1
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
2
|
Ferrara NC, Trask S, Padival M, Rosenkranz JA. Maturation of a cortical-amygdala circuit limits sociability in male rats. Cereb Cortex 2023; 33:8391-8404. [PMID: 37032624 PMCID: PMC10321102 DOI: 10.1093/cercor/bhad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
Prefrontal cortical maturation coincides with adolescent transitions in social engagement, suggesting that it influences social development. The anterior cingulate cortex (ACC) is important for social interaction, including ACC outputs to the basolateral amygdala (BLA). However, little is known about ACC-BLA sensitivity to the social environment and if this changes during maturation. Here, we used brief (2-hour) isolation to test the immediate impact of changing the social environment on the ACC-BLA circuit and subsequent shifts in social behavior of adolescent and adult rats. We found that optogenetic inhibition of the ACC during brief isolation reduced isolation-driven facilitation of social interaction across ages. Isolation increased activity of ACC-BLA neurons across ages, but altered the influence of ACC on BLA activity in an age-dependent manner. Isolation reduced the inhibitory impact of ACC stimulation on BLA neurons in a frequency-dependent manner in adults, but uniformly suppressed ACC-driven BLA activity in adolescents. This work identifies isolation-driven alterations in an ACC-BLA circuit, and the ACC itself as an essential region sensitive to social environment and regulates its impact on social behavior in both adults and adolescents.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN, 47907, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Jeremy Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| |
Collapse
|
3
|
Akinbo OI, McNeal N, Hylin M, Hite N, Dagner A, Grippo AJ. The Influence of Environmental Enrichment on Affective and Neural Consequences of Social Isolation Across Development. AFFECTIVE SCIENCE 2022; 3:713-733. [PMID: 36519141 PMCID: PMC9743881 DOI: 10.1007/s42761-022-00131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/10/2022] [Indexed: 05/15/2023]
Abstract
Social stress is associated with depression and anxiety, physiological disruptions, and altered brain morphology in central stress circuitry across development. Environmental enrichment strategies may improve responses to social stress. Socially monogamous prairie voles exhibit analogous social and emotion-related behaviors to humans, with potential translational insight into interactions of social stress, age, and environmental enrichment. This study explored the effects of social isolation and environmental enrichment on behaviors related to depression and anxiety, physiological indicators of stress, and dendritic structural changes in amygdala and hippocampal subregions in young adult and aging prairie voles. Forty-nine male prairie voles were assigned to one of six groups divided by age (young adult vs. aging), social structure (paired vs. isolated), and housing environment (enriched vs. non-enriched). Following 4 weeks of these conditions, behaviors related to depression and anxiety were investigated in the forced swim test and elevated plus maze, body and adrenal weights were evaluated, and dendritic morphology analyses were conducted in hippocampus and amygdala subregions. Environmental enrichment decreased immobility duration in the forced swim test, increased open arm exploration in the elevated plus maze, and reduced adrenal/body weight ratio in aging and young adult prairie voles. Age and social isolation influenced dendritic morphology in the basolateral amygdala. Age, but not social isolation, influenced dendritic morphology in the hippocampal dentate gyrus. Environmental enrichment did not influence dendritic morphology in either brain region. These data may inform interventions to reduce the effects of social stressors and age-related central changes associated with affective behavioral consequences in humans.
Collapse
Affiliation(s)
- Oreoluwa I. Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Michael Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL 62901 USA
| | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| |
Collapse
|
4
|
Tsai SF, Hung HC, Shih MMC, Chang FC, Chung BC, Wang CY, Lin YL, Kuo YM. High-fat diet-induced increases in glucocorticoids contribute to the development of non-alcoholic fatty liver disease in mice. FASEB J 2021; 36:e22130. [PMID: 34959259 DOI: 10.1096/fj.202101570r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | - Fu-Chuan Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Lin
- Division of Gastroenterology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Koert A, Ploeger A, Bockting CL, Schmidt MV, Lucassen PJ, Schrantee A, Mul JD. The social instability stress paradigm in rat and mouse: A systematic review of protocols, limitations, and recommendations. Neurobiol Stress 2021; 15:100410. [PMID: 34926732 PMCID: PMC8648958 DOI: 10.1016/j.ynstr.2021.100410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Social stress is an important environmental risk factor for the development of psychiatric disorders, including depression and anxiety disorders. Social stress paradigms are commonly used in rats and mice to gain insight into the pathogenesis of these disorders. The social instability stress (SIS) paradigm entails frequent (up to several times a week) introduction of one or multiple unfamiliar same-sex home-cage partners. The subsequent recurring formation of a new social hierarchy results in chronic and unpredictable physical and social stress. PURPOSE We compare and discuss the stress-related behavioral and physiological impact of SIS protocols in rat and mouse, and address limitations due to protocol variability. We further provide practical recommendations to optimize reproducibility of SIS protocols. METHODS We conducted a systematic review in accordance with the PRISMA statement in the following three databases: PubMed, Web of Science and Scopus. Our search strategy was not restricted to year of publication but was limited to articles in English that were published in peer-reviewed journals. Search terms included "social* instab*" AND ("animal" OR "rodent" OR "rat*" OR "mice" OR "mouse"). RESULTS Thirty-three studies met our inclusion criteria. Fifteen articles used a SIS protocol in which the composition of two cage mates is altered daily for sixteen days (SIS16D). Eleven articles used a SIS protocol in which the composition of four cage mates is altered twice per week for 49 days (SIS49D). The remaining seven studies used SIS protocols that differed from these two protocols in experiment duration or cage mate quantity. Behavioral impact of SIS was primarily assessed by quantifying depressive-like, anxiety-like, social-, and cognitive behavior. Physiological impact of SIS was primarily assessed using metabolic parameters, hypothalamus-pituitary-adrenal axis activity, and the assessment of neurobiological parameters such as neuroplasticity and neurogenesis. CONCLUSION Both shorter and longer SIS protocols induce a wide range of stress-related behavioral and physiological impairments that are relevant for the pathophysiology of depression and anxiety disorders. To date, SIS16D has only been reported in rats, whereas SIS49D has only been reported in mice. Given this species-specific application as well as variability in reported SIS protocols, additional studies should determine whether SIS effects are protocol duration- or species-specific. We address several issues, including a lack of consistency in the used SIS protocols, and suggest practical, concrete improvements in design and reporting of SIS protocols to increase standardization and reproducibility of this etiologically relevant preclinical model of social stress.
Collapse
Affiliation(s)
- Amber Koert
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemie Ploeger
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudi L.H. Bockting
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
| | - Mathias V. Schmidt
- Max Planck Institute of Psychiatry, Research Group Neurobiology of Stress Resilience, Munich, Germany
| | - Paul J. Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Joram D. Mul
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Lutz PE, Chay MA, Pacis A, Chen GG, Aouabed Z, Maffioletti E, Théroux JF, Grenier JC, Yang J, Aguirre M, Ernst C, Redensek A, van Kempen LC, Yalcin I, Kwan T, Mechawar N, Pastinen T, Turecki G. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation. Nat Commun 2021; 12:1132. [PMID: 33602921 PMCID: PMC7892573 DOI: 10.1038/s41467-021-21365-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Early-life adversity (ELA) is a major predictor of psychopathology, and is thought to increase lifetime risk by epigenetically regulating the genome. Here, focusing on the lateral amygdala, a major brain site for emotional homeostasis, we describe molecular cross-talk among multiple mechanisms of genomic regulation, including 6 histone marks and DNA methylation, and the transcriptome, in subjects with a history of ELA and controls. In the healthy brain tissue, we first uncover interactions between different histone marks and non-CG methylation in the CAC context. Additionally, we find that ELA associates with methylomic changes that are as frequent in the CAC as in the canonical CG context, while these two forms of plasticity occur in sharply distinct genomic regions, features, and chromatin states. Combining these multiple data indicates that immune-related and small GTPase signaling pathways are most consistently impaired in the amygdala of ELA individuals. Overall, this work provides insights into genomic brain regulation as a function of early-life experience.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Marc-Aurèle Chay
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Alain Pacis
- Department of Genetics, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Gary G Chen
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Elisabetta Maffioletti
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Jean-François Théroux
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Jean-Christophe Grenier
- Department of Genetics, CHU Sainte-Justine Research Center, Montréal, Canada
- Institut de Cardiologie de Montréal, Montréal, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Maria Aguirre
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Adriana Redensek
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Léon C van Kempen
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, Canada
- Center for Pediatric Genomic Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada.
- Department of Psychiatry, McGill University, Montréal, Canada.
| |
Collapse
|
7
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
8
|
Hart MP. Stress-Induced Neuron Remodeling Reveals Differential Interplay Between Neurexin and Environmental Factors in Caenorhabditis elegans. Genetics 2019; 213:1415-1430. [PMID: 31558583 PMCID: PMC6893388 DOI: 10.1534/genetics.119.302415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Neurexins are neuronal adhesion molecules important for synapse maturation, function, and plasticity. Neurexins have been genetically associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia, but can have variable penetrance and phenotypic severity. Heritability studies indicate that a significant percentage of risk for ASD and schizophrenia includes environmental factors, highlighting a poorly understood interplay between genetic and environmental factors. The singular Caenorhabditis elegans ortholog of human neurexins, nrx-1, controls experience-dependent morphologic remodeling of a GABAergic neuron in adult males. Here, I show remodeling of this neuron's morphology in response to each of three environmental stressors (nutritional, heat, or genotoxic stress) when applied specifically during sexual maturation. Increased outgrowth of axon-like neurites following adolescent stress is the result of an altered morphologic plasticity in adulthood. Despite remodeling being induced by each of the three stressors, only nutritional stress affects downstream behavior and is dependent on neurexin/nrx-1 Heat or genotoxic stress in adolescence does not alter behavior despite inducing GABAergic neuron remodeling, in a neurexin/nrx-1 independent fashion. Starvation-induced remodeling is also dependent on neuroligin/nlg-1, the canonical binding partner for neurexin/nrx-1, and the transcription factors FOXO/daf-16 and HSF1/hsf-1hsf-1 and daf-16, in addition, each have unique roles in remodeling induced by heat and UV stress. The differential molecular mechanisms underlying GABAergic neuron remodeling in response to different stressors, and the disparate effects of stressors on downstream behavior, are a paradigm for understanding how genetics, environmental exposures, and plasticity may contribute to brain dysfunction in ASDs and schizophrenia.
Collapse
Affiliation(s)
- Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
9
|
Eidson LN, deSousa Rodrigues ME, Johnson MA, Barnum CJ, Duke BJ, Yang Y, Chang J, Kelly SD, Wildner M, Tesi RJ, Tansey MG. Chronic psychological stress during adolescence induces sex-dependent adulthood inflammation, increased adiposity, and abnormal behaviors that are ameliorated by selective inhibition of soluble tumor necrosis factor with XPro1595. Brain Behav Immun 2019; 81:305-316. [PMID: 31251975 PMCID: PMC8597195 DOI: 10.1016/j.bbi.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
Physical and psychosocial maltreatment experienced before the age of 18, termed early life adversity (ELA), affects an estimated 39% of the world's population, and has long-term detrimental health and psychological outcomes. While adult phenotypes vary following ELA, inflammation and altered stress responsivity are pervasive. Cytokines, most notably tumor necrosis factor (TNF), are elevated in adults with a history of ELA. While soluble TNF (solTNF) drives chronic inflammatory disease, transmembrane TNF facilitates innate immunity. Here, we test whether solTNF mediates the behavioral and molecular outcomes of adolescent psychological stress by administering a brain permeable, selective inhibitor of solTNF, XPro1595. Male and female C57BL/6 mice were exposed to an aggressive rat through a perforated translucent ball ('predatory stress') or transported to an empty room for 30 min for 30 days starting on postnatal day 34. Mice were given XPro1595 or vehicle treatment across the last 15 days. Social interaction, sucrose preference, and plasma inflammation were measured at 2 and 4 weeks, and open field behavior, adiposity, and neuroinflammation were measured at 4 weeks. Chronic adolescent stress resulted in increased peripheral inflammation and dysregulated neuroinflammation in adulthood in a sex-specific manner. Abnormal social and open field behavior, fat pad weight, and fecal boli deposition were noted after 30 days; solTNF antagonism ameliorated the effects of stress. Together, these data support our hypothesis, and suggest that targeting solTNF with XPro1595 may improve quality of life for individuals with a history of adolescent stress.
Collapse
Affiliation(s)
- Lori N Eidson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Michelle A Johnson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Billie Jeanne Duke
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuan Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sean D Kelly
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary Wildner
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neuroscience and Neurology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
11
|
Emmerson MG, Spencer KA, Brown GR. Social experience during adolescence in female rats increases 50 kHz ultrasonic vocalizations in adulthood, without affecting anxiety-like behavior. Dev Psychobiol 2019; 62:212-223. [PMID: 31429082 DOI: 10.1002/dev.21906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023]
Abstract
Adolescents are highly motivated to engage in social interactions, and researchers have hypothesized that positive social relationships during adolescence can have long term, beneficial effects on stress reactivity and mental well-being. Studies of laboratory rodents provide the opportunity to investigate the relationship between early social experiences and later behavioral and physiological responses to stressors. In this study, female Lister-hooded rats (N = 12 per group) were either (a) provided with short, daily encounters (10 min/day) with a novel partner during mid-adolescence (postnatal day 34-45; "social experience," SE, subjects) or (b) underwent the same protocol with a familiar cagemate during mid-adolescence ("control experience," CE, subjects), or (c) were left undisturbed in the home cage (non-handled "control," C, subjects). When tested in adulthood, the groups did not differ in behavioral responses to novel environments (elevated plus maze, open field, and light-dark box) or in behavioral and physiological (urinary corticosterone) responses to novel social partners. However, SE females emitted significantly more 50 kHz ultrasonic vocalizations than control subjects both before and after social separation from a familiar social partner, which is consistent with previous findings in male rats. Thus, enhanced adolescent social experience appears to have long-term effects on vocal communication and could potentially modulate adult social relationships.
Collapse
Affiliation(s)
| | - Karen A Spencer
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Gillian R Brown
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
12
|
Tsai SF, Chang CY, Yong SM, Lim AL, Nakao Y, Chen SJ, Kuo YM. A Hydrolyzed Chicken Extract CMI-168 Enhances Learning and Memory in Middle-Aged Mice. Nutrients 2018; 11:E27. [PMID: 30583503 PMCID: PMC6356702 DOI: 10.3390/nu11010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
There has been increasing evidence that consumption of dietary supplements or specific nutrients can influence cognitive processes and emotions. A proprietary chicken meat extraction, Chicken Meat Ingredient-168 (CMI-168), has previously been shown to enhance cognitive function in humans. However, the mechanism underlying the CMI-168-induced benefits remains unclear. In this study, we investigated the effects of CMI-168 on hippocampal neuroplasticity and memory function in middle-aged (9⁻12 months old) mice. The mice in the test group (termed the "CMI-168 group") were fed dietary pellets produced by mixing CMI-168 and normal laboratory mouse chow to provide a daily CMI-168 dose of 150 mg/kg of body weight for 6 weeks. The control mice (termed the "Chow group") were fed normal laboratory mouse chow pellets. CMI-168 supplementation did not affect the body weight gain, food intake, or exploratory behavior of the mice. In the novel object recognition test, the CMI-168 group showed better hippocampus-related non-spatial memory compared to the control Chow group. However, spatial memory examined by the Morris Water Maze test was similar between the two groups. There was also no significant difference in the induction and maintenance of long-term potentiation and dendritic complexity of the hippocampal cornu ammonis region 1 (CA1) neurons, as well as the levels of neuroplasticity-related proteins in the hippocampi of the CMI-168 and Chow groups. Interestingly, we observed that CMI-168 appeared to protect the mice against stress-induced weight loss. In conclusion, dietary supplementation of CMI-168 was found to improve learning and memory in middle-aged mice, independent of structural or functional changes in the hippocampus. The resilience to stress afforded by CMI-168 warrants further investigation.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- College of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chia-Yuan Chang
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shan-May Yong
- Scientific Research and Applications, BRAND'S Suntory, Singapore 048423, Singapore.
| | - Ai-Lin Lim
- Scientific Research and Applications, BRAND'S Suntory, Singapore 048423, Singapore.
| | - Yoshihiro Nakao
- Scientific Research and Applications, BRAND'S Suntory, Singapore 048423, Singapore.
| | - Shean-Jen Chen
- College of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
13
|
Tsai SF, Wu HT, Chen PC, Chen YW, Yu M, Wang TF, Wu SY, Tzeng SF, Kuo YM. High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice. Brain Res 2018; 1700:66-77. [DOI: 10.1016/j.brainres.2018.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/02/2023]
|
14
|
Hodges TE, Baumbach JL, McCormick CM. Predictors of social instability stress effects on social interaction and anxiety in adolescent male rats. Dev Psychobiol 2018; 60:651-663. [DOI: 10.1002/dev.21626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Cheryl M. McCormick
- Department of Psychology; Brock University; Ontario Canada
- Centre for Neuroscience; Brock University; Ontario Canada
| |
Collapse
|
15
|
Tsai SF, Ku NW, Wang TF, Yang YH, Shih YH, Wu SY, Lee CW, Yu M, Yang TT, Kuo YM. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory. Gerontology 2018; 64:551-561. [DOI: 10.1159/000488589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Objective: Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Methods: Young (3 months), middle-aged (9–12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. Results: The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. Conclusion: The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline.
Collapse
|
16
|
Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression. Brain Struct Funct 2017; 223:1731-1745. [PMID: 29204911 DOI: 10.1007/s00429-017-1575-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that exposure to stressful events can enhance fear memory and anxiety-like behavior as well as increase synaptic plasticity in the rat basolateral amygdala (BLA). We have evidence that repeated unpredictable shock stress (USS) elicits a long-lasting increase in anxiety-like behavior in rats, but the cellular mechanisms mediating this response remain unclear. Evidence from recent morphological studies suggests that alterations in the dendritic arbor or spine density of BLA principal neurons may underlie stress-induced anxiety behavior. Recently, we have shown that the induction of long-term potentiation (LTP) in BLA principal neurons is dependent on activation of postsynaptic D1 dopamine receptors and the subsequent activation of the cyclic adenosine 5'-monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. Here, we have used in vitro whole-cell patch-clamp recording from BLA principal neurons to investigate the long-term consequences of USS on their morphological properties and synaptic plasticity. We provided evidence that the enhanced anxiety-like behavior in response to USS was not associated with any significant change in the morphological properties of BLA principal neurons, but was associated with a changed frequency dependence of synaptic plasticity, lowered LTP induction threshold, and reduced expression of phosphodiesterase type 4 enzymes (PDE4s). Furthermore, pharmacological inhibition of PDE4 activity with rolipram mimics the effects of chronic stress on LTP induction threshold and baseline startle. Our results provide the first evidence that stress both enhances anxiety-like behavior and facilitates synaptic plasticity in the amygdala through a common mechanism of PDE4-mediated disinhibition of cAMP-PKA signaling.
Collapse
|
17
|
Barfield ET, Gerber KJ, Zimmermann KS, Ressler KJ, Parsons RG, Gourley SL. Regulation of actions and habits by ventral hippocampal trkB and adolescent corticosteroid exposure. PLoS Biol 2017; 15:e2003000. [PMID: 29186135 PMCID: PMC5724896 DOI: 10.1371/journal.pbio.2003000] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/11/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022] Open
Abstract
In humans and rodents, stress promotes habit-based behaviors that can interfere with action-outcome decision-making. Further, developmental stressor exposure confers long-term habit biases across rodent-primate species. Despite these homologies, mechanisms remain unclear. We first report that exposure to the primary glucocorticoid corticosterone (CORT) in adolescent mice recapitulates multiple neurobehavioral consequences of stressor exposure, including long-lasting biases towards habit-based responding in a food-reinforced operant conditioning task. In both adolescents and adults, CORT also caused a shift in the balance between full-length tyrosine kinase receptor B (trkB) and a truncated form of this neurotrophin receptor, favoring the inactive form throughout multiple corticolimbic brain regions. In adolescents, phosphorylation of the trkB substrate extracellular signal-regulated kinase 42/44 (ERK42/44) in the ventral hippocampus was also diminished, a long-term effect that persisted for at least 12 wk. Administration of the trkB agonist 7,8-dihydroxyflavone (7,8-DHF) during adolescence at doses that stimulated ERK42/44 corrected long-lasting corticosterone-induced behavioral abnormalities. Meanwhile, viral-mediated overexpression of truncated trkB in the ventral hippocampus reduced local ERK42/44 phosphorylation and was sufficient to induce habit-based and depression-like behaviors. Together, our findings indicate that ventral hippocampal trkB is essential to goal-directed action selection, countering habit-based behavior otherwise facilitated by developmental stress hormone exposure. They also reveal an early-life sensitive period during which trkB-ERK42/44 tone determines long-term behavioral outcomes.
Collapse
Affiliation(s)
- Elizabeth T. Barfield
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Kyle J. Gerber
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Kelsey S. Zimmermann
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Kerry J. Ressler
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Ryan G. Parsons
- Department of Psychology, Graduate Program in Integrative Neuroscience and Program in Neuroscience, Stony Brook University, Stony Brook, New York, United States of America
| | - Shannon L. Gourley
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Tsai SF, Chen YW, Kuo YM. High-fat diet reduces the hippocampal content level of lactate which is correlated with the expression of glial glutamate transporters. Neurosci Lett 2017; 662:142-146. [PMID: 29051084 DOI: 10.1016/j.neulet.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Metabolic disorders hamper the brain metabolism and functions. The astrocytic glucose-derived lactate is known to fill the increased energy needs of neurons during synaptic transmission. However, whether systemic metabolism dysregulation affects the astrocytic lactate metabolism in the brain remain unexamined. To address this question, we adopt a 12-week high-fat diet to induce metabolic disorders in adult mice, and the effects of high-fat diet on the lactate metabolism in the hippocampus were examined. Results showed that a 12-week high-fat diet induced obesity and insulin resistance in mice. High-fat diet also decreased the lactate content levels and the expression of glial glutamate transporters, GLAST and GLT-1, in the hippocampus. Strong correlations between the lactate levels and the levels of GLAST and GLT-1 were evidenced. In conclusion, high-fat feeding induces metabolic disorders and disrupts lactate metabolism in the hippocampus. GLAST and GLT-1 may contribute to the HFD-induced abnormalities of the hippocampal lactate metabolism.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Caruso MJ, Kamens HM, Cavigelli SA. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice. Dev Psychobiol 2017; 59:679-687. [PMID: 28678409 DOI: 10.1002/dev.21541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023]
Abstract
Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled.
Collapse
Affiliation(s)
- Michael J Caruso
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania
| | - Helen M Kamens
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania
| | - Sonia A Cavigelli
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, Pennsylvania.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
20
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
21
|
Slouzkey I, Maroun M. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats. ACTA ACUST UNITED AC 2016; 23:723-731. [PMID: 27918278 PMCID: PMC5110989 DOI: 10.1101/lm.041806.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
Abstract
The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
22
|
Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala. Neuropsychopharmacology 2016; 41:2309-23. [PMID: 26924679 PMCID: PMC4946062 DOI: 10.1038/npp.2016.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.
Collapse
|
23
|
Dendritic Spines in Depression: What We Learned from Animal Models. Neural Plast 2016; 2016:8056370. [PMID: 26881133 PMCID: PMC4736982 DOI: 10.1155/2016/8056370] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023] Open
Abstract
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.
Collapse
|
24
|
Yang TT, Lo CP, Tsai PS, Wu SY, Wang TF, Chen YW, Jiang-Shieh YF, Kuo YM. Aging and Exercise Affect Hippocampal Neurogenesis via Different Mechanisms. PLoS One 2015; 10:e0132152. [PMID: 26147302 PMCID: PMC4493040 DOI: 10.1371/journal.pone.0132152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022] Open
Abstract
The rate of neurogenesis is determined by 1) the number of neural stem/progenitor cells (NSCs), 2) proliferation of NSCs, 3) neuron lineage specification, and 4) survival rate of the newborn neurons. Aging lowers the rate of hippocampal neurogenesis, while exercise (Ex) increases this rate. However, it remains unclear which of the determinants are affected by aging and Ex. We characterized the four determinants in different age groups (3, 6, 9, 12, 21 months) of mice that either received one month of Ex training or remained sedentary. Bromodeoxyuridine (BrdU) was injected two hours before sacrificing the mice to label the proliferating cells. The results showed that the number of newborn neurons massively decreased (>95%) by the time the mice reached nine months of age. The number of NSC was mildly reduced during aging, while Ex delayed such decline. The proliferation rates were greatly decreased by the time the mice were 9-month-old and Ex could not improve the rates. The rates of neuron specification were decreased during aging, while Ex increased the rates. The survival rate was not affected by age or Ex. Aging greatly reduced newborn neuron maturation, while Ex potently enhanced it. In conclusion, age-associated decline of hippocampal neurogenesis is mainly caused by reduction of NSC proliferation. Although Ex increases the NSC number and neuron specification rates, it doesn't restore the massive decline of NSC proliferation rate. Hence, the effect of Ex on the rate of hippocampal neurogenesis during aging is limited, but Ex does enhance the maturation of newborn neurons.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chen-Peng Lo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Shan Tsai
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Feng Wang
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fen Jiang-Shieh
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Wilson MA, Grillo CA, Fadel JR, Reagan LP. Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiol Stress 2015; 1:195-208. [PMID: 26844236 PMCID: PMC4721288 DOI: 10.1016/j.ynstr.2015.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Neuroplasticity may be defined as the ability of the central nervous system (CNS) to respond to changes in the internal and external environment and it is well established that some stimuli have the ability to facilitate or impair neuroplasticity depending on the pre-existing milieu. A classic example of a stimulus that can both facilitate and impair neuroplasticity is stress. Indeed, the ability of CNS to respond to acute stress is often dependent upon the prior stress history of the individual. While responses to acute stress are often viewed as adaptive in nature, stress reactivity in subjects with prior chronic stress experiences are often linked to neuropsychiatric disorders, including major depressive disorder, post-traumatic stress disorder (PTSD) and anxiety. In rodent studies, chronic stress exposure produces structural and functional alterations in the hippocampus and medial prefrontal cortex that are consistent across different types of stress paradigms. Conversely, the amygdala appears to exhibit differential structural and functional responses to stress that are dependent on a variety of factors, including the type of stressor performed and the duration of the stress paradigm. This is most evident in output measures including morphological analysis of amygdala neurons, measurement of glutamatergic tone in amygdalar subdivisions and the analysis of amygdala-centric behaviors. Accordingly, this review will provide an overview of the effects of stress on the structural and functional plasticity of the rodent amygdala, especially in relation to the differential effects of repeated or chronic stress paradigms on dendritic architecture, neurochemistry of the glutamatergic system and behavior.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
- Corresponding author. Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Verdejo-Garcia A, Moreno-Padilla M, Garcia-Rios MC, Lopez-Torrecillas F, Delgado-Rico E, Schmidt-Rio-Valle J, Fernandez-Serrano MJ. Social stress increases cortisol and hampers attention in adolescents with excess weight. PLoS One 2015; 10:e0123565. [PMID: 25898204 PMCID: PMC4405363 DOI: 10.1371/journal.pone.0123565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/04/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To experimentally examine if adolescents with excess weight are more sensitive to social stress and hence more sensitive to harmful effects of stress in cognition. DESIGN AND METHODS We conducted an experimental study in 84 adolescents aged 12 to 18 years old classified in two groups based on age adjusted Body Mass Index percentile: Normal weight (n=42) and Excess weight (n=42). Both groups were exposed to social stress as induced by the virtual reality version of the Trier Social Stress Task--participants were requested to give a public speech about positive and negative aspects of their personalities in front of a virtual audience. The outcome measures were salivary cortisol levels and performance in cognitive tests before and after the social stressor. Cognitive tests included the CANTAB Rapid Visual Processing Test (measuring attention response latency and discriminability) and the Iowa Gambling Task (measuring decision-making). RESULTS Adolescents with excess weight compared to healthy weight controls displayed increased cortisol response and less improvement of attentional performance after the social stressor. Decision-making performance decreased after the social stressor in both groups. CONCLUSION Adolescents who are overweight or obese have increased sensitivity to social stress, which detrimentally impacts attentional skills.
Collapse
Affiliation(s)
- Antonio Verdejo-Garcia
- Department of Clinical Psychology and Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Maria Moreno-Padilla
- Department of Clinical Psychology and Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | | | - Francisca Lopez-Torrecillas
- Department of Clinical Psychology and Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | - Elena Delgado-Rico
- Department of Clinical Psychology and Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|
27
|
Hodges TE, McCormick CM. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Horm Behav 2015; 69:16-30. [PMID: 25510393 DOI: 10.1016/j.yhbeh.2014.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Abstract
We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.
Collapse
Affiliation(s)
| | - Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Centre for Neuroscience, Brock University, Canada.
| |
Collapse
|
28
|
Padival MA, Blume SR, Vantrease JE, Rosenkranz JA. Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala. Neuroscience 2015; 291:128-45. [PMID: 25701125 DOI: 10.1016/j.neuroscience.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/21/2015] [Accepted: 02/07/2015] [Indexed: 01/04/2023]
Abstract
Repeated stress can elicit symptoms of depression and anxiety. The amygdala is a significant contributor to the expression of emotion and the basolateral amygdala (BLA) is a major target for the effects of stress on emotion. The adolescent time period may be particularly susceptible to the effects of stress on emotion. While repeated stress has been demonstrated to modify the morphology of BLA neurons in adult rats, little is known about its effects on BLA neurons during adolescence. This study tests the effects of repeated stress during adolescence on BLA neuronal morphology, and whether these are similar to the effects of stress during adulthood. The BLA includes the basal (BA) and lateral (LAT) nuclei, which are differentially responsive to stress in adults. Therefore, effects of stress during adolescence were compared between the BA and LAT nuclei. Morphological features of reconstructed BLA neurons were examined using Golgi-Cox-stained tissue from control or repeated restraint stress-exposed rats. We found subtle dendritic growth coupled with loss of spines after repeated stress during adolescence. The magnitude and dendritic location of these differences varied between the BA and LAT nuclei in strong contrast to the stress-induced increases in spine number seen in adults. These results demonstrate that repeated stress during adolescence has markedly different effects on BLA neuronal morphology, and the extent of these changes is BLA nucleus-dependent. Moreover, altered neuroanatomy was associated with age-dependent effects of repeated stress on generalization of fear, and may point to the necessity for different approaches to target stress-induced changes in adolescents.
Collapse
Affiliation(s)
- M A Padival
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - S R Blume
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - J E Vantrease
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - J A Rosenkranz
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
29
|
Garabadu D, Reddy BCMH, Krishnamurthy S. Citalopram protects against cold-restraint stress-induced activation of brain-derived neurotrophic factor and expression of nuclear factor kappa-light-chain-enhancer of activated B cells in rats. J Mol Neurosci 2014; 55:355-66. [PMID: 24880240 DOI: 10.1007/s12031-014-0334-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022]
Abstract
The present study evaluates the protective effect of citalopram against cold-restraint stress (CRS) paradigm. Rats were pretreated with citalopram (0.1, 1.0, and 10.0 mg/kg) acutely and repeatedly for 21 days before exposure to the CRS procedure. None of the doses of citalopram attenuated CRS-induced gastric ulcers in the acute study. In contrast, repeated pretreatment of citalopram at a dose level of 0.1 mg/kg attenuated the CRS-induced gastric ulcers. Citalopram (0.1 mg/kg) diminished CRS-induced increase in plasma corticosterone, but not plasma norepinephrine level in the chronic study indicating its effect on hypothalamic-pituitary-adrenal axis function. Repeated citalopram (0.1 mg/kg) pretreatment attenuated CRS-induced changes in serotonin turnover in the hippocampus and amygdala. Moreover, repeated pretreatment with citalopram (0.1 mg/kg) mitigated the CRS-induced increase in the expression of brain-derived neurotrophic factor (BDNF) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in the hippocampus and amygdala. These results suggest that there is a region- and a dose-specific effect of citalopram on CRS-induced BDNF-NFκB activation. Therefore, citalopram showed antistress activity in the CRS model through changes in the stress-responsive pathways such as hypothalamic-pituitary-adrenal-axis and brain serotonergic system apart from decreasing the expression of BDNF and NFκB.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | | | | |
Collapse
|