blood–brain barrier (BBB)-induced psychosis-like symptoms but failed to induce inflammation in the brain. Knowledge on peripheral NMDAR, for example in the immune system, and on potential inducers of NMDAR1-AB is only slowly increasing. Summary The present knowledge on the (patho) physiological role of NMDAR1-AB is very limited and still characterized by adamant rumors. Much more experimental work and more solid and informative clinical reports, including large numbers of subjects and adequate control groups, follow-up investigations and interdisciplinary approaches will be necessary to obtain a better understanding of the significance of humoral autoimmunity in general (in focus here: NMDAR1-AB) and its disease-relevance in particular.
Collapse
|
40
|
Chi JM, Mackay M, Hoang A, Cheng K, Aranow C, Ivanidze J, Volpe B, Diamond B, Sanelli PC. Alterations in Blood-Brain Barrier Permeability in Patients with Systemic Lupus Erythematosus. AJNR Am J Neuroradiol 2019; 40:470-477. [PMID: 30792254 DOI: 10.3174/ajnr.a5990] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/30/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE Neuropsychiatric systemic lupus erythematosus refers to central and peripheral nervous system involvement, which may occur secondary to antineuronal antibodies crossing the blood-brain barrier that preferentially target cells in the hippocampus leading to abnormal hypermetabolism and atrophy. Thus, we hypothesized that alterations in BBB permeability, detected on dynamic contrast-enhanced MR imaging, occur in the hippocampus in patients with systemic lupus erythematosus before development of neuropsychiatric systemic lupus erythematosus. MATERIALS AND METHODS Six patients with systemic lupus erythematosus without neuropsychiatric systemic lupus erythematosus and 5 healthy controls underwent dynamic contrast-enhanced MR imaging with postprocessing into BBB permeability parameters (K trans and Ve) and CBF. Standardized methods selected ROI sampling of the abnormal brain regions detected on FDG-PET. The mean and SD of K trans, Ve, and CBF were calculated. Linear regression and nonparametric Spearman rank correlation analyses of K trans and Ve with CBF were performed. Dynamic contrast-enhanced curves and the area under the curve were generated for each brain region. Student t test comparisons were performed. RESULTS Quantitative data revealed that patients with systemic lupus erythematosus have statistically increased K trans (P < .001) and Ve (P < .001) compared with controls. In patients with systemic lupus erythematosus, statistically significant positive correlations were seen between K trans (P < .001) and Ve (P < .001) with CBF. Furthermore, the mean area under the curve revealed statistically increased BBB permeability in the hippocampus (P = .02) compared with other brain regions in patients with systemic lupus erythematosus compared with controls. CONCLUSIONS These initial findings are proof-of-concept to support the hypothesis that patients with systemic lupus erythematosus have increased BBB permeability, specifically in the hippocampus, compared with other brain regions. These findings may advance our understanding of the underlying pathophysiology affecting the brain in autoimmune diseases.
Collapse
Affiliation(s)
- J M Chi
- From the Department of Radiology (J.M.C., K.C.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - M Mackay
- Feinstein Institute for Medical Research (M.M., C.A., B.D.), The Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - A Hoang
- Department of Radiology (A.H.), Northwell Health, Manhasset, New York
| | - K Cheng
- From the Department of Radiology (J.M.C., K.C.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - C Aranow
- Feinstein Institute for Medical Research (M.M., C.A., B.D.), The Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - J Ivanidze
- Department of Radiology (J.I.), Weill Cornell Medical College, New York, New York
| | - B Volpe
- Feinstein Institute for Medical Research (B.V.), The Center for Biomedical Science, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - B Diamond
- Feinstein Institute for Medical Research (M.M., C.A., B.D.), The Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - P C Sanelli
- Feinstein Institute for Medical Research (P.C.S.), The Center for Health Innovations and Outcomes Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York.,Department of Radiology (P.C.S.), Northwell Health, Imaging Clinical Effectiveness and Outcomes Research Program, Manhasset, New York
| |
Collapse
|
41
|
Mackay M, Vo A, Tang CC, Small M, Anderson EW, Ploran EJ, Storbeck J, Bascetta B, Kang S, Aranow C, Sartori C, Watson P, Volpe BT, Diamond B, Eidelberg D. Metabolic and microstructural alterations in the SLE brain correlate with cognitive impairment. JCI Insight 2019; 4:124002. [PMID: 30626758 DOI: 10.1172/jci.insight.124002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
To address challenges in the diagnosis of cognitive dysfunction (CD) related to systemic lupus erythematosus-associated (SLE-associated) autoimmune mechanisms rather than confounding factors, we employed an integrated approach, using resting-state functional (FDG-PET) and structural (diffusion tensor imaging [DTI]) neuroimaging techniques and cognitive testing, in adult SLE patients with quiescent disease and no history of neuropsychiatric illness. We identified resting hypermetabolism in the sensorimotor cortex, occipital lobe, and temporal lobe of SLE subjects, in addition to validation of previously published resting hypermetabolism in the hippocampus, orbitofrontal cortex, and putamen/GP/thalamus. Regional hypermetabolism demonstrated abnormal interregional metabolic correlations, associated with impaired cognitive performance, and was stable over 15 months. DTI analyses demonstrated 4 clusters of decreased microstructural integrity in white matter tracts adjacent to hypermetabolic regions and significantly diminished connecting tracts in SLE subjects. Decreased microstructural integrity in the parahippocampal gyrus correlated with impaired spatial memory and increased serum titers of DNRAb, a neurotoxic autoantibody associated with neuropsychiatric lupus. These findings of regional hypermetabolism, associated with decreased microstructural integrity and poor cognitive performance and not associated with disease duration, disease activity, medications, or comorbid disease, suggest that this is a reproducible, stable marker for SLE-associated CD that may be may be used for early disease detection and to discriminate between groups, evaluate response to treatment strategies, or assess disease progression.
Collapse
Affiliation(s)
- Meggan Mackay
- Autoimmune, Musculoskeletal and Hematopoietic Diseases and
| | - An Vo
- Center for Neurosciences, Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Chris C Tang
- Center for Neurosciences, Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Michael Small
- Center for Neurosciences, Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | | | | | - Justin Storbeck
- Department of Psychology, Queens College, Flushing, New York, USA
| | | | - Simran Kang
- Department of Psychology, Queens College, Flushing, New York, USA
| | - Cynthia Aranow
- Autoimmune, Musculoskeletal and Hematopoietic Diseases and
| | - Carl Sartori
- Autoimmune, Musculoskeletal and Hematopoietic Diseases and
| | - Philip Watson
- Department of Psychiatry, Northwell Health, Manhasset, New York, USA
| | - Bruce T Volpe
- Autoimmune, Musculoskeletal and Hematopoietic Diseases and
| | - Betty Diamond
- Autoimmune, Musculoskeletal and Hematopoietic Diseases and
| | - David Eidelberg
- Center for Neurosciences, Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
42
|
Pan H, Oliveira B, Saher G, Dere E, Tapken D, Mitjans M, Seidel J, Wesolowski J, Wakhloo D, Klein-Schmidt C, Ronnenberg A, Schwabe K, Trippe R, Mätz-Rensing K, Berghoff S, Al-Krinawe Y, Martens H, Begemann M, Stöcker W, Kaup FJ, Mischke R, Boretius S, Nave KA, Krauss JK, Hollmann M, Lühder F, Ehrenreich H. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry 2019; 24:1489-1501. [PMID: 29426955 PMCID: PMC6756099 DOI: 10.1038/s41380-017-0011-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to >20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of ApoE-/- and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like symptoms upon MK-801 challenge in ApoE-/- mice, characterized by an open blood-brain barrier, but not in their ApoE+/+ littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the hippocampus yields comparable results in ApoE-/- and ApoE+/+ mice, irrespective of immunization against NMDAR1 or ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but do not cause brain inflammation on their own.
Collapse
Affiliation(s)
- Hong Pan
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Bárbara Oliveira
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gesine Saher
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ekrem Dere
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Marina Mitjans
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jan Seidel
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Janina Wesolowski
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Debia Wakhloo
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christina Klein-Schmidt
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Anja Ronnenberg
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kerstin Schwabe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Kerstin Mätz-Rensing
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Berghoff
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yazeed Al-Krinawe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Martin Begemann
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, affiliated to Euroimmun, Lübeck, Germany
| | - Franz-Josef Kaup
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Reinhard Mischke
- 0000 0001 0126 6191grid.412970.9Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Klaus-Armin Nave
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Joachim K. Krauss
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Fred Lühder
- 0000 0001 0482 5331grid.411984.1Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medicine Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
43
|
Kong X, Zhang Z, Fu T, Ji J, Yang J, Gu Z. TNF-α regulates microglial activation via the NF-κB signaling pathway in systemic lupus erythematosus with depression. Int J Biol Macromol 2018; 125:892-900. [PMID: 30572037 DOI: 10.1016/j.ijbiomac.2018.12.146] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022]
Abstract
This study aimed to investigate the effects of tumor necrosis factor-α (TNF-α) on systemic lupus erythematosus (SLE). The animal model of MRL/MpJ-Faslpr mice (MRL/lpr; lupus-prone mice) showed depression-like behaviors based on tail suspension, sucrose preference, and open field tests. Brain microglia were significantly activated with obvious increases in proinflammatory cytokines. In addition, in vitro experiments showed that TNF-α activated microglia by upregulating the NF-κB signaling pathway and proinflammatory cytokines. PDTC, a specific NF-κB inhibitor, effectively reduced TNF-α-mediated inflammatory signaling in microglia. These results suggest that TNF-α-induced microglial activation has a major role in neuroinflammation of SLE with depression.
Collapse
Affiliation(s)
- Xiaoli Kong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Zhongyuan Zhang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
44
|
Shimizu F, Nishihara H, Kanda T. Blood-brain barrier dysfunction in immuno-mediated neurological diseases. Immunol Med 2018; 41:120-128. [PMID: 30938273 DOI: 10.1080/25785826.2018.1531190] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The blood-brain barrier (BBB) is the brain-specific endothelial cell barrier that is important for maintaining brain homeostasis and preventing the entry of toxic substances. Pathological BBB dysfunction is a critical step of the disease process in several immuno-mediated neurological diseases, including multiple sclerosis (MS), neuromyelitis optica (NMO), neuropsychiatric systemic lupus erythematosus (NPSLE) and neuro-Behçet diseases. The pathological findings from patients with secondary progressive (SP) MS, NMO and NPSLE showed leaky BBB in the active lesions. NMO is a disease with strong evidence of disease-specific and pathogenic autoantibodies (aquaporin 4 [AQP4] autoantibodies). In the development of NMO, circulating AQP4 autoantibodies need to pass through the BBB in order to reach AQP4 on the astrocyte endfeet. Strong evidence suggests that NPSLE is associated with the disruption of the BBB and NPSLE patients frequently have antibodies bound to endothelial cells in their sera. We recently identified two BBB-reactive autoantibodies in immuno-mediated neurological diseases: galectin-3 autoantibodies in SPMS and GRP78 autoantibodies in NMO. In the present review article, we describe the basic structure and cellular biology of the BBB, discuss recent insights regarding the pathophysiology of the BBB breakdown in the setting of immuno-mediated neurological diseases, and describe our recent findings of autoantibody-mediated BBB breakdown.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- a Department of Neurology and Clinical Neuroscience , Yamaguchi University Graduate School of Medicine , Ube , Japan
| | - Hideaki Nishihara
- a Department of Neurology and Clinical Neuroscience , Yamaguchi University Graduate School of Medicine , Ube , Japan
| | - Takashi Kanda
- a Department of Neurology and Clinical Neuroscience , Yamaguchi University Graduate School of Medicine , Ube , Japan
| |
Collapse
|
45
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
46
|
Nalakonda G, Islam M, Chukwu VE, Soliman A, Munim R, Abukraa I. Psycho-rheumatic Integration in Systemic Lupus Erythematosus: An Insight into Antibodies Causing Neuropsychiatric Changes. Cureus 2018; 10:e3091. [PMID: 30324045 PMCID: PMC6171782 DOI: 10.7759/cureus.3091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main purpose of this paper is to bring together all the antibodies and markers related to neurological and psychiatric manifestations in systemic lupus erythematosus and also the pharmacology that could help treat these symptoms. Existing research data regarding specific antibodies involved in the disease process and drugs that were being studied was collected and analyzed. After reviewing the studies published by various authors, symptoms were shown to be mainly caused by antibodies against N-methyl-D-aspartate receptor (NMDAR) antibodies, anti-endothelial, anti-ribosomal P, antiphospholipid antibodies, cytokines like interferons and chemokines. The monoclonal antibody rituximab has shown to be beneficial in some of the cases. Based on all the articles reviewed, the antibodies and cytokines showed the most effective evidence in causing the different manifestations of neuropsychiatric systemic lupus erythematosus (NPSLE), but studies regarding the drugs being effective against all the symptoms are inconclusive as there are very few studies. Further research to support the drug’s effectiveness in managing the symptoms is needed. More studies are needed regarding early diagnosis of NPSLE using the antibodies as biomarkers as it could help in preventing these manifestations.
Collapse
Affiliation(s)
- Gouthami Nalakonda
- Medical Student, Chalmeda Anandrao Institute of Medical Sciences, Karimnagar, IND
| | - Mimsa Islam
- Internal Medicine, Sir Salimullah Medical College, Dhaka, USA
| | | | | | - Rujina Munim
- Miscellaneous, Sylhet Mag Osmani Medical College and Hospital, Sylhet, BGD
| | - Inas Abukraa
- Faculty of Medicine, Tripoli University, Tripoli, LBY
| |
Collapse
|
47
|
Tenner AJ, Stevens B, Woodruff TM. New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Mol Immunol 2018; 102:3-13. [PMID: 29958698 DOI: 10.1016/j.molimm.2018.06.264] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
While the mechanisms underlying the functions of the complement system in the central nervous system (CNS) and systemically, namely opsonization, chemotaxis, membrane lysis, and regulation of inflammation are the same, the plethora of functions that complement orchestrates in the central nervous system (CNS) is complex. Strictly controlled expression of complement effector molecules, regulators and receptors across the gamut of life stages (embryogenesis, development and maturation, aging and disease) dictate fascinating contributions for this ancient system. Furthermore, it is becoming apparent that complement functions differ widely across distinct brain regions. This review provides a comprehensive overview of the newly identified roles for complement in the brain, including its roles in CNS development and function, during aging and in the processes of neurodegeneration. The diversity and selectively of beneficial and detrimental activities of complement, while challenging, should lead to precision targeting of specific components to provide disease modifying treatments for devastating psychiatric and neurodegenerative disorders that are still without effective treatment.
Collapse
Affiliation(s)
- Andrea J Tenner
- Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, CA, United States.
| | - Beth Stevens
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Bechter K. Encephalitis, Mild Encephalitis, Neuroprogression, or Encephalopathy-Not Merely a Question of Terminology. Front Psychiatry 2018; 9:782. [PMID: 30787887 PMCID: PMC6372546 DOI: 10.3389/fpsyt.2018.00782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Psychoneuroimmunology research has presented emerging evidence of the involvement of inflammatory and immune mechanisms in the pathogenesis of severe mental disorders. In this context, new terms with increasing clinical relevance have been proposed, challenging the existing terms, and requiring consensus definitions of the new ones. Method: From a perspective of longstanding personal involvement in clinical settings and research in psychoneuroimmunology, the new and the existing terms are critically reconsidered. Results: Meningoencephalitis and encephalitis are comparably well defined clinical terms in neuropsychiatry, although in the individual case approach diagnosis can be difficult, for example in some cases of encephalitis that are described with normal cerebrospinal fluid findings, or often in chronic encephalitis. Encephalopathy is also a widely accepted term, however, with a surprisingly broad meaning with regard to the assigned underlying pathophysiology, ranging from one-hit traumatic encephalopathy to inflammatory encephalopathy, the latter term addressing a type of brain dysfunction secondary to acute systemic inflammation without proven brain autochthonus inflammation (neuroinflammation). However, this latter assumption and term may be wrong as neuroinflammation is difficult to prove in vivo. With emerging insights into prevailing inflammatory and neuroinflammatory mechanisms that are involved in the pathogenesis of severe mental disorders, the interdependent aspects of sensitive assessment and potential clinical relevance of mild neuroinflammation are becoming more apparent and of increasing clinical interest. The new terms "mild encephalitis," "parainflammation," and "neuroprogression" show considerable overlap in addition to gaps and hardly defined borders. However, details are hard to discuss as available studies use many biomarkers, but most of these are done without an established categorical attribution to exclusive terms. Most important, the three new concepts (neruoprogression, parainflammation, and mild encephalitis) are not mutually exclusive, even at the individual case level, and therefore will require state-related individual assessment approaches beyond large confirmatory studies. Conclusion: The newly proposed terms of mild encephalitis, parainflammation, and neuroprogression have an emerging clinical relevance, but respective borders, gaps and overlap in between them remain unclear, and these concepts may even be seen as complementary. Categorical delineation of the new and reconsideration of the existing terms with respect to individualized psychiatric treatment is required for better clinical use, eventually requiring a consensus approach. Here, a critique based on available data and a focus on clinical perspective was outlined, which may help to enhance fruitful discussion. The idea followed here is in line with pillar number six as proposed for the Research Diagnostic Domains, i.e., to provide and follow new concepts in psychiatric research.
Collapse
Affiliation(s)
- Karl Bechter
- Department Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, Ulm University, Ulm, Germany
| |
Collapse
|