1
|
Nene S, Devabattula G, Vambhurkar G, Tryphena KP, Khatri DK, Godugu C, Singh PK, Srivastava S. Topical delivery of baricitinib-impregnated nanoemulgel: a promising platform for inhibition of JAK -STAT pathway for the effective management of atopic dermatitis. Drug Deliv Transl Res 2024:10.1007/s13346-024-01732-5. [PMID: 39467941 DOI: 10.1007/s13346-024-01732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Baricitinib, an inhibitor of Janus kinase 1/2 receptors majorly involved in the dysregulation of immune responses in atopic dermatitis, is currently approved for managing atopic dermatitis in Europe. The delivery of baricitinib through oral route is associated to several adverse effects due to off-target effects. Therefore, the current study is aimed at formulation of baricitinib loaded nanoemulgel for evaluation of topical delivery potential in the treatment of atopic dermatitis. The baricitinib-loaded nanoemulsions (0.05 and 0.1% w/w) revealed an average globule size of 162.86 ± 0.37 and 173.66 ± 4.88 nm respectively with narrow PDI. The optimized batch of baricitinib nanoemulsion was converted to nanoemulgel by the addition of the mixture of gel bases SEPINEO™ DERM and SEPINEO™ P 600 along with propylene glycol, resulting in pseudoplastic shear thinning behaviour. The optimized nanoemulgels have shown prominent retention of baricitinib in the skin along with permeation. The skin distribution study of coumarin-6 loaded nanoemulgel demonstrated high fluorescence in the epidermal layer. The western blot analysis revealed significant inhibition of phosphorylated signal transducers and activators of transcriptions 1 (##p < 0.01) and 3 (#p < 0.05) by application of 0.05 and 0.1% baricitinib nanoemulgel. The baricitinib nanoemulgels have shown anti-inflammatory activity by significantly reducing expressions of various inflammatory markers. Histopathological analysis of skin tissues treated with baricitinib nanoemulgel has demonstrated a marked reduction in acanthosis, hyperkeratosis, and intact outer epidermis. These results supported the potential role of baricitinib-loaded nanoemulgel in reducing the inflammation and disease severity associated with atopic dermatitis.
Collapse
Affiliation(s)
- Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
2
|
Yang Y, Shao Y, Gao X, Hu Z, Wang Y, Ma C, Jin G, Zhu F, Dong G, Zhou G. RGS10 Deficiency Alleviated Intestinal Mucosal Inflammation Through Suppression of Th1/Th17 Cell Immune Responses in Ulcerative Colitis. Immunology 2024. [PMID: 39428350 DOI: 10.1111/imm.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4+ T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4+ T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4+ T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
3
|
Zhao P, An ZY, Fu HX, Liu HX, Feng CJ, Huang QS, Wu J, Wu YJ, Yang LP, Qu QY, Chen YX, Li ML, Wang CC, Chen Q, Zhu XL, He Y, Zhang YY, Jiang Q, Jiang H, Lu J, Chang YJ, Zhao XS, Zhao XY, Huang XJ, Zhang XH. Safety and efficacy of baricitinib in steroid-resistant or relapsed immune thrombocytopenia: An open-label pilot study. Am J Hematol 2024; 99:1951-1958. [PMID: 38980207 DOI: 10.1002/ajh.27433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Patients with steroid-resistant or relapsed immune thrombocytopenia (ITP) suffer increased bleeding risk and impaired quality of life. Baricitinib, an oral Janus-associated kinases (JAK) inhibitor, could alleviate both innate and adaptive immune disorders without inducing thrombocytopenia in several autoimmune diseases. Accordingly, an open-label, single-arm, phase 2 trial (NCT05446831) was initiated to explore the safety and efficacy of baricitinib in ITP. Eligible patients were adults with primary ITP who were refractory to corticosteroids and at least one subsequent treatment, and had platelet counts below 30 × 109/L at enrolment. Participants received baricitinib 4 mg daily for 6 months. The primary endpoint was durable response at the 6-month follow-up. A total of 35 patients were enrolled. Durable response was achieved in 20 patients (57.1%, 95% confidence interval, 39.9 to 74.4), and initial response in 23 (65.7%) patients. For patients responding to baricitinib, the median time to response was 12 (IQR 6-20) days, and the median peak platelet count was 94 (IQR 72-128) × 109/L. Among the 27 patients undergoing extend observation, 12 (44.4%) remained responsive for a median duration of approximately 20 weeks after baricitinib discontinuation. Adverse events were reported in 11 (31.4%) patients, including infections in 6 (17.1%) patients during the treatment period. Treatment discontinuation due to an adverse event was reported in 2 (5.7%) patients. Evidence from this pilot study suggested that baricitinib might be a novel candidate for the armamentarium of ITP-modifying agents. Future studies are warranted to validate the safety, efficacy, and optimal dosing of baricitinib in patients with ITP.
Collapse
Affiliation(s)
- Peng Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhuo-Yu An
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hai-Xia Fu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hui-Xin Liu
- Department of Clinical Epidemiology, Peking University People's Hospital, Beijing, China
| | - Cheng-Jie Feng
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qiu-Sha Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jin Wu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ye-Jun Wu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Li-Ping Yang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qing-Yuan Qu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu-Xiu Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng-Lin Li
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Chen-Cong Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Lu Zhu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yun He
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qian Jiang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hao Jiang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jin Lu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
4
|
Lucaj T, Hay I, Samarbakhsh A, Bedi M, Iyer AK, Gavande NS. An overview of the development of pharmacotherapeutics targeting SARS-CoV-2. Drug Discov Today 2024; 29:104126. [PMID: 39097220 DOI: 10.1016/j.drudis.2024.104126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Coronavirus disease 2019 (COVID-19) was declared a global pandemic in March 2020, which precipitated urgent public health responses. The causative agent, SARS-CoV-2, spreads primarily via respiratory droplets, necessitating precautions to mitigate transmission risks. Biopharmaceutical industries and academic institutions worldwide swiftly redirected their research endeavors towards developing therapeutic interventions, focusing on monoclonal antibodies, antiviral agents, and immunomodulatory therapies. The evolving body of evidence surrounding these treatments has prompted successive updates and revisions from the FDA, delineating the evolving landscape of COVID-19 therapeutics. This review comprehensively examines each treatment modality within the context of their developmental trajectories and regulatory approvals throughout the pandemic. Furthermore, it elucidates their mechanisms of action and presents clinical data underpinning their utility in combating the COVID-19 crisis.
Collapse
Affiliation(s)
- Tom Lucaj
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Ian Hay
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mel Bedi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Wang D, Liu R. The IL-12 family of cytokines: pathogenetic role in diabetic retinopathy and therapeutic approaches to correction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03360-9. [PMID: 39120722 DOI: 10.1007/s00210-024-03360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One vision-threatening side effect of systematic diabetes mellitus is diabetic retinopathy (DR). Recent studies have revealed that the development and progression of DR depend critically on inflammation resulting from diabetes. By attracting leukocytes to endothelium, the higher production of the inflammatory mediators induces degeneration of retinal capillaries, hence increasing vascular permeability and thrombosis probability. The leukocytes that are recruited eventually generate additional proinflammatory and proangiogenic substances, resulting in the increased infiltration of leukocytes in the retina. This process also leads to changes in the blood retinal barrier and the formation of new blood vessels, which helps to counteract the damage caused by the blockage of blood flow. IL-12 family members, IL-12, IL-23, IL-27, and IL-35, play a crucial role in regulating the responses of T helper (Th)1 and Th17 cell populations. The collected data from studies investigating the levels of IL-12 family members in the blood and eye tissues suggest that IL-12 is linked to DR, indicating that it may have a role in the development of DR as a sequential component of the immune response. This review specifically examines the possibility of using IL-12 family cytokines as a therapeutic approach for diabetes, taking into consideration their involvement in the development of DR.
Collapse
Affiliation(s)
- Dan Wang
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruixia Liu
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
6
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
7
|
Satoh-Kanda Y, Nakayamada S, Kubo S, Yamagata K, Nawata A, Tanaka H, Kosaka S, Kanda R, Yu S, Fujita Y, Sonomoto K, Tanaka Y. Modifying T cell phenotypes using TYK2 inhibitor and its implications for the treatment of systemic lupus erythematosus. RMD Open 2024; 10:e003991. [PMID: 38871479 PMCID: PMC11177773 DOI: 10.1136/rmdopen-2023-003991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES The tuning effects of JAK/TYK2 inhibitors on the imbalance between T follicular helper (Tfh) and T regulatory (Treg) cells, related to systemic lupus erythematosus (SLE) pathogenesis, were investigated using human peripheral blood samples. METHODS Peripheral blood mononuclear cells from untreated patients with SLE and healthy controls were analysed. Tfh1 cells were identified in nephritis tissue, and the effect of Tfh1 cells on B-cell differentiation was examined by coculturing naïve B cells with Tfh1 cells. RESULTS Tfh1 cell numbers were increased in the peripheral blood of patients, and activated Treg cell counts were decreased relative to Tfh1 cell counts. This imbalance in the Tfh to Treg ratio was remarkably pronounced in cases of lupus nephritis, especially in types III and IV active nephritis. Immunohistochemistry revealed Tfh1 cell infiltration in lupus nephritis tissues. Co-culture of Tfh1 cells (isolated from healthy individuals) with naïve B cells elicited greater induction of T-bet+ B cells than controls. In JAK/TYK2-dependent STAT phosphorylation assays using memory CD4+ T cells, IL-12-induced STAT1/4 phosphorylation and Tfh1 cell differentiation were inhibited by both JAK and TYK2 inhibitors. However, phosphorylation of STAT5 by IL-2 and induction of Treg cell differentiation by IL-2+TGFβ were inhibited by JAK inhibitors but not by TYK2 inhibitors, suggesting that TYK2 does not mediate the IL-2 signalling pathway. CONCLUSIONS Tfh1 cells can induce T-bet+ B cell production and may contribute to SLE pathogenesis-associated processes. TYK2 inhibitor may fine-tune the immune imbalance by suppressing Tfh1 differentiation and maintaining Treg cell differentiation, thereby preserving IL-2 signalling, unlike other JAK inhibitors.
Collapse
Affiliation(s)
- Yurie Satoh-Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
- Department of Molecular Targeted Therapies (DMTT), University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Aya Nawata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
- Department of Pathology and Oncology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Hiroaki Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shunpei Kosaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
- Department of Pathology and Oncology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ryuichiro Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shan Yu
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
- Department of Pediatrics, Shenyang Women's and Children's Hospital, Shenyang, Liaoning, China
| | - Yuya Fujita
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Koshiro Sonomoto
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
8
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
9
|
Kim RW, Lam M, Abuabara K, Simpson EL, Drucker AM. Targeted Systemic Therapies for Adults with Atopic Dermatitis: Selecting from Biologics and JAK Inhibitors. Am J Clin Dermatol 2024; 25:179-193. [PMID: 38216802 DOI: 10.1007/s40257-023-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Therapeutic options for people with moderate or severe atopic dermatitis refractory to topical therapy have rapidly expanded in recent years. These new targeted immunomodulatory agents-biologics and Janus kinase (JAK) inhibitors-have each demonstrated high levels of efficacy and acceptable safety in mostly placebo-controlled clinical trials for atopic dermatitis, but there is no universally applicable algorithm to help choose between them for a given patient. Hence, patients and physicians should utilize shared decision making, discussing efficacy, safety, mode of delivery, monitoring, costs, speed of onset, and other factors to reach individualized treatment decisions. In this review, we try to aid shared decision making by summarizing the efficacy, safety, and monitoring of biologics and oral JAK inhibitors for adults with atopic dermatitis. Network meta-analyses suggest that higher doses of abrocitinib and upadacitinib are more effective than biologics. They also show that, among biologics, dupilumab is likely more effective than tralokinumab and lebrikizumab. Biologics are generally considered safer than JAK inhibitors, although concerns about JAK inhibitors are mainly extrapolated from older generation JAK inhibitors used in higher-risk populations. We also outline evidence and considerations for choosing and using systemic immunomodulatory treatments for special populations including pregnant individuals, those with human immunodeficiency virus (HIV), hepatitis B and C, end stage kidney disease, and older adults.
Collapse
Affiliation(s)
- Richard W Kim
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Megan Lam
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Division of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Aaron M Drucker
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Medicine and Women's College Research Institute, Women's College Hospital, 76 Grenville Street, Toronto, ON, M5S 1B2, Canada.
| |
Collapse
|
10
|
Yamada S, Nagafuchi Y, Fujio K. Pathophysiology and stratification of treatment-resistant rheumatoid arthritis. Immunol Med 2024; 47:12-23. [PMID: 37462450 DOI: 10.1080/25785826.2023.2235734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/09/2023] [Indexed: 02/23/2024] Open
Abstract
Early diagnosis and timely therapeutic intervention are clinical challenges of rheumatoid arthritis (RA), especially for treatment-resistant or difficult-to-treat patients. Little is known about the immunological mechanisms involved in refractory RA. In this review, we summarize previous research findings on the immunological mechanisms of treatment-resistant RA. Genetic prediction of treatment-resistant RA is challenging. Patients with and without anti-cyclic citrullinated peptide autoantibodies are considered part of distinct subgroups, especially regarding long-term clinical prognosis and treatment responses. B cells, T cells and other immune cells and fibroblasts are of pathophysiological importance and are associated with treatment responses. Finally, we propose a new hypothesis that stratifies patients with RA into two subgroups with distinct immunological pathologies based on our recent immunomics analysis of RA. One RA subgroup with a favorable prognosis is characterized by increased interferon signaling. Another subgroup with a worse prognosis is characterized by enhanced acquired immune responses. Increases in dendritic cell precursors and diversified autoreactive anti-modified protein antibodies may have pathophysiological roles, especially in the latter subgroup. These findings that improve treatment response predictions might contribute to future precision medicine for RA.
Collapse
Affiliation(s)
- Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Daza Zapata AM, Álvarez K, Vásquez Duque G, Palacio J, Rojas López M. Janus kinase inhibitors modify the fatty acid profile of extracellular vesicles and modulate the immune response. Heliyon 2024; 10:e24710. [PMID: 38314280 PMCID: PMC10837569 DOI: 10.1016/j.heliyon.2024.e24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Background Janus kinase inhibitors (jakinibs) are immunomodulators used for treating malignancies, autoimmune diseases, and immunodeficiencies. However, they induce adverse effects such as thrombosis, lymphocytosis, and neutropenia that could be mediated by extracellular vesicles (EVs). These particles are cell membrane-derived structures that transport cellular and environmental molecules and participate in intercellular communication. Jakinibs can modify the content of EVs and enable them to modulate the activity of different components of the immune response. Objective to evaluate the interactions between immune system components of healthy individuals and EVs derived from monocytic and lymphoid lineage cells generated in the presence of baricitinib (BARI) and itacitinib (ITA) and their possible effects. Methods EVs were isolated from monocytes (M) and lymphocytes (L) of healthy individuals, as well as from U937 (U) and Jurkat (J) cells exposed to non-cytotoxic concentrations of BARI, ITA, and dimethyl sulfoxide (DMSO; vehicle control). The binding to and engulfment of EVs by peripheral blood leukocytes of healthy individuals were analyzed by flow cytometry using CFSE-stained EVs and anti-CD45-PeCy7 mAb-labeled whole blood. The effect of EVs on respiratory burst, T-cell activation and proliferation, cytokine synthesis, and platelet aggregation was evaluated. Respiratory burst was assessed in PMA-stimulated neutrophils by the dihydrorhodamine (DHR) test and flow cytometry. T-cell activation and proliferation and cytokine production were assessed in CFSE-stained PBMC cultures stimulated with PHA; expression of the T-cell activation markers CD25 and CD69 and T-cell proliferation were analyzed by flow cytometry, and the cytokine levels were quantified in culture supernatants by Luminex assays. Platelet aggregation was analyzed in platelet-rich plasma (PRP) samples by light transmission aggregometry. The EVs' fatty acid (FA) profile was analyzed using methyl ester derivatization followed by gas chromatography. Results ITA exposure during the generation of EVs modified the size of the EVs released; however, treatment with DMSO and BARI did not alter the size of EVs generated from U937 and Jurkat cells. Circulating neutrophils, lymphocytes, and monocytes showed a 2-fold greater tendency to internalize ITA-U-EVs than their respective DMSO control. The neutrophil respiratory burst was attenuated in greater extent by M-EVs than by L-EVs. Autologous ITA-M-EVs reduced T-cell proliferation by decreasing IL-2 levels and CD25 expression independently of CD69. A higher accumulation of pro-inflammatory cytokines was observed in PHA-stimulated PBMC cultures exposed to M-EVs than to L-EVs; this difference may be related to the higher myristate content of M-EVs. Platelet aggregation increased in the presence of ITA-L/M-EVs by a mechanism presumably dependent on the high arachidonic acid content of the vesicles. Conclusions Cellular origin and jakinib exposure modify the FA profile of EVs, enabling them, in turn, to modulate neutrophil respiratory burst, T-cell proliferation, and platelet aggregation. The increased T-cell proliferation induced by BARI-L/M-EVs could explain the lymphocytosis observed in patients treated with BARI. The higher proportion of arachidonic acid in the FA content of ITA-L/M-EVs could be related to the thrombosis described in patients treated with ITA. EVs also induced a decrease in the respiratory burst of neutrophils.
Collapse
Affiliation(s)
- Ana María Daza Zapata
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Gloria Vásquez Duque
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Colombia
- Universidad Nacional de Colombia,SedeMedellín, Escuela de Química- Carrera 65 A No 59A-110, Medellín, 4309000, Colombia
| | - Mauricio Rojas López
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
12
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Gernez Y, Narula M, Cepika AM, Valdes Camacho J, Hoyte EG, Mouradian K, Glader B, Singh D, Sathi B, Rao L, Tolin AL, Weinberg KI, Lewis DB, Bacchetta R, Weinacht KG. Case report: Refractory Evans syndrome in two patients with spondyloenchondrodysplasia with immune dysregulation treated successfully with JAK1/JAK2 inhibition. Front Immunol 2024; 14:1328005. [PMID: 38347954 PMCID: PMC10859398 DOI: 10.3389/fimmu.2023.1328005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Biallelic mutations in the ACP5 gene cause spondyloenchondrodysplasia with immune dysregulation (SPENCDI). SPENCDI is characterized by the phenotypic triad of skeletal dysplasia, innate and adaptive immune dysfunction, and variable neurologic findings ranging from asymptomatic brain calcifications to severe developmental delay with spasticity. Immune dysregulation in SPENCDI is often refractory to standard immunosuppressive treatments. Here, we present the cases of two patients with SPENCDI and recalcitrant autoimmune cytopenias who demonstrated a favorable clinical response to targeted JAK inhibition over a period of more than 3 years. One of the patients exhibited steadily rising IgG levels and a bone marrow biopsy revealed smoldering multiple myeloma. A review of the literature uncovered that approximately half of the SPENCDI patients reported to date exhibited increased IgG levels. Screening for multiple myeloma in SPENCDI patients with rising IgG levels should therefore be considered.
Collapse
Affiliation(s)
- Yael Gernez
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Mansi Narula
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Juanita Valdes Camacho
- Division of Allergy and Immunology, Department of Pediatrics, Louisiana State University (LSU) Health, Shreveport, LA, United States
| | - Elisabeth G. Hoyte
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Kirsten Mouradian
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Bertil Glader
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Deepika Singh
- Division of Rheumatology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Bindu Sathi
- Division of Hematology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Latha Rao
- Division of Hematology, Department of Pediatrics, Valley Children Hospital, Madera, CA, United States
| | - Ana L. Tolin
- Division of Immunology, Department of Pediatrics, Hospital Pediatrico Dr. Humberto Notti, Mendoza, Argentina
| | - Kenneth I. Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - David B. Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Katja G. Weinacht
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Simpson A, Jones SA, Fairfax KA. Intracellular Flow Cytometry ("Phosphoflow") to Assess Signal Transduction in Rare Populations Such As Memory B Cell Subsets and Plasma Cells. Methods Mol Biol 2024; 2826:151-163. [PMID: 39017892 DOI: 10.1007/978-1-0716-3950-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intracellular flow cytometry is a powerful technique that can be used to interrogate signalling in rare cellular populations. The strengths of the technique are that massively parallel readouts can be gained from thousands of single cells simultaneously, and the assay is fast and relatively straightforward. This plate-based protocol enables different doses and different timepoints of stimulation to be assessed and has been optimized for rare B cell populations. Combining this technique with high-dimensional flow cytometry enables multiple signalling proteins to be measured with high confidence.
Collapse
|
17
|
Mane RR, Kale PP. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:689-706. [PMID: 36409592 DOI: 10.1515/jcim-2022-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Various studies have shown that cytokines are important regulators in rheumatoid arthritis (RA). In synovial inflammation alteration of the enzyme HDAC, IMPDH enzyme, mTOR pathway, and JAK pathway increase cytokine level. These increased cytokine levels are responsible for the inflammation in RA. Inflammation is a physiological and normal reaction of the immune system against dangerous stimuli such as injury and infection. The cytokine-based approach improves the treatment of RA. To reach this goal, various researchers and scientists are working more aggressively by using a combination approach. The present review of combination therapy provides essential evidence about the possible synergistic effect of combinatorial agents. We have focused on the effects of HDAC inhibitor with IMPDH inhibitor and mTOR inhibitor with JAK inhibitor in combination for the treatment of RA. Combining various targeted strategies can be helpful for the treatment of RA.
Collapse
Affiliation(s)
- Reshma Rajendra Mane
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
18
|
Cummings JL, Osse AML, Kinney JW. Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modification. Drugs 2023; 83:1387-1408. [PMID: 37728864 PMCID: PMC10582128 DOI: 10.1007/s40265-023-01938-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Novel agents addressing non-amyloid, non-tau targets in Alzheimer's Disease (AD) comprise 70% of the AD drug development pipeline of agents currently in clinical trials. Most of the target processes identified in the Common Alzheimer's Disease Research Ontology (CADRO) are represented by novel agents in trials. Inflammation and synaptic plasticity/neuroprotection are the CADRO categories with the largest number of novel candidate therapies. Within these categories, there are few overlapping targets among the test agents. Additional categories being evaluated include apolipoprotein E [Formula: see text] 4 (APOE4) effects, lipids and lipoprotein receptors, neurogenesis, oxidative stress, bioenergetics and metabolism, vascular factors, cell death, growth factors and hormones, circadian rhythm, and epigenetic regulators. We highlight current drugs being tested within these categories and their mechanisms. Trials will be informative regarding which targets can be modulated to produce a slowing of clinical decline. Possible therapeutic combinations of agents may be suggested by trial outcomes. Biomarkers are evolving in concert with new targets and novel agents, and biomarker outcomes offer a means of supporting disease modification by the putative treatment. Identification of novel targets and development of corresponding therapeutics offer an important means of advancing new treatments for AD.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- , 1380 Opal Valley Street, Henderson, Nevada, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Jefferson W Kinney
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| |
Collapse
|
19
|
Chaganti S, Dhiman V, Madhyanapu Golla V, K R R, Khemchandani R, Samanthula G. Forced degradation study of baricitinib and structural characterization of its degradation impurities by high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9605. [PMID: 37580847 DOI: 10.1002/rcm.9605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/16/2023]
Abstract
RATIONALE Baricitinib (BARI), an inhibitor of Janus kinases 1 and 2 (JAK 1/2), is used for the treatment of rheumatoid arthritis and COVID-19. The present study focuses on establishing the forced degradation behavior of BARI under different degradation conditions (hydrolysis, oxidation, and photolysis) following International Council for Harmonization (ICH) guidelines of Q1A (R2)-Stability testing of new drug substances and products and Q1B-Photostability testing of new drug substances and products. This study helps in monitoring the quality and safety of BARI and its product development. METHODS Prior to conducting the study, the in silico degradation profile of BARI was predicted by Zeneth. Reversed-phase high-performance liquid chromatography employing a gradient program was used for the identification and separation of degradation impurities with an InertSustain C8 column (4.6 × 250 mm, 5 μm). The mobile phases used were 10 mM ammonium formate (pH 2.89) and acetonitrile. High-resolution mass spectrometry (HRMS) was used for the structural elucidation of the degradation impurities. RESULTS BARI was labile to hydrolytic (acidic, basic, and neutral) and photolytic degradation conditions which yielded 10 new degradation impurities and it was stable under oxidative (H2 O2 ) conditions. The separated degradation impurities were characterized by HRMS and the respective degradation pathways were proposed. The generated information helped to propose a mechanism for the formation of the degradation impurities. Additionally, one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy were used for the characterization of two major degradation impurities. CONCLUSION The forced degradation study of BARI was carried out in accordance with ICH Q1A and Q1B guidelines, which resulted in the formation of 10 new degradation impurities. In our analysis, three degradation impurities were matching with the Zeneth predictions. In silico tools, DEREK Nexus® and SARAH Nexus®, were used for predicting the toxicity and mutagenicity of BARI and its degradation impurities. Overall, this study sheds light on BARI's safety monitoring and storage circumstances.
Collapse
Affiliation(s)
- Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vivek Dhiman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vijaya Madhyanapu Golla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Roshitha K R
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Horai Y, Shimizu T, Umeda M, Nishihata SY, Nakamura H, Kawakami A. Current Views on Pathophysiology and Potential Therapeutic Targets in Sjögren's Syndrome: A Review from the Perspective of Viral Infections, Toll-like Receptors, and Long-Noncoding RNAs. J Clin Med 2023; 12:5873. [PMID: 37762814 PMCID: PMC10531551 DOI: 10.3390/jcm12185873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Sjögren's syndrome (SS) is a rheumatic disease characterized by sicca and extraglandular symptoms, such as interstitial lung disease and renal tubular acidosis. SS potentially affects the prognosis of patients, especially in cases of complicated extraglandular symptoms; however, only symptomatic therapies against xerophthalmia and xerostomia are currently included in the practice guidelines as recommended therapies for SS. Considering that SS is presumed to be a multifactorial entity caused by genetic and environmental factors, a multidisciplinary approach is necessary to clarify the whole picture of its pathogenesis and to develop disease-specific therapies for SS. This review discusses past achievements and future prospects for pursuing the pathophysiology and therapeutic targets for SS, especially from the perspectives of viral infections, toll-like receptors (TLRs), long-noncoding RNAs (lncRNAs), and related signals. Based on the emerging roles of viral infections, TLRs, long-noncoding RNAs and related signals, antiviral therapy, hydroxychloroquine, and vitamin D may lower the risk of or mitigate SS. Janus-kinase (JAK) inhibitors are also potential novel therapeutic options for several rheumatic diseases involving the JAK-signal transducer and activator of transcription pathways, which are yet to be ascertained in a randomized controlled study targeting SS.
Collapse
Affiliation(s)
- Yoshiro Horai
- Department of Rheumatology, Sasebo City General Hospital, Sasebo 857-8511, Japan
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
- Clinical Research Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Shin-Ya Nishihata
- Department of Rheumatology, National Hospital Organization Ureshino Medical Center, Ureshino 843-0393, Japan;
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| |
Collapse
|
21
|
Melki I, Frémond ML. JAK Inhibition in Juvenile Idiopathic Arthritis (JIA): Better Understanding of a Promising Therapy for Refractory Cases. J Clin Med 2023; 12:4695. [PMID: 37510809 PMCID: PMC10381267 DOI: 10.3390/jcm12144695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases with probably differential underlying physiopathology. Despite the revolutionary era of biologics, some patients remain difficult to treat because of disease severity, drug adverse events, drug allergy or association with severe comorbidities, i.e., uveitis, interstitial lung disease and macrophagic activation syndrome. Janus Kinase (JAK) inhibitors are small molecules that target JAK/Signal Transducers and Activators of Transcription (STAT) pathways, which could then prevent the activity of several proinflammatory cytokines. They may provide a useful alternative in these cases of JIA or in patients actually affected by Mendelian disorders mimicking JIA, such as type I interferonopathies with joint involvement, and might be the bridge for haematopoietic stem cell transplantation in these disabling conditions. As these treatments may have side effects that should not be ignored, ongoing and further controlled studies are still needed to provide data underlying long-term safety considerations in children and delineate subsets of JIA patients that will benefit from these promising treatments.
Collapse
Affiliation(s)
- Isabelle Melki
- General Paediatrics, Department of Infectious Disease and Internal Medicine, Robert Debré University Hospital, APHP, Nord-Université Paris Cité, F-75020 Paris, France
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, F-33000 Bordeaux, France
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP, Centre-Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
22
|
Nakayamada S, Tanaka Y. Novel JAK inhibitors under investigation for systemic lupus erythematosus: - where are we now? Expert Opin Investig Drugs 2023; 32:901-908. [PMID: 37753834 DOI: 10.1080/13543784.2023.2264172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Glucocorticoids and immunosuppressants are used to treat systemic lupus erythematosus (SLE). However, patients with SLE have poor long-term prognoses. This can be attributed to organ damage caused by flare-ups and drug toxicity due to the administration of nonspecific treatment. Therefore, SLE should be treated using therapeutic agents specific to its pathology. Janus kinase (JAK) inhibitors exert multitargeted effects by blocking the signaling of multiple cytokines. The use of JAK inhibitors has been approved to treat several inflammatory autoimmune diseases. Several clinical trials of JAK inhibitors for SLE treatment are ongoing. AREA COVERED This review summarizes the basic and clinical significance of JAK inhibitors for treating SLE and the current status of the development of JAK inhibitors based on recent reports. EXPERT OPINION SLE is a clinically and immunologically heterogeneous disease. Therefore, drugs targeting a single molecule require precision medicine to exert maximal therapeutic efficacy. JAK inhibitors can probably fine-tune the immune network via various mechanisms and broadly regulate complex immune-mediated pathologies in SLE. However, evidence is required to address some safety concerns associated with the use of JAK inhibitors in patients with SLE, including infections (particularly herpes zoster) and thromboembolism (particularly in the presence of concomitant antiphospholipid syndrome).
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
23
|
He K, Yan X, Wu D. Intestinal Behcet's Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. Int J Mol Sci 2023; 24:8176. [PMID: 37175882 PMCID: PMC10179024 DOI: 10.3390/ijms24098176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Behcet's disease (BD) is a chronic and recurrent systemic vasculitis involving almost all organs and tissues. Intestinal BD is defined as BD with predominant gastrointestinal involvement, presenting severe complications such as massive gastrointestinal hemorrhage, perforation, and obstruction in some cases. To some extent, intestinal BD is classified as a member of inflammatory bowel disease (IBD), as it has a lot in common with classical IBD including Crohn's disease (CD) and ulcerative colitis (UC). Certainly, the underlying pathogenesis is not the same and dysregulation of immune function is believed to be one of the main pathogeneses in intestinal BD, although the etiology has not been clear up to now. Biological agents are an emerging category of pharmaceuticals for various diseases, including inflammatory diseases and cancers, in recent decades. Based on the deep understanding of the immune mechanism of intestinal BD, biological agents targeting potential pathogenic cells, cytokines and pathways are optimized options. Recently, the adoption of biological agents such as anti-tumor necrosis factor agents has allowed for the effective treatment of patients with refractory intestinal BD who show poor response to conventional medications and are faced with the risk of surgical treatment. In this review, we have tried to summarize the immune mechanism and present potential biological agents of intestinal BD.
Collapse
Affiliation(s)
- Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaxiao Yan
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
25
|
Peng J, Wang Y, Han X, Zhang C, Chen X, Jin Y, Yang Z, An Y, Zhang J, Liu Z, Chen Y, Gao E, Zhang Y, Xu F, Zheng C, Zhou Q, Liu Z. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J Am Soc Nephrol 2023; 34:258-272. [PMID: 36261300 PMCID: PMC10103098 DOI: 10.1681/asn.2022040477] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Zhaohui Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Liu J, Yu X, Wang Z, Liu W, Liu X, Wang X, Zhang M, Zhao Y, Zhang F, Yang H, Zheng W. Baricitinib for the treatment of intestinal Behçet's disease: A pilot study. Clin Immunol 2023; 247:109241. [PMID: 36702180 DOI: 10.1016/j.clim.2023.109241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The pilot study aims to explore the efficacy and safety of baricitinib in treating refractory intestinal Behçet's disease (BD). METHODS We consecutively enrolled patients with refractory intestinal BD from October 2020 to September 2022. They were treated with baricitinib 2-4 mg daily, with background glucocorticoids and immunosuppressants. Efficacy assessment included the global gastrointestinal symptom scores, the endoscopy scores, the Disease activity index for intestinal Behçet's disease (DAIBD), and the inflammatory parameters. Side effects were recorded. RESULTS The thirteen patients (six males and seven females) had a median follow-up of eleven months, 76.92% (10/13) patients achieved complete remission of global gastrointestinal symptom scores, and 66.7% (6/9) had mucosal healing on endoscopy. The DAIBD scores decreased significantly, as well as the C-reactive protein level. Baricitinib showed a glucocorticoid-sparing effect, and the safety profile is favorable. CONCLUSION Baricitinib might be a potential choice in treating refractory intestinal BD.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Zhimian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Weiwei Liu
- Department of Rheumatology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shan Dong 271000, China
| | - Xiaochuan Liu
- Department of Gastroenterology, Emergency General Hospital, Beijing, 100028, China
| | - Xiaoou Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Menghao Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China.
| |
Collapse
|
27
|
Umbreen H, Zhang X, Tang KT, Lin CC. Regulation of Myeloid Dendritic Cells by Synthetic and Natural Compounds for the Treatment of Rheumatoid Arthritis. Int J Mol Sci 2022; 24:ijms24010238. [PMID: 36613683 PMCID: PMC9820359 DOI: 10.3390/ijms24010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Different subsets of dendritic cells (DCs) participate in the development of rheumatoid arthritis (RA). In particular, myeloid DCs play a key role in the generation of autoreactive T and B cells. Herein, we undertook a literature review on those synthetic and natural compounds that have therapeutic efficacy/potential for RA and act through the regulation of myeloid DCs. Most of these compounds inhibit both the maturation of DCs and their secretion of inflammatory cytokines and, subsequently, alter the downstream T-cell response (suppression of Th1 and Th17 responses while expanding the Treg response). The majority of the synthetic compounds are approved for the treatment of patients with RA, which is consistent with the importance of DCs in the pathogenesis of RA. All of the natural compounds are derived from plants. Their DC-modulating effect has been demonstrated both in vitro and in vivo. In addition, these natural products ameliorate arthritis in rodents and are potential therapeutics for human RA.
Collapse
Affiliation(s)
- Hira Umbreen
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| | - Chi-Chien Lin
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| |
Collapse
|
28
|
Jiang P, Wu Y, Liu L, Zhang L, Song Z. Combined application of dinitrofluorobenzene and ovalbumin induced AD-like dermatitis with an increase in helper T-cell cytokines and a prolonged Th2 response. BMC Immunol 2022; 23:60. [PMID: 36476273 PMCID: PMC9730685 DOI: 10.1186/s12865-022-00531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progression of acute-to-chronic atopic dermatitis is accompanied by multiple helper T-cell cytokine responses, but the mechanisms and relative importance of these changes remain unclear. There is no animal model for atopic dermatitis that recapitulates these cytokine responses. OBJECTIVE We sought to build a novel mouse model for atopic dermatitis (AD) that recapitulates these helper T-cell responses and some dynamic changes in cytokine responses in the progression of AD. METHODS Female BALB/c mice were subjected to the application of dinitrofluorobenzene (DNFB) and ovalbumin (OVA) to induce AD-like dermatitis. Skin lesions and serum were collected from mice in the acute and chronic phases to detect changes in cytokine responses and other features of AD. RESULTS Combined application of DNFB and OVA successfully induced AD-like dermatitis and histological changes as well as epidermal barrier dysfunction. In the acute phase of AD-like dermatitis, Th2-associated cytokines were mainly increased in serum and skin lesions. In the chronic phase of AD-like dermatitis, Th2-associated cytokines were still highly expressed, while Th1- and Th17-associated cytokines were also gradually increased. Compared with the acute phase, the JAK-STAT signaling pathway was highly expressed in the chronic phase of AD-like dermatitis. CONCLUSION The combined application of DNFB and OVA could be used to build a new mouse model for atopic dermatitis. This mouse model recapitulates the helper T-cell responses and some dynamic changes in cytokine responses in the progression of acute-to-chronic in human AD. The JAK-STAT signaling pathway plays a pivotal role in the chronicity of AD.
Collapse
Affiliation(s)
- Pengju Jiang
- grid.190737.b0000 0001 0154 0904School of Medicine, Chongqing University, Chongqing, 400030 China
| | - Yaguang Wu
- grid.410570.70000 0004 1760 6682Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
| | - Lu Liu
- grid.410570.70000 0004 1760 6682Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
| | - Lian Zhang
- grid.410570.70000 0004 1760 6682Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
| | - Zhiqiang Song
- grid.410570.70000 0004 1760 6682Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
| |
Collapse
|
29
|
Schäfer A, Kovacs MS, Eder A, Nigg A, Feuchtenberger M. Janus kinase (JAK) inhibitors significantly reduce the humoral vaccination response against SARS-CoV-2 in patients with rheumatoid arthritis. Clin Rheumatol 2022; 41:3707-3714. [PMID: 35965290 PMCID: PMC9376125 DOI: 10.1007/s10067-022-06329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recently, a number of studies have explored the possible attenuation of the immune response by disease-modifying antirheumatic drugs (DMARDs) in patients with rheumatoid arthritis (RA). Our study objective was to investigate the presumed attenuated humoral response to vaccination against SARS-CoV-2 in patients with RA treated with Janus kinase (JAK) inhibitors with or without methotrexate (MTX). The immune responses were compared with controls without RA. METHOD The humoral vaccination response was evaluated by determining titres of neutralising antibodies against the S1 antigen of SARS-CoV-2. One hundred and thirteen fully vaccinated individuals were included at 6 ± 1 weeks after second vaccination (BioNTech/Pfizer (69.9%), AstraZeneca (21.2%), and Moderna (8.9%)). In a cross-sectional and single-centre study design, we compared titres of neutralising antibodies between patients with (n = 51) and without (n = 62) medication with JAK inhibitors. RESULTS Treatment with JAK inhibitors led to a significantly reduced humoral response to vaccination (P = 0.004). A maximum immune response was seen in 77.4% of control patients, whereas this percentage was reduced to 54.9% in study participants on medication with JAK inhibitors (effect size d = 0.270). Further subanalyses revealed that patients on combination treatment (JAK inhibitors and MTX, 9 of 51 subjects) demonstrated an even significantly impaired immune response as compared to patients on monotherapy with JAK inhibitors (P = 0.028; d = 0.267). CONCLUSIONS JAK inhibitors significantly reduce the humoral response following dual vaccination against SARS-CoV-2. The combination with MTX causes an additional, significant reduction in neutralising IgG titres. Our data suggest cessation of JAK inhibitors in patients with RA in the context of vaccination against SARS-CoV-2. Key Points • It was shown that DMARD therapy with JAK inhibitors in patients with rheumatoid arthritis leads to an attenuation of the humoral vaccination response against SARS-CoV-2. • The effect under medication with JAK inhibitors was significant compared to the control group and overall moderate. • The combination of JAK inhibitors with MTX led to an additive and significant attenuation of the humoral response.
Collapse
Affiliation(s)
- Arne Schäfer
- Diabetes Zentrum Mergentheim, Bad Mergentheim, Germany
- Medizinische Klinik und Poliklinik II, Klinikum der Universität Würzburg, Würzburg, Germany
| | - Magdolna Szilvia Kovacs
- Rheumatologie, MED|BAYERN OST Medizinische Versorgungszentren Altötting Burghausen, Krankenhausstraße 1, 84489 Burghausen, Germany
| | - Anna Eder
- Rheumatologie, MED|BAYERN OST Medizinische Versorgungszentren Altötting Burghausen, Krankenhausstraße 1, 84489 Burghausen, Germany
| | - Axel Nigg
- Rheumatologie, MED|BAYERN OST Medizinische Versorgungszentren Altötting Burghausen, Krankenhausstraße 1, 84489 Burghausen, Germany
| | - Martin Feuchtenberger
- Medizinische Klinik und Poliklinik II, Klinikum der Universität Würzburg, Würzburg, Germany
- Rheumatologie, MED|BAYERN OST Medizinische Versorgungszentren Altötting Burghausen, Krankenhausstraße 1, 84489 Burghausen, Germany
| |
Collapse
|
30
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Höppner J, Casteleyn V, Biesen R, Rose T, Windisch W, Burmester GR, Siegert E. SIGLEC-1 in Systemic Sclerosis: A Useful Biomarker for Differential Diagnosis. Pharmaceuticals (Basel) 2022; 15:1198. [PMID: 36297311 PMCID: PMC9610402 DOI: 10.3390/ph15101198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic Sclerosis (SSc) is a clinically heterogeneous disease that includes an upregulation of type I interferons (IFNs). The aim of this observational study was to investigate the IFN-regulated protein Sialic Acid−Binding Ig-like Lectin 1 (SIGLEC-1) as a biomarker for disease phenotype, therapeutic response, and differential diagnosis in SSc. Levels of SIGLEC-1 expression on monocytes of 203 SSc patients were determined in a cross-sectional and longitudinal analysis using multicolor flow cytometry, then compared to 119 patients with other rheumatic diseases and 13 healthy controls. SSc patients higher SIGLEC-1 expression on monocytes (2097.94 ± 2134.39) than HCs (1167.45 ± 380.93; p = 0.49), but significantly lower levels than SLE (8761.66 ± 8325.74; p < 0.001) and MCTD (6414.50 ± 1846.55; p < 0.001) patients. A positive SIGELC-1 signature was associated with reduced forced expiratory volume (p = 0.007); however, we were unable to find an association with fibrotic or vascular disease manifestations. SIGLEC-1 remained stable over time and was independent of changes in immunosuppressive therapy. However, SIGLEC-1 is suitable for differentiating SSc from other connective tissue diseases. SIGLEC-1 expression on monocytes can be useful in the differential diagnosis of connective tissue disease but not as a biomarker for SSc disease manifestations or activity.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, 51067 Cologne, Germany
| | - Vincent Casteleyn
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas Rose
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfram Windisch
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, 51067 Cologne, Germany
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
32
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
33
|
Xu J, Yu J, Jiao W, Chen G, Liu L, Zhang M, Wu D. Scientific Knowledge of Rheumatoid Arthritis: A Bibliometric Analysis from 2011 to 2020. J Pain Res 2022; 15:2761-2772. [PMID: 36106313 PMCID: PMC9467447 DOI: 10.2147/jpr.s362717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Recently, research on rheumatoid arthritis (RA) has made rapid progress and grown rapidly. It is a challenge to comprehensively understand RA research and hotspots. The aim of this study was to explore the current status and research trends of RA through bibliometric analysis and to provide directions for future development. Methods Publications on RA from 2011 to 2020 were retrieved from the Web of Science Core Collection database (WoSCC). VOSviewer, CiteSpace and online bibliometric platform were used to analyze publication characteristics, including countries, institutions, journals, authors, core references, and keywords. Results A total of 17,037 publications were included. The publications steadily increased over the 10 years. The United States (3648 publications), with the largest proportion of publications and citations, was the largest contributor. Karolinska Institutet (508) and Annals of the Rheumatoid Disease (763) were the most active institution and journal, respectively. Emery P (193) and Tanaka Y (193) were the most prolific authors, and Smolen JS ranked first among the cited authors. The most cited reference focused on recommendations for the management of RA with synthetic and biological disease-modifying antirheumatic drugs. A co-occurrence network analysis revealed four highly connected clusters of keywords in RA research, including etiology, pathology, prognosis, biomarkers and treatment of RA. Conclusion The present study shows a systematic and comprehensive overview of the RA-related research in the past 10 years. Clinical trials on the long-term efficiency and safety of JAK inhibitors and other novel targeted drugs may be the potential research directions for future study in this field.
Collapse
Affiliation(s)
- Jia Xu
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Gynecology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Jiahui Yu
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wei Jiao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Guangxing Chen
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lijuan Liu
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Mingying Zhang
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Danbin Wu
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Bryushkova EA, Skatova VD, Mutovina ZY, Zagrebneva AI, Fomina DS, Kruglova TS, Akopyan AA, Strazhesko ID, Lukyanov SA, Tkacheva ON, Lysenko MA, Chudakov DM. Tocilizumab, netakimab, and baricitinib in patients with mild-to-moderate COVID-19: An observational study. PLoS One 2022; 17:e0273340. [PMID: 36001576 PMCID: PMC9401152 DOI: 10.1371/journal.pone.0273340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/06/2022] [Indexed: 12/15/2022] Open
Abstract
Objective The aim of the study was to assess inflammatory markers and clinical outcomes in adult patients admitted to hospital with mild-to-moderate COVID-19 and treated with a combination of standard-of-care (SOC) and targeted immunosuppressive therapy including anti-IL-17A (netakimab), anti-IL-6R (tocilizumab), or JAK1/JAK2 inhibitor (baricitinib) or with a standard-of-care therapy alone. Methods The observational cohort study included 154 adults hospitalized between February and August, 2020 with RT-PCR-confirmed SARS-CoV-2 with National Early Warning Score2 (NEWS2) < 7 and C-reactive protein (CRP) levels ≤ 140 mg/L on the day of the start of the therapy or observation. Patients were divided into the following groups: I) 4 mg baricitinib, 1 or 2 times a day for an average of 5 days (n = 38); II) 120 mg netakimab, one dose (n = 48); III) 400 mg tocilizumab, one dose (n = 34), IV) SOC only: hydroxychloroquine, antiviral, antibacterial, anticoagulant, and dexamethasone (n = 34). Results CRP levels significantly decreased after 72 h in the tocilizumab (p = 1 x 10-5) and netakimab (p = 8 x 10-4) groups and remained low after 120 h. The effect was stronger with tocilizumab compared to other groups (p = 0.028). A significant decrease in lactate dehydrogenase (LDH) levels was observed 72 h after netakimab therapy (p = 0.029). NEWS2 scores significantly improved 72 h after tocilizumab (p = 6.8 x 10-5) and netakimab (p = 0.01) therapy, and 120 h after the start of tocilizumab (p = 8.6 x 10-5), netakimab (p = 0.001), or baricitinib (p = 4.6 x 10-4) therapy, but not in the SOC group. Blood neutrophil counts (p = 6.4 x 10-4) and neutrophil-to-lymphocyte ratios (p = 0.006) significantly increased 72 h after netakimab therapy and remained high after 120 h. The percentage of patients discharged 5-7 days after the start of therapy was higher in the tocilizumab (44.1%) and netakimab (41.7%) groups than in the baricitinib (31.6%) and SOC (23.5%) groups. Compared to SOC (3 of the 34; 8.8%), mortality was lower in netakimab (0 of the 48; 0%, RR = 0.1 (95% CI: 0.0054 to 1.91)), tocilizumab (0 of the 34; 0%, RR = 0.14 (95% CI: 0.0077 to 2.67)), and baricitinib (1 of the 38; 2.6%, RR = 0.3 (95% CI: 0.033 to 2.73)) groups. Conclusion In hospitalized patients with mild-to-moderate COVID-19, the combination of SOC with anti-IL-17A or anti-IL-6R therapy were superior or comparable to the combination with JAK1/JAK2 inhibitor, and all three were superior to SOC alone. Whereas previous studies did not demonstrate significant benefit of anti-IL-17A therapy for severe COVID-19, our data suggest that such therapy could be a rational choice for mild-to-moderate disease, considering the generally high safety profile of IL-17A blockers. The significant increase in blood neutrophil count in the netakimab group may reflect efflux of neutrophils from inflamed tissues. We therefore hypothesize that neutrophil count and neutrophil-to-lymphocyte ratio could serve as markers of therapeutic efficiency for IL-17A-blocking antibodies in the context of active inflammation.
Collapse
Affiliation(s)
- Ekaterina A. Bryushkova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Valeria D. Skatova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Zinaida Y. Mutovina
- City Clinical Hospital No.52 of Moscow Healthcare Department, Moscow, Russia
| | - Alena I. Zagrebneva
- City Clinical Hospital No.52 of Moscow Healthcare Department, Moscow, Russia
| | - Daria S. Fomina
- City Clinical Hospital No.52 of Moscow Healthcare Department, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Tatyana S. Kruglova
- City Clinical Hospital No.52 of Moscow Healthcare Department, Moscow, Russia
| | - Anna A. Akopyan
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | - Olga N. Tkacheva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maryana A. Lysenko
- Pirogov Russian National Research Medical University, Moscow, Russia
- City Clinical Hospital No.52 of Moscow Healthcare Department, Moscow, Russia
| | - Dmitry M. Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
35
|
Impact of MnTBAP and Baricitinib Treatment on Hutchinson–Gilford Progeria Fibroblasts. Pharmaceuticals (Basel) 2022; 15:ph15080945. [PMID: 36015093 PMCID: PMC9415676 DOI: 10.3390/ph15080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare premature aging disease. It is caused by a mutation in the LMNA gene, which results in a 50-amino-acid truncation of prelamin A. The resultant truncated prelamin A (progerin) lacks the cleavage site for the zinc-metallopeptidase ZMPSTE24. Progerin is permanently farnesylated, carboxymethylated, and strongly anchored to the nuclear envelope. This leads to abnormalities, such as altered nuclear shape, mitochondrial dysfunction, and inflammation. HGPS patients display symptoms of physiological aging, including atherosclerosis, alopecia, lipodystrophy, and arthritis. Currently, no cure for HGPS exists. Here we focus on a drug combination consisting of the superoxide dismutase mimetic MnTBAP and JAK1/2 inhibitor baricitinib (Bar) to restore phenotypic alterations in HGPS fibroblasts. Treating HGPS fibroblasts with the MnTBAP/Bar combination improved mitochondrial functions and sustained Bar’s positive effects on reducing progerin and pro-inflammatory factor levels. Collectively, MnTBAP/Bar combination treatment ameliorates the aberrant phenotype of HGPS fibroblasts and is a potential treatment strategy for patients with HGPS.
Collapse
|
36
|
Chokesuwattanaskul S, Fresneda Alarcon M, Mangalakumaran S, Grosman R, Cross AL, Chapman EA, Mason D, Moots RJ, Phelan MM, Wright HL. Metabolic Profiling of Rheumatoid Arthritis Neutrophils Reveals Altered Energy Metabolism That Is Not Affected by JAK Inhibition. Metabolites 2022; 12:650. [PMID: 35888774 PMCID: PMC9321732 DOI: 10.3390/metabo12070650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Neutrophils play a key role in the pathophysiology of rheumatoid arthritis (RA) where release of ROS and proteases directly causes damage to joints and tissues. Neutrophil function can be modulated by Janus Kinase (JAK) inhibitor drugs, including tofacitinib and baricitinib, which are clinically effective treatments for RA. However, clinical trials have reported increased infection rates and transient neutropenia during therapy. The subtle differences in the mode of action, efficacy and safety of JAK inhibitors have been the primary research topic of many clinical trials and systematic reviews, to provide a more precise and targeted treatment to patients. The aim of this study was to determine both the differences in the metabolome of neutrophils from healthy controls and people with RA, and the effect of different JAK inhibitors on the metabolome of healthy and RA neutrophils. Isolated neutrophils from healthy controls (HC) (n = 6) and people with RA (n = 7) were incubated with baricitinib, tofacitinib or a pan-JAK inhibitor (all 200 ng/mL) for 2 h. Metabolites were extracted, and 1H nuclear magnetic resonance (NMR) was applied to study the metabolic changes. Multivariate analyses and machine learning models showed a divergent metabolic pattern in RA neutrophils compared to HC at 0 h (F1 score = 86.7%) driven by energy metabolites (ATP, ADP, GTP and glucose). No difference was observed in the neutrophil metabolome when treated with JAK inhibitors. However, JAK inhibitors significantly inhibited ROS production and baricitinib decreased NET production (p < 0.05). Bacterial killing was not impaired by JAK inhibitors, indicating that the effect of JAK inhibitors on neutrophils can inhibit joint damage in RA without impairing host defence. This study highlights altered energy metabolism in RA neutrophils which may explain the cause of their dysregulation in inflammatory disease.
Collapse
Affiliation(s)
| | - Michele Fresneda Alarcon
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | | | - Rudi Grosman
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (R.G.); (M.M.P.)
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool L69 7TX, UK
| | - Andrew L. Cross
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | - Elinor A. Chapman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | - David Mason
- Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7TX, UK;
| | - Robert J. Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool L9 7AL, UK;
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| | - Marie M. Phelan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (R.G.); (M.M.P.)
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool L69 7TX, UK
| | - Helen L. Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| |
Collapse
|
37
|
Calabrese L, Chiricozzi A, De Simone C, Fossati B, D'Amore A, Peris K. Pharmacodynamics of Janus kinase inhibitors for the treatment of atopic dermatitis. Expert Opin Drug Metab Toxicol 2022; 18:347-355. [PMID: 35796377 DOI: 10.1080/17425255.2022.2099835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is the most common inflammatory skin disorder. Despite the high disease burden, the therapeutic options are limited and their efficacy in controlling AD might be partially satisfactory. AREAS COVERED Most of the key mediators in AD pathogenesis act through the JAK/STAT signaling pathway, which represents a valid therapeutic target. The first generation of JAK inhibitors, namely tofacitinib and ruxolitinib, inhibit multiple JAKs, whereas newer JAK inhibitors show more selective inhibitory effects for specific JAKs. The aim of this review was to discuss the role of the JAK/STAT pathway in AD and its inhibition, with a special focus on pharmacodynamic properties. We checked the English-language literature, published in the last 15 years using PubMed, Google Scholar, and Scopus. EXPERT OPINION JAK inhibitors have different selectivity for various JAK molecules, which influences their pharmacodynamics, efficacy and safety profile. Since many key cytokines in AD signal through JAK1, and as the selective JAK1 inhibition may be effective, avoiding the concomitant inhibition of JAK2- and JAK3-dependent pathways could be associated with additional safety issues. Therefore, selective JAK1 inhibitors may represent promising therapeutic agents for AD, as they might prevent off-target effects of JAK inhibitors, especially related to the hematologic profile.
Collapse
Affiliation(s)
- Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara De Simone
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Barbara Fossati
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Alessandra D'Amore
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
38
|
Huang J, Zhou C, Deng J, Zhou J. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Biochem Pharmacol 2022; 202:115162. [PMID: 35787993 PMCID: PMC9250821 DOI: 10.1016/j.bcp.2022.115162] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic continues to spread globally. The rapid dispersion of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 drives an urgent need for effective treatments, especially for patients who develop severe pneumonia. The excessive and uncontrolled release of pro-inflammatory cytokines has proved to be an essential factor in the rapidity of disease progression, and some cytokines are significantly associated with adverse outcomes. Most of the upregulated cytokines signal through the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. Therefore, blocking the exaggerated release of cytokines, including IL-2, IL-6, TNF-α, and IFNα/β/γ, by inhibiting JAK/STAT signaling will, presumably, offer favorable pharmacodynamics and present an attractive prospect. JAK inhibitors (JAKi) can also inhibit members of the numb-associated kinase (NAK) family, including AP2-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), which regulate the angiotensin-converting enzyme 2 (ACE-2) transmembrane protein and are involved in host viral endocytosis. According to the data released from current clinical trials, JAKi treatment can effectively control the dysregulated cytokine storm and improve clinical outcomes regarding mortality, ICU admission, and discharge. There are still some concerns surrounding thromboembolic events, opportunistic infection such as herpes zoster virus reactivation, and repression of the host's type-I IFN-dependent immune repair for both viral and bacterial infection. However, the current JAKi clinical trials of COVID-19 raised no new safety concerns except a slightly increased risk of herpes virus infection. In the updated WHO guideline, Baricitinb is strongly recommended as an alternative to IL-6 receptor blockers, particularly in combination with corticosteroids, in patients with severe or critical COVID-19. Future studies will explore the application of JAKi to COVID-19 treatment in greater detail, such as the optimal timing and course of JAKi treatment, individualized medication strategies based on pharmacogenomics, and the effect of combined medications.
Collapse
Affiliation(s)
- Jin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Chi Zhou
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 1095# Jiefang Ave., Wuhan 430030, People's Rep. of China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
39
|
Bekhbat M, Ulukaya GB, Bhasin MK, Felger JC, Miller AH. Cellular and immunometabolic mechanisms of inflammation in depression: Preliminary findings from single cell RNA sequencing and a tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100462. [PMID: 35655933 PMCID: PMC9152104 DOI: 10.1016/j.ynstr.2022.100462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Inflammation is associated with symptoms of anhedonia, a core feature of major depression (MD). We have shown that MD patients with high inflammation as measured by plasma C-reactive protein (CRP) and anhedonia display gene signatures of metabolic reprograming (e.g., shift to glycolysis) necessary to sustain cellular immune activation. To gain preliminary insight into the immune cell subsets and transcriptomic signatures that underlie increased inflammation and its relationship with behavior in MD at the single-cell (sc) level, herein we conducted scRNA-Seq on peripheral blood mononuclear cells from a subset of medically-stable, unmedicated MD outpatients. Three MD patients with high CRP (>3 mg/L) before and two weeks after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab and three patients with low CRP (≤3 mg/L) were studied. Cell clusters were identified using a Single Cell Wizard pipeline, followed by pathway analysis. CD14+ and CD16+ monocytes were more abundant in MD patients with high CRP and were reduced by 29% and 55% respectively after infliximab treatment. Within CD14+ and CD16+ monocytes, genes upregulated in high CRP patients were enriched for inflammatory (phagocytosis, complement, leukocyte migration) and immunometabolic (hypoxia-inducible factor [HIF]-1, aerobic glycolysis) pathways. Shifts in CD4+ T cell subsets included ∼30% and ∼10% lower abundance of CD4+ central memory (TCM) and naïve cells and ∼50% increase in effector memory-like (TEM-like) cells in high versus low CRP patients. TCM cells of high CRP patients displayed downregulation of the oxidative phosphorylation (OXPHOS) pathway, a main energy source in this cell type. Following infliximab, changes in the number of CD14+ monocytes and CD4+ TEM-like cells predicted improvements in anhedonia scores (r = 1.0, p < 0.001). In sum, monocytes and CD4+ T cells from MD patients with increased inflammation exhibited immunometabolic reprograming in association with symptoms of anhedonia. These findings are the first step toward determining the cellular and molecular immune pathways associated with inflammatory phenotypes in MD, which may lead to novel immunomodulatory treatments of psychiatric illnesses with increased inflammation.
Collapse
|
40
|
Dörner T, van Vollenhoven RF, Doria A, Jia B, Ross Terres JA, Silk ME, de Bono S, Fischer P, Wallace DJ. Baricitinib decreases anti-dsDNA in patients with systemic lupus erythematosus: results from a phase II double-blind, randomized, placebo-controlled trial. Arthritis Res Ther 2022; 24:112. [PMID: 35578304 PMCID: PMC9109322 DOI: 10.1186/s13075-022-02794-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 01/20/2023] Open
Abstract
Background Patients with systemic lupus erythematosus (SLE) have substantial unmet medical need. Baricitinib is a Janus kinase (JAK)1 and 2 inhibitor that was shown to have therapeutic benefit in patients with SLE in a phase II clinical trial. The purpose of this study was to evaluate the median change from baseline in conventional serologic biomarkers in subgroups and the overall population of baricitinib-treated patients with SLE, and the SLE Responder Index-4 (SRI-4) response by normalization of anti-dsDNA. Methods Data were assessed from the phase II trial I4V-MC-JAHH (NCT02708095). The median change from baseline in anti-dsDNA, IgG, and other conventional serologic markers was evaluated over time in patients who had elevated levels of markers at baseline, and in all patients for IgG. Median change from baseline for baricitinib treatments were compared with placebo. Among patients who were anti-dsDNA positive at baseline, SRI-4 responder rate was compared for those who stayed positive or achieved normal levels by week 24. Results Significant decreases of anti-dsDNA antibodies were observed in response to baricitinib 2 mg and 4 mg compared to placebo beginning at weeks 2 (baricitinib 2 mg = − 14.3 IU/mL, placebo = 0.1 IU/mL) and 4 (baricitinib 4 mg = − 17.9 IU/mL, placebo = 0.02 IU/mL), respectively, continuing through week 24 (baricitinib 2 mg = − 29.6 IU/mL, baricitinib 4 mg = − 15.1 IU/mL, placebo=3.0 IU/mL). Significant reductions from baseline of IgG levels were found for baricitinib 4 mg-treated patients compared to placebo at weeks 12 (baricitinib 4 mg = − 0.65 g/L, placebo = 0.09 g/L) and 24 (baricitinib 4 mg = − 0.60 g/L, placebo = − 0.04 g/L). For patients who were anti-dsDNA positive at baseline, no relationship between achieving SRI-4 responder and normalization of anti-dsDNA was observed by week 24. Conclusions Baricitinib treatment resulted in a rapid and sustained significant decrease in anti-dsDNA antibodies compared to placebo among those with positive anti-dsDNA antibodies at baseline, as well as a significant decrease in IgG levels in the 4 mg group at weeks 12 and 24. These data suggest that baricitinib may influence B cell activity in SLE. Further studies are needed to evaluate if reductions in anti-dsDNA levels with baricitinib treatment reflect the impact of baricitinib on B cell activity. Trial registration NCT02708095. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02794-x.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite - Universitätsmedizin Berlin and Deutsches Rheuma-Forschungszentrum (DRFZ), Chariteplatz, 01 10117, Berlin, Germany.
| | | | | | - Bochao Jia
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Daniel J Wallace
- Cedars-Sinai Medical Center and University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Tanaka Y, Luo Y, O'Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol 2022; 18:133-145. [PMID: 34987201 PMCID: PMC8730299 DOI: 10.1038/s41584-021-00726-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
The four Janus kinase (JAK) proteins and seven signal transducer and activator of transcription (STAT) transcription factors mediate intracellular signal transduction downstream of cytokine receptors, which are implicated in the pathology of autoimmune, allergic and inflammatory diseases. Development of targeted small-molecule therapies such as JAK inhibitors, which have varied selective inhibitory profiles, has enabled a paradigm shift in the treatment of diverse disorders. JAK inhibitors suppress intracellular signalling mediated by multiple cytokines involved in the pathological processes of rheumatoid arthritis and many other immune and inflammatory diseases, and therefore have the capacity to target multiple aspects of those diseases. In addition to rheumatoid arthritis, JAK inhibition has potential for treatment of autoimmune diseases including systemic lupus erythematosus, spondyloarthritis, inflammatory bowel disease and alopecia areata, in which stimulation of innate immunity activates adaptive immunity, leading to generation of autoreactive T cells and activation and differentiation of B cells. JAK inhibitors are also effective in the treatment of allergic disorders, such as atopic dermatitis, and can even be used for the COVID-19-related cytokine storm. Mechanism-based treatments targeting JAK-STAT pathways have the potential to provide positive outcomes by minimizing the use of glucocorticoids and/or non-specific immunosuppressants in the treatment of systemic immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| | - Yiming Luo
- Vasculitis Translational Research Program Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases NIH, Bethesda, MD, USA
| | - John J O'Shea
- Molecular Immunology & Inflammation Branch, and Translational Immunology Section, National Institute of Arthritis & Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
42
|
Garufi C, Maclean M, Gadina M, Spinelli FR. Affecting the effectors: JAK inhibitors modulation of immune cell numbers and functions in patients with rheumatoid arthritis. Expert Rev Clin Immunol 2022; 18:309-319. [PMID: 35168456 DOI: 10.1080/1744666x.2022.2042254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The Janus kinase family includes four members - JAK1, JAK2, JAK3, TYK2 that are selectively associated with type I and II cytokine receptors. Jak-inhibitors (Jakinibs) are a new class of drugs for treating inflammatory diseases. Five Jakinibs are currently available for Rheumatoid Arthritis (RA): tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib. Considering the role of cytokines and growth factors in immune cell survival and activation, the anti-proliferative and suppressive effects of Jakinibs on these cells are predictable. AREAS COVERED This review summarizes Jakinibs' effects of on immune populations in vitro and in vivo. In vitro, Jakinibs affected T and B lymphocytes, monocytes, neutrophils and dendritic cell proliferation. T helper, B cell differentiation and cytokine secretion was impaired. Accordingly, changes in the number of lymphocytes, natural killer (NK) cells and neutrophils have been reported during the randomized clinical trials with all the Jakinibs, reverting after drug withdrawal. EXPERT OPINION In vitro and in vivo studies showed that the numbers and the function of immune cells are influenced by Jakinibs. Nonetheless, their effects do not seem to represent a major safety issue as these changes do not correlate with the onset of serious infection despite the increased rates of herpes zoster reactivation.
Collapse
Affiliation(s)
- Cristina Garufi
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| | - Mary Maclean
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| |
Collapse
|
43
|
Nakayamada S, Tanaka Y. Pathological relevance and treatment perspective of JAK targeting in systemic lupus erythematosus. Expert Rev Clin Immunol 2022; 18:245-252. [PMID: 35138987 DOI: 10.1080/1744666x.2022.2040988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The pathogenesis of systemic lupus erythematosus (SLE) involves abnormalities in both acquired and innate immune system, which is mediated by numerous cytokines. Janus kinase (JAK) plays important roles in the signaling pathways of those cytokines and is an attractive therapeutic target for SLE. Currently, multiple clinical trials using JAK inhibitors with different selectivities for JAK family proteins are being conducted in SLE. AREA COVERED In this article, we provide an overview of the pathological relevance of JAK and the clinical implications of JAK inhibitors in SLE based on recent reports. EXPERT OPINION JAK inhibitors have the potential to modulate various immune networks through a variety of mechanisms, potentially regulating the complex immunopathogenesis in SLE. SLE is a clinically and immunologically heterogeneous disease; therefore, precision medicine is required to maximize the efficacy of JAK inhibitors. Further studies are needed to determine their risk-benefit ratio and selection of the most appropriate patients for JAK inhibitors.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
44
|
Markovics A, Rosenthal KS, Mikecz K, Carambula RE, Ciemielewski JC, Zimmerman DH. Restoring the Balance between Pro-Inflammatory and Anti-Inflammatory Cytokines in the Treatment of Rheumatoid Arthritis: New Insights from Animal Models. Biomedicines 2021; 10:44. [PMID: 35052724 PMCID: PMC8772713 DOI: 10.3390/biomedicines10010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) and other autoimmune inflammatory diseases are examples of imbalances within the immune system (disrupted homeostasis) that arise from the effects of an accumulation of environmental and habitual insults over a lifetime, combined with genetic predispositions. This review compares current immunotherapies-(1) disease-modifying anti-rheumatic drugs (DMARDs) and (2) Janus kinase (JAK) inhibitors (jakinibs)-to a newer approach-(3) therapeutic vaccines (using the LEAPS vaccine approach). The Ligand Epitope Antigen Presentation System (LEAPS) therapies are capable of inhibiting ongoing disease progression in animal models. Whereas DMARDs ablate or inhibit specific proinflammatory cytokines or cells and jakinibs inhibit the receptor activation cascade for expression of proinflammatory cytokines, the LEAPS therapeutic vaccines specifically modulate the ongoing antigen-specific, disease-driving, proinflammatory T memory cell responses. This decreases disease presentation and changes the cytokine conversation to decrease the expression of inflammatory cytokines (IL-17, IL-1(α or β), IL-6, IFN-γ, TNF-α) while increasing the expression of regulatory cytokines (IL-4, IL-10, TGF-β). This review refocuses the purpose of therapy for RA towards rebalancing the immune system rather than compromising specific components to stop disease. This review is intended to be thought provoking and look forward towards new therapeutic modalities rather than present a final definitive report.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | - Ken S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA;
- Department of Integrative Medical Sciences, NE Ohio Medical University, Rootstown, OH 44272, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | | | | | | |
Collapse
|
45
|
Iancovici L, Khateeb D, Harel O, Peri R, Slobodin G, Hazan Y, Melamed D, Kessel A, Bar-On Y. Rheumatoid arthritis patients treated with Janus kinase inhibitors show reduced humoral immune responses following BNT162b2 vaccination. Rheumatology (Oxford) 2021; 61:3439-3447. [PMID: 34849628 PMCID: PMC8767876 DOI: 10.1093/rheumatology/keab879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The mRNA-based COVID-19 vaccines are now employed globally and have shown high efficacy in preventing SARS-CoV-2 infection. However, less is known about the vaccine efficacy in immune-suppressed individuals. This study sought to explore whether humoral immunity to the COVID-19 vaccine BNT162b2 is altered in RA patients treated with Janus kinase inhibitors by analysing their antibodies titre, neutralization activity and B cell responses. Methods We collected plasma samples from 12 RA patients who were treated with Janus kinase inhibitors and received two doses of the BNT162b2 vaccine, as well as 26 healthy individuals who were vaccinated with the same vaccine. We analysed the quantity of the anti-spike IgG and IgA antibodies that were elicited following the BNT162b2 vaccination, the plasma neutralization capacity and the responsiveness of the B-lymphocytes. We used ELISA to quantify the antibody titres, and a plasma neutralization assay was used to determine the virus neutralization capacity. Alteration in expression of the genes that are associated with B cell activation and the germinal centre response were analysed by quantitative PCR. Results Reduced levels of anti-spike IgG antibodies and neutralization capacity were seen in the RA patients who were treated with JAK inhibitors in comparison with healthy individuals. Furthermore, B cell responsiveness to the SARS-CoV-2 spike protein was reduced in the RA patients. Conclusion RA patients who are treated with JAK inhibitors show a suppressed humoral response following BNT162b2 vaccination, as revealed by the quantity and quality of the anti-spike antibodies.
Collapse
Affiliation(s)
- Liat Iancovici
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Dina Khateeb
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ofer Harel
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Regina Peri
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gleb Slobodin
- Rheumatology Unit, Bnai Zion Medical Center, affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Hazan
- Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Aharon Kessel
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yotam Bar-On
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| |
Collapse
|
46
|
Matucci A, Vivarelli E, Nencini F, Maggi E, Vultaggio A. Strategies Targeting Type 2 Inflammation: From Monoclonal Antibodies to JAK-Inhibitors. Biomedicines 2021; 9:biomedicines9101497. [PMID: 34680614 PMCID: PMC8533458 DOI: 10.3390/biomedicines9101497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Bronchial asthma and its frequent comorbidity chronic rhinosinusitis (CRS), are characterized by an inflammatory process at lower and upper respiratory tract, with a variability in terms of clinical presentations (phenotypes) and distinct underpin pathophysiological mechanisms (endotypes). Based on the characteristics of inflammation, bronchial asthma can be distinguished into type 2 (eosinophilic) or nontype 2 (noneosinophilic) endotypes. In type 2 asthma endotype, the pathogenic mechanism is sustained by an inflammatory process driven by Th2 cells, type 2 innate lymphoid cells (ILC2) and type 2 cytokines, which include interleukin (IL)-4, IL-5, IL-9 and IL-13. The definition of asthma and chronic rhinusinusitis phenotype/endotype is crucial, taking into account the availability of novel biologic agents, such as monoclonal antibodies targeting the classical type 2 cytokines. Recently, new therapeutic strategies have been proposed and analyzed in preliminary clinical trials. Among them Janus kinase (JAK) inhibitors, now largely used for the treatment of other chronic inflammatory diseases such as rheumatoid arthritis and inflammatory bowel diseases, is receiving great relevance. The rationale of this strategy derives from the data that JAK is a tyrosine kinase involved in the signaling of T cell receptor and of several cytokines that play a role in allergic respiratory disease, such as IL-2, IL-4 and IL-9. In this review, we discuss whether treatment with biological agents and JAK inhibitors may be equally effective in controlling type 2 inflammatory process in both asthma and CRS.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Emanuele Vivarelli
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Francesca Nencini
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Enrico Maggi
- Immunology Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| |
Collapse
|
47
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
48
|
Adikusuma W, Irham LM, Chou WH, Wong HSC, Mugiyanto E, Ting J, Perwitasari DA, Chang WP, Chang WC. Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information. Front Immunol 2021; 12:724277. [PMID: 34721386 PMCID: PMC8548825 DOI: 10.3389/fimmu.2021.724277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Atopic Dermatitis (AD) is a chronic and relapsing skin disease. The medications for treating AD are still limited, most of them are topical corticosteroid creams or antibiotics. The current study attempted to discover potential AD treatments by integrating a gene network and genomic analytic approaches. Herein, the Single Nucleotide Polymorphism (SNPs) associated with AD were extracted from the GWAS catalog. We identified 70 AD-associated loci, and then 94 AD risk genes were found by extending to proximal SNPs based on r2 > 0.8 in Asian populations using HaploReg v4.1. Next, we prioritized the AD risk genes using in silico pipelines of bioinformatic analysis based on six functional annotations to identify biological AD risk genes. Finally, we expanded them according to the molecular interactions using the STRING database to find the drug target genes. Our analysis showed 27 biological AD risk genes, and they were mapped to 76 drug target genes. According to DrugBank and Therapeutic Target Database, 25 drug target genes overlapping with 53 drugs were identified. Importantly, dupilumab, which is approved for AD, was successfully identified in this bioinformatic analysis. Furthermore, ten drugs were found to be potentially useful for AD with clinical or preclinical evidence. In particular, we identified filgotinub and fedratinib, targeting gene JAK1, as potential drugs for AD. Furthermore, four monoclonal antibody drugs (lebrikizumab, tralokinumab, tocilizumab, and canakinumab) were successfully identified as promising for AD repurposing. In sum, the results showed the feasibility of gene networking and genomic information as a potential drug discovery resource.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, Indonesia
| | - Lalu Muhammad Irham
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Eko Mugiyanto
- Ph. D. Program in the Clinical Drug Development of Herbal Medicines, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Pekajangan Pekalongan, Pekalongan, Indonesia
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Pin Chang
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University (TMU) Research Center of Cancer Translational Medicine, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
49
|
Smet A, Breugelmans T, Michiels J, Lamote K, Arras W, De Man JG, Heyndrickx L, Hauner A, Huizing M, Malhotra-Kumar S, Lammens M, Hotterbeekx A, Kumar-Singh S, Verstraeten A, Loeys B, Verhoeven V, Jacobs R, Dams K, Coenen S, Ariën KK, Jorens PG, De Winter BY. A dynamic mucin mRNA signature associates with COVID-19 disease presentation and severity. JCI Insight 2021; 6:e151777. [PMID: 34448730 PMCID: PMC8525642 DOI: 10.1172/jci.insight.151777] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection induces mucin overexpression, further promoting disease. Given that mucins are critical components of innate immunity, unraveling their expression profiles that dictate the course of disease could greatly enhance our understanding and management of COVID-19. METHODS Using validated RT-PCR assays, we assessed mucin mRNA expression in the blood of patients with symptomatic COVID-19 compared with symptomatic patients without COVID-19 and healthy controls and correlated the data with clinical outcome parameters. Additionally, we analyzed mucin expression in mucus and lung tissue from patients with COVID-19 and investigated the effect of drugs for COVID-19 treatment on SARS-CoV-2–induced mucin expression in pulmonary epithelial cells. RESULTS We identified a dynamic blood mucin mRNA signature that clearly distinguished patients with symptomatic COVID-19 from patients without COVID-19 based on expression of MUC1, MUC2, MUC4, MUC6, MUC13, MUC16, and MUC20 (AUCROC of 91.8%; sensitivity and specificity of 90.6% and 93.3%, respectively) and that discriminated between mild and critical COVID-19 based on the expression of MUC16, MUC20, and MUC21 (AUCROC of 89.1%; sensitivity and specificity of 90.0% and 85.7%, respectively). Differences in the transcriptional landscape of mucins in critical cases compared with mild cases identified associations with COVID-19 symptoms, respiratory support, organ failure, secondary infections, and mortality. Furthermore, we identified different mucins in the mucus and lung tissue of critically ill COVID-19 patients and showed the ability of baricitinib, tocilizumab, favipiravir, and remdesivir to suppress expression of SARS-CoV-2–induced mucins. CONCLUSION This multifaceted blood mucin mRNA signature showed the potential role of mucin profiling in diagnosing, estimating severity, and guiding treatment options in patients with COVID-19. FUNDING The Antwerp University Research and the Research Foundation Flanders COVID-19 funds.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Anne Hauner
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Manon Huizing
- Biobank Antwerpen, Antwerp University Hospital, Edegem, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Lammens
- Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | - An Hotterbeekx
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Samuel Coenen
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, and.,Infla-med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
50
|
Lee J, Park Y, Jang SG, Hong SM, Song YS, Kim MJ, Baek S, Park SH, Kwok SK. Baricitinib Attenuates Autoimmune Phenotype and Podocyte Injury in a Murine Model of Systemic Lupus Erythematosus. Front Immunol 2021; 12:704526. [PMID: 34497607 PMCID: PMC8419414 DOI: 10.3389/fimmu.2021.704526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Baricitinib, a selective inhibitor for janus kinase (JAK) 1 and JAK2, is approved for use in rheumatoid arthritis. Systemic lupus erythematosus (SLE) is recently regarded as a potential candidate targeted by JAK inhibitors because of the relationship between its pathogenesis and JAK/signal transducer and activator of transcription (STAT) pathway-mediated cytokines such as type I interferons. The objective of this study was to determine whether baricitinib could effectively ameliorate SLE using a murine model Methods To investigate effects of baricitinib on various autoimmune features, especially renal involvements in SLE, eight-week-old MRL/Mp-Faslpr (MRL/lpr) mice were used as a lupus-prone animal model and treated with baricitinib for eight weeks. Immortalized podocytes and primary podocytes and B cells isolated from C57BL/6 mice were used to determine the in vitro efficacy of baricitinib. Results Baricitinib remarkably suppressed lupus-like phenotypes of MRL/lpr mice, such as splenomegaly, lymphadenopathy, proteinuria, and systemic autoimmunity including circulating autoantibodies and pro-inflammatory cytokines. It also modulated immune cell populations and effectively ameliorated renal inflammation, leading to the recovery of the expression of structural proteins in podocytes. According to in vitro experiments, baricitinib treatment could mitigate B cell differentiation and restore disrupted cytoskeletal structures of podocytes under inflammatory stimulation by blocking the JAK/STAT pathway. Conclusions The present study demonstrated that baricitinib could effectively attenuate autoimmune features including renal inflammation of lupus-prone mice by suppressing aberrant B cell activation and podocyte abnormalities. Thus, baricitinib as a selective JAK inhibitor could be a promising therapeutic candidate in the treatment of SLE.
Collapse
Affiliation(s)
- Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Min Hong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Seok Song
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jun Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungYe Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|