1
|
Jalilian S, Vasei M, Garshasbi A, Nabavi SS, Bastani MN. Viral intruders in the heart: A review of RNA viruses and their role in cardiac disorders. APMIS 2025; 133:e13500. [PMID: 39530180 DOI: 10.1111/apm.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Viral cardiac diseases have a significant impact on global health, and RNA viruses play a crucial role in their pathogenesis. This literature review aims to provide a comprehensive understanding of the complex relationship between RNA viruses and cardiac diseases, focusing on the molecular processes and clinical implications of these interactions. The paper begins by discussing the various RNA viruses that have been linked to cardiac infections. Subsequently, the study explores the mechanisms through which RNA viruses can cause cardiac injury, including direct viral invasion, immune-mediated responses, and molecular mimicry. The review extensively examines the intricate interplay between the host immune system and RNA viruses, shedding light on both protective and harmful immune responses. Additionally, it investigates the role of viral persistence and chronic inflammation in the long-term effects on cardiac health. The thorough analysis presented not only enhances our scientific understanding of how RNA viruses contribute to the development of cardiac diseases but also highlights potential avenues for future research and breakthroughs in this field. Given the significant global health threat posed by viral cardiac disorders, unraveling the molecular foundations of these diseases is essential for advancing diagnostic capabilities and therapeutic interventions.
Collapse
Affiliation(s)
- Shahram Jalilian
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Vasei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ashkan Garshasbi
- Immunology Department of Immunology and Microbiology, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Salaheddin Nabavi
- Department of General Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Navid Bastani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Bertollo AG, Dalazen JB, Cassol JV, Hellmann MB, Mota TL, Ignácio ZM, Bagatini MD. Melatonin's Impact on Cytokine Storm and Modulation of Purinergic Receptors for COVID-19 Prognosis: A Mental Health Perspective. J Mol Neurosci 2024; 74:113. [PMID: 39636363 DOI: 10.1007/s12031-024-02292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
In 2019, coronavirus disease 2019 (COVID-19) started a global health crisis and was associated with high rates of depression and anxiety. Both mental disorders and COVID-19 exhibit similarities in pathophysiology, characterized by immune system overactivation, involvement of the purinergic system, and oxidative stress, besides additional factors and systems likely contributing to the complexities of these conditions. The purinergic system contributes to the disease-influenced immune response, an essential strategy for controlling pathophysiological effects. In this context, the hormone melatonin emerges as a substance that can modulate the purinergic system and contribute positively to the pathophysiology of SARS-CoV-2 infection and associated mental disorders. Melatonin is a hormone that regulates the body's circadian rhythms, plays an essential role in regulating sleep and mood, and modulates the purinergic system. Recent studies suggest melatonin's anti-inflammatory and antioxidant properties may benefit COVID-19. This review explores melatonin's impact on inflammatory cytokine storm in COVID-19 through purinergic system modulation.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Bortolanza Dalazen
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Vitória Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Mariélly Braun Hellmann
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tiago Libério Mota
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
3
|
Mou X, Luo F, Zhang W, Cheng Q, Hepojoki J, Zhu S, Liu Y, Xiong H, Guo D, Yu J, Chen L, Li Y, Hou W, Chen S. SARS-CoV-2 NSP16 promotes IL-6 production by regulating the stabilization of HIF-1α. Cell Signal 2024; 124:111387. [PMID: 39251053 DOI: 10.1016/j.cellsig.2024.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e. significant elevation of pro-inflammatory cytokines and acute respiratory distress syndrome (ARDS) with systemic hypoxia. Understanding the mechanisms of these pathogenic manifestations would be essential for the prevention and especially treatment of COVID-19 patients. Here, using a dual luciferase reporter assay for hypoxia-response element (HRE), we initially identified SARS-CoV-2 nonstructural protein 5 (NSP5), NSP16, and open reading frame 3a (ORF3a) to upregulate hypoxia-inducible factor-1α (HIF-1α) signaling. Further experiments showed NSP16 to have the most prominent effect on HIF-1α, thus contributing to the induction of COVID-19 associated pro-inflammatory response. We demonstrate that NSP16 interrupts von Hippel-Lindau (VHL) protein interaction with HIF-1α, thereby inhibiting ubiquitin-dependent degradation of HIF-1α and allowing it to bind HRE region in the IL-6 promoter region. Taken together, the findings imply that SARS-CoV-2 NSP16 induces HIF-1α expression, which in turn exacerbates the production of IL-6.
Collapse
Affiliation(s)
- Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Weihao Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Cheng
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China
| | - Deyin Guo
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Jingyou Yu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; School of Public Health, Wuhan University, Wuhan, Hubei 430071, China; School of Ecology and Environment, Tibet University, Lhasa, Tibet 850000, China; Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, China.
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China.
| |
Collapse
|
4
|
Shafiee G, Marzban M, Abbaspour F, Darabi A, Balajam NZ, Farhadi A, Khaleghi MM, Taherzadeh H, Fahimfar N, Falahatzadeh A, Ghasemi N, Ostovar A, Nabipour I, Larijani B, Heshmat R. The impact of osteosarcopenia and its parameters on mortality of COVID-19 in-hospitalized older patients: the findings of BEH (Bushehr elderly health) program. J Diabetes Metab Disord 2024; 23:1919-1928. [PMID: 39610491 PMCID: PMC11599644 DOI: 10.1007/s40200-024-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/10/2024] [Indexed: 11/30/2024]
Abstract
Background It has been documented that old age and chronic diseases are associated with poor prognosis and mortality among COVID-19 patients. Osteosarcopenia is a geriatric syndrome with a considerable prevalence which increases morbidity and mortality. This study investigated the relationship between COVID-19 mortality and osteosarcopenia and its parameters in-hospitalized patients in Bushehr, Iran. Methods In this retrospective cohort study, participants of the Bushehr Elderly Health (BEH) program who were hospitalized due to COVID-19 between 1st March 2020 and 23rd September 2021 were assessed. Osteosarcopenia was considered as the presence of both osteopenia/osteoporosis and sarcopenia. We used the Cox proportional hazards model to identify the association between oteosarcopenia and the risk of COVID-mortality in 2442 person-days. Results Among 4173 participants,297 patients were in-hospitalized due to COVID-19. We found that 80(26.94%) patients expired due to COVID-19 during the follow-up period. Osteosarcopenia and its parameters were more prevalent in patients who expired. The incidence rate of mortality among osteosarcopenic patients was 5.04(3.43- 7.40) per 100 person-days. In the Cox proportional hazards models, osteosarcopenia and its parameters increase the risk of COVID-mortality [Osteosarcopenia: HRadjusment:1.73(1.00-3.01), sarcopenia: HRadjusment:1.72(1.00-2.99), Osteoporosis: HRadjusment:2.67(1.53-4.67), Low muscle mass: HRadjusment:1.90(1.05-3.46), low muscle strength: HRadjusment:1.80(1.03-3.16), and low gait speed: HRadj:2.39(1.31-4.38). The ORs of ICU admission and use of invasive mechanical ventilation among osteosarcopenic patients and its parameters were higher than those without it. Conclusions This study identified the impact of osteosarcopenia and its parameters on the mortality of in-hospitalized patients with COVID-19. Assessment of musculoskeletal disorders could help in early warning of older patients with severe COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01443-1.
Collapse
Affiliation(s)
- Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Marzban
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Faeze Abbaspour
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Zargar Balajam
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Khaleghi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Sport Science Department, Human Faculty, Persian Gulf University, Bushehr, Iran
| | - Hossein Taherzadeh
- Educational Deputy Bahmani Campus, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azar Falahatzadeh
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negin Ghasemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Bartha-Tatár A, Sinkovits G, Schnur J, Maráczi V, Dávid M, Zsigmond B, Rimanóczy É, Szalay B, Biró E, Bekő G, Varga P, Szabó T, Fagyas M, Fejes Z, Kappelmayer J, Nagy B. Prognostic Value of Baseline Serum Pro-Inflammatory Cytokines in Severe Multisystem Inflammatory Syndrome in Children. J Clin Med 2024; 13:7177. [PMID: 39685637 DOI: 10.3390/jcm13237177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Severe clinical manifestations of multisystem inflammatory syndrome in children (MIS-C) are associated with the dysregulation of immune response following SARS-CoV-2 infection. Therefore, we analyzed the levels of 10 selected cytokines at admission to estimate disease severity and to predict the length of hospitalization. In remission samples, these mediators were followed after intravenous immunoglobulin (IVIG) treatment before discharge. Methods: Thirty-five MIS-C patients at the age of 8.4 ± 4.1 years and 11 clinical controls were included. Acute MIS-C patients were divided into two severity subgroups based on their clinical score determined by the WHO criteria. Serum concentrations of IFN-γ, IL-1α, IL-1RA, IL-8, IL-10, IL-17A, IL-18, IP-10, MCP-1, and TNF-α were measured by MILLIPLEX® Human Cytokine/Chemokine panel, while ACE2 activity was determined by a fluorescent kinetic assay. These results were correlated with routinely determined laboratory parameters and clinical characteristics. Results: MIS-C patients demonstrated significantly elevated baseline levels of most of these cytokines compared to controls. Even higher concentrations of IL-18, TNF-α and ferritin with reduced lymphocyte count were found in severe subjects with elevated clinical scores of 4-5 compared to moderate cases with a clinical score of 1-3. Furthermore, the development of cardiovascular dysfunction and prolonged hospitalization (≥8 days) were related to augmented ACE2 and IL-6 levels. IL-18, IL-1RA, IL-10 and TNF-α were diminished in response to IVIG treatment in remission samples. Finally, pre-treatment IL-18 (≥516.8 pg/mL) and TNF-α (≥74.2 pg/mL) effectively differentiated disease severity in MIS-C with AUC values of 0.770 and 0.750, respectively. Conclusions: IL-18 and TNF-α have a prognostic value in disease severity at admission and are capable of monitoring the efficacy of IVIG treatment in MIS-C.
Collapse
Affiliation(s)
- Anita Bartha-Tatár
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - János Schnur
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary
| | | | - Máté Dávid
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary
| | | | - Éva Rimanóczy
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary
| | - Balázs Szalay
- National Institute of Hematology and Infectious Disease, 1097 Budapest, Hungary
| | - Edina Biró
- National Institute of Hematology and Infectious Disease, 1097 Budapest, Hungary
| | - Gabriella Bekő
- National Institute of Hematology and Infectious Disease, 1097 Budapest, Hungary
| | - Petra Varga
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Szabó
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Miklós Fagyas
- Department of Cardiology, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Singh T, Macintyre AN, Burke TW, Anderson J, Petzold E, Stover EL, French MJ, Oguin TH, Demarco T, McClain MT, Ko ER, Park LP, Denny T, Sempowski GD, Woods CW. Dynamics of cytokine and antibody responses in community versus hospital SARS-CoV-2 infections. Front Immunol 2024; 15:1468871. [PMID: 39650666 PMCID: PMC11621060 DOI: 10.3389/fimmu.2024.1468871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Dysregulated host cytokine responses to SARS-CoV-2 infection are a primary cause of progression to severe disease, whereas early neutralizing antibody responses are considered protective. However, there are gaps in understanding the early temporal dynamics of these immune responses, and the profile of productive immune responses generated by non-hospitalized people with mild infections in the community. Methods Here we conducted a prospective cohort study of people with suspected infections/exposures in the US state of North Carolina, before vaccine availability. We recruited participants not only in hospitals/clinics, but also in their homes. With serial sampling, we compared virologic and immunologic factors in 258 community cases versus 114 hospital cases of COVID-19 to define factors associated with severity. Results We found that high early neutralizing antibodies were associated with lower nasal viral load, but not protection from hospitalization. Cytokine responses were evaluated in 125 cases, with subsets at first versus second week of illness to assess for time-dependent trajectories. The hospital group demonstrated a higher magnitude of serum IL-6, IL-1R antagonist, IP-10, and MIG; prolonged upregulation of IL-17; and lesser downregulation of GROα, IL-1R antagonist, and MCP1, in comparison to the community group suggesting that these factors may contribute to immunopathology. In the second week of illness, 2-fold increases in IL-6, IL-1R antagonist, and IP-10 were associated with 2.2, 1.8, and 10-fold higher odds of hospitalization respectively, whereas a 2-fold increase in IL-10 was associated with 63% reduction in odds of hospitalization (p<0.05). Moreover, antibody responses at 3-6 months post mild SARS-CoV-2 infections in the community revealed long-lasting antiviral IgM and IgA antibodies as well as a stable set point of neutralizing antibodies that were not waning. Discussion Our data provide valuable temporal cytokine benchmarks to track the progression of immunopathology in COVID-19 patients and guide improvements in immunotherapies.
Collapse
Affiliation(s)
- Tulika Singh
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
- Duke Global Health Institute, Durham, NC, United States
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Thomas W. Burke
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
| | - Jack Anderson
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
| | - Elizabeth Petzold
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
| | - Erica L. Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Matthew J. French
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Todd Demarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Micah T. McClain
- Duke Global Health Institute, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
- Division of General Internal Medicine, Department of Medicine, Duke School of Medicine, Durham, NC, United States
| | - Emily R. Ko
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
- Division of General Internal Medicine, Department of Medicine, Duke School of Medicine, Durham, NC, United States
| | - Lawrence P. Park
- Duke Global Health Institute, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Thomas Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- RTI International, Research Triangle Park, NC, United States
| | - Christopher W. Woods
- Duke Global Health Institute, Durham, NC, United States
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Infectious Disease Diagnostics and Innovation, Duke University, Durham, NC, United States
- Division of General Internal Medicine, Department of Medicine, Duke School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Anshori I, Marcius D, Syaifie PH, Siregar KAAK, Syakuran LA, Jauhar MM, Arda AG, Shalannanda W, Mardliyati E. Therapeutic Potential of Propolis Extract in Managing Hyperinflammation and Long COVID-19: A Bioinformatics Study. Chem Biodivers 2024:e202401947. [PMID: 39576127 DOI: 10.1002/cbdv.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Hyperinflammation is a significant factor in long COVID, impacting over 65 million post-COVID-19 individuals globally. Herbal remedies, including propolis, show promise in reducing severity and pro-inflammatory cytokines. However, the natural pharmacological role of propolis in COVID-19 management remains underexplored. Employing network pharmacology and in silico techniques, we assessed propolis extract's potential in countering SARS-CoV-2-induced inflammation. We identified 80 flavonoids via LC-MS/MS QTOF and employed 11 anti-inflammatory drugs as references for inflammation target fishing. Utilizing in silico techniques encompassing target fishing, molecular docking, and dynamics, we examined propolis' effects. We identified 1105 gene targets connected to inflammation through multiple validated target predictors. By integrating SARS-CoV-2 DEGs from GSE147507 with these targets, we identify 25 inflammation-COVID-19-associated propolis targets, including STAT1, NOS2, CFB, EIF2K2, NPY5R, and BTK. Enrichment analyses highlighted primary pharmacological pathways related to Epstein-Barr virus infection and COVID-19. Molecular docking validated isokaempferide, iristectorigenin B, 3'-methoxypuerarin, cosmosiin, and baicalein-7-O-β-d-glucopyranoside, which exhibited strong binding affinity and stability with relevant genes. Moreover, our findings indicate that propolis ligands could potentially suppress reactivation of Epstein-Barr Virus infections in post-COVID-19 cases. However, this study has a limitation in that the concentration of each propolis compound has not been quantified. Therefore, further exploration of propolis compounds quantification and experimental validation are needed to support these findings.
Collapse
Affiliation(s)
- Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Donny Marcius
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Putri Hawa Syaifie
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Borneo, Indonesia
| | | | | | | | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Etik Mardliyati
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
8
|
Basting CM, Langat R, Broedlow CA, Guerrero CR, Bold TD, Bailey M, Velez A, Schroeder T, Short-Miller J, Cromarty R, Mayer ZJ, Southern PJ, Schacker TW, Safo SE, Bramante CT, Tignanelli CJ, Schifanella L, Klatt NR. SARS-CoV-2 infection is associated with intestinal permeability, systemic inflammation, and microbial dysbiosis in hospitalized patients. Microbiol Spectr 2024; 12:e0068024. [PMID: 39345212 PMCID: PMC11537016 DOI: 10.1128/spectrum.00680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) and its associated severity have been linked to uncontrolled inflammation and may be associated with changes in the microbiome of mucosal sites including the gastrointestinal tract and oral cavity. These sites play an important role in host-microbe homeostasis, and disruption of epithelial barrier integrity during COVID-19 may potentially lead to exacerbated inflammation and immune dysfunction. Outcomes in COVID-19 are highly disparate, ranging from asymptomatic to fatal, and the impact of microbial dysbiosis on disease severity is unclear. Here, we obtained plasma, rectal swabs, oropharyngeal swabs, and nasal swabs from 86 patients hospitalized with COVID-19 and 12 healthy volunteers. We performed 16S rRNA sequencing to characterize the microbial communities in the mucosal swabs and measured concentrations of circulating cytokines, markers of gut barrier integrity, and fatty acids in the plasma samples. We compared these plasma concentrations and microbiomes between healthy volunteers and COVID-19 patients, some of whom had unfortunately died by the end of the study enrollment, and performed a correlation analysis between plasma variables and bacterial abundances. Rectal swabs of COVID-19 patients had reduced abundances of several commensal bacteria including Faecalibacterium prausnitzii and an increased abundance of the opportunistic pathogens Eggerthella lenta and Hungatella hathewayi. Furthermore, the oral pathogen Scardovia wiggsiae was more abundant in the oropharyngeal swabs of COVID-19 patients who died. The abundance of both H. hathewayi and S. wiggsiae correlated with circulating inflammatory markers including IL-6, highlighting the possible role of the microbiome in COVID-19 severity and providing potential therapeutic targets for managing COVID-19.IMPORTANCEOutcomes in coronavirus disease 2019 (COVID-19) are highly disparate and are associated with uncontrolled inflammation; however, the individual factors that lead to this uncontrolled inflammation are not fully understood. Here, we report that severe COVID-19 is associated with systemic inflammation, microbial translocation, and microbial dysbiosis. The rectal and oropharyngeal microbiomes of COVID-19 patients were characterized by a decreased abundance of commensal bacteria and an increased abundance of opportunistic pathogens, which positively correlated with markers of inflammation and microbial translocation. These microbial perturbations may, therefore, contribute to disease severity in COVID-19 and highlight the potential for microbiome-based interventions in improving COVID-19 outcomes.
Collapse
Affiliation(s)
| | - Robert Langat
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Candace R. Guerrero
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minnesota, Minneapolis, USA
- College of Biological Sciences, University of Minnesota, Minnesota, Minneapolis, USA
| | - Tyler D. Bold
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | - Melisa Bailey
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Adrian Velez
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ty Schroeder
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonah Short-Miller
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minnesota, Minneapolis, USA
| | - Zachary J. Mayer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minnesota, Minneapolis, USA
- College of Biological Sciences, University of Minnesota, Minnesota, Minneapolis, USA
| | - Peter J. Southern
- Department of Microbiology and Immunology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | - Sandra E. Safo
- Department of Biostatistics and Health Data Science, University of Minnesota, Minnesota, Minneapolis, USA
| | - Carolyn T. Bramante
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | | | - Luca Schifanella
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Animal Models and Retroviral Vaccines Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Nichole R. Klatt
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Chandra H, Yadav A, Prasad R, Sagar K, Bhardwaj N, Kumar Gupta K, Singh Thakur G, Nigam M, Pezzani R, Paulo Martins de Lima J, Douglas Melo Coutinho H, Prakash Mishra A. COVID 19: Prevention and treatment through the Indian perspective. Cytokine 2024; 183:156756. [PMID: 39284260 DOI: 10.1016/j.cyto.2024.156756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024]
Abstract
The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India; School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Archana Yadav
- Department of Microbiology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur 208024, Uttar Pradesh, India.
| | - Rajendra Prasad
- School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kalpana Sagar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Ghanshyam Singh Thakur
- Department of Naturopathy & Yoga, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | | | | | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
10
|
Paranga TG, Mitu I, Pavel-Tanasa M, Rosu MF, Miftode IL, Constantinescu D, Obreja M, Plesca CE, Miftode E. Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. Int J Mol Sci 2024; 25:11411. [PMID: 39518964 PMCID: PMC11547016 DOI: 10.3390/ijms252111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
IL-6 remains a key molecule of the cytokine storms characterizing COVID-19, exerting both proinflammatory and anti-inflammatory effects. Emerging research underscores the significance of IL-6 trans-signaling over classical signaling pathways, which has shifted the focus of therapeutic strategies. Additionally, the synergistic action of TNF-α and IFN-γ has been found to induce inflammatory cell death through PANoptosis, further amplifying the severity of cytokine storms. Long COVID-19 patients, as well as those with cytokine storms triggered by other conditions, exhibit distinct laboratory profiles, indicating the need for targeted approaches to diagnosis and management. Growing evidence also highlights the gut microbiota's crucial role in modulating the immune response during COVID-19 by affecting cytokine production, adding further complexity to the disease's immunological landscape. Targeted intervention strategies should focus on specific cytokine cutoffs, though accurate cytokine quantification remains a clinical challenge. Current treatment strategies are increasingly focused on inhibiting IL-6 trans-signaling, which offers promise for more precise therapeutic approaches to manage hyperinflammatory responses in COVID-19. In light of recent discoveries, this review summarizes key research findings on cytokine storms, particularly their role in COVID-19 and other inflammatory conditions. It explores emerging therapeutic strategies targeting cytokines like IL-6, TNF-α, and IFN-γ, while also addressing open questions, such as the need for better biomarkers to detect and manage cytokine storms. Additionally, the review highlights ongoing challenges in developing targeted treatments that mitigate hyperinflammation without compromising immune function, emphasizing the importance of continued research in this field.
Collapse
Affiliation(s)
- Tudorita Gabriela Paranga
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Ivona Mitu
- Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, 700101 Iasi, Romania
| | - Manuel Florin Rosu
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy Grigore. T. Popa, 700115 Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, 700101 Iasi, Romania
| | - Maria Obreja
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Claudia Elena Plesca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| | - Egidia Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.G.P.); (I.-L.M.); (M.O.); (C.E.P.); (E.M.)
- St. Parascheva Clinical Hospital for Infectious Diseases, 700116 Iasi, Romania
| |
Collapse
|
11
|
Vorobyeva DA, Potashnikova DM, Maryukhnich EV, Rusakovich GI, Tvorogova AV, Kalinskaya AI, Pinegina NV, Kovyrshina AV, Dolzhikova IV, Postnikov AB, Rozov FN, Sotnikova TN, Kanner DY, Logunov DY, Gintsburg AL, Vasilieva EJ, Margolis LB. Cytokine production in an ex vivo model of SARS-CoV-2 lung infection. Front Immunol 2024; 15:1448515. [PMID: 39497823 PMCID: PMC11532052 DOI: 10.3389/fimmu.2024.1448515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction The mechanisms of the SARS-CoV-2-triggered complex alterations in immune cell activation and production of cytokines in lung tissue remain poorly understood, in part because of the limited use of adequate tissue models that simulate the structure and cell composition of the lung in vivo. We developed a novel ex vivo model of SARS-CoV-2 infection of lung explants, that maintains the intact tissue composition and the viral load for up to 7-10 days. Using this model, we studied cytokine production during SARS-CoV-2 infection. Materials and methods Lung tissue was monitored for viability and cell composition using flow cytometry and histological analysis. SARS-CoV-2 infection was verified immunohistochemically, viral loads in tissue and culture medium were monitored by qPCR. A panel of 41 cytokines was measured in culture medium using xMAP technology. Results The explant lung tissue was viable and maintained viral infection that influenced the cytokine production. Elevated concentrations of G-CSF, GM-CSF, GRO-a, IFN-g, IL-6, IL-8, IP-10, MCP-3, MIP-1a, PDGF-AA, and VEGF, and decreased IL-1RA concentration were observed in infected tissue compared to non-infected tissue. Discussion Our results generally reflect the data obtained in COVID-19 patients. GRO-a, IFN-g, IL-6, IL-8, MCP-1, MCP-3, and RANTES correlated with the viral load, forming a distinct pro-inflammatory cluster. Thus, our lung ex vivo model faithfully reproduces some aspects of cytokine alterations in COVID-19 patients at an early disease stage, making the investigation of SARS-CoV-2 infection mechanisms more accessible and providing a potential platform for antiviral drug testing.
Collapse
Affiliation(s)
- Daria A. Vorobyeva
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Daria M. Potashnikova
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Elena V. Maryukhnich
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - George I. Rusakovich
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Anna V. Tvorogova
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Anna I. Kalinskaya
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Natalia V. Pinegina
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Anna V. Kovyrshina
- Federal Government Budgetary Institution “The National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Inna V. Dolzhikova
- Federal Government Budgetary Institution “The National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | - Tatiana N. Sotnikova
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | | | - Denis Yu. Logunov
- Federal Government Budgetary Institution “The National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L. Gintsburg
- Federal Government Budgetary Institution “The National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena J. Vasilieva
- Laboratory of Atherothrombosis, Cardiology Department, Federal State Budgetary Educational Institution of Higher Education (FSBEI HE) “Russian University of Medicine” of the Ministry of Health of the Russian Federation, Moscow, Russia
- I.V. Davydovsky Moscow City Clinical Hospital, Moscow Department of Healthcare, Moscow, Russia
| | - Leonid B. Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
12
|
Serwaa A, Oyawoye F, Owusu IA, Dosoo D, Manu AA, Sobo AK, Fosu K, Olwal CO, Quashie PK, Aikins AR. In vitro analysis suggests that SARS-CoV-2 infection differentially modulates cancer-like phenotypes and cytokine expression in colorectal and prostate cancer cells. Sci Rep 2024; 14:24625. [PMID: 39427065 PMCID: PMC11490510 DOI: 10.1038/s41598-024-75718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) reportedly exacerbates cancer outcomes. However, how COVID-19 influences cancer prognosis and development remains poorly understood. Here, we investigated the effect of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), the etiological agent of COVID-19, on cellular cancer phenotypes the expression of cancer-related markers, and various proinflammatory cytokines. We infected prostate (22RV1) and colorectal (DLD-1) cancer cell lines, which express angiotensin-converting enzyme 2 (ACE2), with spike pseudovirus (sPV) and laboratory stocks of live SARS-CoV-2 viruses. After infection, we quantified changes in the cellular cancer phenotypes, the gene expression levels of some cancer markers, including Ki-67, BCL-2, VIM, MMP9, and VEGF, and proinflammatory cytokines. Phenotypic analysis was performed using MTT and wound healing assays, whereas gene expression analysis was carried out using real-time quantitative PCR (RT-qPCR). We show that SARS-CoV-2 infection impacts several key cellular pathways involved in cell growth, apoptosis, and migration, in prostate and colorectal cancer cells. Our results suggest that SARS-CoV-2 infection does influence various cancer cellular phenotypes and expression of molecular cancer markers and proinflammatory cytokines, albeit in a cell-type-specific manner. Our findings hint at the need for further studies and could have implications for evaluating the impact of other viruses on cancer progression.
Collapse
Affiliation(s)
- Alberta Serwaa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Fatima Oyawoye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Aaron Adom Manu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Augustine Kojo Sobo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Fosu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Anastasia Rosebud Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
13
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
14
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
16
|
Azzeh FS, Kamfar WW, Ghaith MM, Alsafi RT, Shamlan G, Ghabashi MA, Farrash WF, Alyamani RA, Alazzeh AY, Alkholy SO, Bakr ESH, Qadhi AH, Arbaeen AF. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine (Baltimore) 2024; 103:e39657. [PMID: 39312371 PMCID: PMC11419438 DOI: 10.1097/md.0000000000039657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Melatonin (MLT) is crucial in controlling human sleep-wake patterns. While it has long been recognized for regulating circadian rhythms, its demonstrated efficacy in managing various diseases has recently gained considerable attention. This review discusses MLT's potential preventative and therapeutic effects on various diseases. Several studies have focused on examining the molecular mechanisms through which MLT brings about its protective or therapeutic effects on various diseases, including cancer, obesity, coronavirus, and cardiovascular diseases. Numerous preventative and therapeutic applications of MLT have been proposed, resulting from its ability to function as an antioxidant, anti-cancer, anti-inflammatory, and immune-regulating agent. There is a need for further research to determine MLT's long-term effects on antioxidant defense systems, its preventative and therapeutic benefits, and its molecular basis.
Collapse
Affiliation(s)
- Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Radi T. Alsafi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mai A. Ghabashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Reema A. Alyamani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awfa Y. Alazzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sarah O. Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Sayed H. Bakr
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad F. Arbaeen
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| |
Collapse
|
17
|
McLarnon T, McDaid D, Lynch SM, Cooper E, McLaughlin J, McGilligan VE, Watterson S, Shukla P, Zhang SD, Bucholc M, English A, Peace A, O’Kane M, Kelly M, Bhavsar M, Murray EK, Gibson DS, Walsh CP, Bjourson AJ, Rai TS. Potential Plasma Proteins (LGALS9, LAMP3, PRSS8 and AGRN) as Predictors of Hospitalisation Risk in COVID-19 Patients. Biomolecules 2024; 14:1163. [PMID: 39334929 PMCID: PMC11429560 DOI: 10.3390/biom14091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has posed unprecedented challenges to healthcare systems worldwide. Here, we have identified proteomic and genetic signatures for improved prognosis which is vital for COVID-19 research. Methods: We investigated the proteomic and genomic profile of COVID-19-positive patients (n = 400 for proteomics, n = 483 for genomics), focusing on differential regulation between hospitalised and non-hospitalised COVID-19 patients. Signatures had their predictive capabilities tested using independent machine learning models such as Support Vector Machine (SVM), Random Forest (RF) and Logistic Regression (LR). Results: This study has identified 224 differentially expressed proteins involved in various inflammatory and immunological pathways in hospitalised COVID-19 patients compared to non-hospitalised COVID-19 patients. LGALS9 (p-value < 0.001), LAMP3 (p-value < 0.001), PRSS8 (p-value < 0.001) and AGRN (p-value < 0.001) were identified as the most statistically significant proteins. Several hundred rsIDs were queried across the top 10 significant signatures, identifying three significant SNPs on the FSTL3 gene showing a correlation with hospitalisation status. Conclusions: Our study has not only identified key signatures of COVID-19 patients with worsened health but has also demonstrated their predictive capabilities as potential biomarkers, which suggests a staple role in the worsened health effects caused by COVID-19.
Collapse
Affiliation(s)
- Thomas McLarnon
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Darren McDaid
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Seodhna M. Lynch
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Eamonn Cooper
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Joseph McLaughlin
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Victoria E. McGilligan
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Steven Watterson
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Priyank Shukla
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Shu-Dong Zhang
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Magda Bucholc
- School of Computing, Engineering & Intelligent Systems, Ulster University, Derry BT48 7JL, UK
| | - Andrew English
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Aaron Peace
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Derry BT47 6SB, UK
| | - Maurice O’Kane
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
- Clinical Chemistry Laboratory, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Martin Kelly
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Derry BT47 6SB, UK
| | - Manav Bhavsar
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Derry BT47 6SB, UK
| | - Elaine K. Murray
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - David S. Gibson
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Colum P. Walsh
- Biomedical Sciences Research Institute, University of Ulster, Coleraine BT52 1SA, UK
| | - Anthony J. Bjourson
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| | - Taranjit Singh Rai
- Personalised Medicine Centre, C-TRIC Building, Altnagelvin Area Hospital, School of Medicine, Ulster University, Glenshane Road, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
18
|
Jia Y, Tian W, Li Y, Teng Y, Liu X, Li Z, Zhao M. Chloroquine: Rapidly withdrawing from first-line treatment of COVID-19. Heliyon 2024; 10:e37098. [PMID: 39281655 PMCID: PMC11402237 DOI: 10.1016/j.heliyon.2024.e37098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 outbreak has garnered significant global attention due to its impact on human health. Despite its relatively low fatality rate, the virus affects multiple organ systems, resulting in various symptoms such as palpitations, headaches, muscle pain, and hearing loss among COVID-19 patients and those recovering from the disease. These symptoms impose a substantial physical, psychological, and social burden on affected individuals. On February 15, 2020, the Chinese government advised incorporating antimalarial drugs into the guidelines issued by the National Health Commission of China for preventing, diagnosing, and treating COVID-19 pneumonia. We examine the adverse effects of Chloroquine (CQ) in treating COVID-19 complications to understand why it is no longer the primary treatment for the disease.
Collapse
Affiliation(s)
- Yunlong Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Wenjie Tian
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyao Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyan Teng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xiaolin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhengyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
19
|
Courtie E, Taylor M, Danks D, Acharjee A, Jackson T, Logan A, Veenith T, Blanch RJ. Oculomic stratification of COVID-19 patients' intensive therapy unit admission status and mortality by retinal morphological findings. Sci Rep 2024; 14:21312. [PMID: 39266635 PMCID: PMC11393335 DOI: 10.1038/s41598-024-68543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/24/2024] [Indexed: 09/14/2024] Open
Abstract
To investigate if retinal thickness has predictive utility in COVID-19 outcomes by evaluating the statistical association between retinal thickness using OCT and of COVID-19-related mortality. Secondary outcomes included associations between retinal thickness and length of stay (LoS) in hospital. In this retrospective cohort study, OCT scans from 230 COVID-19 patients admitted to the Intensive Care Unit (ITU) were compared with age and gender-matched patients with pneumonia from before March 2020. Total retinal, GCL + IPL, and RNFL thicknesses were recorded, and analysed with systemic measures collected at the time of admission and mortality outcomes, using linear regression models, Pearson's R correlation, and Principal Component Analysis. Retinal thickness was significantly associated with all-time mortality on follow up in the COVID-19 group (p = 0.015), but not 28-day mortality (p = 0.151). Retinal and GCL + IPL layer thicknesses were both significantly associated with LoS in hospital for COVID-19 patients (p = 0.006 for both), but not for patients with pneumonia (p = 0.706 and 0.989 respectively). RNFL thickness was not associated with LoS in either group (COVID-19 p = 0.097, pneumonia p = 0.692). Retinal thickness associated with LoS in hospital and long-term mortality in COVID-19 patients, suggesting that retinal structure could be a surrogate marker for frailty and predictor of disease severity in this group of patients, but not in patients with pneumonia from other causes.
Collapse
Affiliation(s)
- Ella Courtie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, West Midlands, UK
- Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Matthew Taylor
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Dominic Danks
- University of Birmingham, Birmingham, UK
- Alan Turing Institute, The British Library, London, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK
- MRC Health Data Research UK (HDR) Midlands, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Axolotl Consulting Ltd., Worcestershire, Droitwich, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Tonny Veenith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Critical Care Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Trauma Sciences, University of Birmingham, Birmingham, UK
| | - Richard J Blanch
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, West Midlands, UK.
- Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
| |
Collapse
|
20
|
Wang Q, Shi P, Cao L, Li H, Chen X, Wang P, Zhang J. Unveiling the detrimental vicious cycle linking skeletal muscle and COVID-19: A systematic review and meta-analysis. J Evid Based Med 2024; 17:503-525. [PMID: 38975690 DOI: 10.1111/jebm.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Skeletal muscle catabolism supports multiple organs and systems during severe trauma and infection, but its role in COVID-19 remains unclear. This study investigates the interactions between skeletal muscle and COVID-19. METHODS The PubMed, EMbase, and The Cochrane Library databases were systematically searched from January 2020 to August 2023 for cohort studies focusing on the impact of skeletal muscle on COVID-19 prevalence and outcomes, and longitudinal studies examining skeletal muscle changes caused by COVID-19. Skeletal muscle quantity (SMQN) and quality (SMQL) were assessed separately. The random-effect model was predominantly utilized for statistical analysis. RESULTS Seventy studies with moderate to high quality were included. Low SMQN/SMQL was associated with an increased risk of COVID-19 infection (OR = 1.62, p < 0.001). Both the low SMQN and SMQL predicted COVID-19-related mortality (OR = 1.53, p = 0.016; OR = 2.18, p = 0.001, respectively). Mortality risk decreased with increasing SMQN (OR = 0.979, p = 0.009) and SMQL (OR = 0.972, p = 0.034). Low SMQN and SMQL were also linked to the need for intensive care unit/mechanical ventilation, increased COVID-19 severity, and longer hospital stays. Significant skeletal muscle wasting, characterized by reduced volume and strength, was observed during COVID-19 infection and the pandemic. CONCLUSIONS This study reveals a detrimental vicious circle between skeletal muscle and COVID-19. Effective management of skeletal muscle could be beneficial for treating COVID-19 infections and addressing the broader pandemic. These findings have important implications for the management of future virus pandemics. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023395476.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Cao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Xiankai Chen
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyu Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Jianjiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Singh H, Singh S, Sadhar B, Winegarden B, Morrissey S. Exploring COVID-19-Associated Ileus: A Compelling Case Study. Cureus 2024; 16:e69647. [PMID: 39429337 PMCID: PMC11488154 DOI: 10.7759/cureus.69647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Since the start of 2020, COVID-19 has profoundly impacted global health. Classically, the disease manifests with pulmonary symptoms such as cough, dyspnea, pneumonia, and respiratory distress. However, it is important to note that in addition to these pulmonary symptoms, COVID-19 can present with extrapulmonary symptoms. This case report involves an 82-year-old male who tested positive for the causative agent of COVID-19 - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose presentation manifested with gastrointestinal symptoms in the form of colonic ileus. This report aims to highlight the pathophysiological mechanisms of COVID-19-associated ileus while also delving into the importance of timely intervention to prevent complications like intestinal perforation.
Collapse
Affiliation(s)
- Harpreet Singh
- Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
- Surgery, Conemaugh Memorial Medical Center, Johnstown, USA
| | - Satnam Singh
- Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
- Surgery, Conemaugh Memorial Medical Center, Johnstown, USA
| | - Birkaran Sadhar
- Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
- Surgery, Conemaugh Memorial Medical Center, Johnstown, USA
| | | | - Shawna Morrissey
- Trauma and Acute Care Surgery, Conemaugh Memorial Medical Center, Johnstown, USA
| |
Collapse
|
22
|
Rostamzadeh S, Allafasghari A, Allafasghari A, Abouhossein A. Handgrip strength as a prognostic factor for COVID-19 mortality among older adult patients admitted to the intensive care unit (ICU): a comparison Alpha (B.1.1.7) and Delta (B.1.617.2) variants. Sci Rep 2024; 14:19927. [PMID: 39198687 PMCID: PMC11358457 DOI: 10.1038/s41598-024-71034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Handgrip strength (HGS) is a non-invasive and reliable biomarker of overall health, physical function, mobility, and mortality. This study aimed to investigate the possible relationship between HGS and mortality in older adult patients hospitalized with COVID-19 in the intensive care unit (ICU) by Alpha (B.1.1.7) and Delta (B.1.617.2) variants. This retrospective cohort study was conducted on 472 COVID-19 patients (222 female and 250 male) aged 60-85 years admitted to the ICU. Demographic data, underlying comorbidities, COVID-19-related symptoms, as well as laboratory and computed tomography (CT) findings were obtained from the patient's medical records. Using a JAMAR® hydraulic dynamometer, the average grip strength value (kg) after three measurements on the dominant side was recorded for subsequent analysis. Low grip strength (LGS) was defined as an arbitrary cut-off of two standard deviations below the gender-specific peak mean value of normative HGS in Iranian healthy population, i.e. < 26 kg in males and < 14 kg in females. The findings showed lower mean grip strength and high frequency of LGS in the non-survivors patients versus survivors group and in the Delta (B.1.617.2) variant vs. Alpha (B.1.1.7) variant, respectively (both p < 0.01). The binary logistic regression analysis showed that chronic obstructive pulmonary disease (COPD) (adjusted odds ratio [OR] 5.125, 95% CI 1.425-25.330), LGS (OR 4.805, 95% CI 1.624-10.776), SaO2 (OR - 3.501, 95% CI 2.452-1.268), C-reactive protein (CRP) level (OR 2.625, 95% CI 1.256-7.356), and age (OR 1.118, 95% CI 1.045-1.092) were found to be independent predictors for mortality of patients with Alpha (B.1.1.7) variant (all p < 0.05). However, only four independent predictors including COPD (OR 6.728, 95% CI 1.683-28.635), LGS (OR 5.405, 95% CI 1.461-11.768), SaO2 (OR - 4.120, 95% CI 2.924-1.428), and CRP level (OR 1.893, 95% CI 1.127-8.692) can be predicted the mortality of patients with Delta (B.1.617.2) variant (p < 0.05). Along with the well-known and common risk factors (i.e. COPD, CRP, and SaO2), handgrip strength can be a quick and low-cost prognostic tool in predicting chances of mortality in older adults who are afflicted with COVID-19 variants.
Collapse
Affiliation(s)
- Sajjad Rostamzadeh
- Department of Ergonomics, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atabak Allafasghari
- Department of Health, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Allafasghari
- Department of Health, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Abouhossein
- Department of Ergonomics, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Gazeau S, Deng X, Brunet-Ratnasingham E, Kaufmann DE, Larochelle C, Morel PA, Heffernan JM, Davis CL, Smith AM, Jenner AL, Craig M. Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605860. [PMID: 39131351 PMCID: PMC11312602 DOI: 10.1101/2024.08.01.605860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunction in type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.
Collapse
Affiliation(s)
- Sonia Gazeau
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and Université de Lausanne, Lausanne, Switzerland
| | - Catherine Larochelle
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane M. Heffernan
- Centre for Disease Modelling, Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adrianne L. Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Du Q, Liang R, Wu M, Yang M, Xie Y, Liu Q, Tang K, Lin X, Yuan S, Shen J. Alisol B 23-acetate broadly inhibits coronavirus through blocking virus entry and suppresses proinflammatory T cells responses for the treatment of COVID-19. J Adv Res 2024; 62:273-290. [PMID: 37802148 PMCID: PMC11331179 DOI: 10.1016/j.jare.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Emerging severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 causes a global health disaster and pandemic. Seeking effective anti-pan-CoVs drugs benefit critical illness patients of coronavirus disease 2019 (COVID-19) but also may play a role in emerging CoVs of the future. OBJECTIVES This study tested the hypothesis that alisol B 23-acetate could be a viral entry inhibitor and would have proinflammatory inhibition for COVID-19 treatment. METHODS SARS-CoV-2 and its variants infected several cell lines were applied to evaluate the anti-CoVs activities of alisol B 23-aceate in vitro. The effects of alisol B 23-acetate on in vivo models were assessed by using SARS-CoV-2 and its variants challenged hamster and human angiotensin-converting enzyme 2 (ACE2) transgenic mice. The target of alisol B 23-acetate to ACE2 was analyzed using hydrogen/deuterium exchange (HDX) mass spectrometry (MS). RESULTS Alisol B 23-acetate had inhibitory effects on different species of coronavirus. By using HDX-MS, we found that alisol B 23-acetate had inhibition potency toward ACE2. In vivo experiments showed that alisol B 23-acetate treatment remarkably decreased viral copy, reduced CD4+ T lymphocytes and CD11b+ macrophages infiltration and ameliorated lung damages in the hamster model. In Omicron variant infected human ACE2 transgenic mice, alisol B 23-acetate effectively alleviated viral load in nasal turbinate and reduced proinflammatory cytokines interleukin 17 (IL17) and interferon γ (IFNγ) in peripheral blood. The prophylactic treatment of alisol B 23-acetate by intranasal administration significantly attenuated Omicron viral load in the hamster lung tissues. Moreover, alisol B 23-acetate treatment remarkably inhibited proinflammatory responses through mitigating the secretions of IFNγ and IL17 in the cultured human and mice lymphocytes in vitro. CONCLUSION Alisol B 23-acetate could be a promising therapeutic agent for COVID-19 treatment and its underlying mechanisms might be attributed to viral entry inhibition and anti-inflammatory activities.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Minxiao Yang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Qing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Fu S, Bao X, Mao Z, Lv Y, Zhu B, Chen Y, Zhou M, Tian S, Zhou F, Ding Z. Tetrastigma hemsleyanum polysaccharide ameliorates cytokine storm syndrome via the IFN-γ-JAK2/STAT pathway. Int J Biol Macromol 2024; 275:133427. [PMID: 38936586 DOI: 10.1016/j.ijbiomac.2024.133427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an disease characterized by pulmonary edema and widespread inflammation, leading to a notably high mortality rate. The dysregulation of both pro-inflammatory and anti-inflammatory systems, results in cytokine storm (CS), is intricately associated with the development of ALI/ARDS. Tetrastigma hemsleyanum polysaccharide (THP) exerts remarkable anti-inflammatory and immunomodulatory effects against the disease, although its precise role in pathogenesis remains unclear. In the present study, an ALI/ARDS model was established using bacterial lipopolysaccharides. THP administration via aerosol inhalation significantly mitigated lung injury, reduced the number of inflammatory cells, and ameliorated glycerophospholipid metabolism. Furthermore, specific CS-related pathways were investigated by examining the synergy between tumor necrosis factor-α and interferon-γ used to establish CS models. The results indicated that THP effectively decreased inflammatory damage and cell death. The RNA sequencing revealed the involvement of the Janus kinase (JAK) 2-signal transducers and activators of transcription (STAT) signaling pathway in exerting the mentioned effects. Additionally, THP inhibited the activation of the JAK-STAT pathway, thereby alleviating the CS both in vivo and in vitro. Overall, THP exhibited marked therapeutic potential against ALI/ARDS and CS, primarily by targeting the IFN-γ-JAK2/STAT signaling pathway.
Collapse
Affiliation(s)
- Siyu Fu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaodan Bao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shasha Tian
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
26
|
Mompiere AD, Noble JLMLL, Fleuren-Janssen M, Broen K, Osch FV, Foudraine N. Increased red cell distribution width predicts mortality in COVID-19 patients admitted to a Dutch intensive care unit. Acute Crit Care 2024; 39:359-368. [PMID: 39266271 PMCID: PMC11392698 DOI: 10.4266/acc.2023.01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Abnormal red blood cell distribution width (RDW) is associated with poor cardiovascular, respiratory, and coronavirus disease 2019 (COVID-19) outcomes. However, whether RDW provides prognostic insights regarding COVID-19 patients admitted to the intensive care unit (ICU) was unknown. Here, we retrospectively investigated the association of RDW with 30-day and 90- day mortalities, duration of mechanical ventilation, and length of ICU and hospital stay in patients with COVID-19. METHODS This study included 321 patients with COVID-19 aged >18 years who were admitted to the ICU between March 2020 and July 2022. The outcomes were mortality, duration of mechanical ventilation, and length of stay. RDW >14.5% was assessed in blood samples within 24 hours of admission. RESULTS The mortality rate was 30.5%. Multivariable Cox regression analysis showed an association between increased RDW and 30-day mortality (hazard ratio [HR], 3.64; 95% CI, 1.54-8.65), 90-day mortality (HR, 3.66; 95% CI, 1.59-8.40), and shorter duration of invasive ventilation (2.7 ventilator-free days, P=0.033). CONCLUSIONS Increased RDW in COVID-19 patients at ICU admission was associated with increased 30-day and 90-day mortalities, and shorter duration of invasive ventilation. Thus, RDW can be used as a surrogate biomarker for clinical outcomes in COVID-19 patients admitted to the ICU.
Collapse
Affiliation(s)
- Anthony D Mompiere
- Department of Intensive Care, VieCuri Medical Center, Venlo, the Netherlands
| | - Jos L M L le Noble
- Department of Intensive Care, VieCuri Medical Center, Venlo, the Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | | | - Kelly Broen
- Department of Clinical Chemistry and Hematology, VieCuri Medical Center, Venlo, the Netherlands
| | - Frits van Osch
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, the Netherlands
- Department of Epidemiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Norbert Foudraine
- Department of Intensive Care, VieCuri Medical Center, Venlo, the Netherlands
| |
Collapse
|
27
|
Méndez Rodríguez ML, Ponciano-Gómez A, Campos-Aguilar M, Tapia-Sánchez WD, Duarte-Martínez CL, Romero-Herrera JS, Olivas-Quintero S, Saucedo-Campos AD, Méndez-Cruz AR, Jimenez-Flores R, Ortiz-Navarrete V, Romero-Ramírez H, Santos-Argumedo L, Rosales-García VH. Neutrophil-to-Lymphocyte Ratio and Cytokine Profiling as Predictors of Disease Severity and Survival in Unvaccinated COVID-19 Patients. Vaccines (Basel) 2024; 12:861. [PMID: 39203987 PMCID: PMC11360520 DOI: 10.3390/vaccines12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, identifying reliable biomarkers for predicting disease severity and patient outcomes in unvaccinated individuals is essential. This study evaluates the efficacy of key hematological markers, including leukocyte and neutrophil counts, Neutrophil-to-Lymphocyte Ratio (NLR), and cytokine profiles (IL-6, INF-γ, TNF-α, IL-17A, CCL2, and CXCL10) for predicting the necessity for mechanical ventilation and assessing survival probabilities. METHODS We conducted an in-depth analysis on a cohort of COVID-19 patients, emphasizing the relationship between NLR, cytokine profiles, and clinical outcomes, utilizing routine leukocyte counting and cytokine quantification by flow cytometry. RESULTS Elevated leukocyte and neutrophil counts, increased NLR, and significant cytokine elevations such as IL-6 and IL-10 were strongly associated with the need for mechanical ventilation, reflecting a pronounced systemic inflammatory response indicative of severe disease outcomes. CONCLUSION Integrating hematological markers, particularly NLR and cytokine profiles, is crucial in predicting mechanical ventilation needs and survival in non-vaccinated COVID-19 patients. Our findings provide critical insights into the pathophysiology of COVID-19, supporting the development of more targeted clinical interventions and potentially informing future strategies for managing infectious disease outbreaks.
Collapse
Affiliation(s)
- Miguel Leonardo Méndez Rodríguez
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Wilfrido David Tapia-Sánchez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Carlos Leonardo Duarte-Martínez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Jesús Salvador Romero-Herrera
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Sandra Olivas-Quintero
- Departamento de Ciencias de la Salud Culiacán, Universidad Autónoma de Occidente, Culiacan 80020, Sinaloa, Mexico;
| | - Alberto Daniel Saucedo-Campos
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Adolfo Rene Méndez-Cruz
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Rafael Jimenez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
| | - Hector Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Victor Hugo Rosales-García
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 14330, Mexico
| |
Collapse
|
28
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
29
|
Inceu G, Nechifor RE, Rusu A, Ciobanu DM, Draghici NC, Pop RM, Craciun AE, Porojan M, Negrut M, Roman G, Fodor A, Bala C. Post-COVID-19 Changes in Appetite-An Exploratory Study. Nutrients 2024; 16:2349. [PMID: 39064794 PMCID: PMC11280350 DOI: 10.3390/nu16142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
In this analysis, we aimed to investigate the effect of COVID-19 disease on eating behavior. A total of 55 right-handed adults, <50 years of age, without overweight or obesity, from two cross-sectional studies were included. The first one enrolled subjects between September 2018 and December 2019 (non-COVID-19 group). The second one included subjects enrolled between March 2022 and May 2023; for this analysis, 28 with a history of COVID-19 (COVID-19 group) were retained. Hunger, TFEQ-18, plasma ghrelin, neuropeptide Y (NPY) and resting-state fMRI were assessed during fasting. Intraregional neuronal synchronicity and connectivity were assessed by voxel-based regional homogeneity (ReHo) and degree of centrality (DC). Significantly higher ghrelin and NPY levels were observed in the COVID-19 group than in the non-COVID-19 group (ghrelin 197.5 pg/mL vs. 67.1 pg/mL, p < 0.001; NPY 128.0 pg/mL vs. 84.5 pg/mL, p = 0.005). The NPY levels positively correlated with the DC and ReHo in the left lingual (r = 0.67785 and r = 0.73604, respectively). Similar scores were noted for cognitive restraint, uncontrolled eating and emotional eating in both groups according to the TFEQ-18 questionnaire results (p > 0.05 for all). Our data showed increased levels of appetite-related hormones, correlated with activity in brain regions involved in appetite regulation, persisting long after COVID-19 infection.
Collapse
Affiliation(s)
- Georgeta Inceu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Ruben Emanuel Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health Department of Clinical Psychology, Psychotherapy Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Dana Mihaela Ciobanu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Nicu Catalin Draghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400012 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Morphofunctional Sciences, Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca Elena Craciun
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Mihai Porojan
- Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital Cluj, 400012 Cluj-Napoca, Romania
| | - Matei Negrut
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Adriana Fodor
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cornelia Bala
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| |
Collapse
|
30
|
Hawryłkowicz V, Stasiewicz B, Maciejewska D, Sołek-Pastuszka J, Komorniak N, Skonieczna-Żydecka K, Martynova-Van Kley A, Stachowska E. The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status. Int J Mol Sci 2024; 25:7899. [PMID: 39063142 PMCID: PMC11276903 DOI: 10.3390/ijms25147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | | | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| |
Collapse
|
31
|
SINGH MAIREMBAMSTELIN, YELLABOINA SAILU, ANSARI MAIRAJAHMED. A COMPREHENSIVE REVIEW ON THE MULTIFACETED INTERACTIONS BETWEEN HOST IMMUNITY AND VIRAL PATHOGENESIS IN COVID-19. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:37-45. [DOI: 10.22159/ijap.2024v16i4.50576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The Corona Virus Disease (COVID-19) pandemic has presented unparalleled challenges, marked by a wide array of clinical presentations spanning from asymptomatic carriage to severe respiratory compromise and multi-organ dysfunction. It is crucial to comprehend the intricate interplay between host immunity and viral pathogenesis to elucidate disease mechanisms and guide therapeutic strategies. This review delves into the multifaceted interactions between host immunity and viral pathogenesis in COVID-19, with a particular focus on the impact of host factors such as age, sex, comorbidities, and genetic predisposition on disease severity. Utilizing state-of-the-art methodologies, including multiomics approaches, has yielded an expansive molecular portrayal of COVID-19, furnishing innovative perspectives on host immune reactions, viral pathogenicity, and disease advancement. Establishing standardized methodologies for data analysis and interpretation while concurrently addressing ethical considerations and promoting interdisciplinary collaboration are crucial steps in advancing our comprehension of COVID-19 pathogenesis. Despite obstacles like complexities in data integration, this review highlights the imperative of persistent endeavors in deciphering the complex interactions between hosts and pathogens to alleviate the global health ramifications of COVID-19.
Collapse
|
32
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
33
|
Szachowicz PJ, Wohlford-Lenane C, Heinen CJ, Ghimire S, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. A predominately pulmonary activation of complement in a mouse model of severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596892. [PMID: 38895461 PMCID: PMC11185570 DOI: 10.1101/2024.05.31.596892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Evidence from in vitro studies and observational human disease data suggest the complement system plays a significant role in SARS-CoV-2 pathogenesis, although how complement dysregulation develops in patients with severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of severe COVID-19, we identify significant serologic and pulmonary complement activation following infection. We observed C3 activation in airway and alveolar epithelia, and in pulmonary vascular endothelia. Our evidence suggests that while the alternative pathway is the primary route of complement activation, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia in response to cytokine exposure. This locally generated complement response appears to precede and subsequently drive lung injury and inflammation. Results from this mouse model recapitulate findings in humans, which suggest sex-specific variance in complement activation, with predilection for increased C3 activity in males, a finding that may correlate with more severe disease. Our findings indicate that complement activation is a defining feature of severe COVID-19 in mice and lay the foundation for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | | | - Cobey J. Heinen
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | | | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
34
|
Srivastava A, Nalroad Sundararaj S, Bhatia J, Singh Arya D. Understanding long COVID myocarditis: A comprehensive review. Cytokine 2024; 178:156584. [PMID: 38508059 DOI: 10.1016/j.cyto.2024.156584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Infectious diseases are a cause of major concern in this twenty-first century. There have been reports of various outbreaks like severe acute respiratory syndrome (SARS) in 2003, swine flu in 2009, Zika virus disease in 2015, and Middle East Respiratory Syndrome (MERS) in 2012, since the start of this millennium. In addition to these outbreaks, the latest infectious disease to result in an outbreak is the SARS-CoV-2 infection. A viral infection recognized as a respiratory illness at the time of emergence, SARS-CoV-2 has wreaked havoc worldwide because of its long-lasting implications like heart failure, sepsis, organ failure, etc., and its significant impact on the global economy. Besides the acute illness, it also leads to symptoms months later which is called long COVID or post-COVID-19 condition. Due to its ever-increasing prevalence, it has been a significant challenge to treat the affected individuals and manage the complications as well. Myocarditis, a long-term complication of coronavirus disease 2019 (COVID-19) is an inflammatory condition involving the myocardium of the heart, which could even be fatal in the long term in cases of progression to ventricular dysfunction and heart failure. Thus, it is imperative to diagnose early and treat this condition in the affected individuals. At present, there are numerous studies which are in progress, investigating patients with COVID-19-related myocarditis and the treatment strategies. This review focuses primarily on myocarditis, a life-threatening complication of COVID-19 illness, and endeavors to elucidate the pathogenesis, biomarkers, and management of long COVID myocarditis along with pipeline drugs in detail.
Collapse
Affiliation(s)
- Arti Srivastava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
35
|
Alkhateeb T, Stollings JL, Sohn I, Liu D, Fleenor LM, Ely EW, Lahiri S. Tocilizumab is associated with reduced delirium and coma in critically ill patients with COVID-19. Sci Rep 2024; 14:11738. [PMID: 38778074 PMCID: PMC11111809 DOI: 10.1038/s41598-024-62505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Recent preclinical studies demonstrate a direct pathological role for the interleukin-6 (IL-6) pathway in mediating structural and functional delirium-like phenotypes in animal models of acute lung injury. Tocilizumab, an IL-6 pathway inhibitor, has shown reduced duration of ventilator dependency and mortality in critically ill patients with COVID-19. In this study, we test the hypothesis that tocilizumab is associated with reduced delirium/coma prevalence in critically ill patients with COVID-19. 253 patients were included in the study cohort, 69 in the tocilizumab group and 184 in the historical control group who did not receive tocilizumab. Delirium was assessed using the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) with a positive score indicating delirium. Coma was defined as a Richmond Agitation-Sedation Scale score of - 4 or - 5. Tocilizumab was associated with significantly greater number of days alive without delirium/coma (tocilizumab [7 days (IQR: 3-9 days)] vs control [3 days (IQR: 1-8 days)]; p < 0.001). These results remained significant after adjusting for age, sex, sepsis, Charlson Comorbidity Index, Sequential Organ Failure Assessment score, and median daily dose of analgesics/sedatives ( β ^ = 0.671, p = 0.010). There were no significant differences in mortality ( β ^ = - 0.204, p = 0.561), ventilator duration ( β ^ = 0.016, p = 0.956), and ICU or hospital length of stay ( β ^ = - 0.134, p = 0.603; β ^ = 0.003, p = 0.991, respectively). Tocilizumab use was associated with significantly increased number of days without delirium/coma. Confirmation of these findings in randomized prospective studies may inform a novel paradigm of pharmacological amelioration of delirium/coma during critical illness.
Collapse
Affiliation(s)
- Tuqa Alkhateeb
- The Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joanna L Stollings
- The Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ine Sohn
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Montana Fleenor
- The Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Wesley Ely
- The Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC) Service, Department of Veterans Affairs Medical Center Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Shouri Lahiri
- Departments of Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
36
|
Valadez-Cuen K, Bhatt T, Mendez IE, Solanki D, Abdi N, Shelar V, Akplor JJ, Reddy Bhumanapalli SA, Vinyak S, Patel D, Tirupathi R, Shah V, Patel UK, Rana RK. E-cigarette Use and Severe Coronavirus Disease 2019 (COVID-19) Outcomes: A Meta-Analysis. Cureus 2024; 16:e59591. [PMID: 38832202 PMCID: PMC11144579 DOI: 10.7759/cureus.59591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
E-cigarettes have been known to cause varied poor health outcomes prior to coronavirus disease 2019 (COVID-19), but after the impact of COVID-19, evidence came out that was, in some instances, not as expected regarding the severity of COVID-19 among e-cigarette users (vapers). A meta-analysis was performed on the available evidence to comprehensively find the effect of COVID-19 on existing or past e-cigarette users (vapers). The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were used to perform this meta-analysis. PubMed was searched for observational studies that described outcomes after COVID-19 positivity from December 1, 2019, to December 2023. Medical Subject Headings (MeSH) keywords were used for searching the relevant studies highlighting the relationship between COVID-19 and e-cigarette users. Calculations for pooled prevalence, 95% confidence interval (95% CI), weights for current e-cigarette users and vapers, and outcomes (events) were made. To analyze the data, Review Manager V.5.4 was used. The I² statistic was used to assess statistical heterogeneity. The I² statistic of >50% was considered significant heterogeneity. The "leave-one-out" method was used for sensitivity analysis. Out of 3231 studies, four studies reported data on vaping and non-vaping status and composite outcomes, resulting in a sample size of 653 COVID-19-positive cases. The pooled prevalence of being COVID-19 positive, having symptoms, or visiting an emergency room was 7.78% (653/8392). COVID-19 patients with current vaping status had decreased odds of poor outcomes compared to non-smokers, with a pooled odds ratio (OR) of 0.09 (95% CI 0.00-2.42; p>0.05) with heterogeneity between studies (I²=99%, p=0.15). Because of difficulties related to data collection and other factors, this meta-analysis was unable to conclusively establish the correlation between e-cigarette usage and severe COVID-19 outcomes such as hospitalization, admission to the intensive care unit, and fatality. Additional research using more detailed data is necessary to fully understand this correlation.
Collapse
Affiliation(s)
- Karen Valadez-Cuen
- Department of Internal Medicine, Las Palmas Del Sol Healthcare, El Paso, USA
| | - Tulsi Bhatt
- Department of Internal Medicine, Pramukhswami Medical College, Karamsad, IND
| | - Ileana E Mendez
- Department of Medical Sciences, Universidad Autónoma de Centro América (UACA), San José, CRI
| | - Dhanshree Solanki
- Department of Hospital Administration, Rutgers University, New Brunswick, USA
| | - Nawal Abdi
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Vrushali Shelar
- Department of Internal Medicine, Saratov State Medical University, Saratov, RUS
| | - Jerry J Akplor
- Faculty of Medicine, Hebei North University, Zhangjiakou, CHN
| | - Sai Akhila Reddy Bhumanapalli
- Department of Internal Medicine, State University of New York (SUNY) Downstate Health Sciences University, School of Public Health (SPH), New York, USA
| | - Suprada Vinyak
- Department of Internal Medicine, Wellmont/Norton Community Hospital (NCH), Norton, USA
| | - Digantkumar Patel
- Department of Medicine, Springfield Memorial Hospital, Springfield, USA
| | | | - Viray Shah
- Department of Hospital Medicine, MedStar Good Samaritan Hospital, Baltimore, USA
| | - Urvish K Patel
- Department of Public Health and Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rishabh K Rana
- Department of Preventive and Social Medicine/Community Medicine, Shaheed Nirmal Mahto Medical College and Hospital (Erstwhile Patliputra Medical College), Dhanbad, IND
| |
Collapse
|
37
|
Behera LM, Gupta PK, Ghosh M, Shadangi S, Rana S. A Rationally Designed Synthetic Antiviral Peptide Binder Targeting the Receptor-Binding Domain of SARS-CoV-2. J Phys Chem B 2024. [PMID: 38657271 DOI: 10.1021/acs.jpcb.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus, is the causative agent responsible for the spread of the COVID19 pandemic across the globe. The global impact of the COVID19 pandemic, the successful approval of vaccines for controlling the pandemic, and the further resurgence of COVID19 necessitate the exploration and validation of alternative therapeutic avenues targeting SARS-CoV-2. The initial entry and further invasion by SARS-CoV-2 require strong protein-protein interactions (PPIs) between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptors expressed on the cell surfaces of various tissues. In principle, disruption of the PPIs between the RBD of SARS-CoV-2 and the ACE2 receptor by designer peptides with optimized pharmacology appears to be an ideal choice for potentially preventing viral entry with minimal immunogenicity. In this context, the current study describes a short, synthetic designer peptide (codenamed SR16, ≤18 aa, molecular weight ≤2.5 kDa), which has a few noncoded amino acids, demonstrates a helical conformation in solution, and also engages the RBD of SARS-CoV-2 through a high-affinity interaction, as judged from a battery of biophysical studies. Further, the designer peptide demonstrates resistance to trypsin degradation, appears to be nontoxic to mammalian cells, and also does not induce hemolysis in freshly isolated human erythrocytes. In summary, SR16 appears to be an ideal peptide binder targeting the RBD of SARS-CoV-2, which has the potential for further optimization and development as an antiviral agent targeting SARS-CoV-2.
Collapse
Affiliation(s)
- Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
38
|
Megasari NLA, Khairunisa SQ, Arizandy RY, Wijaksana IKE, Wungu CDK. Cytokine profiles of mild-to-moderate SARS-CoV-2 infected and recovered pre-vaccinated individuals residing in Indonesia. PeerJ 2024; 12:e17257. [PMID: 38646483 PMCID: PMC11032655 DOI: 10.7717/peerj.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Background Accumulating evidence suggests the involvement of cytokine-mediated inflammation, in clinical severity and death related to SARS-CoV-2 infection, especially among pre-vaccinated individuals. An increased risk of death was also described among SARS-CoV-2 recovered individuals, which might be correlated with prolonged inflammatory responses. Despite being among the countries with the highest cumulative deaths due to COVID-19, evidence regarding cytokine profiles among SARS-CoV-2 infected and recovered pre-vaccinated individuals in Indonesia is scarce. Thus, this study aimed to describe the cytokines profiles of pre-vaccinated individuals residing in Indonesia, with mild-to-moderate SARS-CoV-2 infection and those who recovered. Methods Sixty-one sera from 24 hospitalized patients with mild-to-moderate SARS-CoV-2 infection, 24 individuals recovered from asymptomatic-to-moderate SARS-CoV-2 infection, and 13 healthy controls unexposed to SARS-CoV-2 were used in this study. Quantification of serum cytokine levels, including IL-6, IL-8, IP-10, TNF-α, CCL-2, CCL-3, CCL-4, and CXCL-13, was performed using a Luminex multi-analyte-profiling (xMAP)-based assay. Results The levels of IL-8 along with CCL-2 and CCL-4, were significantly higher (p ≤ 0.01) in hospitalized patients with mild-to-moderate SARS-CoV-2 infection and recovered individuals compared to healthy controls. However, no significant difference was observed in these cytokine levels between infected and recovered individuals. On the other hand, there were no significant differences in several other cytokine levels, including IL-6, IL-10, TNF-α, CCL-3, and CXCL-13, among all groups. Conclusion IL-8, CCL-2, and CCL-4 were significantly elevated in pre-vaccinated Indonesian individuals with mild-to-moderate SARS-CoV-2 infection and those who recovered. The cytokine profiles described in this study might indicate inflammatory responses not only among SARS-CoV-2 infected, but also recovered individuals.
Collapse
Affiliation(s)
- Ni Luh Ayu Megasari
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Postgraduate School, Airlangga University, Surabaya, Indonesia
| | | | | | - I. Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
39
|
Hamdorf M, Imhof T, Bailey-Elkin B, Betz J, Theobald SJ, Simonis A, Di Cristanziano V, Gieselmann L, Dewald F, Lehmann C, Augustin M, Klein F, Alejandre Alcazar MA, Rongisch R, Fabri M, Rybniker J, Goebel H, Stetefeld J, Brachvogel B, Cursiefen C, Koch M, Bock F. The unique ORF8 protein from SARS-CoV-2 binds to human dendritic cells and induces a hyper-inflammatory cytokine storm. J Mol Cell Biol 2024; 15:mjad062. [PMID: 37891014 PMCID: PMC11181941 DOI: 10.1093/jmcb/mjad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/01/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023] Open
Abstract
The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of acute lung inflammation that causes ARDS. Here, we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1β, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutic strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthias Hamdorf
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Ben Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg MB R3B 2E9 Manitoba, Canada
| | - Janina Betz
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Alexander Simonis
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Felix Dewald
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Max Augustin
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Children and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster Stress Responses in Aging-associated Diseases, 50931 Cologne, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre, Member of the German Center for Lung Research, 35392 Gießen, Germany
| | - Robert Rongisch
- Dermatology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Mario Fabri
- Dermatology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Heike Goebel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Jörg Stetefeld
- Department of Microbiology, University of Manitoba, Winnipeg MB R3B 2E9 Manitoba, Canada
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Claus Cursiefen
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Felix Bock
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
40
|
Liu SY, Hsieh WJ, Hsueh HW, Lin CW. Bilateral optic neuritis and encephalopathy as the atypical presentations of multiple sclerosis following severe acute respiratory syndrome coronavirus 2 infection. Taiwan J Ophthalmol 2024; 14:266-270. [PMID: 39027068 PMCID: PMC11253987 DOI: 10.4103/tjo.tjo-d-23-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 07/20/2024] Open
Abstract
Numerous evidence suggests coronavirus disease 2019 (COVID-19) potentially triggers demyelinating diseases, inclusive of multiple sclerosis (MS), and acute disseminated encephalomyelitis (ADEM), and various mechanisms have been proposed. We report a 42-year-old male presented with bilateral optic neuritis and encephalopathy, 2 weeks following COVID-19 infection. He denied any history or family history of neurological and ocular diseases. Severe bilateral visual impairment (only light perception) and pain with eye movement were reported. Fundoscopy revealed bilateral optic disc swelling. Magnetic resonance imaging showed tortuous bilateral optic nerves with optic nerve and nerve sheath enhancement. Multiple hyperintense nodules in bilateral cerebral white matter were noted on fluid-attenuated inversion recovery T2-weighted imaging without diffusion restriction or gadolinium contrast enhancement. Hypointense nodules in cerebral white matter were also noted on T1-weighted imaging, which implied some old lesions. Dissemination in space and time and cerebrospinal fluid-specific oligoclonal bands confirmed the diagnosis of MS. Both serum aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies were negative. He received pulse steroid therapy for 5 days, followed by slowly tapering oral prednisolone. His vision, ocular motion pain, and encephalopathy improved gradually. However, the visual outcome was still poor (bilateral 20/400), and optic atrophy was noticed during 1-year follow-up. To our knowledge, this is the first case of MS following severe acute respiratory syndrome coronavirus 2 infection presented with bilateral optic neuritis and encephalopathy. Since these manifestations are exceedingly rare in MS, we suspect acute immune reactions induced by COVID-19 could bring about the atypical ADEM-like presentations of MS.
Collapse
Affiliation(s)
- Sheng-Yu Liu
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wan-Jen Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Svensson Akusjärvi S, Zanoni I. Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Curr Opin Immunol 2024; 87:102423. [PMID: 38776716 PMCID: PMC11162909 DOI: 10.1016/j.coi.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The host immune response against severe acute respiratory syndrome coronavirus 2 includes the induction of a group of natural antiviral cytokines called interferons (IFNs). Although originally recognized for their ability to potently counteract infections, the mechanistic functions of IFNs in patients with varying severities of coronavirus disease 2019 (COVID-19) have highlighted a more complex scenario. Cellular and molecular analyses have revealed that timing, location, and subtypes of IFNs produced during severe acute respiratory syndrome coronavirus 2 infection play a major role in determining disease progression and severity. In this review, we summarize what the COVID-19 pandemic has taught us about the protective and detrimental roles of IFNs during the inflammatory response elicited against a new respiratory virus across different ages and its longitudinal consequences in driving the development of long COVID-19.
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Zanoni
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
42
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
43
|
Ibrahim W, Mahmood R, Farag E, Bansal D, Alfaki M, Al-Romaihi HE, Al-Thani M, Binti Hami R. Assessing the Variation in COVID-19 Severity Among the Different Nationalities Living in Qatar. Cureus 2024; 16:e58918. [PMID: 38800320 PMCID: PMC11116737 DOI: 10.7759/cureus.58918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Coronavirus disease (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and it has resulted in a global pandemic. The COVID-19 pandemic has resulted in numerous reports on clinical outcomes and risk factors associated with morbidity and mortality. However, the extent to which nationality influences the severity of COVID-19 is not fully understood. Therefore, this study aimed to explore disparities in COVID-19 severity among individuals of different nationalities in Qatar. Methods This is a retrospective study. Secondary data were obtained from the Ministry of Public Health in Qatar. Patients of different nationalities were categorized into different groups based on the WHO regional classification, and the severity of COVID-19 across these groups was analyzed. Results Data were obtained for 96,728 patients. This study found a statistically significant difference in disease severity among nationalities. The highest number of patients were from the Eastern Mediterranean group (42.3%), followed by Southeast Asia (39.4%). The severity of COVID-19 was highest among the Eastern Mediterranean groups (40%), followed by those from Southeast Asia (38.5%) and the Western Pacific (12.4%). There was a significant correlation between disease severity and vaccination status. Conclusion The findings of this study provide novel perspectives on the severity of COVID-19 among individuals of various nationalities. Moreover, it emphasizes the importance of healthcare interventions to address disparities in COVID-19 morbidity and mortality within these groups. The results of this study provide a useful foundation for developing approaches to prevent and manage pandemics more effectively and reduce the number of cases and fatalities during future health crises.
Collapse
Affiliation(s)
- Wafa Ibrahim
- Epidemiology and Public Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, MYS
| | - Razi Mahmood
- Public Health, AFG College with the University of Aberdeen, Doha, QAT
| | - Elmobashar Farag
- Epidemiology and Public Health, Ministry of Public Health, Doha, QAT
| | - Devendra Bansal
- Epidemiology and Public Health, Ministry of Public Health, Doha, QAT
| | | | | | - Mohammed Al-Thani
- Epidemiology and Public Health, Ministry of Public Health, Doha, QAT
| | - Rohayu Binti Hami
- Epidemiology and Public Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, MYS
| |
Collapse
|
44
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
45
|
Kim W, Song ES, Lee SH, Yang SH, Cho J, Kim SJ. A new DNA aptamer which binds to SARS-CoV-2 spike protein and reduces pro-inflammatory response. Sci Rep 2024; 14:7516. [PMID: 38553521 PMCID: PMC10980804 DOI: 10.1038/s41598-024-58315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 spread rapidly around the world, endangering the health of people globally. The SARS-CoV-2 spike protein initiates entry into target cells by binding to human angiotensin-converting enzyme 2 (ACE2). In this study, we developed DNA aptamers that specifically bind to the SARS-CoV-2 spike protein, thereby inhibiting its binding to ACE2. DNA aptamers are small nucleic acid fragments with random structures that selectively bind to various target molecules. We identified nine aptamers targeting the SARS-CoV-2 spike protein using the systematic evolution of ligands by exponential enrichment (SELEX) method and selected three optimal aptamers by comparing their binding affinities. Additionally, we confirmed that the DNA aptamers suppressed pro-inflammatory cytokines induced by the SARS-CoV-2 spike protein in ACE2-overexpressing HEK293 cells. Overall, the DNA aptamer developed in this study has the potential to bind to the SARS-CoV-2 spike protein and inhibit or block its interaction with ACE2. Thus, our DNA aptamers can be used as new biological tools for the prevention and diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Woong Kim
- Institute of Well-Aging Medicare & Chosun University LAMP Center, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Su Song
- Corporate Research Institute, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Song Ha Lee
- Department of Business Management, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Seung Ho Yang
- Department of Planning Management, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Junhyung Cho
- Division of Emerging Viral Diseases and Vector Research, Centre for Infectious Diseases Research, Korea National Institute of Health, Korea Centres for Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Seok-Jun Kim
- Institute of Well-Aging Medicare & Chosun University LAMP Center, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
46
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis. Cell Rep 2024; 43:113894. [PMID: 38442017 PMCID: PMC11654472 DOI: 10.1016/j.celrep.2024.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Monocytes can develop an exhausted memory state characterized by reduced differentiation, pathogenic inflammation, and immune suppression that drives immune dysregulation during sepsis. Chromatin alterations, notably via histone modifications, underlie innate immune memory, but the contribution of DNA methylation remains poorly understood. Using an ex vivo sepsis model, we show altered DNA methylation throughout the genome of exhausted monocytes, including genes implicated in immune dysregulation during sepsis and COVID-19 infection (e.g., Plac8). These changes are recapitulated in septic mice induced by cecal slurry injection. Methylation profiles developed in septic mice are maintained during ex vivo culture, supporting the involvement of DNA methylation in stable monocyte exhaustion memory. Methylome reprogramming is driven in part by Wnt signaling inhibition in exhausted monocytes and can be reversed with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Our study demonstrates the significance of altered DNA methylation in the maintenance of stable monocyte exhaustion memory.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA.
| |
Collapse
|
47
|
Hatch CJ, Piombo SD, Fang JS, Gach JS, Ewald ML, Van Trigt WK, Coon BG, Tong JM, Forthal DN, Hughes CCW. SARS-CoV-2 infection of endothelial cells, dependent on flow-induced ACE2 expression, drives hypercytokinemia in a vascularized microphysiological system. Front Cardiovasc Med 2024; 11:1360364. [PMID: 38576426 PMCID: PMC10991679 DOI: 10.3389/fcvm.2024.1360364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.
Collapse
Affiliation(s)
- Christopher J. Hatch
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Sebastian D. Piombo
- Department of Pediatrics, School of Medicine, Institute for Clinical and Translational Science, University of California, Irvine, CA, United States
| | - Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Johannes S. Gach
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Makena L. Ewald
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - William K. Van Trigt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jay M. Tong
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Donald N. Forthal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
48
|
Wulandari S, Nuryastuti T, Oktoviani FN, Daniwijaya MEW, Supriyati E, Arguni E, Hartono, Wibawa T. The association between high mobility group box 1 (HMGB1) and Interleukin-18 (IL-18) serum concentrations in COVID-19 inpatients. Heliyon 2024; 10:e26619. [PMID: 38434314 PMCID: PMC10907672 DOI: 10.1016/j.heliyon.2024.e26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hartono
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
49
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
50
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|