1
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
2
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Yin T, Liu Y, He B, Gong B, Chu J, Gao C, Liang W, Hao M, Sun W, Zhuang J, Gao J, Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer's disease targeting and therapy. Mater Today Bio 2023; 22:100789. [PMID: 37706205 PMCID: PMC10495673 DOI: 10.1016/j.mtbio.2023.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is not just confined to the older population. Although developments have been made in AD treatment, various limitations remain to be addressed. These are partly contributed by biological hurdles, such as the blood-brain barrier and peripheral side effects, as well as by lack of carriers that can efficiently deliver the therapeutics to the brain while preserving their therapeutic efficacy. The increasing AD prevalence and the unavailability of effective treatments have encouraged researchers to develop improved, convenient, and affordable therapies. Functional materials based on primitive cells and nanotechnology are emerging as attractive therapeutics in AD treatment. Cell primitives possess distinct biological functions, including long-term circulation, lesion site targeting, and immune suppression. This review summarizes the challenges in the delivery of AD drugs and recent advances in cell primitive-based materials for AD treatment. Various cell primitives, such as cells, extracellular vesicles, and cell membranes, are presented together with their distinctive biological functions and construction strategies. Moreover, future research directions are discussed on the basis of foreseeable challenges and perspectives.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200000, China
| | - Bin He
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
4
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
5
|
Wróblewska A, Szczygieł A, Szermer-Olearnik B, Pajtasz-Piasecka E. Macrophages as Promising Carriers for Nanoparticle Delivery in Anticancer Therapy. Int J Nanomedicine 2023; 18:4521-4539. [PMID: 37576466 PMCID: PMC10422973 DOI: 10.2147/ijn.s421173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Macrophages play a critical role in the immune response due to their ability to recognize and remove pathogens, as well as present antigens, which are involved in inflammation, but they are also one of the most abundant immune cell populations present in the tumor microenvironment. In recent years, macrophages have become promising cellular carriers for drug and nanoparticle delivery to the tumor microenvironment, mainly due to their natural properties such as biocompatibility, degradability, lack of immunogenicity, long half-life in circulation, crossing biological barriers, and the possibility of migration and accumulation at a site of inflammation such as a tumor. For the effectiveness of this therapeutic strategy, known as "Trojan horse", it is important that the nanoparticles engulfed by macrophages do not affect their proper functioning. In our review, we discussed how the size, shape, chemical and mechanical properties of nanoparticles influence their internalization by macrophages. In addition, we described the promising research utilizing macrophages, their cell membranes and macrophage-derived exosomes as drug carriers in anticancer therapy. As a prospect of the wider use of this therapeutic strategy, we postulate its future application in boron delivery to the tumor environment in boron neutron capture therapy.
Collapse
Affiliation(s)
- Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Conway JW, Rawson RV, Lo S, Ahmed T, Vergara IA, Gide TN, Attrill GH, Carlino MS, Saw RPM, Thompson JF, Spillane AJ, Shannon KF, Shivalingam B, Menzies AM, Wilmott JS, Long GV, Scolyer RA, Pires da Silva I. Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites. J Immunother Cancer 2022; 10:jitc-2022-004884. [PMID: 36096531 PMCID: PMC9472156 DOI: 10.1136/jitc-2022-004884] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background The liver is a known site of resistance to immunotherapy and the presence of liver metastases is associated with shorter progression-free and overall survival (OS) in melanoma, while lung metastases have been associated with a more favorable outcome. There are limited data available regarding the immune microenvironment at different anatomical sites of melanoma metastases. This study sought to characterize and compare the tumor immune microenvironment of liver, brain, lung, subcutaneous (subcut) as well as lymph node (LN) melanoma metastases. Methods We analyzed OS in 1924 systemic treatment-naïve patients with AJCC (American Joint Committee on Cancer) stage IV melanoma with a solitary site of organ metastasis. In an independent cohort we analyzed and compared immune cell densities, subpopulations and spatial distribution in tissue from liver, lung, brain, LN or subcut sites from 130 patients with stage IV melanoma. Results Patients with only liver, brain or bone metastases had shorter OS compared to those with lung, LN or subcutaneous and soft tissue metastases. Liver and brain metastases had significantly lower T-cell infiltration than lung (p=0.0116 and p=0.0252, respectively) and LN metastases (p=0.0116 and p=0.0252, respectively). T cells were further away from melanoma cells in liver than lung metastases (p=0.0335). Liver metastases displayed unique T-cell profiles, with a significantly lower proportion of programmed cell death protein-1+ T cells compared to all other anatomical sites (p<0.05), and a higher proportion of TIM-3+ T cells compared to LN (p=0.0004), subcut (p=0.0082) and brain (p=0.0128) metastases. Brain metastases had a lower macrophage density than subcut (p=0.0105), liver (p=0.0095) and lung (p<0.0001) metastases. Lung metastases had the highest proportion of programmed death ligand-1+ macrophages of the total macrophage population, significantly higher than brain (p<0.0001) and liver metastases (p=0.0392). Conclusions Liver and brain melanoma metastases have a significantly reduced immune infiltrate than lung, subcut and LN metastases, which may account for poorer prognosis and reduced immunotherapy response rates in patients with liver or brain metastases. Increased TIM-3 expression in liver metastases suggests TIM-3 inhibitor therapy as a potential therapeutic opportunity to improve patient outcomes.
Collapse
Affiliation(s)
- Jordan W Conway
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tasnia Ahmed
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Grace Heloise Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Alexander Maxwell Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Mater Hospital, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia .,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New south Wales, Australia.,Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Li X, Geng X, Chen Z, Yuan Z. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res 2022; 179:106218. [DOI: 10.1016/j.phrs.2022.106218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
9
|
Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022; 183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
As fundamental immune cells in innate and adaptive immunity, macrophages engage in a double-edged relationship with cancer. Dissecting the character of macrophages in cancer development facilitates the emergence of macrophages-based new strategies that encompass macrophages as theranostic targets/tools of interest for treating cancer. Herein, we provide a concise overview of the mixed roles of macrophages in cancer pathogenesis and invasion as a foundation for the review discussions. We survey the latest progress on macrophage-based cancer theranostic strategies, emphasizing two major strategies, including targeting the endogenous tumor-associated macrophages (TAMs) and engineering the adoptive macrophages to reverse the immunosuppressive environment and augment the cancer theranostic efficacy. We also discuss and provide insights on the major challenges along with exciting opportunities for the future of macrophage-based cancer theranostic approaches.
Collapse
|
10
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Chakravarty N, Senthilnathan T, Paiola S, Gyani P, Castillo Cario S, Urena E, Jeysankar A, Jeysankar P, Ignatius Irudayam J, Natesan Subramanian S, Lavretsky H, Joshi S, Garcia G, Ramaiah A, Arumugaswami V. Neurological pathophysiology of SARS-CoV-2 and pandemic potential RNA viruses: a comparative analysis. FEBS Lett 2021; 595:2854-2871. [PMID: 34757622 PMCID: PMC8652524 DOI: 10.1002/1873-3468.14227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 has infected hundreds of millions of people with over four million dead, resulting in one of the worst global pandemics in recent history. Neurological symptoms associated with COVID-19 include anosmia, ageusia, headaches, confusion, delirium, and strokes. These may manifest due to viral entry into the central nervous system (CNS) through the blood-brain barrier (BBB) by means of ill-defined mechanisms. Here, we summarize the abilities of SARS-CoV-2 and other neurotropic RNA viruses, including Zika virus and Nipah virus, to cross the BBB into the CNS, highlighting the role of magnetic resonance imaging (MRI) in assessing presence and severity of brain structural changes in COVID-19 patients. We present new insight into key mutations in SARS-CoV-2 variants B.1.1.7 (P681H) and B.1.617.2 (P681R), which may impact on neuropilin 1 (NRP1) binding and CNS invasion. We postulate that SARS-CoV-2 may infect both peripheral cells capable of crossing the BBB and brain endothelial cells to traverse the BBB and spread into the brain. COVID-19 patients can be followed up with MRI modalities to better understand the long-term effects of COVID-19 on the brain.
Collapse
Affiliation(s)
| | - Thrisha Senthilnathan
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | - Sophia Paiola
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | - Priya Gyani
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | | | - Estrella Urena
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | - Akash Jeysankar
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | - Prakash Jeysankar
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | | | | | - Helen Lavretsky
- Jane and Terry Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Shantanu Joshi
- Department of NeurologyUniversity of CaliforniaLos AngelesCAUSA
| | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
- Tata Institute for Genetics and SocietyCenter at inStemBangaloreKAIndia
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
12
|
La Rosa F, Mancuso R, Agostini S, Piancone F, Marventano I, Saresella M, Hernis A, Fenoglio C, Galimberti D, Scarpini E, Clerici M. Pharmacological and Epigenetic Regulators of NLRP3 Inflammasome Activation in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14111187. [PMID: 34832969 PMCID: PMC8623160 DOI: 10.3390/ph14111187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Activation of the NLRP3 inflammasome complex results in the production of IL-18, Caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status is a negative factor in human pathologies including Alzheimer’s Disease (AD). MicroRNAs (miR-NAs) target the 3′UTR region of NLRP3, preventing the activation of the inflammasome and inhibiting cytokine production. Because Stavudine (D4T), an antiretroviral drug, was recently shown to reduce inflammasome activation, we verified whether its effect is mediated by miR-7-5p, miR-22-3p, miR-30e-5p and miR-223-3p: miRNAs that bind the NLRP3-mRNA-UTR region and interfere with protein translation, reducing NLRP3 activation. Peripheral blood mononuclear cells (PBMCs) of twenty AD patients and ten sex-matched Healthy Controls (HC) were stimulated with Lipopolysaccharides (LPS)+Amyloid-beta (Aβ42) in the absence/presence of D4T. Expression of genes within the inflammasome complex and of miRNAs was evaluated by RT-PCR; cytokines and caspase-1 production was measured by ELISA. Results have shown that: NLRP3, ASC, IL-1β and IL-18 expression, as well as IL-18, IL-1β and caspase-1 production, were significantly augmented (p < 0.05) in LPS+Aβ42-stimulated PBMCs of AD patients compared to HC. D4T reduced the expression of inflammasome genes and cytokine production (p < 0.005). miR-7-5p and miR-223-3p expression was significantly increased in LPS+Aβ42-stimulated PBMCs of AD patients (p < 0.05), and it was reduced by D4T in AD alone. In conclusion: miR-223-3p and mir-7-5p expression is increased in AD, but this does not result in down-regulation of NLRP3 inflammasome expression and of IL-1β and IL-18 production. D4T increased miRNA expression in HC but had an opposite effect in AD, suggesting that miRNA regulatory mechanisms are altered in AD.
Collapse
Affiliation(s)
- Francesca La Rosa
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
- Correspondence:
| | - Roberta Mancuso
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Simone Agostini
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Federica Piancone
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Marina Saresella
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Ambra Hernis
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Daniela Galimberti
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.G.); (E.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Elio Scarpini
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.G.); (E.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don C. Gnocchi, ONLUS, 20148 Milan, Italy; (R.M.); (S.A.); (F.P.); (I.M.); (M.S.); (A.H.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
13
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
14
|
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000054. [PMID: 33623931 PMCID: PMC7116796 DOI: 10.1002/anbr.202000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant neoplasia having origin in the brain. The current treatments involve surgery, radiotherapy, and chemotherapy, being complete surgical resection the best option for the patient survival chances. However, in those cases where a complete removal is not possible, radiation and chemotherapy are applied. Herein, the main challenges of chemotherapy, and how they can be overcome with the help of nanomedicine, are approached. Natural pathways to cross the blood-brain barrier (BBB) are detailed, and different in vivo studies where these pathways are mimicked functionalizing the nanomaterial surface are shown. Later, lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, are presented. To finish, recent studies that have used lipid-based nanosystems carrying not only therapeutic agents, yet also magnetic nanoparticles, are described. Although the advantages of using these types of nanosystems are explained, including their biocompatibility, the possibility of modifying their surface to enhance the cell targeting, and their intrinsic ability of BBB crossing, it is important to mention that research in this field is still at its early stage, and extensive preclinical and clinical investigations are mandatory in the close future.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
15
|
Jarrin S, Hakami A, Newland B, Dowd E. Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S229-S236. [PMID: 33896851 PMCID: PMC8543245 DOI: 10.3233/jpd-212662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson's disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches-direct infusion of the growth factor protein into the target brain region and in vivo gene therapy-have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M, Rossi G, Eleuteri AM. Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS J 2020; 288:2836-2855. [PMID: 32969566 DOI: 10.1111/febs.15571] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The gut microbiota coevolves with its host, and numerous factors like diet, lifestyle, drug intake and geographical location continuously modify its composition, deeply influencing host health. Recent studies demonstrated that gut dysbiosis can alter normal brain function through the so-called gut-brain axis, a bidirectional communication network between the central nervous system and the gastrointestinal tract, thus playing a key role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). In this perspective, in the constant search for novel treatments in AD, the rational modulation of gut microbiota composition could represent a promising approach to prevent or delay AD onset or to counteract its progression. Preclinical and human studies on microbiota modulation through oral bacteriotherapy and faecal transplantation showed anti-inflammatory and antioxidant effects, upregulation of plasma concentration of neuroprotective hormones, restoration of impaired proteolytic pathways, amelioration of energy homeostasis with consequent decrease of AD molecular hallmarks and improvement of behavioural and cognitive performances. In this review, we dissect the role of gut microbiota in AD and highlight recent advances in the development of new multitarget strategies for microbiota modulation to be used as possible preventative and therapeutic approaches in AD.
Collapse
Affiliation(s)
- Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Olee Gogoi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
17
|
Dao T, Salahuddin S, Charfi C, Sicard AA, Jenabian MA, Annabi B. Pharmacological targeting of neurotensin response by diet-derived EGCG in macrophage-differentiated HL-60 promyelocytic leukemia cells. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
19
|
Sharma A, Sharma R, Zhang Z, Liaw K, Kambhampati SP, Porterfield JE, Lin KC, DeRidder LB, Kannan S, Kannan RM. Dense hydroxyl polyethylene glycol dendrimer targets activated glia in multiple CNS disorders. SCIENCE ADVANCES 2020; 6:eaay8514. [PMID: 32010790 PMCID: PMC6976300 DOI: 10.1126/sciadv.aay8514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/20/2019] [Indexed: 05/23/2023]
Abstract
Poor transport of neuropharmaceutics through central nervous system (CNS) barriers limits the development of effective treatments for CNS disorders. We present the facile synthesis of a novel neuroinflammation-targeting polyethylene glycol-based dendrimer (PEGOL-60) using an efficient click chemistry approach. PEGOL-60 reduces synthetic burden by achieving high hydroxyl surface density at low generation, which plays a key role in brain penetration and glia targeting of dendrimers in CNS disorders. Systemically administered PEGOL-60 crosses impaired CNS barriers and specifically targets activated microglia/macrophages at the injured site in diverse animal models for cerebral palsy, glioblastoma, and age-related macular degeneration, demonstrating its potential to overcome impaired blood-brain, blood-tumor-brain, and blood-retinal barriers and target key cells in the CNS. PEGOL-60 also exhibits powerful intrinsic anti-oxidant and anti-inflammatory effects in inflamed microglia in vitro. Therefore, PEGOL-60 is an effective vehicle to specifically deliver therapies to sites of CNS injury for enhanced therapeutic outcomes in a range of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Siva P. Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua E. Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ku Chien Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Louis B. DeRidder
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci 2019; 8:1073-1088. [PMID: 31728485 DOI: 10.1039/c9bm01395d] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting as a double-edged sword, the blood-brain barrier (BBB) is essential for maintaining brain homeostasis by restricting the entry of small molecules and most macromolecules from blood. However, it also largely limits the brain delivery of most drugs. Even if a drug can penetrate the BBB, its accumulation in the intracerebral pathological regions is relatively low. Thus, an optimal drug-delivery system (DDS) for the management of brain diseases needs to display BBB permeability, lesion-targeting capability, and acceptable safety. Biomimetic DDSs, developed by directly utilizing or mimicking the biological structures and processes, provide promising approaches for overcoming the barriers to brain drug delivery. The present review summarizes the biological properties and biomedical applications of the biomimetic DDSs including the cell membrane-based DDS, lipoprotein-based DDS, exosome-based DDS, virus-based DDS, protein template-based DDS and peptide template-based DDS for the management of brain diseases.
Collapse
Affiliation(s)
- Yao-Xing Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chen-Xuan Wei
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Ying-Qi Lyu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China. and Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiao-Ling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
21
|
van den Heuij LG, Fraser M, Miller SL, Jenkin G, Wallace EM, Davidson JO, Lear CA, Lim R, Wassink G, Gunn AJ, Bennet L. Delayed intranasal infusion of human amnion epithelial cells improves white matter maturation after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 2019; 39:223-239. [PMID: 28895475 PMCID: PMC6365606 DOI: 10.1177/0271678x17729954] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury remains highly associated with neurodevelopmental disability after preterm birth. There is increasing evidence that disability is linked with impaired white matter maturation, but there is no specific treatment. In this study, we evaluated whether, in preterm fetal sheep, delayed intranasal infusion of human amnion epithelial cells (hAECs) given 1, 3 and 10 days after severe HI, induced by umbilical cord occlusion for 25 min, can restore white matter maturation or reduce delayed cell loss. After 21 days recovery, asphyxia was associated with reduced electroencephalographic (EEG) maturation, brain weight and cortical area, impaired maturation of oligodendrocytes (OLs), no significant loss of total OLs but a marked reduction in immature/mature OLs and reduced myelination. Intranasal infusion of hAECs was associated with improved brain weight and restoration of immature/mature OLs and fractional area of myelin basic protein, with reduced microglia and astrogliosis. Cortical EEG frequency distribution was partially improved, with reduced loss of cortical area, and attenuated cleaved-caspase-3 expression and microgliosis. Neuronal survival in deep grey matter nuclei was improved, with reduced microglia, astrogliosis and cleaved-caspase-3-positive apoptosis. These findings suggest that delayed intranasal hAEC administration has potential to alleviate chronic dysmaturation after perinatal HI.
Collapse
Affiliation(s)
- Lotte G van den Heuij
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graham Jenkin
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Euan M Wallace
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Joanne O Davidson
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca Lim
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Guido Wassink
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Duncan D, Barisano G, Cabeen R, Sepehrband F, Garner R, Braimah A, Vespa P, Pitkänen A, Law M, Toga AW. Analytic Tools for Post-traumatic Epileptogenesis Biomarker Search in Multimodal Dataset of an Animal Model and Human Patients. Front Neuroinform 2018; 12:86. [PMID: 30618695 PMCID: PMC6307529 DOI: 10.3389/fninf.2018.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is among the most common serious disabling disorders of the brain, and the global burden of epilepsy exerts a tremendous cost to society. Most people with epilepsy have acquired forms of the disorder, and the development of antiepileptogenic interventions could potentially prevent or cure epilepsy in many of them. However, the discovery of potential antiepileptogenic treatments and clinical validation would require a means to identify populations of patients at very high risk for epilepsy after a potential epileptogenic insult, to know when to treat and to document prevention or cure. A fundamental challenge in discovering biomarkers of epileptogenesis is that this process is likely multifactorial and crosses multiple modalities. Investigators must have access to a large number of high quality, well-curated data points and study subjects for biomarker signals to be detectable above the noise inherent in complex phenomena, such as epileptogenesis, traumatic brain injury (TBI), and conditions of data collection. Additionally, data generating and collecting sites are spread worldwide among different laboratories, clinical sites, heterogeneous data types, formats, and across multi-center preclinical trials. Before the data can even be analyzed, these data must be standardized. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-center project with the overarching goal that epileptogenesis after TBI can be prevented with specific treatments. The identification of relevant biomarkers and performance of rigorous preclinical trials will permit the future design and performance of economically feasible full-scale clinical trials of antiepileptogenic therapies. We have been analyzing human data collected from UCLA and rat data collected from the University of Eastern Finland, both centers collecting data for EpiBioS4Rx, to identify biomarkers of epileptogenesis. Big data techniques and rigorous analysis are brought to longitudinal data collected from humans and an animal model of TBI, epilepsy, and their interaction. The prolonged continuous data streams of intracranial, cortical surface, and scalp EEG from humans and an animal model of epilepsy span months. By applying our innovative mathematical tools via supervised and unsupervised learning methods, we are able to subject a robust dataset to recently pioneered data analysis tools and visualize multivariable interactions with novel graphical methods.
Collapse
Affiliation(s)
- Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Ryan Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Adebayo Braimah
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Paul Vespa
- Division of Neurosurgery, Department of Neurology, University of California at Los Angeles School of Medicine Los Angeles, CA, United States
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland, Kuopio, Finland
| | - Meng Law
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| |
Collapse
|
23
|
Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J Mol Med (Berl) 2018; 96:1279-1292. [PMID: 30386908 DOI: 10.1007/s00109-018-1709-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Autoreactive T cells are considered the major culprits in the pathogenesis of many autoimmune diseases like multiple sclerosis (MS). Upon activation in the lymphoid organs, autoreactive T cells migrate towards the central nervous system (CNS) and target the myelin sheath-forming oligodendrocytes, resulting in detrimental neurological symptoms. Despite the availability of extensively studied systems like the experimental autoimmune encephalomyelitis (EAE) model, our understanding of this disease and the underlying pathogenesis is still elusive. One vividly discussed subject represents the T cell reactivation in the CNS. In order to exert their effector functions in the CNS, autoreactive T cells must encounter antigen-presenting cells (APCs). This interaction provides an antigen-restricted stimulus in the context of major histocompatibility complex class II (MHC-II) and other co-stimulatory molecules. Peripherally derived dendritic cells (DCs), B cells, border-associated macrophages (BAM), CNS-resident microglia, and astrocytes have the capacity to express molecules required for antigen presentation under inflammatory conditions. Also, endothelial cells can fulfill these prerequisites in certain situations. Which of these cells in fact act as APCs for T cell reactivation and to which extent they can exert this function has been studied intensively, but unfortunately with no firm conclusion. In this review, we will summarize the findings that support or question the antigen presenting capacities of the mentioned cell types of CNS-localized T cell reactivation.
Collapse
|
24
|
Shen Y, Yan L, Shao X, Zhao B, Bai J, Lu W, Wang DJ. Improved sensitivity of cellular MRI using phase-cycled balanced SSFP of ferumoxytol nanocomplex-labeled macrophages at ultrahigh field. Int J Nanomedicine 2018; 13:3839-3852. [PMID: 30013339 PMCID: PMC6039059 DOI: 10.2147/ijn.s169860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The purpose of this study was to investigate the feasibility and sensitivity of cellular magnetic resonance imaging (MRI) with ferumoxytol nanocomplex-labeled macrophages at ultrahigh magnetic field of 7 T. Materials and methods THP-1-induced macrophages were labeled using self-assembling heparin + protamine + ferumoxytol nanocomplexes which were injected into a gelatin phantom visible on both microscope and MRI. Susceptibility-weighted imaging (SWI) and balanced steady-state free precession (bSSFP) pulse sequences were applied at 3 and 7 T. The average, maximum intensity projection, and root mean square combined images were generated for phase-cycled bSSFP images. The signal-to-noise ratio and contrast-to-noise ratio (CNR) efficiencies were calculated. Ex vivo experiments were then performed using a formalin-fixed pig brain injected witĥ100 and ~1,000 labeled cells, respectively, at both 3 and 7 T. Results A high cell labeling efficiency (.90%) was achieved with heparin + protamine + ferumoxytol nanocomplexes. Less than 100 cells were detectable in the gelatin phantom at both 3 and 7 T. The 7 T data showed more than double CNR efficiency compared to the corresponding sequences at 3 T. The CNR efficiencies of phase-cycled bSSFP images were higher compared to those of SWI, and the root mean square combined bSSFP showed the highest CNR efficiency with minimal banding. Following co-registration of microscope and MR images, more cells (51/63) were detected by bSSFP at 7 T than at 3 T (36/63). On pig brain, botĥ100 and ~1,000 cells were detected at 3 and 7 T. While the cell size appeared larger due to blooming effects on SWI, bSSFP allowed better contrast to precisely identify the location of the cells with higher signal-to-noise ratio efficiency. Conclusion The proposed cellular MRI with ferumoxytol nanocomplex-labeled macrophages at 7 T has a high sensitivity to detect, 100 cells. The proposed method has great translational potential and may have broad clinical applications that involve cell types with a primary phagocytic phenotype.
Collapse
Affiliation(s)
- Yelong Shen
- Laboratory of FMRI Technology (LOFT), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA, .,Shandong Medical Imaging Research Institute, School of Medicine, Shandong University, Jinan, Shangdong, China
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA,
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA,
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, School of Medicine, Shandong University, Jinan, Shangdong, China
| | - Jinlun Bai
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Wange Lu
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Danny Jj Wang
- Laboratory of FMRI Technology (LOFT), Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA,
| |
Collapse
|
25
|
Santoro A, Spinelli CC, Martucciello S, Nori SL, Capunzo M, Puca AA, Ciaglia E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018; 103:509-524. [PMID: 29389023 DOI: 10.1002/jlb.3mr0118-003r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | | | | | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| |
Collapse
|
26
|
Feldman RE, Rutland JW, Fields MC, Marcuse LV, Pawha PS, Delman BN, Balchandani P. Quantification of perivascular spaces at 7T: A potential MRI biomarker for epilepsy. Seizure 2017; 54:11-18. [PMID: 29172093 DOI: 10.1016/j.seizure.2017.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE 7T (7T) magnetic resonance imaging (MRI) facilitates the visualization of the brain with resolution and contrast beyond what is available at conventional clinical field strengths, enabling improved detection and quantification of small structural features such as perivascular spaces (PVSs). The distribution of PVSs, detected in vivo at 7T, may act as a biomarker for the effects of epilepsy. In this work, we systematically quantify the PVSs in the brains of epilepsy patients and compare them to healthy controls. METHODS T2-weighted turbo spin echo images were obtained at 7T on 21 epilepsy patients and 17 healthy controls. For all subjects, PVSs were manually marked on Osirix image analysis software. Marked PVSs with diameter≥0.5mm were then mapped by hemisphere and lobe. The asymmetry index (AI) was calculated for each region and the maximum asymmetry index (|AImax|) was reported for each subject. The asymmetry in epilepsy subjects was compared to that of controls, and the region with highest asymmetry was compared to the suspected seizure onset zone. RESULTS There was a significant difference between the |AImax| in epilepsy subjects and in controls (p=0.016). In 72% of patients, the region or lobe of the brain showing maximum PVS asymmetry was the same as the region containing the suspected seizure onset zone. CONCLUSION These findings suggest that epilepsy may be associated with significantly asymmetric distribution of PVSs in the brain. Furthermore, the region of maximal asymmetry of the PVSs may help provide localization or confirmation of the seizure onset zone.
Collapse
Affiliation(s)
- Rebecca Emily Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - John Watson Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Puneet S Pawha
- Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley Neil Delman
- Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
28
|
Robson MJ, Quinlan MA, Blakely RD. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery. ACS Chem Neurosci 2017; 8:932-942. [PMID: 28345868 DOI: 10.1021/acschemneuro.6b00412] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Collapse
Affiliation(s)
- Matthew J Robson
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37240-7933, United States
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University , Jupiter, Florida 33458, United States
| |
Collapse
|
29
|
Le Blon D, Hoornaert C, Detrez JR, Bevers S, Daans J, Goossens H, De Vos WH, Berneman Z, Ponsaerts P. Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation or (harmless) side-effect? J Tissue Eng Regen Med 2016; 11:2846-2852. [PMID: 27320821 DOI: 10.1002/term.2188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
Over the past two decades, several cell types with fibroblast-like morphology, including mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic fibroblast-like cells, have been brought forward in the search for cellular therapies to treat severe brain injuries and/or diseases. Although current views in regenerative medicine are highly focused on the immune modulating and regenerative properties of stromal cell transplantation in vivo, many open questions remain regarding their true mode of action. In this perspective, this study integrates insights gathered over the past 10 years to formulate a unifying model of the cellular events that accompany fibroblast-like cell grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting from the day of implantation up to 10 days after transplantation. During the short period that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and macrophage recruitment, astrocyte activation and neo-angiogenesis within the stromal cell graft site. Consequently, it is speculated that regenerative processes following cell therapeutic intervention in the CNS are not only modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), but also by in vivo inflammatory processes following stromal cell grafting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Debbie Le Blon
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jan R Detrez
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Sanne Bevers
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Ali IU, Chen X. Penetrating the Blood-Brain Barrier: Promise of Novel Nanoplatforms and Delivery Vehicles. ACS NANO 2015; 9:9470-4. [PMID: 26406936 PMCID: PMC5226403 DOI: 10.1021/acsnano.5b05341] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multifunctional nanoplatforms combining versatile therapeutic modalities with a variety of imaging options have the potential to diagnose, monitor, and treat brain diseases. The promise of nanotechnology can only be realized by the simultaneous development of innovative brain-targeting delivery vehicles capable of penetrating the blood-brain barrier without compromising its structural integrity.
Collapse
|
31
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
32
|
García-Martín E, Barreto GE, Agúndez JAG, Guedes RCA, El-Bachá RS. Editorial on Cerebral endothelial and glial cells are more than bricks in the Great Wall of the brain: insights into the way the blood-brain barrier actually works (celebrating the centenary of Goldman's experiments). Front Cell Neurosci 2015; 9:128. [PMID: 25883553 PMCID: PMC4381639 DOI: 10.3389/fncel.2015.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elena García-Martín
- Department of Biochemistry, Molecular Biology, and Genetics, University of Extremadura Cáceres, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia
| | - José A G Agúndez
- Department of Pharmacology, University of Extremadura Cáceres, Spain
| | - Rubem C A Guedes
- Departamento de Nutrição, Universidade Federal de Pernambuco Recife, Brazil
| | - Ramon S El-Bachá
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| |
Collapse
|