1
|
Majernikova SM. Risk and safety profile in checkpoint inhibitors on non-small-cel lung cancer: A systematic review. Hum Vaccin Immunother 2024; 20:2365771. [PMID: 38932682 PMCID: PMC11212564 DOI: 10.1080/21645515.2024.2365771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Treating non-small-cell lung cancer (NSCLC) has gained increased importance in recent years due to the high mortality rate and dismal five-year survival rate. Immune checkpoint inhibitors (ICI) are a promising approach with exceptional outcomes in NSCLC thanks to the antigenic nature of cells. Conversely, immune system over-stimulation with ICI is a double-edged sword that can lead to various negative effects ranging from mild to life-threatening. This review explores current breakthroughs in nanoparticle-based ICI and their limitations. The PubMed, Scopus and Web of Science were examined for relevant publications. Thirty-eight trials (N = 16,781) were included in the analyses. The mixed effects analyses on quantifying the treatment effect contributed significantly to the subgroups within studies for ICI treatment effect. Models confirmed ICI's higher impact on treatment effectivity and the decrease in respondents' mortality compared to conventional treatment regiments. ICI might be used as first-line therapy due to their proven effectiveness and safety profile.
Collapse
Affiliation(s)
- Sara Maria Majernikova
- Department for Continuing Education, The University of Oxford, Oxford, UK
- Department of Neuroscience, Physiology & Pharmacology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| |
Collapse
|
2
|
Pinho ACO, Barbosa P, Lazaro A, Tralhão JG, Pereira MJ, Paiva A, Laranjeira P, Carvalho E. Identification and characterization of circulating and adipose tissue infiltrated CD20 +T cells from subjects with obesity that undergo bariatric surgery. Immunol Lett 2024; 269:106911. [PMID: 39147242 DOI: 10.1016/j.imlet.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
T cells play critical roles in adipose tissue (AT) inflammation. The role of CD20+T cell in AT dysfunction and their contributing to insulin resistance (IR) and type 2 diabetes progression, is not known. The aim was to characterize CD20+T cells in omental (OAT), subcutaneous (SAT) and peripheral blood (PB) from subjects with obesity (OB, n = 42), by flow cytometry. Eight subjects were evaluated before (T1) and 12 months post (T2) bariatric/metabolic surgery (BMS). PB from subjects without obesity (nOB, n = 12) was also collected. Higher percentage of CD20+T cells was observed in OAT, compared to PB or SAT, in OB-T1. CD20 expression by PB CD4+T cells was inversely correlated with adiposity markers, while follicular-like CD20+T cells were positively correlated with impaired glucose tolerance (increased HbA1c). Notably, among OB-T1, IR establishment was marked by a lower percentage and absolute number of PB CD20+T cells, compared nOB. Obesity was associated with higher percentage of activated CD20+T cells; however, OAT-infiltrated CD20+T cells from OB-T1 with diabetes displayed the lowest activation. CD20+T cells infiltrating OAT from OB-T1 displayed a phenotype towards IFN-γ-producing Th1 and Tc1 cells. After BMS, the percentage of PB CD4+CD20+T cells increased, with reduced Th1 and increased Th17 phenotype. Whereas in OAT the percentage of CD20+T cells with Th1/17 and Tc1/17 phenotypes increased. Interestingly, OAT from OB pre/post BMS maintained higher frequency of effector memory CD20+T cells. In conclusion, CD20+T cells may play a prominent role in obesity-related AT inflammation.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Pedro Barbosa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - André Lazaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - José G Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria João Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Artur Paiva
- CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Paula Laranjeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal.
| | - Eugenia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal; APDP-Portuguese Diabetes Association, Lisbon, Portugal.
| |
Collapse
|
3
|
van der Mescht MA, de Beer Z, Steel HC, Anderson R, Masenge A, Moore PL, Bastard P, Casanova JL, Abdullah F, Ueckermann V, Rossouw TM. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clin Immunol 2024; 266:110323. [PMID: 39029640 DOI: 10.1016/j.clim.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-β1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Collapse
Affiliation(s)
- Mieke A van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane District Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Penny L Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa; Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa; Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Morgante C, Fierabracci A, Grossi A. Pediatric thyroid side effects of immune checkpoint inhibitors. Trends Endocrinol Metab 2024; 35:765-768. [PMID: 38637222 DOI: 10.1016/j.tem.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are associated with multiple endocrine side effects, including thyroid disfunctions. In addition, the efficacy and safety profiles of ICIs in the pediatric population need clarification. Here, we discuss the main evidence regarding the efficacy and thyroid toxicities of ICIs in children.
Collapse
Affiliation(s)
- Cesare Morgante
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore-Fondazione Policlinico 'A. Gemelli' IRCCS, Largo Gemelli 8, 00168 Rome, Italy.
| | | | - Armando Grossi
- Endocrine Pathology of Chronic and Post Cancer Diseases Unit, Bambino Gesù Children's Hospital, IRCCS Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
5
|
Silva RCMC. mTOR-mediated differentiation and maintenance of suppressive T cells at the center stage of IPEX treatment. Immunol Res 2024; 72:523-525. [PMID: 38462561 DOI: 10.1007/s12026-024-09472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
7
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
8
|
Vetsika EK, Fragoulis GE, Kyriakidi M, Verrou KM, Tektonidou MG, Alissafi T, Sfikakis PP. Insufficient PD-1 expression during active autoimmune responses: a deep single-cell proteomics analysis in inflammatory arthritis. Front Immunol 2024; 15:1403680. [PMID: 38911848 PMCID: PMC11190177 DOI: 10.3389/fimmu.2024.1403680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Objectives Programmed cell death protein-1 (PD-1) maintains peripheral immune tolerance by preventing T cell continuous activation. Aiming to understand the extent of PD-1 expression in inflammatory arthritis beyond its involvement with T cells, we assess its presence on various circulating single cells. Methods Mass cytometry analysis of patients with active seropositive/seronegative rheumatoid (RA; n=9/8) and psoriatic (PsA; n=9) arthritis versus healthy controls (HC; n=13), re-evaluating patients after 3 months of anti-rheumatic treatment. Results PD-1 was expressed in all leukocyte subpopulations, with the highest PD-1+ cell frequencies in eosinophils (59-73%) and T cells (50-60%), and the lowest in natural-killer cells (1-3%). PD-1+ cell frequencies and PD-1 median expression were comparable between patient subgroups and HC, in the majority of cell subsets. Exceptions included increases in certain T cell/B cell subsets of seropositive RA and specific monocyte subsets and dendritic cells of PsA; an expanded PD-1+CD4+CD45RA+CD27+CD28+ T subset, denoting exhausted T cells, was common across patient subgroups. Strikingly, significant inverse correlations between individual biomarkers of systemic inflammation (ESR and/or serum CRP) and PD-1+ cell frequencies and/or median expression were evident in several innate and adaptive immunity cell subsets of RA and PsA patients. Furthermore, all inverse correlations noted in individuals with active arthritis were no longer discernible in those who attained remission/low disease activity post-treatment. Conclusion PD-1 expression may be insufficient, relative to the magnitude of the concomitant systemic inflammatory response on distinct leukocyte subsets, varying between RA and PsA. Our results point to the potential therapeutic benefits of pharmacological PD-1 activation, to rebalance the autoimmune response and reduce inflammation.
Collapse
Affiliation(s)
- Eleni-Kyriaki Vetsika
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George E. Fragoulis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kyriakidi
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio-Maria Verrou
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G. Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Themis Alissafi
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Petros P. Sfikakis
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Andrabi SBA, Kalim UU, Palani S, Khan MM, Khan MH, Fagersund J, Orpana J, Paulin N, Batkulwar K, Junttila S, Buchacher T, Grönroos T, Toikka L, Ammunet T, Sen P, Orešič M, Kumpulainen V, Tuomisto JEE, Sinha R, Marson A, Rasool O, Elo LL, Lahesmaa R. Long noncoding RNA LIRIL2R modulates FOXP3 levels and suppressive function of human CD4 + regulatory T cells by regulating IL2RA. Proc Natl Acad Sci U S A 2024; 121:e2315363121. [PMID: 38805281 PMCID: PMC11161746 DOI: 10.1073/pnas.2315363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.
Collapse
Affiliation(s)
- Syed Bilal Ahmad Andrabi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Senthil Palani
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Jimmy Fagersund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Julius Orpana
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Niklas Paulin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Lea Toikka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tea Ammunet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro702 81, Sweden
| | - Venla Kumpulainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Johanna E. E. Tuomisto
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Alexander Marson
- Gladstone-University of California San Francisco Institute of Genomic Immunology, San Francisco, CA94158
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, 20520Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- InFLAMES – Innovation Ecosystem Based on the Immune System Flagship University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, 20520Turku, Finland
| |
Collapse
|
10
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
11
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
12
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
13
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
15
|
Zhang M, Wan Y, Han J, Li J, Gong H, Mu X. The clinical association of programmed death-1/PD-L1 axis, myeloid derived suppressor cells subsets and regulatory T cells in peripheral blood of stable COPD patients. PeerJ 2024; 12:e16988. [PMID: 38560459 PMCID: PMC10981408 DOI: 10.7717/peerj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jie Han
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haihong Gong
- Affiliated Hospital of Qingdao University Medical College, Department of Respiratory and Critical Care Medicine, Qingdao, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Bézie S, Sérazin C, Autrusseau E, Vimond N, Giral M, Anegon I, Guillonneau C. Renal graft function in transplanted patients correlates with CD45RC T cell phenotypic signature. PLoS One 2024; 19:e0300032. [PMID: 38512889 PMCID: PMC10956768 DOI: 10.1371/journal.pone.0300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Biomarkers that could predict the evolution of the graft in transplanted patients and that could allow to adapt the care of the patients would be an invaluable tool. Additionally, certain biomarkers can be target of treatments and help to stratify patients. Potential effective biomarkers have been identified but still need to be confirmed. CD45RC, one of the splicing variants of the CD45 molecule, a tyrosine phosphatase that is critical in negatively or positively regulating the TCR and the BCR signaling, is one marker already described. The frequency of CD8+ T cells expressing high levels of CD45RC before transplantation is increased in patients with an increased risk of acute rejection. However, single biomarkers have limited predictive reliability and the correlation of the expression levels of CD45RC with other cell markers was not reported. In this study, we performed a fluorescent-based high dimensional immunophenotyping of T cells on a cohort of 69 kidney transplant patients either with stable graft function or having experienced acute transplant rejection during the first year after transplantation or at the time of rejection. We identified combinations of markers and cell subsets associated with activation/inflammation or Tregs/tolerance (HLA-DR, PD-1, IFNγ, CD28) as significant biomarkers associated to transplant outcome, and showed the importance of cell segregation based on the CD45RC marker to identify the signature of a stable graft function. Our study highlights potential reliable biomarkers in transplantation to predict and/or monitor easily graft-directed immune responses and adapt immunosuppression treatments to mitigate adverse effects.
Collapse
Affiliation(s)
- Séverine Bézie
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Céline Sérazin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Elodie Autrusseau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Nadège Vimond
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Magali Giral
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
- Department of Nephrology, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Ignacio Anegon
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Carole Guillonneau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| |
Collapse
|
17
|
Ajith A, Merimi M, Arki MK, Hossein-khannazer N, Najar M, Vosough M, Sokal EM, Najimi M. Immune regulation and therapeutic application of T regulatory cells in liver diseases. Front Immunol 2024; 15:1371089. [PMID: 38571964 PMCID: PMC10987744 DOI: 10.3389/fimmu.2024.1371089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.
Collapse
Affiliation(s)
- Ananya Ajith
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Makram Merimi
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Etienne Marc Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
18
|
Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H, Li CW. Post-translational Modification of PD-1: Potential Targets for Cancer Immunotherapy. Cancer Res 2024; 84:800-807. [PMID: 38231470 PMCID: PMC10940856 DOI: 10.1158/0008-5472.can-23-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Activation of effector T cells leads to upregulation of PD-1, which can inhibit T-cell activity following engagement with its ligand PD-L1. Post-translational modifications (PTM), including glycosylation, phosphorylation, ubiquitination, and palmitoylation, play a significant role in regulating PD-1 protein stability, localization, and interprotein interactions. Targeting PTM of PD-1 in T cells has emerged as a potential strategy to overcome PD-1-mediated immunosuppression in cancer and enhances antitumor immunity. The regulatory signaling pathways that induce PTM of PD-1 can be suppressed with small-molecule inhibitors, and mAbs can directly target PD-1 PTMs. Preliminary outcomes from exploratory studies suggest that focusing on the PTM of PD-1 has strong therapeutic potential and can enhance the response to anti-PD-1.
Collapse
Affiliation(s)
- Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - En-Yun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Hou Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yun-Ju Lai
- Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Barbosa P, Pinho A, Lázaro A, Paula D, Tralhão JG, Paiva A, Pereira MJ, Carvalho E, Laranjeira P. Bariatric Surgery Induces Alterations in the Immune Profile of Peripheral Blood T Cells. Biomolecules 2024; 14:219. [PMID: 38397455 PMCID: PMC10886753 DOI: 10.3390/biom14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.
Collapse
Affiliation(s)
- Pedro Barbosa
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), 3030-789 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
| | - André Lázaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo Paula
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
| | - José G. Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, SE-75185 Uppsala, Sweden;
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Paula Laranjeira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
| |
Collapse
|
20
|
Yan T, Yu L, Zhang J, Chen Y, Fu Y, Tang J, Liao D. Achilles' Heel of currently approved immune checkpoint inhibitors: immune related adverse events. Front Immunol 2024; 15:1292122. [PMID: 38410506 PMCID: PMC10895024 DOI: 10.3389/fimmu.2024.1292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Immunotherapy has revolutionized the cancer treatment landscape by opening up novel avenues for intervention. As the use of immune checkpoint inhibitors (ICIs) has exponentially increased, so have immune-related adverse events (irAEs). The mechanism of irAEs may involve the direct damage caused by monoclonal antibodies and a sequence of immune responses triggered by T cell activation. Common side effects include dermatologic toxicity, endocrine toxicity, gastrointestinal toxicity, and hepatic toxicity. While relatively rare, neurotoxicity, cardiotoxicity, and pulmonary toxicity can be fatal. These toxicities pose a clinical dilemma regarding treatment discontinuation since they can result in severe complications and necessitate frequent hospitalization. Vigilant monitoring of irAEs is vital in clinical practice, and the principal therapeutic strategy entails the administration of oral or intravenous glucocorticoids (GSCs). It may be necessary to temporarily or permanently discontinue the use of ICIs in severe cases. Given that irAEs can impact multiple organs and require diverse treatment approaches, the involvement of a multidisciplinary team of experts is imperative. This review aims to comprehensively examine the pathogenesis, clinical manifestations, incidence, and treatment options for various irAEs.
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lun Yu
- Department of Positron Emission Tomography–Computed Tomography (PET-CT) Center, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Jiwen Zhang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
21
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
22
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
23
|
Wang C, Zou RQ, He GZ. Progress in mechanism-based diagnosis and treatment of tuberculosis comorbid with tumor. Front Immunol 2024; 15:1344821. [PMID: 38298194 PMCID: PMC10827852 DOI: 10.3389/fimmu.2024.1344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberculosis (TB) and tumor, with similarities in immune response and pathogenesis, are diseases that are prone to produce autoimmune stress response to the host immune system. With a symbiotic relationship between the two, TB can facilitate the occurrence and development of tumors, while tumor causes TB reactivation. In this review, we systematically sorted out the incidence trends and influencing factors of TB and tumor, focusing on the potential pathogenesis of TB and tumor, to provide a pathway for the co-pathogenesis of TB comorbid with tumor (TCWT). Based on this, we summarized the latest progress in the diagnosis and treatment of TCWT, and provided ideas for further exploration of clinical trials and new drug development of TCWT.
Collapse
Affiliation(s)
- Chuan Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Rong-Qi Zou
- Vice Director of Center of Sports Injury Prevention, Treatment and Rehabilitation China National Institute of Sports Medicine A2 Pangmen, Beijing, China
| | - Guo-Zhong He
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Wojnicka J, Grywalska E, Hymos A, Mertowska P, Mertowski S, Charytanowicz M, Klatka M, Klatka J, Dolliver WR, Błażewicz A. The Relationship between Cancer Stage, Selected Immunological Parameters, Epstein-Barr Virus Infection, and Total Serum Content of Iron, Zinc, and Copper in Patients with Laryngeal Cancer. J Clin Med 2024; 13:511. [PMID: 38256645 PMCID: PMC10816330 DOI: 10.3390/jcm13020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: the purpose of the study was to assess the relationship between cancer stage, selected immunological parameters, Epstein-Barr virus (EBV) infection, and total serum content of iron, zinc, and copper in patients with laryngeal cancer (LC). (2) Methods: serum Fe, Zn, and Cu were measured in 40 LC patients and 20 controls. Immunophenotyping of peripheral blood lymphocytes was performed by flow cytometry using fluorescent antibodies against CD3, CD4, CD8, CD19, CD25, CD69, and PD-1. Tumor and lymph node lymphocytes were analyzed by flow cytometry. EBV DNA was quantified by real-time PCR, targeting the EBNA-1 gene. Associations between serum elements, immune markers, and cancer grade/stage were evaluated using ANOVA and appropriate nonparametric tests. (3) Results: levels of Fe, Cu, and Zn were lower, while Cu/Zn was statistically higher, in patients with LC than in the control group. Correlation analysis showed a statistically significant association between the levels of these elements and parameters of the TNM (Tumor, Node, Metastasis) staging system, immunophenotype, and the amount of EBV genetic material in patients with LC who survived for more than 5 years. (4) Conclusion: the results suggest that the total serum levels of the determined micronutrients may significantly affect the immunopathogenesis and progression of LC.
Collapse
Affiliation(s)
- Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Małgorzata Charytanowicz
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
| | - Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University, Gębali 1 St., 20-093 Lublin, Poland;
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland;
| | | | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Spiliopoulou P, Kaur P, Hammett T, Di Conza G, Lahn M. Targeting T regulatory (T reg) cells in immunotherapy-resistant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:2. [PMID: 38318526 PMCID: PMC10838381 DOI: 10.20517/cdr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Primary or secondary (i.e., acquired) resistance is a common occurrence in cancer patients and is often associated with high numbers of T regulatory (Treg) cells (CD4+CD25+FOXP3+). The approval of ipilimumab and the development of similar pharmacological agents targeting cell surface proteins on Treg cells demonstrates that such intervention may overcome resistance in cancer patients. Hence, the clinical development and subsequent approval of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) targeting agents can serve as a prototype for similar agents. Such new agents aspire to be highly specific and have a reduced toxicity profile while increasing effector T cell function or effector T/T regulatory (Teff/Treg) ratio. While clinical development with large molecules has shown the greatest advancement, small molecule inhibitors that target immunomodulation are increasingly entering early clinical investigation. These new small molecule inhibitors often target specific intracellular signaling pathways [e.g., phosphoinositide-3-kinase delta (PI3K-δ)] that play an important role in regulating the function of Treg cells. This review will summarize the lessons currently applied to develop novel clinical agents that target Treg cells.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Drug Development Program, Phase I Unit, Beatson West of Scotland Cancer Center, Glasgow G12 0YN, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Paramjit Kaur
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Tracey Hammett
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Giusy Di Conza
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Michael Lahn
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| |
Collapse
|
26
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
28
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
29
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
30
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
31
|
Prickler L, Baranyi U, Mengrelis K, Weijler AM, Kainz V, Kratzer B, Steiner R, Mucha J, Rudoph E, Pilat N, Bohle B, Strobl H, Pickl WF, Valenta R, Linhart B, Wekerle T. Adoptive transfer of allergen-expressing B cells prevents IgE-mediated allergy. Front Immunol 2023; 14:1286638. [PMID: 38077381 PMCID: PMC10703460 DOI: 10.3389/fimmu.2023.1286638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy. Methods For this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing. Results The transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice. Discussion Thus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans.
Collapse
Affiliation(s)
- Lisa Prickler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisa Rudoph
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Winfried Franz Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, National Research Center (NRC), Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Hu X, Ren J, Xue Q, Luan R, Ding D, Tan J, Su X, Yang J. Anti‑PD‑1/PD‑L1 and anti‑CTLA‑4 associated checkpoint inhibitor pneumonitis in non‑small cell lung cancer: Occurrence, pathogenesis and risk factors (Review). Int J Oncol 2023; 63:122. [PMID: 37681488 PMCID: PMC10552702 DOI: 10.3892/ijo.2023.5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) play a significant anti‑tumor role in the management of non‑small cell lung cancer. The most broadly used ICIs are anti‑programmed death 1 (PD‑1), anti‑programmed cell death‑ligand 1, and anti‑cytotoxic T lymphocyte‑associated antigen‑4 monoclonal antibody. Compared with traditional chemotherapy, ICIs have the advantages of greater efficiency and more specific targeting. However, the resulting immune‑related adverse events limit the clinical application of ICIs, especially checkpoint inhibitor pneumonitis (CIP). CIP chiefly occurs within 6 months of administration of ICIs. Excessive activation and amplification of cytotoxic T lymphocytes, helper T cells, downregulation of regulatory T cells, and over‑secretion of pro‑inflammatory cytokines are the dominant mechanisms underlying the pathophysiology of CIP. The dysregulation of innate immune cells, such as an increase in inflammatory monocytes, dendritic cells, neutrophils and M1 polarization of macrophages, an increase in IL‑10 and IL‑35, and a decrease in eosinophils, may underlie CIP. Although contested, several factors may accelerate CIP, such as a history of previous respiratory disease, radiotherapy, chemotherapy, administration of epidermal growth factor receptor tyrosine kinase inhibitors, PD‑1 blockers, first‑line application of ICIs, and combined immunotherapy. Interestingly, first‑line ICIs plus chemotherapy may reduce CIP. Steroid hormones remain the primary treatment strategy against grade ≥2 CIP, although cytokine blockers are promising therapeutic agents. Herein, the current research on CIP occurrence, clinical and radiological characteristics, pathogenesis, risk factors, and management is summarized to further expand our understanding, clarify the prognosis, and guide treatment.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jin Ren
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Qianfei Xue
- Department of Respiratory Medicine, Hospital of Jilin University, Changchun, Jilin 130012,
P.R. China
| | - Rumei Luan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Dongyan Ding
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jie Tan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| |
Collapse
|
33
|
Negura I, Pavel-Tanasa M, Danciu M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat Rev 2023; 120:102629. [PMID: 37769435 DOI: 10.1016/j.ctrv.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Gastric cancer (GC) is a highly aggressive malignancy that remains a significant contributor to cancer-related mortality worldwide, despite a decline in incidence in recent years. Early-stage GC poses a diagnostic challenge due to its asymptomatic nature, leading to poor prognoses for most patients. Conventional treatment approaches, including chemotherapy and surgery, have shown limited efficacy in improving outcomes for GC patients. The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy, yielding durable responses across various malignancies. However, the clinical benefits of ICIs in GC have been modest, underscoring the need for a comprehensive understanding of immune cell functions within the GC tumor microenvironment (TME). Regulatory T cells (Tregs), a subset of T lymphocytes, play a pivotal role in GC development and progression and serve as prognostic biomarkers for GC patients. This review aims to elucidate the multifaceted roles of Tregs in the pathogenesis, progression, and prognosis of gastric cancer, and establish their actual and future potential as therapeutic targets. By providing insights into the intricate interplay between Tregs and the TME, this review strives to stimulate further investigation and facilitate the development of targeted Treg-based therapeutic strategies for GC.
Collapse
Affiliation(s)
- Ion Negura
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
| | - Mihai Danciu
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
34
|
Laudisi F, Stolfi C, Monteleone I, Monteleone G. TGF-β1 signaling and Smad7 control T-cell responses in health and immune-mediated disorders. Eur J Immunol 2023; 53:e2350460. [PMID: 37611637 DOI: 10.1002/eji.202350460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Transforming growth factor (TGF)-β1, a member of the TGF-β superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-β1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-β1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-β1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
35
|
Parks OB, Antos D, Eddens T, Walters S, Johnson M, Oury TD, Gottschalk RA, Erickson JJ, Williams JV. PD-1 Impairs CD8+ T Cell Granzyme B Production in Aged Mice during Acute Viral Respiratory Infection. Immunohorizons 2023; 7:771-787. [PMID: 38015461 PMCID: PMC10696419 DOI: 10.4049/immunohorizons.2300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
CD8+ T cell dysfunction contributes to severe respiratory viral infection outcomes in older adults. CD8+ T cells are the primary cell type responsible for viral clearance. With increasing age, CD8+ T cell function declines in conjunction with an accumulation of cytotoxic tissue-resident memory (TRM) CD8+ T cells. We sought to elucidate the role of PD-1 signaling on aged CD8+ T cell function and accumulation of CD8+ TRM cells during acute viral respiratory tract infection, given the importance of PD-1 regulating CD8+ T cells during acute and chronic infections. PD-1 blockade or genetic ablation in aged mice yielded improved CD8+ T cell granzyme B production comparable to that in young mice during human metapneumovirus and influenza viral infections. Syngeneic transplant and adoptive transfer strategies revealed that improved granzyme B production in aged Pdcd1-/- CD8+ T cells was primarily cell intrinsic because aged wild-type CD8+ T cells did not have increased granzyme B production when transplanted into a young host. PD-1 signaling promoted accumulation of cytotoxic CD8+ TRM cells in aged mice. PD-1 blockade of aged mice during rechallenge infection resulted in improved clinical outcomes that paralleled reduced accumulation of CD8+ TRM cells. These findings suggest that PD-1 signaling impaired CD8+ T cell granzyme B production and contributed to CD8+ TRM cell accumulation in the aged lung. These findings have implications for future research investigating PD-1 checkpoint inhibitors as a potential therapeutic option for elderly patients with severe respiratory viral infections.
Collapse
Affiliation(s)
- Olivia B. Parks
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Danielle Antos
- Division of Pulmonology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Taylor Eddens
- Division of Allergy/Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sara Walters
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Monika Johnson
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rachel A. Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John J. Erickson
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - John V. Williams
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
| |
Collapse
|
36
|
Bergantini L, Pianigiani T, d'Alessandro M, Gangi S, Cekorja B, Bargagli E, Cameli P. The effect of anti-IL5 monoclonal antibodies on regulatory and effector T cells in severe eosinophilic asthma. Biomed Pharmacother 2023; 166:115385. [PMID: 37651801 DOI: 10.1016/j.biopha.2023.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Biological treatments have redesigned the clinical management of severe eosinophilic asthmatic (SA) patients. Despite emerging evidence supporting the role of natural Killer (NK), and T regulatory cells (Treg) in the pathogenesis of asthma, no data is available on the effects of anti-IL5/IL5R therapies on these cell subsets. METHODS We prospectively enrolled fourteen SA patients treated with benralizumab (n = 7) or mepolizumab (n = 7) and compared them with healthy controls (HC) (n = 11) and mild to moderate asthmatic (MM) patients (n = 9). Clinical parameters were collected at baseline (T0) and during follow-up. Cellular analysis, including the analysis of T/NK cell subsets, was determined through multicolor flow cytometry. RESULTS At T0, SA patients showed higher percentages of CD4 TEM (33.3 ± 17.9 HC, 42.6 ± 16.6 MM and 66.1 ± 19.7 in SA; p < 0.0001) than HC and MM patients. With different timing, the two drugs induce a reduction of CD4 TEM ( 76 ± 19 T0; 43 ± 14 T1; 45 ± 23 T6; 62 ± 18 at T24; p < 0.0001 for mepolizumab and 55 ± 21 T0; 55 ± 22 T1; 43 ± 14 T6; 27 ± 12 at T24; p < 0.0001 for benralizumab) and an increase of Treg cells (1.2 ± 1.3 T0; 5.1 ± 2.5 T1; 6.3 ± 3.4 T6; 8.4 ± 4.6 at T24; p < 0.0001 for mepolizumab and 3.4 ± 1.7 T0; 1.9 ± 0.8 T1; 1.9 ± 1 T6; 5.1 ± 2.4 at T24; p < 0.0001 for benralizumab). The change of CD56dim PD-1+ significantly correlated with FEV1% (r = - 0.32; p < 0.01), while Treg expressing PD-1 correlates with the use of oral steroids ( r = 0.36 p = 0.0008) and ACT score (r = 0.36 p = 0.0008) p < 0.001) CONCLUSIONS: Beyond the clinical improvement, anti-IL-5 treatment induces a rebalancing of Treg and T effector cells in patients with SA.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy.
| | - Tommaso Pianigiani
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Sara Gangi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Behar Cekorja
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Paolo Cameli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliero Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| |
Collapse
|
37
|
Travelli C, Colombo G, Aliotta M, Fagiani F, Fava N, De Sanctis R, Grolla AA, Garcia JGN, Clemente N, Portararo P, Costanza M, Condorelli F, Colombo MP, Sangaletti S, Genazzani AA. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) neutralization counteracts T cell immune evasion in breast cancer. J Immunother Cancer 2023; 11:e007010. [PMID: 37880182 PMCID: PMC10603332 DOI: 10.1136/jitc-2023-007010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) is a key intracellular enzyme that participates in nicotinamide adenine dinucleotide (NAD) homeostasis as well as a released cytokine (eNAMPT) that is elevated in inflammatory conditions and in cancer. In patients with breast cancer, circulating eNAMPT is elevated and its plasma levels correlate with prognosis and staging. In light of this, we investigated the contribution of eNAMPT in triple negative mammary carcinoma progression by investigating the effect of its neutralization via a specific neutralizing monoclonal antibody (C269). METHODS We used female BALB/c mice injected with 4T1 clone 5 cells and female C57BL6 injected with EO771 cells, evaluating tumoral size, spleen weight and number of metastases. We injected two times a week the anti-eNAMPT neutralizing antibody and we sacrificed the mice after 28 days. Harvested tumors were analyzed by histopathology, flow cytometry, western blot, immunohistochemistry, immunofluorescence and RNA sequencing to define tumor characteristics (isolating tumor infiltrating lymphocytes and tumoral cells) and to investigate the molecular mechanisms behind the observed phenotype. Moreover, we dissected the functional relationship between T cells and tumoral cells using three-dimensional (3D) co-cultures. RESULTS The neutralization of eNAMPT with C269 led to decreased tumor size and reduced number of lung metastases. RNA sequencing and functional assays showed that eNAMPT controlled T-cell response via the programmed death-ligand 1/programmed cell death protein 1 (PD-L1/PD-1) axis and its neutralization led to a restoration of antitumoral immune responses. In particular, eNAMPT neutralization was able to activate CD8+IFNγ+GrzB+ T cells, reducing the immunosuppressive phenotype of T regulatory cells. CONCLUSIONS These studies indicate for the first time eNAMPT as a novel immunotherapeutic target for triple negative breast cancer.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Martina Aliotta
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Francesca Fagiani
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Natalia Fava
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Rita De Sanctis
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Costanza
- Department of Clinical Neuroscience, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Condorelli
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
38
|
Protsepko O, Voisard P, Kuhn C, Maccagno A, Dannecker C, Jeschke U, Pauli F, Garrido F. Induction of a different immune response in non-titanized compared to titanized polypropylene meshes. Acta Biomater 2023; 169:363-371. [PMID: 37579913 DOI: 10.1016/j.actbio.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
It is well known that pelvic organ prolapse (POP) significantly reduces the quality of life of affected women and in many cases requires corrective surgery. Aim of the study was to compare the immune response against titanized versus non-titanized meshes, especially macrophage polarization and immune checkpoint association. For this, we analyzed 644 POP surgeries, which were performed between 2017 and 2022, in our department. Four of them needed revision surgery caused by erosion. We analyzed the influx of CD68 & CD163 positive macrophages and the expression of immune checkpoint molecules PD-L1 and PD1 in these 4 patients. We identified a large number of CD68 and CD163 positive macrophages and additionally a PD-L1 expression of these cells. Based on the in-vivo results, we isolated monocytes and co-cultivated monocytes with different mesh material covered with or without fibroblasts. We identified a significantly enhanced macrophage activation and PD-L1 expression in macrophages surrounding non-titanized polypropylene mesh material. Encapsulation of the material by fibroblasts was crucial for that. Specifically, CD68-positive macrophages are upregulated (p < 0.001), co-expressing PD-L1 (p < 0.001) in monocytes co-cultivated with non-titanized polypropylene meshes. Monocytes co-cultivated with titanized polypropylene meshes showed significantly lower expression of CD163 (p = 0.027) and PD-L1 (p = 0.022). In conclusion, our in vitro data suggest that the titanium coating leads to a decreased polarization of macrophages and to a decreased immune response compared to non-titanized meshes. This could be an indication for the increased incidence of erosion of the non-titanized meshes, which is a severe complication of this procedure and requires revision surgery. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a well-known problem for women and often requires corrective surgery. Polypropylene meshes are often used, which differ in their coating (titanized vs. non-titanized). A severe side effect of these surgeries is mesh erosion, due to onset of inflammation, which requires revision surgery. We examined all erosion cases (4 of 644 patients) with implanted nontitanium-coated meshes by immunohistochemistry and found upregulation of macrophage polarization (as markers CD68 and CD163) and increased expression of the immune checkpoint molecules PD-L1 and PD1. This suggests inflammatory processes and an enhanced immune response. In addition, we set up an in vitro experiment to investigate whether coating plays a role. Here, we demonstrated that the non-titanized meshes elicited a significantly higher immune response in comparison to titanized meshes, which could lead to the higher erosion rate of the non-titanized meshes. Our results highlight the benefit of titanized meshes, which should lead to a lower revision surgery rate and thus improved patient outcome.
Collapse
Affiliation(s)
- Oleksii Protsepko
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Philipp Voisard
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Andrea Maccagno
- Department of Pathology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany.
| | - Friedrich Pauli
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| | - Fabian Garrido
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, Augsburg 86156, Germany
| |
Collapse
|
39
|
Chiang CY, Huang MC, Tsai SC, Hsu FT, Liao TL, Yu JH, Lin TH, Huang HH, Liao PA. Humanized PD-1 Knock-in Mice Reveal Nivolumab's Inhibitory Effects on Glioblastoma Tumor Progression In Vivo. In Vivo 2023; 37:1991-2000. [PMID: 37652472 PMCID: PMC10500530 DOI: 10.21873/invivo.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Immunotherapy has been considered a promising approach for brain tumor treatment since the discovery of the brain lymphatic system. Glioblastoma (GBM), the most aggressive type of brain tumor, is associated with poor prognosis and a lack of effective treatment options. MATERIALS AND METHODS To test the efficacy of human anti-PD-1, we used a humanized PD-1 knock-in mouse to establish an orthotopic GBM-bearing model. RESULTS Nivolumab, a human anti-PD-1, effectively inhibited tumor growth, increased the survival rate of mice, enhanced the accumulation and function of cytotoxic T cells, reduced the accumulation and function of immunosuppressive cells and their related factors, and did not induce tissue damage or biochemical changes. The treatment also induced the accumulation and activation of CD8+ cytotoxic T cells, while reducing the accumulation and activation of myeloid-derived suppressor cells, regulatory T cells, and tumor-associated macrophages in the immune microenvironment. CONCLUSION Nivolumab has the potential to be a treatment for GBM.
Collapse
Affiliation(s)
- Chun-Yu Chiang
- Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan, R.O.C
| | - Meng-Chu Huang
- Department of Medical Imaging, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Shih-Chong Tsai
- Institute of Biologics, Development Center for Biotechnology, Taipei, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tsai-Lan Liao
- Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jei-Hwa Yu
- Institute of Biologics, Development Center for Biotechnology, Taipei, Taiwan, R.O.C
| | - Tzu-Hsiang Lin
- Department of Radiology, Cathay General Hospital, Taipei, Taiwan, R.O.C
| | - Hua-Hsih Huang
- Department of Medical Imaging, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.;
| | - Pen-An Liao
- Department of Radiology, Cathay General Hospital, Taipei, Taiwan, R.O.C.;
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C
| |
Collapse
|
40
|
Caruso B, Moran AE. Thymic expression of immune checkpoint molecules and their implication for response to immunotherapies. Trends Cancer 2023:S2405-8033(23)00063-8. [PMID: 37173189 DOI: 10.1016/j.trecan.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
The thymus is responsible for generating a diverse T cell repertoire that is tolerant to self, but capable of responding to various immunologic insults, including cancer. Checkpoint blockade has changed the face of cancer treatment by targeting inhibitory molecules, which are known to regulate peripheral T cell responses. However, these inhibitory molecules and their ligands are expressed during T cell development in the thymus. In this review, we describe the underappreciated role of checkpoint molecule expression during the formation of the T cell repertoire and detail the importance of inhibitory molecules in regulating T cell lineage commitment. Understanding how these molecules function in the thymus may inform therapeutic strategies for better patient outcomes.
Collapse
Affiliation(s)
- Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Amy E Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
41
|
Chen H, Peng H, Wang PC, Zou T, Feng XM, Wan BW. Role of regulatory T cells in spinal cord injury. Eur J Med Res 2023; 28:163. [PMID: 37161548 PMCID: PMC10169350 DOI: 10.1186/s40001-023-01122-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Spinal cord injury is an intricate process involving a series of multi-temporal and multi-component pathological events, among which inflammatory response is the core. Thus, it is crucial to find a way to prevent the damaging effects of the inflammatory response. The research has found that Treg cells can suppress the activation, proliferation, and effector functions of many parenchymal cells by multiple mechanisms. This review discusses how Treg cells regulate the inflammatory cells to promote spinal cord recovery. These parenchymal cells include macrophages/microglia, oligodendrocytes, astrocytes, and others. In addition, we discuss the adverse role of Treg cells, the status of treatment, and the prospects of cell-based therapies after spinal cord injury. In conclusion, this review provides an overview of the regulatory role of Treg cells in spinal cord injury. We hope to offer new insights into the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hao Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Hao Peng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Ping-Chuan Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Tao Zou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Xin-Min Feng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Bo-Wen Wan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
42
|
Lamarche C, Ward-Hartstonge K, Mi T, Lin DTS, Huang Q, Brown A, Edwards K, Novakovsky GE, Qi CN, Kobor MS, Zebley CC, Weber EW, Mackall CL, Levings MK. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc Natl Acad Sci U S A 2023; 120:e2219086120. [PMID: 36972454 PMCID: PMC10083618 DOI: 10.1073/pnas.2219086120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.
Collapse
Affiliation(s)
- Caroline Lamarche
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, MontrealH1T 2M4, QC, Canada
| | - Kirsten Ward-Hartstonge
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Tian Mi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - David T. S. Lin
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Andrew Brown
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Karlie Edwards
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Gherman E. Novakovsky
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Christopher N. Qi
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Evan W. Weber
- Division of Oncology, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA19104
| | - Crystal L. Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Megan K Levings
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| |
Collapse
|
43
|
Kanbay M, Yildiz AB, Siriopol D, Vehbi S, Hasbal NB, Kesgin YE, Celayir M, Selcukbiricik F, Covic A, Perazella MA. Immune checkpoints inhibitors and its link to acute kidney injury and renal prognosis. Int Urol Nephrol 2023; 55:1025-1032. [PMID: 36282399 DOI: 10.1007/s11255-022-03395-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICPi) may cause acute kidney injury (AKI) and their use is increasing. MATERIALS AND METHODS This is a single-center retrospective cohort study of patients receiving ICPi drugs for solid organ malignancies. ICPi-related AKI, the need for renal replacement therapy during or following ICPi treatment, and the associated mortality was studied. RESULTS Two hundred thirty five patients were included in the final analysis. Patients with (N = 40) and without (n = 195) AKI had similar age, sex, type of ICPi, baseline serum creatinine levels, comorbidities and mortality; while patients with AKI were more likely to be receiving a nephrotoxic agent or be treated for genitourinary malignancy. 18 patients had ICPi-related AKI; 7 of these patients underwent kidney biopsy, which showed acute interstitial nephritis while the remaining 11 were diagnosed on clinical parameters. 18 (45%) patients recovered kidney function after AKI. No differences were observed between patients with and without kidney function recovery, although patients without recovery had a numerical, but not statistically significant, higher mortality. Patients with biopsy-confirmed ICPi-induced AKI had an increased risk of mortality, as compared with the rest of the population-HR 1.83, 95% CI 1.22-2.74, p = 0.003. CONCLUSION Use of nephrotoxic drugs and the location of malignancy appear to be common drivers of AKI in patients receiving ICPis for solid organ malignancy. Whether nephrotoxic agents or urinary tract obstruction may favor ICPi-related autoimmunity should be further studied.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey.
| | | | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Suceava, Romania
- Stefan Cel Mare" University, Suceava, Romania
| | - Sezan Vehbi
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Nuri Baris Hasbal
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey
| | - Yavuz E Kesgin
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Melisa Celayir
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mark A Perazella
- Department of Internal Medicine Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
45
|
Florian DC, Bennett NE, Odziomek M, Baljon JJ, Wehbe M, Merkel AR, Fischer MA, Savona MR, Rhoades JA, Guelcher SA, Wilson JT. Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction. CANCER RESEARCH COMMUNICATIONS 2023; 3:223-234. [PMID: 36968140 PMCID: PMC10035525 DOI: 10.1158/2767-9764.crc-22-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
When breast cancer metastasizes to bone, treatment options are limited. Failure to treat bone metastases is thought to be due to therapy-resistant features of the bone marrow microenvironment. Using a murine model of bone metastatic mammary carcinoma, we demonstrate that systemic delivery of polymer nanoparticles loaded with cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) inhibited tumor growth and bone destruction after 7 days of treatment. Each dose of STING-activating nanoparticles trafficked to the bone marrow compartment and was retained within the tumor microenvironment for over 24 hours, enhancing antitumor immunity through proinflammatory cytokine production and early T-cell activation. While acquired resistance mechanisms, including increased levels of immunosuppressive cytokines and the infiltration of regulatory T cells, ultimately limited antitumor efficacy after 2 weeks of treatment, bone protective effects remained. Overall, these studies demonstrate that STING pathway activation, here enabled using a nanomedicine approach to enhance CDN delivery to bone metastatic sites, can reprogram the immune contexture of the bone marrow to an antitumor phenotype that inhibits bone colonization of metastatic breast cancer cells and protects from tumor-mediated bone destruction. Significance Bone metastases are difficult to treat due to the inaccessibility of the bone marrow compartment and the immunosuppressive microenvironment that protects resident stem cells. Packaging a STING agonist into a nanoparticle that enables systemic administration and drug accumulation at tumor sites overcomes both barriers to stymie metastatic breast cancer growth.
Collapse
Affiliation(s)
- David C. Florian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natalie E. Bennett
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mateusz Odziomek
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessalyn J. Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Alyssa R. Merkel
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Melissa A. Fischer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Michael R. Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Julie A. Rhoades
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Scott A. Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
46
|
Taylor J, Gandhi A, Gray E, Zaenker P. Checkpoint inhibitor immune-related adverse events: A focused review on autoantibodies and B cells as biomarkers, advancements and future possibilities. Front Immunol 2023; 13:991433. [PMID: 36713389 PMCID: PMC9874109 DOI: 10.3389/fimmu.2022.991433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has evolved rapidly with unprecedented treatment benefits being obtained for cancer patients, including improved patient survival. However, over half of the patients experience immune related adverse events (irAEs) or toxicities, which can be fatal, affect the quality of life of patients and potentially cause treatment interruption or cessation. Complications from these toxicities can also cause long term irreversible organ damage and other chronic health conditions. Toxicities can occur in various organ systems, with common observations in the skin, rheumatologic, gastrointestinal, hepatic, endocrine system and the lungs. These are not only challenging to manage but also difficult to detect during the early stages of treatment. Currently, no biomarker exists to predict which patients are likely to develop toxicities from ICI therapy and efforts to identify robust biomarkers are ongoing. B cells and antibodies against autologous antigens (autoantibodies) have shown promise and are emerging as markers to predict the development of irAEs in cancer patients. In this review, we discuss the interplay between ICIs and toxicities in cancer patients, insights into the underlying mechanisms of irAEs, and the involvement of the humoral immune response, particularly by B cells and autoantibodies in irAE development. We also provide an appraisal of the progress, key empirical results and advances in B cell and autoantibody research as biomarkers for predicting irAEs. We conclude the review by outlining the challenges and steps required for their potential clinical application in the future.
Collapse
Affiliation(s)
- John Taylor
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia,*Correspondence: John Taylor,
| | - Aesha Gandhi
- Sir Charles Gairdner Hospital, Department of Medical Oncology, Nedlands, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Pauline Zaenker
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
47
|
Súkeníková L, Černý V, Thon T, Roubalová R, Jirásková Zákostelská Z, Novotná O, Petrásková P, Boráková K, Kocourková I, Lodinová-Žádníková R, Musil Z, Kolářová L, Prokešová L, Valenta Z, Hrdý J. Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota. Front Immunol 2023; 13:1038328. [PMID: 36703968 PMCID: PMC9872645 DOI: 10.3389/fimmu.2022.1038328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Probiotic administration seems to be a rational approach to promote maturation of the neonatal immune system. Mutual interaction of the microbiota with the host immune system is critical for the setting of appropriate immune responses including a tolerogenic one and thevmaintenance of homeostasis. On the other hand, our knowledge on the modes of actions of probiotics is still scarce. Methods In our study, probiotic strain Escherichia coli O83:K24:H31 (EcO83) was administered to neonates of allergic mothers (AMs; neonates with increased risk for allergy development) within 48 h after the delivery, and the impact of this early postnatal supplementation on allergy incidence and selected immune markers has been analyzed 10 years after the primary EcO83 administration. Results We have observed decreased allergy incidence in 10-year-old children supplemented with EcO83 (13 of 52 children were allergic) in comparison with non-supplemented children of AMs (16 of 42 children were allergic). The early postnatal EcO83 supplementation appeared to limit the allergy in the high-risk group (children of AMs) compared to that in the low-risk group (children of healthy mothers). Dendritic cells (DCs) in the peripheral blood of EcO83-supplemented children do not differ significantly in cell surface presence of CD83. The immunomodulatory capacity of EcO83 on DCs was tested in vitro as well. Both directly isolated myeloid and in vitro monocyte-derived DCs from cord blood increased CD83 expression together with interleukin (IL)-10 secretion after EcO83 stimulation. The effect of early postnatal EcO83 supplementation on the microbiota composition of 10-year-old children was characterized by next-generation sequencing, and we have not observed significant changes in the microbiota composition of EcO83-supplemented and non-supplemented children at the age of 10 years. Conclusions Early postnatal EcO83 supplementation appears to lower allergy incidence in children of AMs. It seems that the beneficial effect of EcO83 is mediated via modulation of DC functional capacities without impacting the microbiota composition. Larger-scale studies will be necessary to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Thon
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | - Radka Roubalová
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | | | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kristýna Boráková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | - Ingrid Kocourková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | | | - Zdeněk Musil
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia,*Correspondence: Jiří Hrdý,
| |
Collapse
|
48
|
Mechanisms of Resistance and Strategies to Combat Resistance in PD-(L)1 Blockade. IMMUNO 2022. [DOI: 10.3390/immuno2040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Prolonged survival and durable responses in several late-stage cancers such as melanoma and lung cancer have been made possible with the use of immune checkpoint inhibitors targeting the programmed cell-death protein 1 (PD-1) or its ligand PD-L1. While it is prudent to focus on the unprecedented and durable clinical responses, there are subsets of cancer patients that do not respond to immunotherapies or respond early and then relapse later. Many pathways of resistance have been characterized, and more continue to be uncovered. To overcome the development of resistance, an in-depth investigation is necessary to identify alternative immune receptors and signals with the overarching goal of expanding treatment options for those with demonstrated resistance to PD1 checkpoint immunotherapy. In this mini-review, we will discuss the mechanisms by which tumors exhibit resistance to anti-PD-1/PD-L1 immunotherapy and explore strategies to overcome such resistances.
Collapse
|
49
|
Nagaraju GP, Malla RR, Basha R, Motofei IG. Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Semin Cancer Biol 2022; 86:616-621. [PMID: 34774995 DOI: 10.1016/j.semcancer.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023]
Abstract
Pancreatic cancer (PC) is a major gastrointestinal cancer in terms of worldwide incidence and mortality. Despite advances in diagnostic and treatment modalities, the mortality of PC is still a serious concern in both sexes. Immune therapy using inhibitors of immune checkpoints, especially inhibitors of programmed cell death protein 1/programmed cell death ligand-1(PD-1/PD-L1), offer huge benefits to cancer patients. This review describes an up-to-date information on the role of PD-1 and PD-L1 in the development of immune tolerance in PC alongside the current clinical trials and the known outcomes citing the available literature. We also included the details on PD-1/PD-L1-mediated signalling in maintenance of PC stem cells and metastasis. We reviewed the critical information on safety, tolerance, and efficacy of clinically important regimens of PD-1/PD-L1 blocking agents and targeted therapeutics. This review elucidates the underlying mechanisms of PD-1/PD-L1 alliance in tolerance of the immune system, maintenance of stem cells, and metastasis promotion as well as design regimens with high safety and excellent tolerability and efficacy for management of PC in advanced stages.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, AP, 530045, India
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, The University of North Texas Health Science Center, Fort Worth, Texas, Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Ion G Motofei
- Department of Oncology/ Surgery, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, No. 37, Bucharest, 020022, Romania.
| |
Collapse
|
50
|
Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients. J Immunol Res 2022; 2022:3426717. [PMID: 36157881 PMCID: PMC9500245 DOI: 10.1155/2022/3426717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Generalized vitiligo (GV) is an autoimmune skin disease characterized by bilateral white patches over the entire body. Regulatory T cells (Tregs) maintain peripheral tolerance; however, they are found to be reduced in numbers and function in vitiligo patients. The exact mechanism for reduced Treg suppressive capacity is unknown. Therefore, we aimed to assess transcript levels of Tregs-associated immunosuppressive genes (GZMB, NRP1, PDCD1, FASLG, and TNFRS18), regulatory molecules of Tregs suppressive function (SERPINB9, ITPR1, and UBASH3A), and Treg-associated transcription factors (GATA2, GATA3, RUNX1, STAT3, and STAT5) in 52 GV patients and 48 controls by real-time PCR (qPCR). We found significantly reduced GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs compared to controls (p = 0.03, p = 0.023, p = 0.0045, and p < 0.0001, respectively). There were 0.44-, 0.45-, 0.32-, and 0.54-fold decrease in GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs. Additionally, disease activity and severity-based analyses revealed significantly decreased GZMB (p = 0.019 and 0.034), SERPINB9 (p = 0.031 and p = 0.035), and ITPR1 (p = 0.0003 and p = 0.034) transcripts in active vitiligo and severe GV patients' Tregs. Interestingly, we found a positive correlation for ITPR1 with GZMB (r = 0.45, p = 0.0009) and SERPINB9 (r = 0.52, p = 0.001) transcripts in GV Tregs. Moreover, we found positive correlation for percentage Treg mediated suppression of CD4+ and CD8+T cells with ITPR1 (r = 0.54; r = 0.49), GZMB (r = 0.61; r = 0.58), NRP1 (r = 0.55; r = 0.52), and SERPINB9 (r = 0.56; r = 0.48) in GV Tregs. Further, calcium treatment of Tregs resulted into significantly increased ITPR1, SERPINB9, and GZMB transcripts in GV Tregs (p = 0.023, p = 0.0345, p = 0.02). Overall, our results for the first time revealed the crucial role of GZMB, NRP1, SERPINB9, and ITPR1 transcripts in decreased Treg suppressive capacity leading to GV pathogenesis, progression, and severity. In addition, our study highlighted that ITPR1 might be linked with decreased GZMB and NRP1 expression in GV Tregs. Moreover, our study for the first time suggest that increased SERPINB9 transcripts may lead to endogenous granzyme B-mediated Tregs apoptosis, and calcium treatment of Tregs may improve the Treg suppressive capacity. These findings may further aid in development of Treg-based therapeutics for GV.
Collapse
|