1
|
Vinutha M, Sharma UR, Swamy G, Rohini S, Vada S, Janandri S, Haribabu T, Taj N, Gayathri SV, Jyotsna SK, Mudagal MP. COVID-19-related liver injury: Mechanisms, diagnosis, management; its impact on pre-existing conditions, cancer and liver transplant: A comprehensive review. Life Sci 2024; 356:123022. [PMID: 39214285 DOI: 10.1016/j.lfs.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIMS This review explores the mechanisms, diagnostic approaches, and management strategies for COVID-19-induced liver injury, with a focus on its impact on patients with pre-existing liver conditions, liver cancer, and those undergoing liver transplantation. MATERIALS AND METHODS A comprehensive literature review included studies on clinical manifestations of liver injury due to COVID-19. Key areas examined were direct viral effects, drug-induced liver injury, cytokine storms, and impacts on individuals with chronic liver diseases, liver transplants, and the role of vaccination. Data were collected from clinical trials, observational studies, case reports, and review literature. KEY FINDINGS COVID-19 can cause a spectrum of liver injuries, from mild enzyme elevations to severe hepatic dysfunction. Injury mechanisms include direct viral invasion, immune response alterations, drug toxicity, and hypoxia-reperfusion injury. Patients with chronic liver conditions (such as alcohol-related liver disease, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma) face increased risks of severe outcomes. The pandemic has worsened pre-existing liver conditions, disrupted cancer treatments, and complicated liver transplantation. Vaccination remains crucial for reducing severe disease, particularly in chronic liver patients and transplant recipients. Telemedicine has been beneficial in managing patients and reducing cross-infection risks. SIGNIFICANCE This review discusses the importance of improved diagnostic methods and management strategies for liver injury caused by COVID-19. It emphasizes the need for close monitoring and customized treatment for high-risk groups, advocating for future research to explore long-term effects, novel therapies, and evidence-based approaches to improve liver health during and after the pandemic.
Collapse
Affiliation(s)
- M Vinutha
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Uday Raj Sharma
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India.
| | - Gurubasvaraja Swamy
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S Rohini
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Surendra Vada
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Suresh Janandri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - T Haribabu
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Nageena Taj
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S V Gayathri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S K Jyotsna
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Manjunatha P Mudagal
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| |
Collapse
|
2
|
Matu J, Griffiths A, Shannon OM, Jones A, Day R, Radley D, Feeley A, Mabbs L, Blackshaw J, Sattar N, Ells L. The association between excess weight and COVID-19 outcomes: An umbrella review. Obes Rev 2024; 25:e13803. [PMID: 39096049 DOI: 10.1111/obr.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
This umbrella review assessed the association between excess weight and COVID-19 outcomes. MEDLINE, PsycINFO, and CINAHL were systematically searched for reviews that assessed the association between excess weight and COVID-19 outcomes. A second-order meta-analysis was conducted on the available data for intensive care unit admission, invasive mechanical ventilation administration, disease severity, hospitalization, and mortality. The quality of included reviews was assessed using the AMSTAR-2 appraisal tool. In total, 52 systematic reviews were included, 49 of which included meta-analyses. The risk of severe outcomes (OR = 1.86; 95% CI: 1.70 to 2.05), intensive care unit admission (OR = 1.58; 95% CI: 1.45 to 1.72), invasive mechanical ventilation administration (OR = 1.70; 95% CI: 1.57 to 1.83), hospitalization (OR = 1.82; 95% CI: 1.61 to 2.05), and mortality (OR = 1.35; 95% CI: 1.24 to 1.48) following COVID-19 infection was significantly higher in individuals living with excess weight compared with those with a healthy weight. There was limited evidence available in the included reviews regarding the influence of moderating factors such as ethnicity, and the majority of included reviews were of poor quality. Obesity appears to represent an important modifiable pre-infection risk factor for severe COVID-19 outcomes, including death.
Collapse
Affiliation(s)
- Jamie Matu
- Obesity Institute, School of Health, Leeds Beckett University, Leeds, UK
| | - Alex Griffiths
- Obesity Institute, School of Health, Leeds Beckett University, Leeds, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Jones
- Psychology, Liverpool John Moores University, Liverpool, UK
| | - Rhiannon Day
- Obesity Institute, School of Health, Leeds Beckett University, Leeds, UK
| | - Duncan Radley
- Obesity Institute, School of Sport, Leeds Beckett University, Leeds, UK
| | - Alison Feeley
- Office for Health Improvement and Disparities, London, UK
| | - Lisa Mabbs
- Office for Health Improvement and Disparities, London, UK
| | | | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Louisa Ells
- Obesity Institute, School of Health, Leeds Beckett University, Leeds, UK
| |
Collapse
|
3
|
Beurton A, Kooistra EJ, De Jong A, Schiffl H, Jourdain M, Garcia B, Vimpère D, Jaber S, Pickkers P, Papazian L. Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review. Curr Obes Rep 2024; 13:545-563. [PMID: 38573465 DOI: 10.1007/s13679-024-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has infected nearly 800 million people and caused almost seven million deaths. Obesity was quickly identified as a risk factor for severe COVID-19, ICU admission, acute respiratory distress syndrome, organ support including mechanical ventilation and prolonged length of stay. The relationship among obesity; COVID-19; and respiratory, thrombotic, and renal complications upon admission to the ICU is unclear. RECENT FINDINGS The predominant effect of a hyperinflammatory status or a cytokine storm has been suggested in patients with obesity, but more recent studies have challenged this hypothesis. Numerous studies have also shown increased mortality among critically ill patients with obesity and COVID-19, casting doubt on the obesity paradox, with survival advantages with overweight and mild obesity being reported in other ICU syndromes. Finally, it is now clear that the increase in the global prevalence of overweight and obesity is a major public health issue that must be accompanied by a transformation of our ICUs, both in terms of equipment and human resources. Research must also focus more on these patients to improve their care. In this review, we focused on the central role of obesity in critically ill patients during this pandemic, highlighting its specificities during their stay in the ICU, identifying the lessons we have learned, and identifying areas for future research as well as the future challenges for ICU activity.
Collapse
Affiliation(s)
- Alexandra Beurton
- Department of Intensive Care, Hôpital Tenon, APHP, Paris, France.
- UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France.
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Audrey De Jong
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Helmut Schiffl
- Division of Nephrology, Department of Internal Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Mercedes Jourdain
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Bruno Garcia
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Damien Vimpère
- Anesthesia and Critical Care Department, Hôpital Necker, APHP, Paris, France
| | - Samir Jaber
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Laurent Papazian
- Intensive Care Unit, Centre Hospitalier de Bastia, Bastia, Corsica, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Gourgoura K, Rivadeneyra P, Stanghellini E, Caroni C, Bartolucci F, Curcio R, Bartoli S, Ferranti R, Folletti I, Cavallo M, Sanesi L, Dominioni I, Santoni E, Morgana G, Pasticci MB, Pucci G, Vaudo G. Modelling the long-term health impact of COVID-19 using Graphical Chain Models brief heading: long COVID prediction by graphical chain models. BMC Infect Dis 2024; 24:885. [PMID: 39210315 PMCID: PMC11360819 DOI: 10.1186/s12879-024-09777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Long-term sequelae of SARS-CoV-2 infection, namely long COVID syndrome, affect about 10% of severe COVID-19 survivors. This condition includes several physical symptoms and objective measures of organ dysfunction resulting from a complex interaction between individual predisposing factors and the acute manifestation of disease. We aimed at describing the complexity of the relationship between long COVID symptoms and their predictors in a population of survivors of hospitalization for severe COVID-19-related pneumonia using a Graphical Chain Model (GCM). METHODS 96 patients with severe COVID-19 hospitalized in a non-intensive ward at the "Santa Maria" University Hospital, Terni, Italy, were followed up at 3-6 months. Data regarding present and previous clinical status, drug treatment, findings recorded during the in-hospital phase, presence of symptoms and signs of organ damage at follow-up were collected. Static and dynamic cardiac and respiratory parameters were evaluated by resting pulmonary function test, echocardiography, high-resolution chest tomography (HRCT) and cardiopulmonary exercise testing (CPET). RESULTS Twelve clinically most relevant factors were identified and partitioned into four ordered blocks in the GCM: block 1 - gender, smoking, age and body mass index (BMI); block 2 - admission to the intensive care unit (ICU) and length of follow-up in days; block 3 - peak oxygen consumption (VO2), forced expiratory volume at first second (FEV1), D-dimer levels, depression score and presence of fatigue; block 4 - HRCT pathological findings. Higher BMI and smoking had a significant impact on the probability of a patient's admission to ICU. VO2 showed dependency on length of follow-up. FEV1 was related to the self-assessed indicator of fatigue, and, in turn, fatigue was significantly associated with the depression score. Notably, neither fatigue nor depression depended on variables in block 2, including length of follow-up. CONCLUSIONS The biological plausibility of the relationships between variables demonstrated by the GCM validates the efficacy of this approach as a valuable statistical tool for elucidating structural features, such as conditional dependencies and associations. This promising method holds potential for exploring the long-term health repercussions of COVID-19 by identifying predictive factors and establishing suitable therapeutic strategies.
Collapse
Affiliation(s)
- K Gourgoura
- Department of Economics, University of Perugia, Perugia, Italy
| | - P Rivadeneyra
- University of Padova, Padua, Italy
- University of Camerino, Camerino, Italy
| | - E Stanghellini
- Department of Economics, University of Perugia, Perugia, Italy
| | - C Caroni
- National Technical University of Athens, Athens, Greece
| | - F Bartolucci
- Department of Economics, University of Perugia, Perugia, Italy
| | - R Curcio
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
| | - S Bartoli
- Unit of Clinical Psychology, Santa Maria Terni Hospital, Terni, Italy
| | - R Ferranti
- Unit of Radiology, Santa Maria Terni Hospital, Terni, Italy
| | - I Folletti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Section of Occupational Medicine, Santa Maria Terni Hospital, Terni, Italy
| | - M Cavallo
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
| | - L Sanesi
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
| | - I Dominioni
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Santoni
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - G Morgana
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - M B Pasticci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Infectious Diseases Unit, Santa Maria Terni Hospital, Terni, Italy
| | - G Pucci
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy.
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - G Vaudo
- Unit of Internal Medicine, Santa Maria Terni Hospital, Terni, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Loktionov AV, Kobzeva KA, Karpenko AR, Sergeeva VA, Orlov YL, Bushueva OY. GWAS-significant loci and severe COVID-19: analysis of associations, link with thromboinflammation syndrome, gene-gene, and gene-environmental interactions. Front Genet 2024; 15:1434681. [PMID: 39175753 PMCID: PMC11338913 DOI: 10.3389/fgene.2024.1434681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Objective The aim of this study was to replicate associations of GWAS-significant loci with severe COVID-19 in the population of Central Russia, to investigate associations of the SNPs with thromboinflammation parameters, to analyze gene-gene and gene-environmental interactions. Materials and Methods DNA samples from 798 unrelated Caucasian subjects from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a mild or asymptomatic course of COVID-19) were genotyped using probe-based polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1, rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A, rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2. Results SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22-2.6, p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52-3.5, p = 0.0002, (p bonf = 0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)), low physical activity (OR = 1.93, 95% CI = 1.26-2.94, p = 0.0035, (p bonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI = 1.11-2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and worsened thrombodynamic parameters (maximum optical density of the formed clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot size 30 min after coagulation activation, CS (p = 0.036)). SNP rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)). SNP rs12610495 DPP9 was associated with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele G, OR = 1.48, 95% CI = 1.09-2.01, p = 0.01, (p bonf = 0.02)), and worsened thrombodynamic parameters (time to the start of clot growth, Tlag (p = 0.01)). For rs7949972 ELF5, a protective effect against severe COVID-19 was observed in non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47-0.95, p = 0.02, (p bonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a protective effect against severe COVID-19 in males (protective allele A, OR = 0.51, 95% CI = 0.32-0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2-were involved in two or more of the most significant G×G interactions (p perm ≤ 0.01). The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was included in four of the top five most significant SNP-SNP interaction models). Conclusion Overall, this study represents a comprehensive molecular-genetic and bioinformatics analysis of the involvement of GWAS-significant loci in the molecular mechanisms of severe COVID-19, gene-gene and gene-environmental interactions, and provides evidence of their relationship with thromboinflammation parameters in patients hospitalized in intensive care units.
Collapse
Affiliation(s)
- Alexey Valerevich Loktionov
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Ksenia Andreevna Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Andrey Romanovich Karpenko
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Vera Alexeevna Sergeeva
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
| | - Yuriy Lvovich Orlov
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yurievna Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
6
|
da Silva GB, Manica D, da Silva AP, Valcarenghi E, Donassolo SR, Kosvoski GC, Mingoti MED, Gavioli J, Cassol JV, Hanauer MC, Hellmann MB, Marafon F, Bertollo AG, de Medeiros J, Cortez AD, Réus GZ, de Oliveira GG, Ignácio ZM, Bagatini MD. Peripheral biomarkers as a predictor of poor prognosis in severe cases of COVID-19. Am J Med Sci 2024; 368:122-135. [PMID: 38636654 DOI: 10.1016/j.amjms.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
We evaluated glycemia and triglyceride, hepatic, muscular, and renal damage markers, redox profile, and leptin and ghrelin hormone levels in COVID-19 patients. We also conducted statistical analysis to verify the potential of biomarkers to predict poor prognosis and the correlation between them in severe cases. We assessed glycemia and the levels of triglycerides, hepatic, muscular, and renal markers in automatized biochemical analyzer. The leptin and ghrelin hormones were assessed by the ELISA assay. Severe cases presented high glycemia and triglyceride levels. Hepatic, muscular, and renal biomarkers were altered in severe patients. Oxidative stress status was found in severe COVID-19 patients. Severe cases also had increased levels of leptin. The ROC curves indicated many biomarkers as poor prognosis predictors in severe cases. The Spearman analysis showed that biomarkers correlate between themselves. Patients with COVID-19 showed significant dysregulation in the levels of several peripheral biomarkers. We bring to light that a robust panel of peripheral biomarkers and hormones predict poor prognosis in severe cases of COVID-19 and biomarkers correlate with each other. Early monitoring of these biomarkers may lead to appropriate clinical interventions in patients infected by SARS-CoV2.
Collapse
Affiliation(s)
- Gilnei B da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil
| | - Alana P da Silva
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil
| | - Eduarda Valcarenghi
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Sabine R Donassolo
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Greicy C Kosvoski
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli E D Mingoti
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Jullye Gavioli
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Joana V Cassol
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Marceli C Hanauer
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Mariélly B Hellmann
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda G Bertollo
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Jesiel de Medeiros
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Arthur D Cortez
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Gislaine Z Réus
- Postgraduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriela G de Oliveira
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide M Ignácio
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
7
|
Stout J, Dixit N, Pasha S, Sukumaran A, Topaloglu AK, Armstrong MK, Garg P, Karlson C, Bates JT, Ansari MAY, Kamran F. New-onset diabetes in children during the COVID-19 Pandemic: an assessment of biomarkers and psychosocial risk factors at play in Mississippi. Ann Pediatr Endocrinol Metab 2024; 29:234-241. [PMID: 38853577 PMCID: PMC11374513 DOI: 10.6065/apem.2346182.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/12/2023] [Indexed: 06/11/2024] Open
Abstract
PURPOSE The coronavirus disease 2019 (COVID-19) pandemic has led to an association between COVID-19 and pediatric diabetes. Studies have indicated the increased likelihood of children with COVID-19 infection developing diabetes. Our objective was to assess not only the increase in pediatric diabetes at our hospital and identify possible risk factors, but also to correlate the psychosocial changes resulting from the pandemic with new-onset diabetes. METHODS We analyzed data from 58 children aged 1 to 18 years admitted to our hospital with new-onset diabetes between March 2020 and December 2021. The data included inflammatory biomarkers and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies (Abs), as well as the results of a lifestyle questionnaire. RESULTS The average number of hospital admissions per month for new-onset diabetes increased from 10 to 18 with the start of the pandemic. Of the 58 children in our analysis, 33% had positive SARS-CoV-2 IgG Ab, 31% had type 1 diabetes mellitus, and 62% had type 2 diabetes mellitus (T2DM). More than half (54%) were experiencing diabetic ketoacidosis. Those with T2DM were older, majority African American, had higher median body mass index (BMI) percentiles, and lower vitamin D levels. There were no significant correlations between any psychosocial risk factors and either diabetes type or SARS-CoV2 Ab status. CONCLUSION Despite the increased incidence of new-onset diabetes among children in Mississippi during the pandemic, this study was unable to demonstrate a significant correlation between COVID-19 infection and new-onset diabetes. The findings of this study highlighted the correlation between increased BMI and type 2 diabetes, underscoring the significant problems of obesity and diabetes in our study region. Further research is warranted.
Collapse
Affiliation(s)
- Josephine Stout
- Arkansas Children's Hospital, Little Rock, AR, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Naznin Dixit
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Simeen Pasha
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Anju Sukumaran
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - Padma Garg
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | - John T Bates
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Fariha Kamran
- University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
8
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
9
|
Quarleri J, Delpino MV. The interplay of aging, adipose tissue, and COVID-19: a potent alliance with implications for health. GeroScience 2024; 46:2915-2932. [PMID: 38191833 PMCID: PMC11009220 DOI: 10.1007/s11357-023-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
Obesity has emerged as a significant public health challenge. With the ongoing increase in life expectancy, the prevalence of obesity is steadily growing, particularly among older age demographics. The extension of life expectancy frequently results in additional years of vulnerability to chronic health issues associated with obesity in the elderly.The concept of SARS-CoV-2 directly infecting adipose tissue stems from the fact that both adipocytes and stromal vascular fraction cells express ACE2, the primary receptor facilitating SARS-CoV-2 entry. It is noteworthy that adipose tissue demonstrates ACE2 expression levels similar to those found in the lungs within the same individual. Additionally, ACE2 expression in the adipose tissue of obese individuals surpasses that in non-obese counterparts. Viral attachment to ACE2 has the potential to disturb the equilibrium of renin-angiotensin system homeostasis, leading to an exacerbated inflammatory response.Consequently, adipose tissue has been investigated as a potential site for active SARS-CoV-2 infection, suggesting its plausible role in virus persistence and contribution to both acute and long-term consequences associated with COVID-19.This review is dedicated to presenting current evidence concerning the presence of SARS-CoV-2 in the adipose tissue of elderly individuals infected with the virus. Both obesity and aging are circumstances that contribute to severe health challenges, heightening the risk of disease and mortality. We will particularly focus on examining the mechanisms implicated in the long-term consequences, with the intention of providing insights into potential strategies for mitigating the aftermath of the disease.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Paraguay 2155, Piso 11, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Paraguay 2155, Piso 11, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Ismaiel A, Birkhahn L, Leucuta DC, Al Srouji N, Popa SL, Dumitrascu DL. Are adipokines related to COVID-19 and its severity? A systematic review and meta-analysis. Med Pharm Rep 2024; 97:120-131. [PMID: 38746027 PMCID: PMC11090279 DOI: 10.15386/mpr-2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 06/15/2023] [Indexed: 05/16/2024] Open
Abstract
Introduction The relationship between several adipokines and COVID-19 severity has lately been evaluated, results being inconclusive. Therefore, we aimed to assess the association between adipokines in COVID-19 and its severity. Methods A search was performed in PubMed, Scopus, and Embase using predefined keywords. The Newcastle of Ottawa Scale (NOS) was used for the quality assessment of included studies. The main summary outcome was the mean difference (MD) in adipokine levels. Results A total of 8 studies involving 473 individuals were included. A significant MD in serum adiponectin levels was demonstrated in mild vs. severe COVID-19 patients (-5.734 [95% CI -11.215 - -0.252]), with no significant MD in mild vs. moderate (-7.117 [95% CI -19.546 - 5.313]), or moderate vs. severe COVID-19 (-1.846 [95% CI -4.516 - 0.824]). Moreover, no significant MD was found in adiponectin and leptin levels when comparing COVID-19 patients vs. controls (-12.675 [95% CI -36.159 - 10.808]) and (8.034 [95% CI -10.403 - 26.471]), respectively. Conclusion Adiponectin levels were significantly increased in patients with severe compared to mild COVID-19. However, no significant MD was found in adiponectin levels in mild vs. moderate and moderate vs. severe COVID-19 patients, nor in adiponectin and leptin levels in COVID-19 patients vs. controls.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Louis Birkhahn
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nahlah Al Srouji
- Leon Daniello Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
13
|
Yoon SS, Lim Y, Jeong S, Han HW. Association of weight changes with SARS-CoV-2 infection and severe COVID-19 outcomes: A nationwide retrospective cohort study. J Infect Public Health 2023; 16:1918-1924. [PMID: 37871359 DOI: 10.1016/j.jiph.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for COVID-19. However, it is unknown whether weight changes can alter this risk. We investigated the association of weight changes with SARS-CoV-2 infection and acute severe COVID-19 outcomes occurring within two months of the infection. METHODS We used 6.3 million nationwide cohort. The body weight was classified as follows: (1) underweight, body mass index (BMI) < 18.5 kg/m2; (2) normal, BMI 18.5-22.9 kg/m2; (3) overweight, BMI 23-24.9 kg/m2; (4) obese, BMI≥ 25 kg/m2. Weight changes were defined by comparing the classification of body weight during the health screening period I and II. The outcomes were SARS-CoV-2 infection and severe COVID-19 outcomes within two months after the infection. The association was evaluated using multivariable-adjusted logistic regression. The following covariates were adjusted: age, sex, household income, cigarette smoking, alcohol consumption, physical activity, hypertension, diabetes mellitus, dyslipidemia, Charlson comorbidity index score, and dose of all COVID-19 vaccinations prior to SARS-CoV-2 infection. RESULTS Of the 2119,460 study participants, 184,204 were infected with SARS-CoV-2. Weight gain showed a higher risk of SARS-CoV-2 infection in underweight to normal and normal to overweight groups. Conversely, weight loss showed a lower risk of SARS-CoV-2 infection in normal to underweight, overweight to underweight, overweight to normal, obese to normal, and obese to overweight groups. In addition, weight gain revealed a higher risk of severe COVID-19 outcomes, whereas weight loss showed a lower risk of severe COVID-19 outcomes. CONCLUSION This study found that weight loss and gain are associated with a lower and higher risk of both SARS-CoV-2 infection and severe COVID-19 outcomes, respectively. Healthy weight management may be beneficial against the risk of COVID-19.
Collapse
Affiliation(s)
- Sung Soo Yoon
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Yohwan Lim
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea.
| | - Hyun Wook Han
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea; Institute of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
14
|
Onyango TB, Zhou F, Bredholt G, Brokstad KA, Lartey S, Mohn KGI, Özgümüs T, Kittang BR, Linchausen DW, Shafiani S, Elyanow R, Blomberg B, Langeland N, Cox RJ. SARS-CoV-2 specific immune responses in overweight and obese COVID-19 patients. Front Immunol 2023; 14:1287388. [PMID: 38022529 PMCID: PMC10653322 DOI: 10.3389/fimmu.2023.1287388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a known risk factor for severe respiratory tract infections. In this prospective study, we assessed the impact of being obese or overweight on longitudinal SARS-CoV-2 humoral and cellular responses up to 18 months after infection. 274 patients provided blood samples at regular time intervals up to 18 months including obese (BMI ≥30, n=32), overweight (BMI 25-29.9, n=103) and normal body weight (BMI 18.5-24.9, n=134) SARS-CoV-2 patients. We determined SARS-CoV-2 spike-specific IgG, IgA, IgM levels by ELISA and neutralising antibody titres by neutralisation assay. RBD- and spike-specific memory B cells were investigated by ELISpot, spike- and non-spike-specific IFN-γ, IL-2 and IFN-γ/IL-2 secreting T cells by FluoroSpot and T cell receptor (TCR) sequencing was performed. Higher BMI correlated with increased COVID-19 severity. Humoral and cellular responses were stronger in overweight and obese patients than normal weight patients and associated with higher spike-specific IgG binding titres relative to neutralising antibody titres. Linear regression models demonstrated that BMI, age and COVID-19 severity correlated independently with higher SARS-CoV-2 immune responses. We found an increased proportion of unique SARS-CoV-2 specific T cell clonotypes after infection in overweight and obese patients. COVID-19 vaccination boosted humoral and cellular responses irrespective of BMI, although stronger immune boosting was observed in normal weight patients. Overall, our results highlight more severe disease and an over-reactivity of the immune system in overweight and obese patients after SARS-CoV-2 infection, underscoring the importance of recognizing overweight/obese individuals as a risk group for prioritisation for COVID-19 vaccination.
Collapse
Affiliation(s)
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl A. Brokstad
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Sarah Lartey
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin G.-I. Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Türküler Özgümüs
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | | | | | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Perakakis N, Harb H, Hale BG, Varga Z, Steenblock C, Kanczkowski W, Alexaki VI, Ludwig B, Mirtschink P, Solimena M, Toepfner N, Zeissig S, Gado M, Abela IA, Beuschlein F, Spinas GA, Cavelti-Weder C, Gerber PA, Huber M, Trkola A, Puhan MA, Wong WWL, Linkermann A, Mohan V, Lehnert H, Nawroth P, Chavakis T, Mingrone G, Wolfrum C, Zinkernagel AS, Bornstein SR. Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. Lancet Diabetes Endocrinol 2023; 11:675-693. [PMID: 37524103 DOI: 10.1016/s2213-8587(23)00154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023]
Abstract
Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hani Harb
- Medical Microbiology and Virology, Technische Universität Dresden, Dresden 01307, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University of Zürich, Zürich, Switzerland
| | - Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter Mirtschink
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Department of Molecular Diabetology, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Technische Universität Dresden, Dresden 01307, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Manuel Gado
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Irene Alma Abela
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Claudia Cavelti-Weder
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Wendy Wei-Lynn Wong
- and Department of Molecular Life Science, University of Zürich, Zürich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, Tamil Nadu, India
| | - Hendrik Lehnert
- Presidential Office, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Peter Nawroth
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
17
|
Boicean LC, Birlutiu RM, Birlutiu V. Correlations between serum leptin levels and classical biomarkers in SARS-CoV-2 infection, in critically ill patients. Microb Pathog 2023; 182:106238. [PMID: 37419217 DOI: 10.1016/j.micpath.2023.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Altered levels of some blood markers might be linked with the degree of severity and mortality of patients with SARS-CoV-2 infection. This study aimed to find out if there are correlations between serum leptin levels and classical biomarkers. MATERIALS AND METHODS We present a single-center observational cohort study on SARS-CoV-2 infected patients. The study was conducted at Infectious Diseases Clinic of Academic Emergency Hospital Sibiu, from May through November 2020. In this study, we retrospectively analyzed 54 patients, all with confirmed SARS-CoV-2 infection. RESULTS Our results revealed that there is a negative correlation between serum leptin and Interleukin-6 levels and a positive correlation between serum leptin and blood glucose levels. A positive correlation between ferritin and lactate dehydrogenase levels was also observed. No correlation was found between leptin and other biomarkers such as ferritin, neutrophil/lymphocyte ratio, lactate dehydrogenase, C-reactive protein, fibrinogen, erythrocyte sedimentation rate, or D-dimer. CONCLUSIONS Further studies need to be conducted to investigate the role of leptin in SARS-CoV-2 infection. The results of this research could contribute to the introduction of the determination of serum leptin levels in the routine evaluation of patients with critical illness.
Collapse
Affiliation(s)
- Loredana Camelia Boicean
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania.
| | | | - Victoria Birlutiu
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania
| |
Collapse
|
18
|
D'Elia L, Masulli M, Iacone R, Russo O, Strazzullo P, Galletti F. Relationship between leptin and white blood cells: a potential role in infection susceptibility and severity-the Olivetti Heart Study. Intern Emerg Med 2023; 18:1429-1436. [PMID: 37217748 PMCID: PMC10202358 DOI: 10.1007/s11739-023-03313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
A number of evidence showed an emerging role of leptin on immune system, involving inflammation, and innate and adaptive immunity. Few observational studies have evaluated the relationship between leptin and immunity, albeit with low statistical power and methodological differences. Therefore, the aim of this study was to evaluate the potential role of leptin on the immunity, expressed as white blood cells (WBC)-and its subpopulations, by comprehensive multivariate models in a sample of adult men. A cross-sectional evaluation of a general population comprised 939 subjects participating in the Olivetti Heart Study, with available leptin levels and WBC-and its subpopulations. WBC were significantly and positively associated with leptin, C-reactive protein and HOMA index (p < 0.05), but not with age and anthropometric indices (p > 0.05). The multivariate analysis confirmed the association between leptin and WBC, after accounting for main confounders (p < 0.05). Additional analysis on WBC subpopulations showed a positive and significant correlation between leptin and lymphocytes, monocytes and eosinophils (p < 0.05), but not with neutrophils and basophils (p > 0.05). After stratification by body weight, the positive and significant association between leptin and WBC-and its subpopulations-was found in excess body weight participants. The results of this study indicate a direct relationship between leptin levels and WBC-and its subpopulations-in excess body weight participants. These results support the hypothesis that leptin has modulatory functions on immunity and role in the pathophysiology of immune-related diseases, in particular in those associated with excess body weight.
Collapse
Affiliation(s)
- Lanfranco D'Elia
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy.
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy
| | - Roberto Iacone
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy
| | - Ornella Russo
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy
| | - Ferruccio Galletti
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
19
|
Badenes Bonet D, Caguana Vélez OA, Duran Jordà X, Comas Serrano M, Posso Rivera M, Admetlló M, Herranz Blasco A, Cuadrado Godia E, Marco Navarro E, Martin Ezquerra G, Pineiro Aguin Z, Cumpli Gargallo MC, Gonzalez Garcia JG, Balcells Vilarnau E, Rodriguez Chiaradia D, Castells X, Gea J, Horcajada JP, Villar-García J. Treatment of COVID-19 during the Acute Phase in Hospitalized Patients Decreases Post-Acute Sequelae of COVID-19. J Clin Med 2023; 12:4158. [PMID: 37373850 PMCID: PMC10299438 DOI: 10.3390/jcm12124158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The post-acute sequelae of SARS-CoV-2 (PASC) infection have caused a significant impact on our health system, but there is limited evidence of approved drugs focused on its prevention. Our objective was to identify risk factors that can determine the presence of PASC, with special attention to the treatment received in the acute phase, and to describe the profile of persistent symptoms in a multidisciplinary Post-Coronavirus Disease-19 (COVID-19) Unit. METHODS This one-year prospective observational study included patients following an acute COVID-19 infection, irrespective of whether they required hospital admission. A standardized symptom questionnaire and blood sampling were performed at the first follow-up visit, and demographic and clinical electronic data were collected. We compared subjects with PASC with those who had fully recovered. Multivariate logistic regression was performed to identify factors associated with PASC in hospitalized patients, and Kaplan-Meier curves were used to assess duration of symptoms according to disease severity and treatments received in the acute phase. RESULTS 1966 patients were evaluated; 1081 had mild disease, 542 moderate and 343 severe; around one third of the subjects had PASC, and were more frequently female, with obesity, asthma, and eosinophilia during acute COVID-19 disease. Patients who received treatment with dexamethasone and remdesivir during the course of the acute illness showed a lower median duration of symptoms, compared with those who received none of these treatments. CONCLUSION Treatment with dexamethasone and/or remdesivir may be useful to reduce the impact of PASC secondary to SARS-CoV-2 infection. In addition, we identified female gender, obesity, asthma, and disease severity as risk factors for having PASC.
Collapse
Affiliation(s)
- Diana Badenes Bonet
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Oswaldo Antonio Caguana Vélez
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Xavier Duran Jordà
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Assessoria Metodològica i Bioestadística (AMIB), 08003 Barcelona, Spain
| | - Merce Comas Serrano
- Epidemiology and Evaluation Department, Hospital del Mar, REDISSEC, RICAPPS, 08003 Barcelona, Spain; (M.C.S.); (M.P.R.); (X.C.)
| | - Margarita Posso Rivera
- Epidemiology and Evaluation Department, Hospital del Mar, REDISSEC, RICAPPS, 08003 Barcelona, Spain; (M.C.S.); (M.P.R.); (X.C.)
| | - Mireia Admetlló
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
| | - Anna Herranz Blasco
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
| | | | - Ester Marco Navarro
- Physical Medicine and Rehabilitation Department, Hospital del Mar, 08003 Barcelona, Spain;
| | | | - Zenaida Pineiro Aguin
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Otorrinolaringology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Maria Cinta Cumpli Gargallo
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
| | - Jose Gregorio Gonzalez Garcia
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Eva Balcells Vilarnau
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias, (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Diego Rodriguez Chiaradia
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias, (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Castells
- Epidemiology and Evaluation Department, Hospital del Mar, REDISSEC, RICAPPS, 08003 Barcelona, Spain; (M.C.S.); (M.P.R.); (X.C.)
| | - Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar, 08003 Barcelona, Spain; (D.B.B.); (O.A.C.V.); (M.A.); (A.H.B.); (M.C.C.G.); (J.G.G.G.); (E.B.V.); (D.R.C.); (J.G.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias, (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Juan P. Horcajada
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias, (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Infectious Diseases Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Judit Villar-García
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (Z.P.A.); (J.P.H.)
- Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- Infectious Diseases Department, Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
20
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
21
|
Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine 2023; 80:477-490. [PMID: 37103684 PMCID: PMC10133915 DOI: 10.1007/s12020-023-03337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
Evidence has shown that cardiometabolic disorders (CMDs) are amongst the top contributors to COVID-19 infection morbidity and mortality. The reciprocal impact of COVID-19 infection and the most common CMDs, the risk factors for poor composite outcome among patients with one or several underlying diseases, the effect of common medical management on CMDs and their safety in the context of acute COVID-19 infection are reviewed. Later on, the changes brought by the COVID-19 pandemic quarantine on the general population's lifestyle (diet, exercise patterns) and metabolic health, acute cardiac complications of different COVID-19 vaccines and the effect of CMDs on the vaccine efficacy are discussed. Our review identified that the incidence of COVID-19 infection is higher among patients with underlying CMDs such as hypertension, diabetes, obesity and cardiovascular disease. Also, CMDs increase the risk of COVID-19 infection progression to severe disease phenotypes (e.g. hospital and/or ICU admission, use of mechanical ventilation). Lifestyle modification during COVID-19 era had a great impact on inducing and worsening of CMDs. Finally, the lower efficacy of COVID-19 vaccines was found in patients with metabolic disease.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Medicine, Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arezoo Behbood
- MPH department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Maryam Ranjbar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Rahimian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Anand Prasad
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
22
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
23
|
Rajamanickam A, Venkataraman A, Kumar NP, Sasidaran R, Pandiarajan AN, Selvaraj N, Mittal R, Gowshika K, Putlibai S, Lakshan Raj S, Ramanan PV, Babu S. Alterations of adipokines, pancreatic hormones and incretins in acute and convalescent COVID-19 children. BMC Pediatr 2023; 23:156. [PMID: 37013538 PMCID: PMC10068212 DOI: 10.1186/s12887-023-03971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), accountable for Coronavirus disease 2019 (COVID-19), may cause hyperglycemia and additional systemic complexity in metabolic parameters. It is unsure even if the virus itself causes type 1 or type 2 diabetes mellitus (T1DM or T2DM). Furthermore, it is still unclear whether even recuperating COVID-19 individuals have an increased chance to develop new-onset diabetes. METHODS We wanted to determine the impact of COVID-19 on the levels of adipokines, pancreatic hormones, incretins and cytokines in acute COVID-19, convalescent COVID-19 and control children through an observational study. We performed a multiplex immune assay analysis and compared the plasma levels of adipocytokines, pancreatic hormones, incretins and cytokines of children presenting with acute COVID-19 infection and convalescent COVID-19. RESULTS Acute COVID-19 children had significantly elevated levels of adipsin, leptin, insulin, C-peptide, glucagon and ghrelin in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had elevated levels of adipsin, leptin, insulin, C-peptide, glucagon, ghrelin and Glucagon-like peptide-1 (GLP-1) in comparison to control children. On the other hand, acute COVID-19 children had significantly decreased levels of adiponectin and Gastric Inhibitory Peptide (GIP) in comparison to convalescent COVID-19 and controls. Similarly, convalescent COVID-19 children had decreased levels of adiponectin and GIP in comparison to control children. Acute COVID-19 children had significantly elevated levels of cytokines, (Interferon (IFN)) IFNγ, Interleukins (IL)-2, TNFα, IL-1α, IL-1β, IFNα, IFNβ, IL-6, IL-12, IL-17A and Granulocyte-Colony Stimulating Factors (G-CSF) in comparison to convalescent COVID-19 and controls. Convalescent COVID-19 children had elevated levels of IFNγ, IL-2, TNFα, IL-1α, IL-1β, IFNα, IFNβ, IL-6, IL-12, IL-17A and G-CSF in comparison to control children. Additionally, Principal component Analysis (PCA) analysis distinguishes acute COVID-19 from convalescent COVID-19 and controls. The adipokines exhibited a significant correlation with the levels of pro-inflammatory cytokines. CONCLUSION Children with acute COVID-19 show significant glycometabolic impairment and exaggerated cytokine responses, which is different from convalescent COVID-19 infection and controls.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India.
| | | | | | - R Sasidaran
- Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | - Arul Nancy Pandiarajan
- National Institutes of Health-National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India
| | - Nandhini Selvaraj
- National Institutes of Health-National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India
| | - Ruchi Mittal
- Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | - K Gowshika
- Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | | | - S Lakshan Raj
- Kanchi Kamakoti CHILDS Trust Hospital, Chennai, India
| | | | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
de Nooijer AH, Kooistra EJ, Grondman I, Janssen NAF, Joosten LAB, van de Veerdonk FL, Kox M, Pickkers P, Netea MG. Adipocytokine plasma concentrations reflect influence of inflammation but not body mass index (BMI) on clinical outcomes of COVID-19 patients: A prospective observational study from the Netherlands. Clin Obes 2023; 13:e12568. [PMID: 36426776 DOI: 10.1111/cob.12568] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
Obesity is recognized as a risk factor for adverse outcome in COVID-19, but the molecular mechanisms underlying this relationship remain unknown. Adipose tissue functions as an endocrine organ by secreting multiple pro-inflammatory and anti-inflammatory factors, known as adipocytokines, which could be involved in COVID-19 severity. We explored the role of adipocytokines in COVID-19 and its association with BMI, clinical outcome, and inflammation. This is an observational study in 195 hospitalized COVID-19 patients. Serial plasma concentrations of the adipocytokines leptin, adiponectin, resistin, and various inflammatory cytokines were assessed. Adipocytokines were compared between patients with normal weight (BMI: 18.5-24.9 kg/m2 ), overweight (BMI: 25.0-29.9 kg/m2 ), and obesity (BMI ≥ 30 kg/m2 ), between patients admitted to the ICU and to non-ICU clinical wards, and between survivors and non-survivors. Patients with overweight and obesity displayed higher leptin concentrations and lower adiponectin concentrations throughout hospital admission (p < .001), whereas resistin concentrations were not different from patients with normal weight (p = .12). Resistin concentrations correlated with inflammatory markers and were persistently higher in ICU patients and non-survivors compared to non-ICU patients and survivors, respectively (both p < .001), whereas no such relationships were found for the other adipocytokines. In conclusion, leptin and adiponectin are associated with BMI, but not with clinical outcomes and inflammation in COVID-19 patients. In contrast, resistin is not associated with BMI, but high concentrations are associated with worse clinical outcomes and more pronounced inflammation. Therefore, it is unlikely that BMI-related adipocytokines or differences in the inflammatory response underlie obesity as a risk factor for severe COVID-19.
Collapse
Affiliation(s)
- Aline H de Nooijer
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge Grondman
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico A F Janssen
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de Goiás, Brazil
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Germany
| |
Collapse
|
25
|
Lulli LG, Baldassarre A, Chiarelli A, Mariniello A, Paolini D, Grazzini M, Mucci N, Arcangeli G. Physical Impact of SARS-CoV-2 Infection in a Population of Italian Healthcare Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4506. [PMID: 36901516 PMCID: PMC10002388 DOI: 10.3390/ijerph20054506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 infection often causes symptoms and illness that can last for months after the acute phase, i.e., so-called "Long COVID" or Post-acute COVID-19. Due to the high prevalence of SARS-CoV-2 infection among Healthcare Workers (HCWs), post-COVID-19 symptoms can be common and threaten workers' occupational health and healthcare systems' functioning. The aim of this cross-sectional, observational study was to present data related to post-COVID-19 outcomes in a population of HCWs infected by COVID-19 from October 2020 to April 2021, and to identify possible factors associated with the persistence of illness, such as gender, age, previous medical conditions, and features of acute illness. A total of 318 HCWs who had become infected by COVID-19 were examined and interviewed approximately two months after their recovery from the infection. The clinical examinations were performed by Occupational Physicians in accordance with a specific protocol at the Occupational Medicine Unit of a tertiary hospital in Italy. The mean age of the participants was 45 years old, and 66.7% of the workers were women while 33.3% were men; the sample mainly consisted of nurses (44.7%). During the medical examination, more than half of the workers mentioned that they had experienced multiple residual bouts of illness after the acute phase of infection. Men and women were similarly affected. The most reported symptom was fatigue (32.1%), followed by musculoskeletal pain (13.6%) and dyspnea (13.2%). In the multivariate analysis, dyspnea (p < 0.001) and fatigue (p < 0.001) during the acute stage of illness and the presence of any limitation in working activities, in the context of fitness for a work evaluation performed while the occupational medicine surveillance program was being conducted (p = 0.025), were independently associated with any post-COVID-19 symptoms, which were considered final outcomes. The main post-COVID-19 symptoms-dyspnea, fatigue, and musculoskeletal pain-showed significant associations with dyspnea, fatigue, and musculoskeletal pain experienced during the acute stage of infection, with the presence of limitations in working activities, and pre-existing pneumological diseases. A normal weight according to body mass index was a protective factor. The identification of vulnerable workers as those with limitations in working activities, pneumological diseases, a high BMI, and of an older age and the implementation of preventive measures are key factors for preserving Occupational Health. Fitness-to-work evaluations performed by Occupational Physicians can be considered a complex index of overall health and functionality that can identify workers who may suffer from relevant post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Lucrezia Ginevra Lulli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonio Baldassarre
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | | | - Diana Paolini
- Health Direction, Careggi University Hospital, 50134 Florence, Italy
| | | | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
26
|
Shah NM, Kaltsakas G. Respiratory complications of obesity: from early changes to respiratory failure. Breathe (Sheff) 2023. [DOI: 10.1183/20734735.0263-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Obesity is a significant and increasingly common cause of respiratory compromise. It causes a decrease in static and dynamic pulmonary volumes. The expiratory reserve volume is one of the first to be affected. Obesity is associated with reduced airflow, increased airway hyperresponsiveness, and an increased risk of developing pulmonary hypertension, pulmonary embolism, respiratory tract infections, obstructive sleep apnoea and obesity hypoventilation syndrome. The physiological changes caused by obesity will eventually lead to hypoxic or hypercapnic respiratory failure. The pathophysiology of these changes includes a physical load of adipose tissue on the respiratory system and a systemic inflammatory state. Weight loss has clear, well-defined benefits in improving respiratory and airway physiology in obese individuals.
Collapse
|
27
|
Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24021131. [PMID: 36674646 PMCID: PMC9861572 DOI: 10.3390/ijms24021131] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Obesity, through adipose tissue (AT) inflammation and dysregulation, represents a critical factor for COVID-19; here, we investigated whether serum levels of adiponectin, HMW oligomers, leptin, and resistin are modulated and/or correlated with clinical and biochemical parameters of severe COVID-19 patients. This study included 62 severe COVID-19 patients; 62 age and sex-matched healthy subjects were recruited as a control group. Anthropometric and biochemical parameters were obtained and compared. Adiponectin, HMW oligomers, leptin, and resistin were analyzed by ELISA. The adiponectin oligomerization state was visualized by Western blotting. When compared to healthy subjects, total adiponectin levels were statistically lower in severe COVID-19 while, in contrast, the levels of leptin and resistin were statistically higher. Interestingly, HMW adiponectin oligomers negatively correlated with leptin and were positively associated with LUS scores. Resistin showed a positive association with IL-6, IL-2R, and KL-6. Our data strongly support that adipose tissue might play a functional role in COVID-19. Although it needs to be confirmed in larger cohorts, adiponectin HMW oligomers might represent a laboratory resource to predict patient seriousness. Whether adipokines can be integrated as a potential additional tool in the evolving landscape of biomarkers for the COVID-19 disease is still a matter of debate. Other studies are needed to understand the molecular mechanisms behind adipokine's involvement in COVID-19.
Collapse
|
28
|
Flikweert AW, Kobold ACM, van der Sar-van der Brugge S, Heeringa P, Rodenhuis-Zybert IA, Bijzet J, Tami A, van der Gun BTF, Wold KI, Huckriede A, Franke H, Emmen JMA, Emous M, Grootenboers MJJH, van Meurs M, van der Voort PHJ, Moser J. Circulating adipokine levels and COVID-19 severity in hospitalized patients. Int J Obes (Lond) 2023; 47:126-137. [PMID: 36509969 PMCID: PMC9742670 DOI: 10.1038/s41366-022-01246-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a risk factor for adverse outcomes in COVID-19, potentially driven by chronic inflammatory state due to dysregulated secretion of adipokines and cytokines. We investigated the association between plasma adipokines and COVID-19 severity, systemic inflammation, clinical parameters, and outcome of COVID-19 patients. METHODS In this multi-centre prospective cross-sectional study, we collected blood samples and clinical data from COVID-19 patients. The severity of COVID-19 was classified as mild (no hospital admission), severe (ward admission), and critical (ICU admission). ICU non-COVID-19 patients were also included and plasma from healthy age, sex, and BMI-matched individuals obtained from Lifelines. Multi-analyte profiling of plasma adipokines (Leptin, Adiponectin, Resistin, Visfatin) and inflammatory markers (IL-6, TNFα, IL-10) were determined using Luminex multiplex assays. RESULTS Between March and December 2020, 260 SARS-CoV-2 infected individuals (age: 65 [56-74] BMI 27.0 [24.4-30.6]) were included: 30 mild, 159 severe, and 71 critical patients. Circulating leptin levels were reduced in critically ill patients with a high BMI yet this decrease was absent in patients that were administered dexamethasone. Visfatin levels were higher in critical COVID-19 patients compared to non-COVID-ICU, mild and severe patients (4.7 vs 3.4, 3.0, and 3.72 ng/mL respectively, p < 0.05). Lower Adiponectin levels, but higher Resistin levels were found in severe and critical patients, compared to those that did not require hospitalization (3.65, 2.7 vs 7.9 µg/mL, p < 0.001, and 18.2, 22.0 vs 11.0 ng/mL p < 0.001). CONCLUSION Circulating adipokine levels are associated with COVID-19 hospitalization, i.e., the need for oxygen support (general ward), or the need for mechanical ventilation and other organ support in the ICU, but not mortality.
Collapse
Affiliation(s)
- Antine W. Flikweert
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.413711.10000 0004 4687 1426Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
| | - Anneke C. Muller Kobold
- grid.4494.d0000 0000 9558 4598Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Peter Heeringa
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- grid.4494.d0000 0000 9558 4598Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriana Tami
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernardina T. F. van der Gun
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin I. Wold
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hildegard Franke
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. A. Emmen
- grid.413711.10000 0004 4687 1426Result Laboratory, Amphia Hospital, Breda, The Netherlands
| | - Marloes Emous
- grid.414846.b0000 0004 0419 3743Center Obesity Northern Netherlands (CON), Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | | | - Matijs van Meurs
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H. J. van der Voort
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
29
|
Haghighat N, Foroutan H, Hesameddini I, Amini M, Hosseini B, Moeinvaziri N, Hosseini SV, Kamran H. Impact of the COVID-19 Pandemic on the Success of Bariatric Surgeries in Patients with Severe Obesity. Obes Facts 2023; 16:82-88. [PMID: 36380632 PMCID: PMC9808887 DOI: 10.1159/000528082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION SARS-CoV-2 infection (COVID-19) pandemic may influence the weight outcomes of bariatric surgeries (BS). Here, we intended to compare the weight outcome of patients who underwent BS before and during the pandemic time. METHODS In a retrospective, single-center study, the information of two groups of patients; first COVID-19 group (n = 51) consisted of those that underwent BS during the pandemic and completed a year of follow-up, second non-COVID-19 group included 50 patients who underwent BS and were followed up before the pandemic. All the patients' anthropometric and obesity-related disease data were compared between groups. RESULTS Weight loss and the decrease of body mass index 1 year after the surgery, as well as excess weight loss and total weight loss, were significantly higher in the non-COVID-19 group compared to the COVID-19 group (p < 0.05). Although the rate of remission for diabetes mellitus, hypertension, and dyslipidemia was higher in the non-COVID-19 group, the differences were not statistically significant (p > 0.05). CONCLUSION We showed a significantly poorer weight outcome at the 1-year follow-up of the BS during the pandemic compared to the pre-pandemic. These results need further investigations to determine the preventive measures and management by evaluating the associated factors.
Collapse
Affiliation(s)
- Neda Haghighat
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Foroutan
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Hesameddini
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Amini
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Hosseini
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Moeinvaziri
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hooman Kamran
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- *Hooman Kamran,
| |
Collapse
|
30
|
Pulido Perez P, Póndigo de los Angeles JA, Perez Peralta A, Ramirez Mojica E, Torres Rasgado E, Hernandez-Hernandez ME, Romero JR. Reduction in Serum Magnesium Levels and Renal Function Are Associated with Increased Mortality in Obese COVID-19 Patients. Nutrients 2022; 14:nu14194054. [PMID: 36235704 PMCID: PMC9571102 DOI: 10.3390/nu14194054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies provide evidence that obesity is a significant risk factor for adverse outcomes in coronavirus disease 2019 (COVID-19). Altered renal function and disturbances in magnesium levels have been reported to play important pathophysiological roles in COVID-19. However, the relationship between obesity, renal function, circulating magnesium levels, and mortality in patients with COVID-19 remains unclear. In this retrospective cohort study, we characterized 390 hospitalized patients with COVID-19 that were categorized according to their body mass index (BMI). Patients were clinically characterized and biochemical parameters, renal function, and electrolyte markers measured upon admission. We found that in patients who died, BMI was associated with reduced estimated glomerular filtration rate (eGFR, Rho: −0.251, p = 0.001) and serum magnesium levels (Rho: −0.308, p < 0.0001). Multiple linear regression analyses showed that death was significantly associated with obesity (p = 0.001). The Cox model for obese patients showed that magnesium levels were associated with increased risk of death (hazard ratio: 0.213, 95% confidence interval: 0.077 to 0.586, p = 0.003). Thus, reduced renal function and lower magnesium levels were associated with increased mortality in obese COVID-19 patients. These results suggest that assessment of kidney function, including magnesium levels, may assist in developing effective treatment strategies to reduce mortality among obese COVID-19 patients.
Collapse
Affiliation(s)
- Patricia Pulido Perez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
| | | | - Alonso Perez Peralta
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Eloisa Ramirez Mojica
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Enrique Torres Rasgado
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500; Fax: +52-(222)-240-5032
| | - Maria Elena Hernandez-Hernandez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Doctorate in Biological Science, Autonomous University of Tlaxcala, La Loma Xicohtencatl, Tlaxcala 90070, Mexico
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
31
|
Presti EL, Nuzzo D, Al Mahmeed W, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Firenze A, Galia M, Goh SY, Janez A, Kalra S, Kapoor N, Kempler P, Lessan N, Lotufo P, Papanas N, Rizvi AA, Sahebkar A, Santos RD, Stoian AP, Toth PP, Viswanathan V, Rizzo M. Molecular and pro-inflammatory aspects of COVID-19: The impact on cardiometabolic health. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166559. [PMID: 36174875 PMCID: PMC9510069 DOI: 10.1016/j.bbadis.2022.166559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022]
Abstract
Obesity, type 2 diabetes (T2DM), hypertension (HTN), and Cardiovascular Disease (CVD) often cluster together as “Cardiometabolic Disease” (CMD). Just under 50% of patients with CMD increased the risk of morbidity and mortality right from the beginning of the COVID-19 pandemic as it has been reported in most countries affected by the SARS-CoV2 virus. One of the pathophysiological hallmarks of COVID-19 is the overactivation of the immune system with a prominent IL-6 response, resulting in severe and systemic damage involving also cytokines such as IL2, IL4, IL8, IL10, and interferon-gamma were considered strong predictors of COVID-19 severity. Thus, in this mini-review, we try to describe the inflammatory state, the alteration of the adipokine profile, and cytokine production in the obese state of infected and not infected patients by SARS-CoV2 with the final aim to find possible influences of COVID-19 on CMD and CVD. The immunological-based discussion of the molecular processes could inspire the study of promising targets for managing CMD patients and its complications during COVID-19.
Collapse
Affiliation(s)
- Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | | | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, Ankara, Turkey
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, Sweden
| | - Alberto Firenze
- Unit of Research and International Cooperation, University Hospital of Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, Italy
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Slovenia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital & BRIDE, Karnal, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, Brazil
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Anca P Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy.
| | | |
Collapse
|
32
|
Factors of Obesity and Metabolically Healthy Obesity in Asia. Medicina (B Aires) 2022; 58:medicina58091271. [PMID: 36143948 PMCID: PMC9500686 DOI: 10.3390/medicina58091271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The East Asian region (China, Japan, and South Korea) is comprised of almost 1.5 billion people and recent industrialization has brought with it a pandemic of rising obesity, even in children. As these countries are rapidly aging and functioning at sub-replacement birthrates, the burgeoning costs of obesity-related care may threaten socialized healthcare systems and quality of life. However, a condition called metabolically healthy obesity (MHO) has been found to be without immediate cardiopulmonary or diabetic risk. Thus, maintenance of the MHO condition for the obese in East Asia could buffer the burden of long-term obesity care on medical systems and knowledge of the biochemical, genetic, and physiological milieu associated with it could also provide new targets for intervention. Diverse physiological, psychological, environmental, and social factors play a role in obesogenesis and the transition of MHO to a metabolically unhealthy obesity. This review will give a broad survey of the various causes of obesity and MHO, with special emphasis on the East Asian population and studies from that region.
Collapse
|
33
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has brought severe challenges to global public health. Many studies have shown that obesity plays a vital role in the occurrence and development of COVID-19. Obesity exacerbates COVID-19, leading to increased intensive care unit hospitalization rate, high demand for invasive mechanical ventilation, and high mortality. The mechanisms of interaction between obesity and COVID-19 involve inflammation, immune response, changes in pulmonary dynamics, disruptions of receptor ligands, and dysfunction of endothelial cells. Therefore, for obese patients with COVID-19, the degree of obesity and related comorbidities should be evaluated. Treatment methods such as administration of anticoagulants and anti-inflammatory drugs like glucocorticoids and airway management should be actively initiated. We should also pay attention to long-term prognosis and vaccine immunity and actively address the physical and psychological problems caused by longterm staying-at-home during the pandemic. The present study summarized the research to investigate the role of obesity in the incidence and progression of COVID-19 and the psychosocial impact and treatment options for obese patients with COVID-19, to guide the understanding and management of the disease.
Collapse
Affiliation(s)
- Sijia Fei
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China
- Graduate School of Peking Union Medical College, Beijing100730, China
| | - Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China
- Graduate School of Peking Union Medical College, Beijing100730, China
| | - Jingyi Luo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China
- Graduate School of Peking Union Medical College, Beijing100730, China
| |
Collapse
|
34
|
Azghar A, Bensalah M, Berhili A, Slaoui M, Mouhoub B, El Mezgueldi I, Nassiri O, El Malki J, Maleb A, Seddik R. Value of hematological parameters for predicting patients with severe coronavirus disease 2019: a real-world cohort from Morocco. J Int Med Res 2022; 50:3000605221109381. [PMID: 35854474 PMCID: PMC9340338 DOI: 10.1177/03000605221109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute
respiratory syndrome coronavirus 2. The clinical manifestations and the
evolution of patients with COVID-19 are variable. In addition to respiratory
involvement, COVID-19 leads to systemic involvement and can affect the
hematopoietic system. This study aimed to evaluate the prognostic value of
hematological and hemocytometric parameters in predicting the severity of
patients with COVID-19. Methods We performed a retrospective study at Mohammed VI university Hospital from 1
March to 11 November 2020. We collected demographic characteristics and
hematological findings of incident COVID-19 cases. Results A total of 245 patients were included in our study. We found that the rate of
lymphopenia was significantly reduced in patients who were severely affected
by COVID-19. Additionally, the rate of neutrophilia, the neutrophil side
fluorescence light signal, monocyte fluorescent intensity, monocyte size,
the neutrophil-to-lymphocyte ratio, the platelet-to-lymphocyte ratio, and
the lymphocyte-to-monocyte ratio were significantly elevated in patients who
were severely affected by COVID-19. Conclusions These results are consistent with the literature regarding the predictive
value of these markers. A prospective validation in a large population with
a longer follow-up is required.
Collapse
Affiliation(s)
- Ali Azghar
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Mohammed Bensalah
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Abdelilah Berhili
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Mounia Slaoui
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Boutaina Mouhoub
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Imane El Mezgueldi
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Oumaima Nassiri
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Jalila El Malki
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Adil Maleb
- Microbiology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Rachid Seddik
- Hematology Laboratory, Mohammed VI University Hospital Center, Oujda, Morocco.,Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| |
Collapse
|
35
|
Behl T, Kumar S, Singh S, Bhatia S, Albarrati A, Albratty M, Meraya AM, Najmi A, Bungau S. Reviving the mutual impact of SARS-COV-2 and obesity on patients: From morbidity to mortality. Biomed Pharmacother 2022; 151:113178. [PMID: 35644117 PMCID: PMC9127128 DOI: 10.1016/j.biopha.2022.113178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
Obesity-related metabolic dysfunction, endothelium imbalance, chronic inflammation, immune dysregulation, and its comorbidities may all have a role in systemic inflammation, leading to the pulmonary fibrosis and cytokine storm, which leads to failure of lung function, which is a hallmark of severe SARS-CoV-2 infection. Obesity may also disrupt the function of mucociliary escalators and cooperation of epithelial cell's motile cilia in the airway, limiting the clearance of the coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2). Adipose tissues in obese patients have a greater number of proteases and receptors for SARS-CoV-2 admittance, proposing that they could serve as an accelerator and reservoir for this virus, boosting immunological response and systemic inflammation. Lastly, anti-inflammatory cytokines such as anti-IL-6 and the infusion of mesenchymal stem cells could be used as a modulation therapy of immunity to help COVID-19 patients. Obesity, on the other hand, is linked to the progress of COVID-19 through a variety of molecular pathways, and obese people are part of the SARS-CoV-2 susceptible individuals, necessitating more protective measures.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
36
|
Patel HM, Khandwala S, Somani P, Li Q, Tovar S, Montano A. Determining whether ethnic minorities with severe obesity face a disproportionate risk of serious disease and death from COVID-19: outcomes from a Southern California-based retrospective cohort study. BMJ Open 2022; 12:e059132. [PMID: 35768090 PMCID: PMC9243495 DOI: 10.1136/bmjopen-2021-059132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/10/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Obesity has been recognised as a risk factor for poor outcomes associated with COVID-19. Ethnic minorities with COVID-19 have been independently found to fare poorly. We aim to determine if ethnic minorities with severe obesity-defined as a body mass index (BMI) above 40 kg/m²-experience higher rates of hospitalisation, invasive ventilation and death. DESIGN AND SETTING Retrospective cohort study from 1 March 2020 to 28 February 2021 within an integrated healthcare organisation in Southern California. PARTICIPANTS We identified 373 831 patients by COVID-19 diagnosis code or positive laboratory test. METHODS Multivariable Poisson regression with robust error variance estimated adjusted risks of hospitalisation, invasive ventilator use and death within 30 days. Risks were stratified by ethnicity and BMI. RESULTS We identified multiple differences in risk of poor outcomes across BMI categories within individual ethnic groups. Hospitalisation risk with a BMI over 45 kg/m² was greater in Asian (RR 2.31, 95% CI 1.53 to 3.49; p<0.001), Hispanic (RR 3.22, 95% CI 2.99 to 3.48; p<0.001) and Pacific Islander (RR 3.79, 95% CI 2.49 to 5.75; p<0.001) patients compared with White (RR 2.04, 95% CI 1.79 to 2.33; p<0.001) and Black (RR 2.00, 95% CI 1.70 to 2.34; p<0.001) patients. A similar trend was observed with invasive ventilation risk. The risk of death was greater in Asian (RR 3.96, 95% CI 1.88 to 8.33; p<0.001), Hispanic (RR 3.03, 95% CI 2.53 to 3.61; p<0.001) and Pacific Islander (RR 4.60, 95% CI 1.42 to 14.92; p=0.011) patients compared with White (RR 1.47, 95% CI 1.13 to 1.91; p=0.005) and Black (RR 2.83, 95% CI 1.99 to 4.02; p<0.001) patients with a BMI over 45 kg/m². CONCLUSIONS Ethnic minorities with severe obesity, particularly Asian, Hispanic and Pacific Islander patients, had a statistically significant higher risk of hospitalisation, invasive ventilator use and death due to COVID-19. Potential explanations include differences in adipose tissue deposition, overall inflammation and ACE-2 receptor expression.
Collapse
Affiliation(s)
- Hemesh Mahesh Patel
- Family Medicine and Virtual Medicine, Southern California Permanente Medical Group, Huntington Beach, California, USA
| | - Shefali Khandwala
- Family Medicine, Southern California Permanente Medical Group, Anaheim, California, USA
| | - Poonam Somani
- Internal Medicine, Southern California Permanente Medical Group, Simi Valley, California, USA
| | - Qiaowu Li
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Stephanie Tovar
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Alejandra Montano
- Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
37
|
ter Ellen BM, Niewold J, Flikweert A, Muller Kobold AC, Heeringa P, van Meurs M, Smit JM, van der Voort PHJ, Rodenhuis-Zybert IA, Moser J. Mediators of Obesity Do Not Influence SARS-CoV-2 Infection or Activation of Primary Human Lung Microvascular Endothelial Cells In Vitro. Front Immunol 2022; 13:879033. [PMID: 35837388 PMCID: PMC9273911 DOI: 10.3389/fimmu.2022.879033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.
Collapse
Affiliation(s)
- Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Niewold
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Antine Flikweert
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Breda, Netherlands
| | - Anneke C. Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter H. J. van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jill Moser,
| |
Collapse
|
38
|
Detection of SARS-CoV-2 in subcutaneous fat but not visceral fat, and the disruption of fat lymphocyte homeostasis in both fat tissues in the macaque. Commun Biol 2022; 5:542. [PMID: 35661814 PMCID: PMC9166782 DOI: 10.1038/s42003-022-03503-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The well documented association between obesity and the severity of SARS-CoV-2 infection raises the question of whether adipose tissue (AT) is impacted during this infection. Using a model of SARS-CoV-2 infection in cynomolgus macaques, we detected the virus within subcutaneous AT (SCAT) but not in visceral AT (VAT) or epicardial AT on day 7 post-infection. We sought to determine the mechanisms responsible for this selective detection and observed higher levels of angiotensin-converting-enzyme-2 mRNA expression in SCAT than in VAT. Lastly, we evaluated the immunological consequences of SARS-CoV-2 infection on AT: both SCAT and VAT T cells showed a drastic reduction in CD69 expression, a standard marker of resident memory T cell in tissue, that is also involved in the migratory and metabolic properties of T cells. Our results demonstrate that in a model of mild infection, SCAT is selectively infected by SARS-CoV-2 although changes in the immune properties of AT are observed in both SCAT and VAT. Subcutaneous fat tissue expresses higher angiotensin-converting-enzyme 2 mRNA than visceral fat tissue and is selectively infected by SARS-Cov-2, while both fat tissues show drastic reduction in CD69 expression in T cells.
Collapse
|
39
|
Molecular Docking and Molecular Dynamics Studies of Antidiabetic Phenolic Compound Isolated from Leaf Extract of Englerophytum magalismontanum (Sond.) T.D.Penn. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103175. [PMID: 35630652 PMCID: PMC9145638 DOI: 10.3390/molecules27103175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and α-glucosidase) inhibitory activity using standard methods. The total phenolic content (56.53 ± 1.94 mg GAE/g dry extract) and DPPH Trolox antioxidant equivalent (TAE) (1.51 ± 0.66 µg/mL) of the methanol fraction were the highest among the fractions. The IC50 values of the methanol fraction against α-amylase (10.76 ± 1.33 µg/mL) and α-glucosidase (12.25 ± 1.05 µg/mL) activities were also high. Being the most active, the methanol fraction was subjected to bio-assay guided column chromatography-based enzyme inhibition to obtain a pure compound. The phenolic compound isolated and identified as naringenin inhibited α-amylase and α-glucosidase with IC50 of 5.81 ± 2.14 µg/mL and 4.77 ± 2.99 µg/mL, respectively. This is the first study to isolate naringenin from E. magalismontanum extract. The molecular docking and molecular dynamics studies demonstrated naringenin as a promising lead compound in comparison to acarbose for the treatment of diabetes through the inhibition of α-glucosidase activity.
Collapse
|
40
|
Basolo A, Poma AM, Bonuccelli D, Proietti A, Macerola E, Ugolini C, Torregrossa L, Giannini R, Vignali P, Basolo F, Santini F, Toniolo A. Adipose tissue in COVID-19: detection of SARS-CoV-2 in adipocytes and activation of the interferon-alpha response. J Endocrinol Invest 2022; 45:1021-1029. [PMID: 35169984 PMCID: PMC8852916 DOI: 10.1007/s40618-022-01742-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Obesity is a recognized risk factor for the progression to severe forms of COVID-19, yet the mechanisms of the association are unclear. METHODS Subcutaneous abdominal adipose tissue specimens of subjects deceased from COVID-19 (n = 23) were compared to those of controls dying abruptly from causes other than infectious (accidental trauma, sudden cardiac death). Alterations of lung parenchyma consistent with moderate to severe disease were detected in all COVID-19 cases, not in controls. Investigations included: histopathologic features, detection of virus antigens and genome, characterization of infiltrating leukocytes, transcription levels of immune-related genes. RESULTS By RT-PCR, the SARS-CoV-2 genome was detected in the adipose tissue of 13/23 (56%) cases of the COVID-19 cohort. The virus nucleocapsid antigen was detected in the cytoplasm of 1-5% adipocytes in 12/12 COVID-19 cases that were virus-positive by PCR in the adipose tissue (one case could not be assessed due insufficient tissue). The adipose tissue of COVID-19 cases showed leukocyte infiltrates and upregulation of the interferon-alpha pathway. After adjusting for age and sex, the activation score of IFN-alpha was directly related with transcription levels of the ACE2 gene, a key entry factor of SARS-CoV-2. CONCLUSIONS In lethal COVID-19 cases, the SARS-CoV-2 nucleocapsid antigen has been detected in a sizeable proportion of adipocytes, showing that the virus may directly infect the parenchymal cells of subcutaneous fat. Infection appears to activate the IFN alpha pathway and to attract infiltrating leukocytes. Due to the huge numbers of adipocytes in adults, the adipose tissue represents a significant reservoir for SARS-CoV-2 and an important source of inflammatory mediators.
Collapse
Affiliation(s)
- A. Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - A. M. Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - D. Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - A. Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - E. Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - C. Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - L. Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - R. Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - P. Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - F. Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - F. Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - A. Toniolo
- Global Virus Network, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
41
|
Niedźwiedzka-Rystwej P, Majchrzak A, Kurkowska S, Małkowska P, Sierawska O, Hrynkiewicz R, Parczewski M. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int J Mol Sci 2022; 23:4545. [PMID: 35562935 PMCID: PMC9105989 DOI: 10.3390/ijms23094545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In the beginning of the third year of the fight against COVID-19, the virus remains at least still one step ahead in the pandemic "war". The key reasons are evolving lineages and mutations, resulting in an increase of transmissibility and ability to evade immune system. However, from the immunologic point of view, the cytokine storm (CS) remains a poorly understood and difficult to combat culprit of the extended number of in-hospital admissions and deaths. It is not fully clear whether the cytokine release is a harmful result of suppression of the immune system or a positive reaction necessary to clear the virus. To develop methods of appropriate treatment and therefore decrease the mortality of the so-called COVID-19-CS, we need to look deeply inside its pathogenesis, which is the purpose of this review.
Collapse
Affiliation(s)
| | - Adam Majchrzak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| |
Collapse
|
42
|
Gibellini L, De Biasi S, Meschiari M, Gozzi L, Paolini A, Borella R, Mattioli M, Lo Tartaro D, Fidanza L, Neroni A, Busani S, Girardis M, Guaraldi G, Mussini C, Cozzi-Lepri A, Cossarizza A. Plasma Cytokine Atlas Reveals the Importance of TH2 Polarization and Interferons in Predicting COVID-19 Severity and Survival. Front Immunol 2022; 13:842150. [PMID: 35386702 PMCID: PMC8979161 DOI: 10.3389/fimmu.2022.842150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Although it is now widely accepted that host inflammatory response contributes to COVID-19 immunopathogenesis, the pathways and mechanisms driving disease severity and clinical outcome remain poorly understood. In the effort to identify key soluble mediators that characterize life-threatening COVID-19, we quantified 62 cytokines, chemokines and other factors involved in inflammation and immunity in plasma samples, collected at hospital admission, from 80 hospitalized patients with severe COVID-19 disease who were stratified on the basis of clinical outcome (mechanical ventilation or death by day 28). Our data confirm that age, as well as neutrophilia, lymphocytopenia, procalcitonin, D-dimer and lactate dehydrogenase are strongly associated with the risk of fatal COVID-19. In addition, we found that cytokines related to TH2 regulations (IL-4, IL-13, IL-33), cell metabolism (lep, lep-R) and interferons (IFNα, IFNβ, IFNγ) were also predictive of life-threatening COVID-19.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Gozzi
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Stefano Busani
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliera-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, London, United Kingdom
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
43
|
Low-grade inflammation, CoVID-19, and obesity: clinical aspect and molecular insights in childhood and adulthood. Int J Obes (Lond) 2022; 46:1254-1261. [PMID: 35393519 PMCID: PMC8988546 DOI: 10.1038/s41366-022-01111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The new 2019 coronavirus 19 disease (CoVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to health systems. As a global health problem, this pandemic poses a huge threat to people and is responsible for significant morbidity and mortality worldwide. On the other hand, obesity has also reached epidemic proportions and poses another challenge to the healthcare system. There is increasing evidence of a strong association between obesity and CoVID-19 disease, but the mechanisms underlying the link between the two remain unclear and the role of obesity also remains to be elucidated. In particular obesity-related low-grade inflammation has been hypothesized as the Achille's heel that could predispose subjects with obesity to a more severe CoVID-19 compared to subjects with normal weight. Hence, we summarized recent evidence on the role of low-grade inflammation in clinical aspects of CoVID-19 in subjects with obesity in both childhood and adulthood. Further, we provide molecular insights to explain this link.
Collapse
|
44
|
Gudowska-Sawczuk M, Mroczko B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int J Mol Sci 2022; 23:3673. [PMID: 35409036 PMCID: PMC8998241 DOI: 10.3390/ijms23073673] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of the immune response plays an important role in the progression of SARS-CoV-2 infection. A "cytokine storm", which is a phenomenon associated with uncontrolled production of large amounts of cytokines, very often affects patients with COVID-19. Elevated activity of chemotactic cytokines, called chemokines, can lead to serious consequences. CXCL10 has an ability to activate its receptor CXCR3, predominantly expressed on macrophages, T lymphocytes, dendritic cells, natural killer cells, and B cells. So, it has been suggested that the chemokine CXCL10, through CXCR3, is associated with inflammatory diseases and may be involved in the development of COVID-19. Therefore, in this review paper, we focus on the role of CXCL10 overactivity in the pathogenesis of COVID-19. We performed an extensive literature search for our investigation using the MEDLINE/PubMed database. Increased concentrations of CXCL10 were observed in COVID-19. Elevated levels of CXCL10 were reported to be associated with a severe course and disease progression. Published studies revealed that CXCL10 may be a very good predictive biomarker of patient outcome in COVID-19, and that markedly elevated CXCL10 levels are connected with ARDS and neurological complications. It has been observed that an effective treatment for SARS-CoV-2 leads to inhibition of "cytokine storm", as well as reduction of CXCL10 concentrations. It seems that modulation of the CXCL10-CXCR3 axis may be an effective therapeutic target of COVID-19. This review describes the potential role of CXCL10 in the pathogenesis of COVID-19, as well as its potential immune-therapeutic significance. However, future studies should aim to confirm the prognostic, clinical, and therapeutic role of CXCL10 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
45
|
Sanoudou D, Hill MA, Belanger MJ, Arao K, Mantzoros CS. Editorial: Obesity, metabolic phenotypes and COVID-19. Metabolism 2022; 128:155121. [PMID: 35026232 PMCID: PMC8743503 DOI: 10.1016/j.metabol.2021.155121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, 65211, MO, USA.
| | | | - Kevin Arao
- Department of Medicine, Boston VA Healthcare System and Boston University School of Medicine, Boston, MA 02115, USA
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Lauwers M, Au M, Yuan S, Wen C. COVID-19 in Joint Ageing and Osteoarthritis: Current Status and Perspectives. Int J Mol Sci 2022; 23:720. [PMID: 35054906 PMCID: PMC8775477 DOI: 10.3390/ijms23020720] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is a trending topic worldwide due to its immense impact on society. Recent trends have shifted from acute effects towards the long-term morbidity of COVID-19. In this review, we hypothesize that SARS-CoV-2 contributes to age-related perturbations in endothelial and adipose tissue, which are known to characterize the early aging process. This would explain the long-lasting symptoms of SARS-CoV-2 as the result of an accelerated aging process. Connective tissues such as adipose tissue and musculoskeletal tissue are the primary sites of aging. Therefore, current literature was analyzed focusing on the musculoskeletal symptoms in COVID-19 patients. Hypovitaminosis D, increased fragility, and calcium deficiency point towards bone aging, while joint and muscle pain are typical for joint and muscle aging, respectively. These characteristics could be classified as early osteoarthritis-like phenotype. Exploration of the impact of SARS-CoV-2 and osteoarthritis on endothelial and adipose tissue, as well as neuronal function, showed similar perturbations. At a molecular level, this could be attributed to the angiotensin-converting enzyme 2 expression, renin-angiotensin system dysfunction, and inflammation. Finally, the influence of the nicotinic cholinergic system is being evaluated as a new treatment strategy. This is combined with the current knowledge of musculoskeletal aging to pave the road towards the treatment of long-term COVID-19.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong;
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| |
Collapse
|
47
|
Keller K, Sagoschen I, Schmitt VH, Sivanathan V, Espinola-Klein C, Lavie CJ, Münzel T, Hobohm L. Obesity and Its Impact on Adverse In-Hospital Outcomes in Hospitalized Patients With COVID-19. Front Endocrinol (Lausanne) 2022; 13:876028. [PMID: 35586628 PMCID: PMC9108252 DOI: 10.3389/fendo.2022.876028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND An increasing level of evidence suggests that obesity not only is a major risk factor for cardiovascular diseases (CVDs) but also has adverse outcomes during COVID-19 infection. METHODS We used the German nationwide inpatient sample to analyze all hospitalized patients with confirmed COVID-19 diagnosis in Germany from January to December 2020 and stratified them for diagnosed obesity. Obesity was defined as body mass index ≥30 kg/m2 according to the WHO. The impact of obesity on in-hospital case fatality and adverse in-hospital events comprising major adverse cardiovascular and cerebrovascular events (MACCE), acute respiratory distress syndrome (ARDS), venous thromboembolism (VTE), and others was analyzed. RESULTS We analyzed data of 176,137 hospitalizations of patients with confirmed COVID-19 infection; among them, 9,383 (5.3%) had an additional obesity diagnosis. Although COVID-19 patients without obesity were older (72.0 [interquartile range (IQR) 56.0/82.0] vs. 66.0 [54.0/76.0] years, p < 0.001), the CVD profile was less favorable in obese COVID-19 patients (Charlson comorbidity index 4.44 ± 3.01 vs. 4.08 ± 2.92, p < 0.001). Obesity was independently associated with increased in-hospital case fatality (OR 1.203 [95% CI 1.131-1.279], p < 0.001) and MACCE (OR 1.168 [95% CI 1.101-1.239], p < 0.001), ARDS (OR 2.605 [95% CI 2.449-2.772], p < 0.001), and VTE (OR 1.780 [95% CI 1.605-1.973], p < 0.001) and also associated with increased necessity of treatment on intensive care unit (OR 2.201 [95% CI 2.097-2.310], p < 0.001), mechanical ventilation (OR 2.277 [95% CI 2.140-2.422], p < 0.001), and extracorporeal membrane oxygenation (OR 3.485 [95% CI 3.023-4.017], p < 0.001). CONCLUSIONS Obesity independently affected case fatality, MACCE, ARDS development, VTE, and other adverse in-hospital events in patients with COVID-19 infection. Obesity should be taken into account regarding COVID-19 prevention strategies, risk stratification, and adequate healthcare planning. Maintaining a healthy weight is important not only to prevent cardiometabolic diseases but also for better individual outcomes during COVID-19 infection.
Collapse
Affiliation(s)
- Karsten Keller
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Medical Clinic VII, Department of Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Karsten Keller,
| | - Ingo Sagoschen
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine Main, Mainz, Germany
| | - Visvakanth Sivanathan
- Department of Gastroenterology, University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - Christine Espinola-Klein
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carl J. Lavie
- Department of Cardiovascular Disease, John Ochsner Heart & Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, United States
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine Main, Mainz, Germany
| | - Lukas Hobohm
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
48
|
Tonon F, Di Bella S, Giudici F, Zerbato V, Segat L, Koncan R, Misin A, Toffoli B, D'Agaro P, Luzzati R, Fabris B, Bernardi S. Discriminatory Value of Adiponectin to Leptin Ratio for COVID-19 Pneumonia. Int J Endocrinol 2022; 2022:9908450. [PMID: 35529082 PMCID: PMC9072020 DOI: 10.1155/2022/9908450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Obesity is a risk factor for severe coronavirus disease 2019 (COVID-19). Circulating adipokines have been associated with inflammatory burden and amplified or dysregulated immune responses. This study aimed to evaluate the discriminatory ability of adipokines to identify COVID-19 pneumonia and to assess disease severity. METHODS We conducted an observational case-control study, with a prospective design, and recruited patients with diagnosis of COVID-19 pneumonia (n = 48) and healthy controls (n = 36), who were matched by age, sex, and BMI. Leptin, adiponectin, IL-6, and TNF-α were measured by ELISA. RESULTS Patients with COVID-19 pneumonia had higher levels of leptin, lower adiponectin/leptin (Adpn/Lep) ratio, and higher expression of IL-6. Leptin had an acceptable discriminatory accuracy for COVID-19 pneumonia in patients with BMI >30 (AUC 0.74 [0.58, 0.90]) with a cutoff of 7852 pg/mL and it was associated with maximum respiratory support. By contrast, Adpn/Lep had an excellent discriminatory accuracy for COVID-19 pneumonia in patients with BMI <25 (AUC 0.9 [0.74, 1.06]) with a cutoff of 2.23. CONCLUSION Our data indicate that high Adpn/Lep (>2.23) in lean patients is consistent with a state of good health, which decreases in case of inflammatory states, ranging from adipose tissue dysfunction with low-grade inflammation to COVID-19 pneumonia.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Stefano Di Bella
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
- SC Malattie Infettive, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Fabiola Giudici
- Gustave-Roussy, Bureau Biostatistique et Epidémiologie - 114, Rue Eduard Vaillant, Villejuif 94805, France
| | - Verena Zerbato
- SC Malattie Infettive, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Ludovica Segat
- U.C.O. Igiene e Sanità Pubblica, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Raffaella Koncan
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Andrea Misin
- SC Malattie Infettive, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Barbara Toffoli
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Pierlanfranco D'Agaro
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
- U.C.O. Igiene e Sanità Pubblica, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Roberto Luzzati
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
- SC Malattie Infettive, Ospedale Maggiore, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34125, Italy
| | - Bruno Fabris
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
- SS Endocrinologia, UCO Medicina Clinica, Ospedale di Cattinara, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34149, Italy
| | - Stella Bernardi
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
- SS Endocrinologia, UCO Medicina Clinica, Ospedale di Cattinara, Azienda Sanitaria Universitaria Isontino-Giuliana, Trieste 34149, Italy
| |
Collapse
|
49
|
Miller L, Berber E, Sumbria D, Rouse BT. Controlling the Burden of COVID-19 by Manipulating Host Metabolism. Viral Immunol 2022; 35:24-32. [PMID: 34905407 PMCID: PMC8863913 DOI: 10.1089/vim.2021.0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to cause global health problems, but its impact would be minimized if the many effective vaccines that have been developed were available and in widespread use by all societies. This ideal situation is not occurring so other means of controlling COVID-19 are needed. In this short review, we make the case that manipulating host metabolic pathways could be a therapeutic approach worth exploring. The rationale for such an approach comes from the fact that viruses cause metabolic changes in cells they infect, effective host defense mechanisms against viruses requires the activity of one or more metabolic pathways, and that hosts with metabolic defects such as diabetes are more susceptible to severe consequences after COVID-19. We describe the types of approaches that could be used to redirect various aspects of host metabolism and the success that some of these maneuvers have had at controlling other virus infections. Manipulating metabolic activities to control the outcome of COVID-19 has to date received minimal attention. Manipulating host metabolism will never replace vaccines to control COVID-19 but could be used as an adjunct therapy to the extent of ongoing infection.
Collapse
Affiliation(s)
- Logan Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
50
|
Abstract
Mucosal associated invariant T (MAIT) cells were first identified as specific for bacterial, mycobacterial, and fungal organisms, which detect microbially-derived biosynthetic ligands presented by MHC-related protein 1 (MR1). More recently two unexpected, additional roles have been identified for these ancient and abundant cells: a TCR-depen-dent role in tissue repair and a TCR-independent role in antiviral host defence. Data from several classes of viral disease shows their capability for activation by the cytokines interleukin (IL)-12, IL-15, IL-18, and type I interferon. MAIT cells are abundant at mucosal surfaces, particularly in the lung, and it seems likely a primary reason for their striking evolutionary conservation is an important role in early innate defence against respiratory infections, including both bacteria and viruses. Here we review evidence for their TCR-independent activation, observational human data for their activation in influenza A virus, and in vivo murine evidence of their protection against severe influenza A infection, mediated at least partially via IFN-gamma. We then survey evidence emerging from other respiratory viral infections including recent evidence for an important adjuvant role in adenovirus infection, specifically chimpanzee adenoviruses used in recent coronavirus vaccines, and data for strong associations between MAIT cell responses and adverse outcomes from coronavirus-19 (COVID-19) disease. We speculate on potential translational implications of these findings, either using corticosteroids or inhibitory ligands to suppress deleterious MAIT cell responses, or the potential utility of stimulatory MR1 ligands to boost MAIT cell frequencies to enhance innate viral defences.
Collapse
Affiliation(s)
- Yuqing Long
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK
- Chinese Academy of Medical Sciences Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK
| |
Collapse
|