1
|
Li Y, Liu X, Li Q, Zhou P, Chen Q, Jiang B, Zhu T. Association of helicobacter pylori infection with lipid metabolism and 10-year cardiovascular risk in diabetes mellitus: A cross-sectional study. PLoS One 2025; 20:e0319688. [PMID: 40203057 PMCID: PMC11981135 DOI: 10.1371/journal.pone.0319688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Previous studies have shown that Helicobacter pylori infection is not only a risk factor for gastrointestinal diseases but also associated with various non-digestive conditions. This study aimed to investigate the effect of Helicobacter pylori infection on the risk of lipid metabolism disorders and cardiovascular disease in individuals with diabetes mellitus. METHODS This cross-sectional study was conducted at a health examination center. Data from life questionnaires, laboratory tests, the carbon-13 urea breath test, and the Framingham Risk Score were collected from 266 patients with diabetes. All participants were categorized into Helicobacter pylori-uninfected and Helicobacter pylori-infected groups based on the carbon-13 urea breath test results. Differences in lipid levels, Framingham Risk Score, and cardiovascular disease risk were compared between the two groups. A logistic regression model was applied to analyze whether Helicobacter pylori infection is an independent risk factor for dyslipidemia in patients with diabetes. RESULTS Total cholesterol and low-density lipoprotein cholesterol levels were higher in the Helicobacter pylori-infected group than in the uninfected group, and high-density lipoprotein cholesterol levels were lower in the infected group (both P < 0.05). There was no statistically significant difference in triglyceride levels between the two groups. Regression analysis showed that Helicobacter pylori infection was an independent risk factor for dyslipidemia in patients with diabetes (P < 0.05). The Framingham Risk Score and 10-year cardiovascular disease risk were higher in the Helicobacter pylori-infected group compared with the uninfected group (P < 0.001). CONCLUSION Helicobacter pylori infection is associated with dyslipidemia and may contribute to an increased risk of cardiovascular disease in individuals with diabetes.
Collapse
Affiliation(s)
- Yuexi Li
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Xiaoqin Liu
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Qing Li
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Peng Zhou
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Qian Chen
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Bolan Jiang
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Taiju Zhu
- Health Management Center, Deyang People’s Hospital, Deyang, Sichuan, China
| |
Collapse
|
2
|
Gui PP, Deng YL, Zhang M, Miao Y, Liu PH, Zeng JY, Wu Y, Li CR, Liu XY, Li YJ, Zhu JQ, Liu AX, Zhou B, Yang F, Zeng Q. Urinary biomarkers of drinking water disinfection byproducts in relation to blood-based liver function parameters among reproductive-aged Chinese women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179016. [PMID: 40037233 DOI: 10.1016/j.scitotenv.2025.179016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Toxicological studies have documented that disinfection byproducts (DBPs), the ubiquitous drinking water pollutants, induce hepatotoxicity. Yet epidemiological evidence is sparse. OBJECTIVE To assess urinary biomarkers of drinking water DBPs in relation to liver function parameters. METHODS We included 1204 reproductive-aged women from the Tongji Reproductive and Environmental (TREE) study in Wuhan, China between December 2018 and July 2021. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) as biomarkers of drinking water DBPs were assessed. Serum liver function parameters such as albumin (ALB), total cholesterol (TC), and alkaline phosphatase (ALP) were determined. Urinary DCAA and TCAA concentrations in relation to liver function parameters were examined by multivariate linear regression or restricted cubic spline (RCS) models. RESULTS There was no evidence of urinary TCAA in relation to serum parameters of liver function. However, monotonic dose-response relationships were estimated between elevated tertiles of urinary DCAA concentrations and increased serum ALP (percent change = 4.25 %; 95 % CI: 0.34 %, 8.32 % for the upper vs. lower tertile) and TC levels (percent change = 3.84 %; 95 % CI: 0.63 %, 7.17 % for the upper vs. lower tertile). These associations remained for urinary DCAA modeled as the continuous exposure variable and were linear in the RCS models. Age, body mass index, and passive smoking status did not modify these associations. CONCLUSION DCAA but not TCAA exposure may contribute to damaged liver function in reproductive-aged women.
Collapse
Affiliation(s)
- Ping-Ping Gui
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Hui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Kumbale CM, Zhang Q, Voit EO. Analysis of systemic effects of dioxin on human health through template-and-anchor modeling. PLoS Comput Biol 2025; 21:e1012840. [PMID: 40146780 DOI: 10.1371/journal.pcbi.1012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
Dioxins are persistent environmental pollutants known for their multiple health effects, from skin rashes to liver dysfunction, reproductive toxicity and cancer. While the hazards of dioxins have been well documented, the challenge of developing a comprehensive understanding of the overall health impact of dioxins remains. We propose to address this challenge with a new approach methodology (NAM) consisting of a novel adaptation of the Template-and-Anchor (T&A) modeling paradigm. Generically, the template model is defined as a high-level coarse-grained model capturing the main physiological processes of the system. The variables of this template model are anchor models, which represent component sub-systems in greater detail at lower biological levels. For the case of dioxin, we design the template to capture the systemic effects of dioxin on the body's handling of cholesterol. Two new anchor models within this template elucidate the effects of dioxin on cholesterol transport in the bloodstream and on sex hormone steroidogenesis and the menstrual cycle. A third anchor model, representing dioxin-mediated effects on cholesterol biosynthesis via the mevalonate pathway, had been developed previously. The T&A modeling paradigm enables a holistic evaluation of the impact of toxicants, which in the future may be translated into a powerful tool for comprehensive computational health risk assessments, personalized medicine, and the development of virtual clinical trials.
Collapse
Affiliation(s)
- Carla M Kumbale
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Eberhard O Voit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
4
|
Li B, Liu Y, Ma X, Guo X. The association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and hepatic steatosis and liver fibrosis among US adults based on NHANES. Sci Rep 2025; 15:6527. [PMID: 39988726 PMCID: PMC11847945 DOI: 10.1038/s41598-025-90773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Recently, the non-high-density to high-density lipoprotein cholesterol ratio (NHHR) has gained growing attention as an indicator for predicting diseases associated with lipid metabolism. Hepatic steatosis and fibrosis are tightly associated lipid metabolism. Our study aims to analyze the correlations among NHHR, hepatic steatosis, and fibrosis. This study analysed data from 14,578 adults in the US National Health and Nutrition Examination Survey (2005-2018). The degree of hepatic steatosis was measured through the Fatty Liver Index (FLI), while liver fibrosis severity was evaluated with the Fibrosis-4 (FIB-4) index. Multivariate linear regression assessed the association between NHHR and the FLI and FIB-4 score. Smooth curve describing the relationship between NHHR and FLI or FIB-4. Additionally, a two-part linear regression model adopted in order to more accurately account for the nonlinear relationship, with threshold effects estimated through its two components. To confirm the robustness of the findings, interaction tests and subgroup analyses were conducted. The multivariate logistic regression analysis demonstrated a significantly positive correlation of lnNHHR with FLI across all three models. In Model 3, the association was (β = 11.14, 95%CI:10.38,11.90). Curve fitting indicated a nonlinear relationship. The positive correlation between lnNHHR and FLI persists across gender, BMI, and physical activity groups. Nevertheless, a notable negative correlation between lnNHHR and FIB-4 was observed in all three models. In Model 3, the relationship between lnNHHR and FIB-4 was as follows: (β = -0.20; 95% CI: -0.22, -0.17). Curve fitting revealed a V-shaped relationship, with threshold effect analysis identifying a breakpoint at 1.51. Above this threshold, the relationship was found to be statistically insignificant (p-value = 0.424). Receiver operating characteristic (ROC) curve analysis demonstrated that NHHR exhibited better predictive performance for MASLD compared to non-HDL-C, HDL-C, and LDL-C/HDL-C. The current study's findings suggest that elevated levels of NHHR correlate with a greater risk of hepatic steatosis among adults in the U.S. Our findings imply that NHHR may be a valuable tool in improving MASLD prevention strategies in the general population.
Collapse
Affiliation(s)
- Baoyu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Yuwei Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Xiaorong Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China.
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Jiang K, Bao J, Lou Z, Liu F, Xu K, Kwan HY. An Integration of RNA Sequencing and Network Pharmacology Approaches Predicts the Molecular Mechanisms of the Huo-Xue-Shen Formula in the Treatment of Liver Fibrosis. Pharmaceuticals (Basel) 2025; 18:227. [PMID: 40006040 PMCID: PMC11859937 DOI: 10.3390/ph18020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Liver fibrosis is a prevalent, chronic inflammatory condition characterized by the excessive accumulation of extracellular matrix components and, primarily, collagen in the liver. Huo-xue-shen (HXS) has proven effective for the treatment of liver fibrosis. However, the mechanism is yet to be deciphered. Methods: Network pharmacology, machine learning algorithms and RNA-seq were used to predict the immune-treated targets and mechanisms associated with HXS in liver fibrosis. Molecular docking was employed to screen for effective agents based on the drug-compound-hub gene network in HXS, aiming to identify the most critical bioactive compound in HXS for the treatment of liver fibrosis. Results: A total of 100 immune-treated targets (ITTs) of HXS were found to significantly regulate the PI3K-Akt signaling pathway and the MAPK signaling pathway. Among these, CDKN1A, NR1I3, and TUBB1, which can concurrently interact with quercetin, were associated with the prognosis of liver fibrosis, indicating that HXS may inhibit or reverse HSC activation primarily by suppressing neutrophil extracellular trap formation, stimulating oxidative phosphorylation and promoting thyroid hormone synthesis in the regulation of the liver microenvironment. Conclusions: Our study suggests that HXS may delay the progression of liver fibrosis by targeting multiple pathways, as shown by the network pharmacology and transcriptome profiling used to examine the liver immune environment. Quercetin, its key ingredient, likely plays an important role by mediating the CDKN1A, NR1I3, and TUBB1 signaling pathways. Overall, our findings provide a new perspective on the potential biological mechanisms of this traditional Chinese medicine formula.
Collapse
Affiliation(s)
- Keying Jiang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
| | - Jianfeng Bao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou 310020, China; (J.B.); (Z.L.); (F.L.)
| | - Zhonghan Lou
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou 310020, China; (J.B.); (Z.L.); (F.L.)
| | - Fei Liu
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou 310020, China; (J.B.); (Z.L.); (F.L.)
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, China
| |
Collapse
|
6
|
Ghosh S, Ganguly A, Habib M, Shin BC, Thamotharan S, Andersson S, Devaskar SU. Hepatic and Pancreatic Cellular Response to Early Life Nutritional Mismatch. Endocrinology 2025; 166:bqaf007. [PMID: 39823439 PMCID: PMC11815087 DOI: 10.1210/endocr/bqaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric-restricted rats with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate, we investigated male and female IUGR-HFhf and IUGR-high carbohydrate, vs HFhf and control offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, and hepatomegaly with hepatic steatosis. Male hepatic triglyceride synthesis, de novo lipogenesis genes increased, while female lipolysis, β-oxidation, fatty acid efflux, and FGF21 genes increased. IUGR-HFhf males demonstrated reduced β-islet insulin and humanin, and type 1 diabetes mellitus human amniotic fluid increased humanin. Humanin suppression disabled glucose stimulated insulin, ATP production, with apoptotic diminished β-islet viability. Humanin and FGF21 may reverse perinatal nutritional mismatched phenotype by restoring functional β islets and preventing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus.
Collapse
Affiliation(s)
- Shubhamoy Ghosh
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Amit Ganguly
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Manal Habib
- Division of Endocrinology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Shanthie Thamotharan
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Sture Andersson
- Department of Pediatrics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Sherin U Devaskar
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| |
Collapse
|
7
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Wan W, Wei R, Xu B, Cao H, Zhi Y, Guo F, Liu H, Li B, Wu J, Gao Y, Zhang K. Qiwei Jinggan Ling regulates oxidative stress and lipid metabolism in alcoholic liver disease by activating AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156125. [PMID: 39388920 DOI: 10.1016/j.phymed.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a severe public health concern worldwide and there is still a lack of effective treatments. Qiwei Jinggan Ling (QJL) has protective effects against various liver injuries, but its pharmacological action on ALD has received little attention. PURPOSE To investigate the effect and mechanism of QJL on ALD in vivo and in vitro. METHODS In vivo, an ALD mouse model was established by alcohol combined with a high-fat diet (HFD) and treated with QJL. Biochemical indicators, HE staining, and Oil Red O staining were employed to assess hepatic oxidative stress, steatosis, and alcohol metabolism. RNA sequencing analysis was performed, and the results were verified by qRT-PCR and Western blot to elucidate the hepatoprotective mechanism of QJL. In vitro, HepG2 cells were co-stimulated with NaOA (sodium oleate) and EtOH (ethanol), followed by intervention with Compound C (CC, AMPK inhibitor) and QJL-containing serum. Oil Red O, BODIPY (boron-dipyrromethene), and ROS (reactive oxygen species) staining were applied to validate the efficacy and mechanism of QJL-containing serum. The expression of AMP-activated protein kinase (AMPK) pathway-related factors was analyzed through qRT-PCR and Western blot for additional corroboration. Moreover, the key pharmacodynamic components of QJL were identified by UPLC-MS/MS and molecular docking. RESULTS In vivo, QJL ameliorated liver structural disorders, steatosis, oxidative stress, and impaired alcohol metabolism, as indicated by biochemical indicators and histopathological assays. RNA sequencing analysis revealed that QJL reversed the expression of genes related to alcohol metabolism, fatty acid metabolism, and cholesterol metabolism. The results of qRT-PCR and Western blot were in line with those of RNA sequencing. Furthermore, it was discovered that QJL significantly upregulated the expression of p-AMPK and downregulated the expression of sterol regulatory element binding transcription factor 1 (SREBP-1c). In vitro, biochemical indicators and staining assays demonstrated that QJL-containing serum inhibited lipid accumulation and oxidative stress. The qRT-PCR and Western blot analysis revealed that QJL-containing serum markedly enhanced the expression of p-AMPK and carnitine palmitoyltransferase 1a (Cpt1a), while suppressing the expression of SREBP-1c, fatty acid synthase (Fasn), and acetyl-coenzyme A carboxylase 1 (ACC-1). However, CC inhibited the above pharmacological activities of QJL-containing serum. Additionally, (2S)-Liquiritigenin, Glycyrrhetinate, Isovitexin, Taxifolin, and Yohimbine were proved to be the key active components of QJL. CONCLUSION QJL had the potential to be a therapeutic drug for ALD by activating the AMPK pathway, thereby regulating lipid metabolism and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Riming Wei
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Baoling Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China; Department of Emergency, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yueping Zhi
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Haiping Liu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
9
|
Zhang M, Chang D, Guan Q, Dong R, Zhang R, Zhang W, Wang H, Wang J. High-density lipoprotein cholesterol trajectory and new-onset metabolic dysfunction-associated fatty liver disease incidence: a longitudinal study. Diabetol Metab Syndr 2024; 16:223. [PMID: 39261925 PMCID: PMC11389356 DOI: 10.1186/s13098-024-01457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Although high-density lipoprotein cholesterol (HDL-C) exerts a significant influence on the development of metabolic dysfunction-associated fatty liver disease (MAFLD), the association of dynamic changes in HDL-C levels with the risk of MAFLD remains unclear. Thus, the aim of the current study was to explore the association between the changing trajectories of HDL-C and new-onset MAFLD. The findings of this study may provide a theoretical basis for future personalized intervention and prevention targeting MAFLD. METHODS A total of 1507 participants who met the inclusion criteria were recruited from a community-based physical examination population in Nanjing, China from 2017 to 2021. Group-based trajectory models were constructed to determine the heterogeneous HDL-C trajectories. The incidence of MAFLD in each group in 2022 was followed up, and the Cox proportional hazards regression model was applied to investigate the associations between different HDL-C trajectories and the risk of new-onset MAFLD. RESULTS The incidences of MAFLD in the low-stable, moderate-stable, moderate-high-stable, and high-stable groups of HDL-C trajectory were 26.5%, 13.8%, 7.2% and 2.6%, respectively. The incidence rate of MAFLD in the order of the above trajectory groups exhibited a decreasing trend (χ2 = 72.55, Ptrend<0.001). After adjusting for confounders, the risk of MAFLD onset in HDL-C low-stable group was still 5.421 times (95%CI: 1.303-22.554, P = 0.020) higher than that in the high-stable group. Subgroup analyses of the combined (moderate high-stable and high-stable groups combined), moderate-stable and low-stable groups showed that sex, age, and overweight/obesity did not affect the association between HDL-C trajectory and MAFLD risk. CONCLUSIONS Persistently low HDL-C level is a risk factor for the onset of MAFLD. Long-term monitoring of HDL-C levels and timely intervention for those experiencing persistent declines are crucial for early prevention of MAFLD.
Collapse
Grants
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Gastroenterology, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qing Guan
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ru Zhang
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai'an, 223003, Jiangsu, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 200032, China
| | - Hongliang Wang
- Department of General Practice, Ninghai Road Community Health Service Center, Gulou District, Nanjing, 210024, Jiangsu, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
10
|
Abdelhamid AM, Saber S, Hamad RS, Abdel-Reheim MA, Ellethy AT, Amer MM, Abdel-Hamed MR, Mohamed EA, Ahmed SS, Elsisi HA, Khodeir MM, Alkhamiss AS, A. AA, Abu Elgasim MAE, Almansour ZH, Elesawy BH, Elmorsy EA. STA-9090 in combination with a statin exerts enhanced protective effects in rats fed a high-fat diet and exposed to diethylnitrosamine and thioacetamide. Front Pharmacol 2024; 15:1454829. [PMID: 39309001 PMCID: PMC11413491 DOI: 10.3389/fphar.2024.1454829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Liver fibrosis is a significant global health burden that lacks effective therapies. It can progress to cirrhosis and hepatocellular carcinoma (HCC). Aberrant hedgehog pathway activation is a key driver of fibrogenesis and cancer, making hedgehog inhibitors potential antifibrotic and anticancer agents. Methods We evaluated simvastatin and STA-9090, alone and combined, in rats fed a high-fat diet (HFD) and exposed to diethylnitrosamine and thioacetamide (DENA/TAA). Simvastatin inhibits HMG-CoA reductase, depleting cellular cholesterol required for Sonic hedgehog (Shh) modification and signaling. STA-9090 directly inhibits HSP90 chaperone interactions essential for Shh function. We hypothesized combining these drugs may provide liver protective effects through complementary targeting of the hedgehog pathway. Endpoints assessed included liver function tests, oxidative stress markers, histopathology, extracellular matrix proteins, inflammatory cytokines, and hedgehog signaling components. Results HFD and DENA/TAA caused aberrant hedgehog activation, contributing to fibrotic alterations with elevated liver enzymes, oxidative stress, dyslipidemia, inflammation, and collagen deposition. Monotherapies with simvastatin or STA-9090 improved these parameters, while the combination treatment provided further enhancements, including improved survival, near-normal liver histology, and compelling hedgehog pathway suppression. Discussion Our findings demonstrate the enhanced protective potential of combined HMG CoA reductase and HSP90 inhibition in rats fed a HFD and exposed to DENA and TAA. This preclinical study could help translate hedgehog-targeted therapies to clinical evaluation for treating this major unmet need.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A. Mohamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Syed Suhail Ahmed
- Department of Microbiology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - AlSalloom A. A.
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Zainab H. Almansour
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
11
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, Pérez J, Molina-Hernández V, García-Barrera T, Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem Toxicol 2024; 191:114845. [PMID: 38945390 DOI: 10.1016/j.fct.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Real-life pollution usually involves simultaneous co-exposure to different chemicals. Metals and drugs are frequently and abundantly released into the environment, where they interact and bioaccumulate. Few studies analyze potential interactions between metals and pharmaceuticals in these mixtures, although their joint effects cannot be inferred from their individual properties. We have previously demonstrated that the mixture (PC) of the metals Cd and Hg, the metalloid As and the pharmaceuticals diclofenac (DCF) and flumequine (FLQ) impairs hepatic proteostasis. To gain a deeper vision of how PC affects mouse liver homeostasis, we evaluated here the effects of PC exposure upon some biochemical and morphometric parameters, and on the transcriptional profiles of selected group of genes. We found that exposure to PC caused oxidative damage that exceeded the antioxidant capacity of cells. The excessive oxidative stress response resulted in an overabundance of reducing equivalents, which hindered the metabolism and transport of metabolites, including cholesterol and bile acids, between organs. These processes have been linked to metabolic and inflammatory disorders, cancer, and neurodegenerative diseases. Therefore, our findings suggest that unintended exposure to mixtures of environmental pollutants may underlie the etiology of many human diseases. Fortunately, we also found that a diet enriched with selenium mitigated the harmful effects of this combination of toxicants.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Tamara García-Barrera
- Centro de Investigación de Recursos Naturales, Salud y Medio Ambiente (RENSMA). Departamento de Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, 21007, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
12
|
Su R, Fu HL, Zhang QX, Wu CY, Yang GY, Wu JJ, Cao WJ, Liu J, Jiang ZP, Xu CJ, Rao Y, Huang L. Amplifying hepatic L-aspartate levels suppresses CCl 4-induced liver fibrosis by reversing glucocorticoid receptor β-mediated mitochondrial malfunction. Pharmacol Res 2024; 206:107294. [PMID: 38992851 DOI: 10.1016/j.phrs.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor β (GRβ) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRβ ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRβ signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRβ signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Hui-Ling Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Qian-Xue Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guan-Yu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jun-Jie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Wen-Jie Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| |
Collapse
|
13
|
Zhou L, Yan Z, Yang S, Lu G, Nie Y, Ren Y, Xue Y, Shi JS, Xu ZH, Geng Y. High methionine intake alters gut microbiota and lipid profile and leads to liver steatosis in mice. Food Funct 2024; 15:8053-8069. [PMID: 38989659 DOI: 10.1039/d4fo01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.
Collapse
Affiliation(s)
- Lingxi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Songfan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Gexue Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yawen Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Innovation Center for Advanced Brewing Science and Technology, Sichuan University, Chengdu, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Longo L, Marschner RA, de Freitas LBR, de Bona LR, Behrens L, Pereira MHM, de Souza VEG, Leonhard LC, Zanettini G, Pinzon CE, Lima GJSP, Schmidt Cerski CT, Uribe-Cruz C, Wajner SM, Álvares-da-Silva MR. Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties. Int J Mol Sci 2024; 25:6839. [PMID: 38999949 PMCID: PMC11241397 DOI: 10.3390/ijms25136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Rafael Aguiar Marschner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Laura Bainy Rodrigues de Freitas
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Laura Renata de Bona
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Luiza Behrens
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Matheus Henrique Mariano Pereira
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Luiza Cecília Leonhard
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Giulianna Zanettini
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Pinzon
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Jorge Semmelmann Pereira Lima
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas 3300, Misiones, Argentina
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Demirel-Yalciner T, Cetinkaya B, Sozen E, Ozer NK. Impact of Seipin in cholesterol mediated lipid droplet maturation; status of endoplasmic reticulum stress and lipophagy. Mech Ageing Dev 2024; 219:111933. [PMID: 38588730 DOI: 10.1016/j.mad.2024.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) defined by the increased number of lipid droplets (LDs) in hepatocytes, have risen continuously in parallel with the obesity. LDs and related proteins are known to affect cellular metabolism and signaling. Seipin, one of the most important LD-related proteins, plays a critical role in LD biogenesis. Although the role of adipose tissue-specific Seipin silencing is known, hepatocyte-specific silencing upon cholesterol-mediated lipid accumulation has not been investigated. In our study, we investigated the effect of Seipin on endoplasmic reticulum (ER) stress and lipophagy in cholesterol accumulated mouse hepatocyte cells. In this direction, cholesterol accumulation was induced by cholesterol-containing liposome, while Seipin mRNA and protein levels were reduced by siRNA. Our findings show that cholesterol containing liposome administration in hepatocytes increases both Seipin protein and number of large LDs. However Seipin silencing reduced the increase of cholesterol mediated large LDs and Glucose-regulated protein 78 (GRP78) mRNA. Additionally, lysosome-LD colocalization increased only in cells treated with cholesterol containing liposome, while the siRNA against Seipin did not lead any significant difference. According to our findings, we hypothesize that Seipin silencing in hepatocytes reduced cholesterol mediated LD maturation as well as GRP78 levels, but not lipophagy.
Collapse
Affiliation(s)
- Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey
| | - Bengu Cetinkaya
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
16
|
Greco S, Campigotto M, D’Amuri A, Fabbri N, Passaro A. Dyslipidemia, Cholangitis and Fatty Liver Disease: The Close Underexplored Relationship: A Narrative Review. J Clin Med 2024; 13:2714. [PMID: 38731243 PMCID: PMC11084647 DOI: 10.3390/jcm13092714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
In assessing individual cardiovascular risk, dyslipidemia is known for emerging as a pivotal factor significantly contributing to major cardiovascular events. However, dyslipidemic patients frequently present with concurrent medical conditions, each with varying frequencies of occurrence; cholangitis, whether acute or chronic, and hepatic steatosis, along with associated conditions, are strongly associated with specific forms of dyslipidemia, and these associations are reasonably well elucidated. Conversely, evidence linking biliary disease to hepatic steatosis is comparatively scant. This narrative review aims to bridge this gap in knowledge concerning the interplay between dyslipidemia, cholangitis, and hepatic steatosis. By addressing this gap, clinicians can better identify patients at heightened risk of future major cardiovascular events, facilitating more targeted interventions and management strategies. The review delves into the intricate relationships between dyslipidemia and these hepatic and biliary clinical conditions, shedding light on potential mechanisms underlying their associations. Understanding these complex interactions is crucial for optimizing cardiovascular risk assessment as well and devising tailored treatment approaches for patients with dyslipidemia and associated hepatic disorders. Moreover, elucidating these connections empowers clinicians with the knowledge needed to navigate the multifaceted landscape of cardiovascular risk assessment and management effectively. By exploring the intricate relationships between dyslipidemia, cholangitis, and hepatic steatosis (without forgetting the possible clinical consequences of hepatic steatosis itself), this review not only contributes to the existing body of knowledge but also offers insights into potential avenues for further research and clinical practice. Thus, it serves as a valuable resource for healthcare professionals striving to enhance patient care and outcomes in the context of cardiovascular disease and associated hepatic conditions.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
- Department of Internal Medicine, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy
| | - Michele Campigotto
- Gastroenterology and Digestive Endoscopy Unit, ASUGI, Cattinara University Hospital, Strada di Fiume 447, 34149 Trieste, TS, Italy;
| | - Andrea D’Amuri
- General Medicine Unit, Medical Department, ASST Mantova, Ospedale Carlo Poma, Strada Lago Paiolo 10, 46100 Mantova, MN, Italy;
| | - Nicolò Fabbri
- Department of General Surgery, Ospedale del Delta, Via Valle Oppio 2, 44023 Lagosanto, FE, Italy;
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, FE, Italy;
| |
Collapse
|
17
|
Chen P, Zhu Z, Geng H, Cui X, Han Y, Wang L, Zhang Y, Lu H, Wang X, Zhang Y, Sun C. Integrated spatial metabolomics and transcriptomics decipher the hepatoprotection mechanisms of wedelolactone and demethylwedelolactone on non-alcoholic fatty liver disease. J Pharm Anal 2024; 14:100910. [PMID: 38655398 PMCID: PMC11035064 DOI: 10.1016/j.jpha.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 04/26/2024] Open
Abstract
Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaoqing Cui
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Heng Lu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Chenglong Sun
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
18
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
19
|
Monfeuga T, Norlin J, Bugge A, Gaalsgaard ED, Prada-Medina CA, Latta M, Veidal SS, Petersen PS, Feigh M, Holst D. Evaluation of long acting GLP1R/GCGR agonist in a DIO and biopsy-confirmed mouse model of NASH suggest a beneficial role of GLP-1/glucagon agonism in NASH patients. Mol Metab 2024; 79:101850. [PMID: 38065435 PMCID: PMC10772820 DOI: 10.1016/j.molmet.2023.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE The metabolic benefits of GLP-1 receptor (GLP-1R) agonists on glycemic and weight control are well established as therapy for type 2 diabetes and obesity. Glucagon's ability to increase energy expenditure is well described, and the combination of these mechanisms-of-actions has the potential to further lower hepatic steatosis in metabolic disorders and could therefore be attractive for the treatment for non-alcoholic steatohepatitis (NASH). Here, we have investigated the effects of a dual GLP-1/glucagon receptor agonist NN1177 on hepatic steatosis, fibrosis, and inflammation in a preclinical mouse model of NASH. Having observed strong effects on body weight loss in a pilot study with NN1177, we hypothesized that direct engagement of the hepatic glucagon receptor (GCGR) would result in a superior effect on steatosis and other liver related parameters as compared to the GLP-1R agonist semaglutide at equal body weight. METHODS Male C57Bl/6 mice were fed a diet high in trans-fat, fructose, and cholesterol (Diet-Induced Obese (DIO)-NASH) for 36 weeks. Following randomization based on the degree of fibrosis at baseline, mice were treated once daily with subcutaneous administration of a vehicle or three different doses of NN1177 or semaglutide for 8 weeks. Hepatic steatosis, inflammation and fibrosis were assessed by immunohistochemistry and morphometric analyses. Plasma levels of lipids and liver enzymes were determined, and hepatic gene expression was analyzed by RNA sequencing. RESULTS NN1177 dose-dependently reduced body weight up to 22% compared to vehicle treatment. Plasma levels of ALT, a measure of liver injury, were reduced in all treatment groups with body weight loss. The dual agonist reduced hepatic steatosis to a greater extent than semaglutide at equal body weight loss, as demonstrated by three independent methods. Both the co-agonist and semaglutide significantly decreased histological markers of inflammation such as CD11b and Galectin-3, in addition to markers of hepatic stellate activation (αSMA) and fibrosis (Collagen I). Interestingly, the maximal beneficial effects on above mentioned clinically relevant endpoints of NN1177 treatment on hepatic health appear to be achieved with the middle dose tested. Administering the highest dose resulted in a further reduction of liver fat and accompanied by a massive induction in genes involved in oxidative phosphorylation and resulted in exaggerated body weight loss and a downregulation of a module of co-expressed genes involved in steroid hormone biology, bile secretion, and retinol and linoleic acid metabolism that are also downregulated due to NASH itself. CONCLUSIONS These results indicate that, in a setting of overnutrition, the liver health benefits of activating the fasting-related metabolic pathways controlled by the glucagon receptor displays a bell-shaped curve. This observation is of interest to the scientific community, due to the high number of ongoing clinical trials attempting to leverage the positive effects of glucagon biology to improve metabolic health.
Collapse
Affiliation(s)
- Thomas Monfeuga
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
| | - Jenny Norlin
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | - Anne Bugge
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | | | - Cesar A Prada-Medina
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
| | - Markus Latta
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | - Sanne S Veidal
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Pia S Petersen
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Michael Feigh
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Dorte Holst
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark.
| |
Collapse
|
20
|
Ji X, Ma Q, Wang X, Ming H, Bao G, Fu M, Wei C. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116827. [PMID: 37348794 DOI: 10.1016/j.jep.2023.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver and the leading cause of chronic liver disease worldwide. Digeda-4 decoction (DGD-4) is a commonly prescribed Mongolian herbal drug for treating acute and chronic liver injury and fatty liver. However, the mechanisms underlying the improvement of dislipidemia and liver injury via treatment with DGD-4 remain unclear. Disassembling a prescription is an effective approach to studying the effects and mechanisms underlying Mongolian medicine prescriptions. By disassembling a prescription, it is feasible to discover effective combinations of individual herbs to optimize a given prescription. Accordingly, we disassembled DGD-4 into two groups: the single Lomatogonium rotatum (L.) Fries ex Nym (LR) (DGD-1) and non-LR (DGD-3). AIM OF THIS STUDY To study whether DGD-4 and its disassembled prescriptions have protective effects against tyloxapol (TY)-induced NAFLD and to explore the underlying mechanisms of action and compatibility of prescriptions. MATERIAL AND METHODS NAFLD mice were developed by TY induction. Biochemical horizontal analyses, enzyme-linked immunosorbent assay, and liver histological staining were performed to explore the protective effects of DGD-4 and its disassembled prescriptions DGD-3 and DGD-1. Furthermore, we performed immunohistochemical analyses and Western blotting to further explore the expression of target proteins. RESULTS DGD-4 and its disassembled prescriptions could inhibit TY-induced dislipidemia and liver injury. In addition, DGD-4 and its disassembled prescriptions increased the levels of p-AMPKα and p-ACC, but decreased the levels of SREBP1c, SCD-1, SREBP-2, and HMGCS1 proteins. The activation of lipid metabolic pathways SIRT1, PGC-1α, and PPARα improved lipid accumulation in the liver. Moreover, DGD-4 could inhibit hepatocyte apoptosis and treat TY-induced liver injury by upregulating the Bcl-2 expression, downregulating the expression of Bax, caspase-3, caspase-8, and the ratio of Bax/Bcl-2, and positively regulating the imbalance of oxidative stress (OxS) markers (such as superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and myeloperoxidase [MPO]). DGD-1 was superior to DGD-3 in regulating lipid synthesis-related proteins such as SREBP1c, SCD-1, SREBP-2, and HMGCS1. DGD-3 significantly affected the expression of lipid metabolic proteins SIRT1, PGC-1α, PPARα, apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, and the regulation of Bax/Bcl-2 ratio. However, DGD-1 showed no regulatory effects on Bax and Bcl-2 proteins. CONCLUSION This study demonstrates the protective effects of DGD-4 in the TY-induced NAFLD mice through a mechanism involving improvement of dyslipidemia and apoptosis by regulating the AMPK/SIRT1 pathway. Although the Monarch drug DGD-1 reduces lipid accumulation and DGD-3 inhibits apoptosis and protects the liver from injury, DGD-4 can be more effective overall as a therapy when compared to DGD-1 and DGD-3.
Collapse
Affiliation(s)
- Xiaoping Ji
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xuan Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Hui Ming
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Guihua Bao
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Chengxi Wei
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
21
|
Kumbale CM, Zhang Q, Voit EO. Hepatic cholesterol biosynthesis and dioxin-induced dysregulation: A multiscale computational approach. Food Chem Toxicol 2023; 181:114086. [PMID: 37820785 PMCID: PMC10841405 DOI: 10.1016/j.fct.2023.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Humans are constantly exposed to lipophilic persistent organic pollutants (POPs) that accumulate in fatty foods. Among the numerous POPs, dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can impact several organ systems. While the hazard is clearly recognized, it is still difficult to develop a comprehensive understanding of the overall health impacts of dioxins. As chemical toxicity testing is steadily adopting new approach methodologies (NAMs), it becomes imperative to develop computational models that can bridge the data gaps between in vitro testing and in vivo outcomes. As an effort to address this challenge, we propose a multiscale computational approach using a "template-and-anchor" (T&A) structure. A template is a high-level umbrella model that permits the integration of information from various, detailed anchor models. In the present study, we use this T&A approach to describe the effect of TCDD on cholesterol dynamics. Specifically, we represent hepatic cholesterol biosynthesis as an anchor model that is perturbed by TCDD, leading to steatosis, along with alterations of plasma cholesterol. In the future, incorporating pertinent information from all anchor models into the template model will allow the characterization of the global effects of dioxin, which can subsequently be translated into overall - and ultimately personalized - human health risk assessment.
Collapse
Affiliation(s)
- Carla M Kumbale
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
22
|
Ali Zarie A, Osman MA, Alshammari GM, Hassan AB, ElGasim Ahmed Yagoub A, Abdo Yahya M. Saudi date cultivars' seed extracts inhibit developing hepatic steatosis in rats fed a high-fat diet. Saudi J Biol Sci 2023; 30:103732. [PMID: 37588573 PMCID: PMC10425400 DOI: 10.1016/j.sjbs.2023.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
This research aim was to assess the impact of the seed extracts of the date cultivars (Qatara, Barhi, and Ruthana) on rat's liver steatosis, oxidative stress, and inflammation triggered by feeding a high-fat diet (HFD). The experimental design was based on random partitioning into two groups; one that received the standard diet and another that received the HFD diet. The HFD rats were orally administered Lipitor or date seed extracts at 300 or 600 mg/kg/day for 4 weeks. Accordingly, feeding rats HFD significantly increased body and liver weights, hepatic and serum lipid levels, glucose, insulin, HOMA-IR, liver function enzymes, and inflammation markers, and decreased oxidative stress enzymes. Oral administration of Barhi and Ruthana date seed extracts significantly decreased body and liver weights. Serum and liver total cholesterol TC, Triglycerides TGs, and free fatty acids FFAs were also decreased as were AST, ALT, MAD, leptin, and CRP, with a concomitant increase in SOD, GSH, and CAT. Furthermore, similar to Lipitor, oral administration of the extracts reduced inflammation markers such as TNF-α, serum CRP, IL-6, IL-1β, and leptin while increasing IL-10 and adiponectin levels. Histological observation revealed that extract administration improved hepatocyte and parenchymal structures and decreased lipid deposition. In conclusion, both Barhi and Ruthana seed extracts showed strong hepatoprotective, anti-inflammatory, and antioxidant effects against HFD-induced liver steatosis. And date seeds have other beneficial potential for prevention and treatment of various diseases, which can be studied in the future.
Collapse
Affiliation(s)
- Arwa Ali Zarie
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Magdi A. Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Sim JH, Kwon J, Chae H, Kim SB, Cho H, Lee W, Kim SH, Byun CW, Hahn S, Park DH, Yoo S. OLED catheters for inner-body phototherapy: A case of type 2 diabetes mellitus improved via duodenal photobiomodulation. SCIENCE ADVANCES 2023; 9:eadh8619. [PMID: 37656783 PMCID: PMC10854432 DOI: 10.1126/sciadv.adh8619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Phototherapeutics has shown promise in treating various diseases without surgical or drug interventions. However, it is challenging to use it in inner-body applications due to the limited light penetration depth through the skin. Therefore, we propose an organic light-emitting diode (OLED) catheter as an effective photobiomodulation (PBM) platform useful for tubular organs such as duodenums. A fully encapsulated highly flexible OLED is mounted over a round columnar structure, producing axially uniform illumination without local hotspots. The biocompatible and airtight OLED catheter can operate in aqueous environments for extended periods, meeting the essential requirements for inner-body medical applications. In a diabetic Goto-Kakizaki (GK) rat model, the red OLED catheter delivering 798 mJ of energy is shown to reduce hyperglycemia and insulin resistance compared to the sham group. Results are further supported by the subdued liver fibrosis, illustrating the immense potential of the OLED-catheter-based internal PBM for the treatment of type 2 diabetes and other diseases yet to be identified.
Collapse
Affiliation(s)
- Jee Hoon Sim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinhee Kwon
- Digestive Disease Research Center, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hyeonwook Chae
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Bon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunsu Cho
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea
| | - Woochan Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - So Hee Kim
- Digestive Disease Research Center, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Chun-Won Byun
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea
| | - Sangin Hahn
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Do Hyun Park
- Digestive Disease Research Center, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Hong T, Zou J, Yang J, Liu H, Cao Z, He Y, Feng D. Curcumin protects against bisphenol A-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis in CD-1 mice. Food Sci Nutr 2023; 11:5091-5101. [PMID: 37701206 PMCID: PMC10494624 DOI: 10.1002/fsn3.3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 05/21/2023] [Indexed: 09/14/2023] Open
Abstract
Curcumin is a polyphenol extracted from the rhizome of turmeric, and our previous research showed that curcumin inhibited cholesterol absorption and had cholesterol-lowering effect. Bisphenol A (BPA), a common plasticizer, is widely used in the manufacture of food packaging and is associated with non-alcoholic fatty liver disease (NAFLD). We hypothesized that curcumin could protect against BPA-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis. Male CD-1 mice fed BPA-contaminated diet with or without curcumin for 24 weeks were used to test our hypothesis. We found that chronic low-dose BPA exposure significantly increased the levels of serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol and the contents of liver TG and TC, resulting in liver fat accumulation and hepatic steatosis while curcumin supplementation could alleviate BPA-induced dyslipidemia and hepatic steatosis. Moreover, the anti-steatosis and cholesterol-lowering effects of curcumin against BPA coincided with a significant reduction in intestinal cholesterol absorption and liver cholesterol synthesis, which was modulated by suppressing the expression of sterol regulatory element-binding protein-2 (SREBP-2), Niemann-Pick C1-like 1 (NPC1L1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the small intestine and liver. In addition, the expression levels of liver lipogenic genes such as liver X receptor alpha (LXRα), SREBP-1c, acetyl-CoA carboxylase 1 (ACC1), and ACC2 were also markedly down-regulated by curcumin. Overall, our findings indicated that curcumin inhibited BPA-induced intestinal cholesterol absorption and liver cholesterol synthesis by suppressing SREBP-2, NPC1L1, and HMGCR expression, subsequently reducing liver cholesterol accumulation and fat synthesis, thereby preventing hepatic steatosis and NAFLD.
Collapse
Affiliation(s)
- Ting Hong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jun Zou
- Department of CardiologyThe Sixth Affiliated Hospital of South China University of TechnologyFoshanChina
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Hao Liu
- Department of CardiologyThe Sixth Affiliated Hospital of South China University of TechnologyFoshanChina
| | - Zhuo Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Youming He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
25
|
Silja K, Selvaganabathy N, Kalaiselvi T, Thirunavukkarasu C. Inhibition of glutathione generation in hepatic steatotic rats augments oxidative stress. Toxicol Mech Methods 2023; 33:596-606. [PMID: 37051633 DOI: 10.1080/15376516.2023.2202784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Fatty liver disease has been strongly associated with a low glutathione (GSH) level in hepatocytes with increased oxidative stress, which is critically involved in the initiation and progression of the disease. The study investigated whether the GSH deficiency induced by buthionine sulfoximine (BSO), an inhibitor of γ-glutamyl cysteine synthetase, can be restored by the administration of GSH ester. We showed that mice fed a diet with cholesterol plus sodium cholate developed steatosis followed by hepatic GSH reduction. Moreover, the GSH level in the cytosol and mitochondria of steatosis plus BSO decreased than that of steatosis alone. Subsequent studies with the liver tissues and plasma of BSO plus steatosis revealed the accumulation of cholesterol in the hepatocytes, downregulating the concentration of GSH, antioxidant enzymes, and GSH metabolizing enzymes with a significant rise in reactive oxygen species (ROS), blood glucose level and plasma lipid profile. The administration of GSH ester in BSO-administered mice, prevented the depletion of GSH by upregulating the GSH concentration, antioxidant enzymes, and GSH metabolizing enzymes, followed by a reduction in ROS and plasma lipid concentration. The histopathological analysis showed a marked increase in inflammation followed by hepatocytes ballooning in BSO-induced group and steatosis control group, which was ameliorated by GSH ester administration. In conclusion, our data suggest that the restoration of GSH in the cytosol and mitochondria through the injection with GSH ester plays a principal role in maintaining the GSH level in the liver, thereby delaying the progression of fatty liver disease.
Collapse
Affiliation(s)
- Krishnan Silja
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | | |
Collapse
|
26
|
Li N, Yin L, Shang J, Liang M, Liu Z, Yang H, Qiang G, Du G, Yang X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115113. [PMID: 37418974 DOI: 10.1016/j.biopha.2023.115113] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jiamin Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Zhaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Haiguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
28
|
Šošić-Jurjević B, Lütjohann D, Trifunović S, Pavlović S, Borković Mitić S, Jovanović L, Ristić N, Marina L, Ajdžanović V, Filipović B. Differences in Cholesterol Metabolism, Hepato-Intestinal Aging, and Hepatic Endocrine Milieu in Rats as Affected by the Sex and Age. Int J Mol Sci 2023; 24:12624. [PMID: 37628805 PMCID: PMC10454938 DOI: 10.3390/ijms241612624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Age and sex influence serum cholesterol levels, but the underlying mechanisms remain unclear. To investigate further, we measured cholesterol, precursors (surrogate synthesis markers), degradation products (oxysterols and bile acid precursors) in serum, the liver, jejunum, and ileum, as well as serum plant sterols (intestinal absorption markers) in male and female Wistar rats (4 and 24 months old). The analysis of histomorphometric and oxidative stress parameters (superoxide dismutase, catalase, glutathione-related enzyme activities, lipid peroxide, and protein carbonyl concentrations) in the liver and jejunum offered further insights into the age- and sex-related differences. The hepatic gene expression analysis included AR, ERα, and sex-specific growth hormone-regulated (Cyp2c11 and Cyp2c12) and thyroid-responsive (Dio1, Tbg, and Spot 14) genes by qPCR. We observed age-related changes in both sexes, with greater prominence in females. Aged females had significantly higher serum cholesterol (p < 0.05), jejunum cholesterol (p < 0.05), and serum plant sterols (p < 0.05). They exhibited poorer hepato-intestinal health compared with males, which was characterized by mild liver dysfunction (hydropic degeneration, increased serum ALT, p < 0.05, and decreased activity of some antioxidant defense enzymes, p < 0.05), mononuclear inflammation in the jejunal lamina propria, and age-related decreases in jejunal catalase and glutathione peroxidase activity (p < 0.05). Aged females showed increased levels of 27-hydroxycholesterol (p < 0.05) and upregulated ERα gene expression (p < 0.05) in the liver. Our study suggests that the more significant age-related increase in serum cholesterol in females is associated with poorer hepato-intestinal health and increased jejunal cholesterol absorption. The local increase in 27-hydroxycholesterol during aging might reduce the hepatoprotective effects of endogenous estrogen in the female liver.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Svetlana Trifunović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Slađan Pavlović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.M.)
| | - Slavica Borković Mitić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.M.)
| | - Ljubiša Jovanović
- Department of Pathology and Medical Cytology, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr. Koste Todorovića 26, 11000 Belgrade, Serbia;
| | - Nataša Ristić
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Ljiljana Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.T.); (N.R.); (V.A.); (B.F.)
| |
Collapse
|
29
|
Kweon SM, Irimia-Dominguez J, Kim G, Fueger PT, Asahina K, Lai KK, Allende DS, Lai QR, Lou CH, Tsark WM, Yang JD, Ng DS, Lee JS, Tso P, Huang W, Lai KKY. Heterozygous midnolin knockout attenuates severity of nonalcoholic fatty liver disease in mice fed a Western-style diet high in fat, cholesterol, and fructose. Am J Physiol Gastrointest Liver Physiol 2023; 325:G147-G157. [PMID: 37129245 PMCID: PMC10393367 DOI: 10.1152/ajpgi.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Gayeoun Kim
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Keith K Lai
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
- Contra Costa Pathology Associates, Pleasant Hill, California, United States
| | - Daniela S Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Quincy R Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Walter M Tsark
- Transgenic/Knockout Mouse Program, Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dominic S Ng
- Departments of Medicine, Physiology, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Keane K Y Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| |
Collapse
|
30
|
Rahman SMK, Sasaki S, Uyama T, Hussain Z, Sikder MM, Saiga H, Ohmura-Hoshino M, Ohta KI, Miki Y, Hoshino K, Ueno M, Murakami M, Ueda N. PLAAT1 deficiency alleviates high-fat diet-induced hepatic lipid accumulation in mice. FASEB J 2023; 37:e23032. [PMID: 37330992 DOI: 10.1096/fj.202201033r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is composed of three isoforms in mice (PLAAT1, 3, and 5), all of which function as phospholipid-metabolizing enzymes exhibiting phospholipase A1 /A2 and acyltransferase activities. Plaat3-deficient (Plaat3-/- ) mice were previously reported to show lean phenotype and remarkable hepatic fat accumulation under high-fat diet (HFD) feeding, while Plaat1-/- mice have not been analyzed. In the present study, we generated Plaat1-/- mice and investigated the effects of PLAAT1 deficiency on HFD-induced obesity, hepatic lipid accumulation, and insulin resistance. After HFD treatment, PLAAT1 deficiency caused a lower body weight gain compared to wild-type mice. Plaat1-/- mice also showed reduced liver weight with negligible hepatic lipid accumulation. In accordance with these findings, PLAAT1 deficiency improved HFD-induced hepatic dysfunction and lipid metabolism disorders. Lipidomics analysis in the liver revealed that in Plaat1-/- mice, the levels of various glycerophospholipids tended to increase, while all classes of lysophospholipids examined tended to decrease, suggesting that PLAAT1 functions as phospholipase A1 /A2 in the liver. Interestingly, the HFD treatment of wild-type mice significantly increased the mRNA level of PLAAT1 in the liver. Furthermore, the deficiency did not appear to elevate the risk of insulin resistance in contrast to PLAAT3 deficiency. These results suggested that the suppression of PLAAT1 improves HFD-induced overweight and concomitant hepatic lipid accumulation.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Hiroyuki Saiga
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Mie, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Masaki Ueno
- Department of Inflammation Pathology, Kagawa University School of Medicine, Kagawa, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
31
|
Yang J, Zou J, Mai H, Hong T, Liu H, Feng D. Curcumin protects against high-fat diet-induced non-alcoholic simple fatty liver by inhibiting intestinal and hepatic NPC1L1 expression via down-regulation of SREBP-2/HNF1α pathway in hamsters. J Nutr Biochem 2023:109403. [PMID: 37307885 DOI: 10.1016/j.jnutbio.2023.109403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Niemann-pick C1-like 1 (NPC1L1) mediates cholesterol absorption and plays a key role in the pathogenesis of non-alcoholic simple fatty liver (NASFL). Our previous study showed that curcumin reduced NPC1L1 expression and cholesterol absorption in Caco-2 cells. This study aimed to investigate whether curcumin could inhibit intestinal and hepatic NPC1L1 expression through suppressing sterol regulatory element binding protein-2 (SREBP-2) / hepatocyte nuclear factor 1α (HNF1α) pathway, then exert anti-NASFL effects. Six-week hamsters were fed high-fat diet (HFD) with or without 0.1% curcumin for 12 weeks. Curcumin supplementation lowered blood total cholesterol (TC), triglycerides (TG) and low density lipoprotein cholesterol levels (20.2%, 48.7% and 36.5%), and reduced liver TC and TG contents (26.1% and 26.5%). Oil Red O staining demonstrated that curcumin significantly alleviated HFD-induced liver fat accumulation and hepatic steatosis, which was accompanied by reduced intestinal and hepatic NPC1L1, SREBP-2 and HNF1α expression (p < 0.05) and increased fecal neutral sterol excretion (114.5%). Furthermore, curcumin decreased cholesterol absorption in Caco-2 cells and HepG2 cells (49.2 % and 52.7 %). The inhibitory effects of curcumin on NPC1L1 expression and cholesterol absorption could be prevented by blockade of the SREBP-2 and HNF1α pathway. These findings indicated that curcumin protected against HFD-induced NASFL by inhibiting intestinal and hepatic NPC1L1 expression via down-regulation of SREBP-2/HNF1α pathway, thus reducing intestinal cholesterol absorption and hepatic biliary cholesterol reabsorption, consequently alleviating liver cholesterol accumulation and steatosis. Our study provides evidence for curcumin as a potential nutritional therapy for NASFL by regulating NPC1L1 and enterohepatic circulation of cholesterol.
Collapse
Affiliation(s)
- Jie Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Haiyan Mai
- Department of Clinical Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ting Hong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Dan Feng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Warren D, Benedito VA, Skinner RC, Alawadi A, Vendemiatti E, Laub DJ, Showman C, Matak K, Tou JC. Low-Protein Diets Composed of Protein Recovered from Food Processing Supported Growth, but Induced Mild Hepatic Steatosis Compared with a No-Protein Diet in Young Female Rats. J Nutr 2023; 153:1668-1679. [PMID: 36990182 PMCID: PMC10447611 DOI: 10.1016/j.tjnut.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.
Collapse
Affiliation(s)
- Derek Warren
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States; Department of Biology, University of the Ozarks, Clarksville, AR, United States
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, United States
| | - Ayad Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Eloisa Vendemiatti
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - David J Laub
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
33
|
Zhao J, Lee K, Toh HC, Lam KP, Neo SY. Unravelling the role of obesity and lipids during tumor progression. Front Pharmacol 2023; 14:1163160. [PMID: 37063269 PMCID: PMC10097918 DOI: 10.3389/fphar.2023.1163160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
The dysregulation of the biochemical pathways in cancer promotes oncogenic transformations and metastatic potential. Recent studies have shed light on how obesity and altered lipid metabolism could be the driving force for tumor progression. Here, in this review, we focus on liver cancer and discuss how obesity and lipid-driven metabolic reprogramming affect tumor, immune, and stroma cells in the tumor microenvironment and, in turn, how alterations in these cells synergize to influence and contribute to tumor growth and dissemination. With increasing evidence on how obesity exacerbates inflammation and immune tolerance, we also touch upon the impact of obesity and altered lipid metabolism on tumor immune escape.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kong Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
- *Correspondence: Shi Yong Neo,
| |
Collapse
|
34
|
Xiong G, Hu H, Zhang H, Zhang J, Cao Z, Lu H, Liao X. Cyhalofop-butyl exposure induces the severe hepatotoxicity and immunotoxicity in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108644. [PMID: 36842639 DOI: 10.1016/j.fsi.2023.108644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Cyhalofop-butyl (CyB) is a highly effective herbicide and is widely used for weed control in paddy fields. Because CyB is easily residual in the aquatic environment, its potential harm to aquatic organisms has attracted much attention and has not been fully understood. In this study, we systematically explored the hepatotoxic and immunotoxic effects of CyB exposure in zebrafish embryos. Firstly, CyB induced a decrease in the survival rate of zebrafish and led to a series of developmental abnormalities. Meanwhile, CyB can significantly reduce the size of zebrafish liver tissue and the number of hepatocytes in a dose-dependent manner. Secondly, the number of macrophages and neutrophils significantly decreased but the antioxidant enzyme activities such as CAT and MDA were greatly elevated upon CyB exposure. Thirdly, RNA-Seq analysis identified 1, 402 differentially expressed genes (DEGs) including 621 up-regulated and 781 down-regulated in zebrafish embryos after CyB exposure. KEGG and GO functional analysis revealed that the metabolic pathways of drug metabolism-cytochrome P450, biosynthesis of antibiotics, and metabolism of xenobiotics, along with oxidation-reduction process, high-density lipoprotein particle and cholesterol transport activity were significantly enriched after CyB exposure. Besides, hierarchical clustering analysis suggested that the genes involved in lipid metabolism, oxidative stress and innate immunity were largely activated in CyB-exposed zebrafish. Moreover, CyB induced zebrafish liver injury and increased hepatocyte apoptosis, which increased the protein expression levels of Bax, TLR4, NF-kB p65 and STAT3 in zebrafish. Finally, specific inhibition of TLR signaling pathway by TLR4 knock-down could significantly reduce the expression of inflammatory cytokines induced by CyB exposure. Taken together, these informations demonstrated that CyB could induce the hepatotoxicity and immunotoxicity in zebrafish embryos, and the expression levels of many genes involved in lipid metabolism and immune inflammation were obtained by RNA-Seq analysis. This study provides valuable information for future elucidating the aquatic toxicity of herbicide in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Hongmei Hu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Haiyan Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
35
|
Yarahmadi S, Farahmandian N, Fadaei R, Koushki M, Bahreini E, Karima S, Barzin Tond S, Rezaei A, Nourbakhsh M, Fallah S. Therapeutic Potential of Resveratrol and Atorvastatin Following High-Fat Diet Uptake-Induced Nonalcoholic Fatty Liver Disease by Targeting Genes Involved in Cholesterol Metabolism and miR33. DNA Cell Biol 2023; 42:82-90. [PMID: 36730721 DOI: 10.1089/dna.2022.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study was designed to evaluate the effects of resveratrol, atorvastatin, and a combination of resveratrol and atorvastatin on expression levels of genes involved in the cholesterol metabolic pathway in the fatty liver of C57/BL6 mice. A high-fat diet was used to induce fatty liver in C57/BL6 mice treated with resveratrol, atorvastatin, or a combination of resveratrol and atorvastatin. Pathological and biochemical studies were performed. In addition, hepatic gene expressions of ATP-binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor (LXR)α, scavenger receptor B1 (SR-B1), low-density lipoprotein receptor (LDLR), and miR33 were evaluated by the real-time PCR method, and the Western blot method was used to measure the ABCA1, ABCG1, and LXRα protein levels. Resveratrol and atorvastatin reduced fat accumulation in the liver of mice with fatty liver, and this effect was correlated with decreased blood glucose levels, triglyceride, cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol blood levels compared with the positive control (PC) group. In contrast to the animals of the PC group, fatty liver groups that received resveratrol and atorvastatin had a significant effect on the mRNA levels of the ABCA1, ABCG1, LXRα, SR-B1, LDLR, and miR33 genes. Moreover, resveratrol and atorvastatin administration elevated ABCA1 and ABCG1 and reduced LXRα protein expression. Obtained results showed that resveratrol and atorvastatin combination therapy can improve nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33.
Collapse
Affiliation(s)
- Sahar Yarahmadi
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Navid Farahmandian
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Bahreini
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Barzin Tond
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Rezaei
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Cao X, Fang W, Li J, Zheng J, Wang X, Mai K, Ai Q. Long noncoding RNA lincsc5d regulates hepatic cholesterol synthesis by modulating sterol C5 desaturase in large yellow croaker. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110800. [PMID: 36167286 DOI: 10.1016/j.cbpb.2022.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Although long noncoding RNA (lncRNA) plays a vital role in cholesterol metabolism, very little information is available in fish. Thus, a 10-week feeding experiment was performed to estimate the effects of lncRNA on cholesterol metabolism in large yellow croaker fed with fish oil (FO), soybean oil (SO), olive oil (OO), and palm oil (PO) diets. Results showed that fish fed with OO and PO diets had higher liver total cholesterol (TC) and cholesterol ester (CE) contents compared with fish fed with FO diets. Analysis of the KEGG pathway showed that the steroid biosynthesis pathway was enriched in comparisons FO vs SO, FO vs OO, and FO vs PO. Meanwhile, sterol C5 desaturase (SC5D), a cholesterol synthase, was up-regulated in the steroid biosynthesis pathway. SC5D was widely expressed in all tissues examined, and the highest expression of SC5D was detected in brain. More importantly, a novel lncRNA associated with sc5d gene was identified by RNA sequencing and named as lincsc5d. The tissue distribution of lincsc5d was similar to that of sc5d. A nuclear/cytoplasmic RNA separation assay showed that lincsc5d was a nucleus-enriched lncRNA. qRT-PCR results demonstrated that lincsc5d was markedly up-regulated in the SO, OO, and PO groups. Furthermore, the results of TC content and the lincsc5d and sc5d expression in hepatocytes agreed with in vivo results. In conclusion, this study indicated that vegetable oils, especially OO and PO, increased hepatic cholesterol levels by promoting cholesterol synthesis, and lncRNA lincsc5d and sc5d might be involved in cholesterol synthesis.
Collapse
Affiliation(s)
- Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - JiaMin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
37
|
Sakallioglu IT, Tripp B, Kubik J, Casey CA, Thomes P, Powers R. Multiomics Approach Captures Hepatic Metabolic Network Altered by Chronic Ethanol Administration. BIOLOGY 2022; 12:28. [PMID: 36671721 PMCID: PMC9855439 DOI: 10.3390/biology12010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Using a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides. Similarly, the lipidomics results revealed that ethanol decreased diacylglycerol, and increased triacylglycerol, sterol, and cholesterol biosynthesis. An integrated metabolomics and lipidomics pathway analysis showed that the accumulation of hepatic lipids occurred by ethanol modulation of the upstream lipid regulatory pathways, specifically glycolysis and glucuronides pathways. A proteomics analysis of lipid droplets isolated from control EtOH-fed rats and a subsequent functional enrichment analysis revealed that the proteomics data corroborated the metabolomic and lipidomic findings that chronic ethanol administration altered the glucuronidation pathway.
Collapse
Affiliation(s)
- Isin Tuna Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Bridget Tripp
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacy Kubik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Paul Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
38
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, García-Barrera T, Abril N. A selenium-enriched diet helps to recover liver function after antibiotic administration in mice. Food Chem Toxicol 2022; 171:113519. [PMID: 36464106 DOI: 10.1016/j.fct.2022.113519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic (Abx) treatments or inadvertent exposure to Abx-contaminated food and water can adversely affect health. Many studies show strong correlations between Abx and liver damage pointing to gut dysbiosis as a contributing factor because the gut microbiota (GM) forms a complex network with liver. Selenium (Se) is a beneficial micronutrient able to shape the composition of the GM. We analyzed here the ability of a low dose (120 μg/kg bodyweight/day) Se-enriched diet to ameliorate the effects of a 7-day intervention with an Abx-cocktail over the global health and the homeostasis of cholesterol and bile acids in the mouse liver. We found that Se restored lipid metabolism preventing the increased synthesis and accumulation of cholesterol caused by Abx treatment. Integrating these results with previous metataxonomic and metabolomic data in same mice, we conclude that part of the effect of Se against liver dysfunction (cholesterol and bile acids metabolism and transport) could be mediated by the GM. We provide data that contribute to a more complete view of the molecular mechanisms underlying the beneficial action of Se on health, pointing to a possible use of low doses of Se as a functional food additive (prebiotic) to prevent the negative effects of antibiotics.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| | - Juan Jurado
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
39
|
Halimi H, Farjadian S. Cholesterol: An important actor on the cancer immune scene. Front Immunol 2022; 13:1057546. [PMID: 36479100 PMCID: PMC9719946 DOI: 10.3389/fimmu.2022.1057546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Based on the structural and signaling roles of cholesterol, which are necessary for immune cell activity, high concentrations of cholesterol and its metabolites not only trigger malignant cell activities but also impede immune responses against cancer cells. To proliferate and evade immune responses, tumor cells overcome environmental restrictions by changing their metabolic and signaling pathways. Overexpression of mevalonate pathway enzymes and low-density lipoprotein receptor cause elevated cholesterol synthesis and uptake, respectively. Accordingly, cholesterol can be considered as both a cause and an effect of cancer. Variations in the effects of blood cholesterol levels on the outcome of different types of cancer may depend on the stage of cancer. However, positive effects of cholesterol-lowering drugs have been reported in the treatment of patients with some malignancies.
Collapse
|
40
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
41
|
Zdanowicz K, Daniluk J, Lebensztejn DM, Daniluk U. The Etiology of Cholelithiasis in Children and Adolescents-A Literature Review. Int J Mol Sci 2022; 23:13376. [PMID: 36362164 PMCID: PMC9657413 DOI: 10.3390/ijms232113376] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 09/28/2023] Open
Abstract
The incidence of gallstone disease has increased in recent years. The pathogenesis of cholelithiasis is not fully understood. The occurrence of the disease is influenced by both genetic and environmental factors. This article reviews the literature on cholelithiasis in children, with the exception of articles on hematological causes of cholelithiasis and cholelithiasis surgery. The aim of this review is to present the latest research on the pathogenesis of gallstone disease in children. The paper discusses the influence of all factors known so far, such as genetic predisposition, age, infections, medications used, parenteral nutrition, and comorbidities, on the development of gallstone disease. The course of cholelithiasis in the pediatric population is complex, ranging from asymptomatic to life-threatening. Understanding the course of the disease and predisposing factors can result in a faster diagnosis of the disease and administration of appropriate treatment.
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Dariusz Marek Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
42
|
Poorbagher MRM, Karimi E, Oskoueian E. Hepatoprotective effect of nanoniosome loaded Myristica fragrans phenolic compounds in mice-induced hepatotoxicity. J Cell Mol Med 2022; 26:5517-5527. [PMID: 36226354 PMCID: PMC9639044 DOI: 10.1111/jcmm.17581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, nanoniosome‐loaded Myristica fragrans' (MF) phenolic compounds (NLMP) were synthesized and characterized for their physical properties, and hepatoprotective effects on mice with liver toxicity induced by L‐asparaginase (LA) injection. According to the results, NLMP has a spherical shape with a 263 nm diameter, a zeta potential of −26.55 mV and a polydispersity index (PDI) of 0.192. The weight and feed intake of mice induced with hepatotoxicity were significantly (p ≤ 0.05) increased after they were treated with NLMP (2.5 mg/kg body weight of mice). In addition, the blood levels of triglyceride (TG), cholesterol (Chol), liver enzymes (aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP)) and total bilirubin were significantly (p ≤ 0.05) decreased. A significant increase (p ≤ 0.05) in the blood levels of the antioxidant defence system (glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT)) were also reported after NLMP treatment. NLMP was also led to a significant decrease (p ≤ 0.05) in inflammatory‐related gene expression of inducible nitric oxide synthase (iNOS) and Interferon‐gamma (IFN‐γ) in the liver, as well as a meaningful (p ≤ 0.05) increase in the expression of SOD as an antioxidant status biomarker. Consequently, the NLMP is recommended as a potential dietary supplement to alleviate the symptoms of LA‐induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.,Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
43
|
Ding S, Wang P, Pang X, Zhang L, Qian L, Jia X, Chen W, Ruan S, Sun L. The new exploration of pure total flavonoids extracted from Citrus maxima (Burm.) Merr. as a new therapeutic agent to bring health benefits for people. Front Nutr 2022; 9:958329. [PMID: 36276813 PMCID: PMC9582534 DOI: 10.3389/fnut.2022.958329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The peel and fruit of Citrus varieties have been a raw material for some traditional Chinese medicine (TCM). Pure total flavonoids from Citrus maxima (Burm.) Merr. (PTFC), including naringin, hesperidin, narirutin, and neohesperidin, have been attracted increasing attention for their multiple clinical efficacies. Based on existing in vitro and in vivo research, this study systematically reviewed the biological functions of PTFC and its components in preventing or treating liver metabolic diseases, cardiovascular diseases, intestinal barrier dysfunction, as well as malignancies. PTFC and its components are capable of regulating glycolipid metabolism, blocking peroxidation and persistent inflammation, inhibiting tumor progression, protecting the integrity of intestinal barrier and positively regulating intestinal microbiota, while the differences in fruit cultivation system, picking standard, manufacturing methods, delivery system and individual intestinal microecology will have impact on the specific therapeutic effect. Thus, PTFC is a promising drug for the treatment of some chronic diseases, as well as continuous elaborate investigations are necessary to improve its effectiveness and bioavailability.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Pang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,Shanming Ruan,
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Leitao Sun,
| |
Collapse
|
44
|
Ferreira M, Garzón A, Oliva M, Cian R, Drago S, D'Alessandro M. Lipid-lowering effect of microencapsulated peptides from brewer's spent grain in high-sucrose diet-fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Smutná T, Dumková J, Kristeková D, Laštovičková M, Jedličková A, Vrlíková L, Dočekal B, Alexa L, Kotasová H, Pelková V, Večeřa Z, Křůmal K, Petráš J, Coufalík P, Všianský D, Záchej S, Pinkas D, Vondráček J, Hampl A, Mikuška P, Buchtová M. Macrophage-mediated tissue response evoked by subchronic inhalation of lead oxide nanoparticles is associated with the alteration of phospholipases C and cholesterol transporters. Part Fibre Toxicol 2022; 19:52. [PMID: 35922858 PMCID: PMC9351260 DOI: 10.1186/s12989-022-00494-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. Results The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. Conclusion Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00494-7.
Collapse
Affiliation(s)
- Tereza Smutná
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Markéta Laštovičková
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Adriena Jedličková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Bohumil Dočekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Dalibor Všianský
- Department of Geological Sciences, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | | | - Dominik Pinkas
- Electron Microscopy Core Facility of the Microscopy Centre, Institute of Molecular Genetics, v.v.i., Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic. .,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
46
|
Dai C, Xu H, Chu T, Cao B, Ge J. Body mass index and postoperative mortality in patients undergoing coronary artery bypass graft surgery plus valve replacement: a retrospective cohort study. PeerJ 2022; 10:e13601. [PMID: 35722262 PMCID: PMC9205315 DOI: 10.7717/peerj.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Background The relationship between body mass index (BMI) and postoperative mortality in patients who undergo coronary artery bypass graft (CABG) surgery plus valve replacement is uncertain. We aimed to investigate the association between body mass index (BMI) and postoperative mortality among patients who simultaneously underwent both CABG surgery plus valve replacement. Methods We retrospectively analyzed 1976 patients who underwent CABG surgery at our hospital between January 2017 and April 2021, including 202 patients who underwent valve replacement surgery during the same period. We analyzed the relationship between BMI and postoperative mortality. The relationship between BMI and postoperative mortality was assessed using smooth curve fitting and a Multiple logistic regression model. Results The results of smoothing curve fitting showed that BMI and postoperative mortality had a non-linear relationship, and the resulting curve exhibited a two-stage change and a breakpoint. Postoperative mortality is higher in patients that have a body mass index above 25 kg/m2 compared to patients having a body mass index between 18 and 25 kg/m2. Conclusions Our study found a non-linear relationship between BMI and postoperative mortality in patients undergoing CABG plus valve replacement after adjusting for potential confounders. The causal relationship between BMI and postoperative mortality still requires further investigations.
Collapse
Affiliation(s)
- Chun Dai
- The Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, Anhui, China,The Lu’an People’s Hospital, Lu’an, Anhui, China
| | - Hongbo Xu
- The Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, Anhui, China,The Lu’an People’s Hospital, Lu’an, Anhui, China
| | - Tianshu Chu
- The First Affiliated Hospital of USTC, Hefei, China
| | - Boyang Cao
- The First Affiliated Hospital of USTC, Hefei, China
| | - Jianjun Ge
- The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
47
|
Pathak R, Kumar A, Palfrey HA, Stone KP, Raju NR, Gettys TW, Murthy SN. Prolonged effects of DPP-4 inhibitors on steato-hepatitic changes in Sprague-Dawley rats fed a high-cholesterol diet. Inflamm Res 2022; 71:711-722. [PMID: 35578028 PMCID: PMC10154130 DOI: 10.1007/s00011-022-01572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Sitagliptin and other dipeptidyl peptidase (DPP)-4 inhibitors/gliptins are antidiabetic drugs known to improve lipid profile, and confer anti-inflammatory and anti-fibrotic effects, which are independent of their hypoglycemic effects. However, in our previous short-term (35 days) studies, we showed that sitagliptin accentuates the hepato-inflammatory effects of high dietary cholesterol (Cho) in male Sprague-Dawley rats. Since most type 2 diabetics also present with lipid abnormalities and use DPP-4 inhibitors for glucose management, the present study was conducted to assess the impact of sitagliptin during long-term (98 days) feeding of a high Cho diet. An additional component of the present investigation was the inclusion of other gliptins to determine if hepatic steatosis, necro-inflammation, and fibrosis were specific to sitagliptin or are class effects. METHODS Adult male Sprague-Dawley rats were fed control or high Cho (2.0%) diets, and gavaged daily (from day 30 through 98) with vehicle or DPP-4 inhibitors (sitagliptin or alogliptin or saxagliptin). On day 99 after a 4 h fast, rats were euthanized. Blood and liver samples were collected to measure lipids and cytokines, and for histopathological evaluation, determination of hepatic lesions (steatosis, necrosis, inflammation, and fibrosis) using specific staining and immunohistochemical methods. RESULTS Compared to controls, the high Cho diet produced a robust increase in NASH like phenotype that included increased expression of hepatic (Tnfa, Il1b, and Mcp1) and circulatory (TNFα and IL-1β) markers of inflammation, steatosis, necrosis, fibrosis, and mononuclear cell infiltration. These mononuclear cells were identified as macrophages and T cells, and their recruitment in the liver was facilitated by marked increases in endothelium-expressed cell adhesion molecules. Importantly, treatment with DPP-4 inhibitors (3 tested) neither alleviated the pathologic responses induced by high Cho diet nor improved lipid profile. CONCLUSIONS The potential lipid lowering effects of DPP-4 inhibitors were diminished by high Cho (a significant risk factor for inducing liver damage). The robust inflammatory responses induced by high Cho feeding in long-term experiment were not exacerbated by DPP-4 inhibitors and a consistent hepatic inflammatory environment persisted, implying a prospective physiological adaptation.
Collapse
Affiliation(s)
- Rashmi Pathak
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.,Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Avinash Kumar
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Henry A Palfrey
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Narayan R Raju
- Pathology Research Laboratory Inc, South San Francisco, CA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
48
|
Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today 2022; 27:2170-2180. [PMID: 35550438 DOI: 10.1016/j.drudis.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of lipid metabolism is associated with cardiovascular/metabolic diseases, including atherosclerosis, liver diseases and type 2 diabetes mellitus (T2DM). Several miRNAs have been reported as regulators of different stages of lipid homeostasis, including cholesterol/fatty acid biosynthesis, degradation, transport, storage, and low-density (LDL) and high-density lipoprotein (HDL) formation. Indeed, various miRNAs are emerging as attractive therapeutic candidates for metabolic/cardiovascular disease (CVD). Here, we summarize the roles of miR-19b, miR-20a, miR-21, miR-27, miR-29, miR-34a, miR-144, miR-148a, and miR-199a in post-transcriptional regulation of genes involved in lipid metabolism and their therapeutic potential. We also discuss experimental strategies for further development of these miRNAs as novel cardiometabolic therapeutics. Teaser: miRNAs have emerged as crucial regulators of lipid homeostasis. Here, we highlight key miRNAs that regulate lipid metabolism and their therapeutic potential in cardiometabolic disease states.
Collapse
Affiliation(s)
- Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Biotechnology, Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, Uttar Pradesh, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
49
|
Skvortsov VV, Lunkov MV, Tinaeva RS, Skvortsova EM. Phospholipids in non-alcoholic fatty liver disease. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:92-99. [DOI: 10.21518/2079-701x-2022-16-6-92-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease, or NAFLD – is a pathology that usually has a metabolic cause and is not caused by excessive alcohol consumption. NAFLD is the most frequent chronic liver disease worldwide and is accompanied by a high financial burden for the patient and the healthcare system. NAFLD is generally considered a “benign disease” with low progression to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Nevertheless, due to the large number of affected patients, the prevalence of cirrhosis of the liver has gradually increased, and in fact it represents the third cause of liver transplantation in the world. Moreover, even if the frequency of HCC in patients with NAFLD is lower than in patients with HCV/HBV cirrhosis, the absolute number of HCC associated with NASH is higher due to the higher number of patients with NAFLD. It is likely that the importance of this disease will continue to grow in the future, when new treatments and prevention programs for hepatitis C and B reduce the size of viral liver infections. Many aspects of the disease have yet to be solved. It is very important to understand the mechanisms underlying the occurrence and development of NAFLD, the features of the clinic and diagnosis, as well as the tactics of management and treatment of patients with non-alcoholic fatty liver disease. It is important for patients to get a complete understanding of NAFLD so that they can play an active role in the treatment of their disease.
Collapse
|
50
|
Biswas B, Dogra S, Dey G, Murugan NA, Mondal P, Ghosh S. Near-infrared emissive cyanine probes for selective visualization of the physiological and pathophysiological modulation of albumin levels. J Mater Chem B 2022; 10:3657-3666. [PMID: 35421884 DOI: 10.1039/d1tb02613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the promising advantages of the near-infrared region (NIR) emissive markers for serum albumin becoming very prominent recently, we devised CyG-NHS as the cyanine derived longest NIR-I emissive optical marker possessing albumin selective recognition ability in diverse biological milieu. Multiscale modeling involving molecular docking, molecular dynamics, and implicit solvent binding free energy calculations have been employed to gain insights into the unique binding ability of the developed probe at domain-I of albumin, in contrast to the good number of domain IIA or IIIA binding probes available in the literature reports. The binding free energy was found to be -31.8 kcal mol-1 majorly predominated by hydrophobic interactions. Besides, the conformational dynamics of CyG-NHS in an aqueous medium and the albumin microenvironment have been comprehensively studied and discussed. The potentiality of this optical platform to monitor the intracellular albumin levels in human hepatoma (HepG2) cells in different pathophysiological states has been demonstrated here. Also, the competency of the phenformin drug in restoring the albumin levels in chronic hyperinsulinemic and hypercholesterolemic in vitro models has been established through the visualization approach. Altogether, the findings of this study throw light on the significance of the development of a suitable optical marker for the visualization of critical bioevents related to albumin.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Gourab Dey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden. .,Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| |
Collapse
|