1
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Chin WC, Huang YS, Tang I, Wang CH. Long-term follow-up of symptom and quality of life changes in patients with narcolepsy during and after the COVID-19 pandemic. Sleep Biol Rhythms 2024; 22:373-384. [PMID: 38962790 PMCID: PMC11217227 DOI: 10.1007/s41105-024-00521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/25/2024] [Indexed: 07/05/2024]
Abstract
The COVID-19 pandemic may have a significant impact on patients with narcolepsy, yet a long-term follow-up study is currently lacking. This study aims to investigate changes in symptom severity and the quality of life of patients with narcolepsy during and after the pandemic. Patients with type 1 or type 2 narcolepsy (NT1, NT2) were retrospectively recruited and prospectively followed from 2020 to 2023. They received evaluations including the Epworth Sleepiness Scale (ESS), the visual analog scale (VAS) for hypersomnolence, the VAS for cataplexy, the Short-form 36 Health Survey questionnaire (SF-36), and a sleep diary. We compared the differences between the pre-lockdown, the lockdown, the post-lockdown, and the post-pandemic periods by repeated measures ANOVA or the Friedman test, with the Bonferroni test for post hoc analysis. A total of 100 patients completed the 4-year study (mean age, 24.06 ± 7.00 years; 55% male). We observed significant differences in the ESS (p = 0.037), total nighttime sleep (p = 0.03), total sleep time (p = 0.035), and sleep efficiency (p = 0.035) during the study period. There was also significantly worse physical role functioning in the post-pandemic period (p = 0.014). In particular, the NT1 group had significantly decreased VAS-C scores (p < 0.001) but experienced worse physical role functioning in the post-pandemic period (p = 0.009). Patients with narcolepsy continue to face challenges after the pandemic. A more flexible lifestyle with an adequate sleep time may be beneficial, and medication adherence should be emphasized.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Division of Psychiatry and Sleep Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shu Huang
- Division of Psychiatry and Sleep Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I. Tang
- Division of Psychiatry and Sleep Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Huan Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
Martin-Lopez E, Brennan B, Mao T, Spence N, Meller SJ, Han K, Yahiaoui N, Wang C, Iwasaki A, Greer CA. Inflammatory Response and Defects on Myelin Integrity in the Olfactory System of K18hACE2 Mice Infected with SARS-CoV-2. eNeuro 2024; 11:ENEURO.0106-24.2024. [PMID: 38834299 PMCID: PMC11185043 DOI: 10.1523/eneuro.0106-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, Connecticut 06520-8043
- Yale University School of Public Health, New Haven, Connecticut 06520-0834
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Natalie Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Sarah J Meller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520-8074
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Nawal Yahiaoui
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Chelsea Wang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, Connecticut 06520-8043
- Yale University School of Public Health, New Haven, Connecticut 06520-0834
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520-8001
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520-8074
| |
Collapse
|
4
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Zhang L, Yuan X, Li X, Zhang X, Mao Y, Hu S, Andreassen OA, Wang Y, Song X. Gut microbial diversity moderates polygenic risk of schizophrenia. Front Psychiatry 2024; 15:1275719. [PMID: 38362027 PMCID: PMC10868137 DOI: 10.3389/fpsyt.2024.1275719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Background Schizophrenia (SCZ) is a heritable disorder with a polygenic architecture, and the gut microbiota seems to be involved in its development and outcome. In this study, we investigate the interplay between genetic risk and gut microbial markers. Methods We included 159 first-episode, drug-naïve SCZ patients and 86 healthy controls. The microbial composition of feces was characterized using the 16S rRNA sequencing platform, and five microbial α-diversity indices were estimated [Shannon, Simpson, Chao1, the Abundance-based Eoverage Estimator (ACE), and a phylogenetic diversity-based estimate (PD)]. Polygenic risk scores (PRS) for SCZ were constructed using data from large-scale genome-wide association studies. Effects of microbial α-diversity, microbial abundance, and PRS on SCZ were evaluated via generalized linear models. Results We confirmed that PRS was associated with SCZ (OR = 2.08, p = 1.22×10-5) and that scores on the Shannon (OR = 0.29, p = 1.15×10-8) and Simpson (OR = 0.29, p = 1.25×10-8) indices were inversely associated with SCZ risk. We found significant interactions (p < 0.05) between PRS and α-diversity indices (Shannon, Simpson, and PD), with the effects of PRS being larger in those exhibiting higher diversity compared to those with lower diversity. Moreover, the PRS effects were larger in individuals with a high abundance of the genera Romboutsia, Streptococcus, and Anaerostipes than in those with low abundance (p < 0.05). All three of these genera showed protective effects against SCZ. Conclusion The current findings suggest an interplay between the gut microbiota and polygenic risk of SCZ that warrants replication in independent samples. Experimental studies are needed to determine the underpinning mechanisms.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yiqiao Mao
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Centre for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zaki MEA, AL-Hussain SA, Al-Mutairi AA, Samad A, Masand VH, Ingle RG, Rathod VD, Gaikwad NM, Rashid S, Khatale PN, Burakale PV, Jawarkar RD. Application of in-silico drug discovery techniques to discover a novel hit for target-specific inhibition of SARS-CoV-2 Mpro's revealed allosteric binding with MAO-B receptor: A theoretical study to find a cure for post-covid neurological disorder. PLoS One 2024; 19:e0286848. [PMID: 38227609 PMCID: PMC10790994 DOI: 10.1371/journal.pone.0286848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 01/18/2024] Open
Abstract
Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.
Collapse
Affiliation(s)
- Magdi E. A. Zaki
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A. AL-Hussain
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A. Al-Mutairi
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharti Mahavidyalaya, Amravati, Maharashtra, India
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, DMIHER Deemed University, Wardha, India
| | - Vivek Digamber Rathod
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravin N. Khatale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Pramod V. Burakale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Rahul D. Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| |
Collapse
|
7
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
9
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
10
|
Poddar NK, Khan A, Fatima F, Saxena A, Ghaley G, Khan S. Association of mTOR Pathway and Conformational Alterations in C-Reactive Protein in Neurodegenerative Diseases and Infections. Cell Mol Neurobiol 2023; 43:3815-3832. [PMID: 37665407 DOI: 10.1007/s10571-023-01402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007.
| | - Arshma Khan
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India, 243123
| | - Falak Fatima
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India, 201301
| | - Anshulika Saxena
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Garima Ghaley
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, Uttar Pradesh, India, 247554.
| |
Collapse
|
11
|
Roya Y, Farzaneh B, Mostafa A, Mahsa S, Babak Z. Narcolepsy following COVID-19: A case report and review of potential mechanisms. Clin Case Rep 2023; 11:e7370. [PMID: 37251741 PMCID: PMC10213711 DOI: 10.1002/ccr3.7370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Key Clinical Message The immune activation in COVID-19 may trigger narcolepsy in vulnerable patients. We suggest clinicians carefully evaluate patients with post-COVID fatigue and hypersomnia for primary sleep disorders, specifically narcolepsy. Abstract The patient is a 33-year-old Iranian woman without a significant past medical history with the full range of narcolepsy symptoms that started within 2 weeks after her recovery from COVID-19. Sleep studies revealed increased sleep latency and three sleep-onset rapid eye movement events, compatible with a narcolepsy-cataplexy diagnosis.
Collapse
Affiliation(s)
- Yazdani Roya
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Barzkar Farzaneh
- Center for Educational Research in Medical Sciences(CERMS), Faculty of MedicineIran University of Medical Sciences IUMSTehranIran
| | - Almasi‐Dooghaee Mostafa
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Shojaie Mahsa
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Zamani Babak
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
13
|
Sousa Rêgo LO, Alves Braga LL, Vilas-Boas GS, Oliveira Cardoso MS, Duraes AR. Cardiovascular and Neurological Complications of COVID-19: A Narrative Review. J Clin Med 2023; 12:jcm12082819. [PMID: 37109156 PMCID: PMC10142816 DOI: 10.3390/jcm12082819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A novel coronavirus emerged in China in late 2019 as a disease named coronavirus disease 2019. This pathogen was initially identified as causing a respiratory syndrome, but later, it was found that COVID-19 could also affect other body systems, such as the neurological and cardiovascular systems. For didactic purposes, cardiovascular and neurological manifestations of SARS-CoV-2 have been classified in three different groups: acute complications, late complications, and post-vaccine complications. Therefore, the following study has the goal to summarize and disseminate the present knowledge about the cardiovascular and neurological manifestations of COVID-19 based on the latest and most up-to-date data available and, thus, promote more prepared medical care for these conditions as the medical team is updated. Based on what is brought on this revision and its understanding, the medical service becomes more aware of the causal relationship between some conditions and COVID-19 and can better prepare for the most prevalent conditions to associate and, consequently, to treat patients earlier. Therefore, there is a chance of better prognoses in this context and the need to increase the number of studies about complications related to SARS-CoV-2 infection for a better understanding of other associated conditions.
Collapse
Affiliation(s)
- Luma Ornelas Sousa Rêgo
- Bahiana School of Medicine and Public Health, BAHIANA/EBMSP, 275, Av. Dom João VI, Brotas, Salvador 40290-000, Brazil
| | - Lara Landulfo Alves Braga
- Bahiana School of Medicine and Public Health, BAHIANA/EBMSP, 275, Av. Dom João VI, Brotas, Salvador 40290-000, Brazil
| | - Gustavo Sampaio Vilas-Boas
- Bahiana School of Medicine and Public Health, BAHIANA/EBMSP, 275, Av. Dom João VI, Brotas, Salvador 40290-000, Brazil
| | | | - Andre Rodrigues Duraes
- Bahiana Medical School of Federal University of Bahia, UFBA/FAMEB, PPGMS-EMBSP-Bahia Federal University, Salvador 40170-110, Brazil
| |
Collapse
|
14
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 DOI: 10.7554/elife.86002:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/28/2024] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, District of Columbia, United States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, United States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's Hospital, New York, United States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, United States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas, San Antonio, United States
| |
Collapse
|
15
|
Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86002. [PMID: 36947108 PMCID: PMC10032659 DOI: 10.7554/elife.86002] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.
Collapse
Affiliation(s)
- Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashington, District of ColumbiaUnited States
| | - Christian R Gomez
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI)BethesdaUnited States
| | - Thomas J Connors
- Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's HospitalNew YorkUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of CaliforniaSan FranciscoUnited States
| | - William Brian Reeves
- Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of TexasSan AntonioUnited States
| |
Collapse
|
16
|
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES. SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. J Neurosci Res 2023; 101:952-975. [PMID: 36717481 DOI: 10.1002/jnr.25171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida, USA
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
17
|
Golzari-Sorkheh M, Weaver DF, Reed MA. COVID-19 as a Risk Factor for Alzheimer's Disease. J Alzheimers Dis 2023; 91:1-23. [PMID: 36314211 DOI: 10.3233/jad-220800] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting neuroinflammation, both of which underlie an elevated risk for Alzheimer's disease (AD). Herein, we ask: Is COVID-19 a risk factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
Collapse
Affiliation(s)
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Zhang J. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front Neurol 2022; 13:968193. [PMID: 36570463 PMCID: PMC9768197 DOI: 10.3389/fneur.2022.968193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apart from common respiratory symptoms, neurological symptoms are prevalent among patients with COVID-19. Research has shown that infection with SARS-CoV-2 accelerated alpha-synuclein aggregation, induced Lewy-body-like pathology, caused dopaminergic neuron senescence, and worsened symptoms in patients with Parkinson's disease (PD). In addition, SARS-CoV-2 infection can induce neuroinflammation and facilitate subsequent neurodegeneration in long COVID, and increase individual vulnerability to PD or parkinsonism. These findings suggest that a post-COVID-19 parkinsonism might follow the COVID-19 pandemic. In order to prevent a possible post-COVID-19 parkinsonism, this paper reviewed neurological symptoms and related findings of COVID-19 and related infectious diseases (influenza and prion disease) and neurodegenerative disorders (Alzheimer's disease, PD and amyotrophic lateral sclerosis), and discussed potential mechanisms underlying the neurological symptoms and the relationship between the infectious diseases and the neurodegenerative disorders, as well as the therapeutic and preventive implications in the neurodegenerative disorders. Infections with a relay of microbes (SARS-CoV-2, influenza A viruses, gut bacteria, etc.) and prion-like alpha-synuclein proteins over time may synergize to induce PD. Therefore, a systematic approach that targets these pathogens and the pathogen-induced neuroinflammation and neurodegeneration may provide cures for neurodegenerative disorders. Further, antiviral/antimicrobial drugs, vaccines, immunotherapies and new therapies (e.g., stem cell therapy) need to work together to treat, manage or prevent these disorders. As medical science and technology advances, it is anticipated that better vaccines for SARS-CoV-2 variants, new antiviral/antimicrobial drugs, effective immunotherapies (alpha-synuclein antibodies, vaccines for PD or parkinsonism, etc.), as well as new therapies will be developed and made available in the near future, which will help prevent a possible post-COVID-19 parkinsonism in the 21st century.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
19
|
Muacevic A, Adler JR. Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity. Cureus 2022; 14:e32361. [PMID: 36514706 PMCID: PMC9733976 DOI: 10.7759/cureus.32361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of β amyloid. Through the spike-protein-dependent elevation of p53 levels via β amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.
Collapse
|
20
|
Ogunjo S, Olusola A, Orimoloye I. Association Between Weather Parameters and SARS-CoV-2 Confirmed Cases in Two South African Cities. GEOHEALTH 2022; 6:e2021GH000520. [PMID: 36348988 PMCID: PMC9635841 DOI: 10.1029/2021gh000520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Several approaches have been used in the race against time to mitigate the spread and impact of COVID-19. In this study, we investigated the role of temperature, relative humidity, and particulate matter in the spread of COVID-19 cases within two densely populated cities of South Africa-Pretoria and Cape Town. The role of different levels of COVID-19 restrictions in the air pollution levels, obtained from the Purple Air Network, of the two cities were also considered. Our results suggest that 26.73% and 43.66% reduction in PM2.5 levels were observed in Cape Town and Pretoria respectively for no lockdown (Level 0) to the strictest lockdown level (Level 5). Furthermore, our results showed a significant relationship between particulate matter and COVID-19 in the two cities. Particulate matter was found to be a good predictor, based on the significance of causality test, of COVID-19 cases in Pretoria with a lag of 7 days and more. This suggests that the effect of particulate matter on the number of cases can be felt after 7 days and beyond in Pretoria.
Collapse
Affiliation(s)
- Samuel Ogunjo
- Department of PhysicsFederal University of TechnologyAkureNigeria
| | - Adeyemi Olusola
- Faculty of Environmental and Urban ChangeYork UniversityTorontoCanada
- Department of GeographyUniversity of the Free StateBloemfonteinSouth Africa
| | - Israel Orimoloye
- Department of Geography, Faculty of Food and AgricultureThe University of the West Indies, St. Augustine CampusSt. AugustineTrinidad and Tobago
| |
Collapse
|
21
|
Jahanimoghadam A, Abdolahzadeh H, Rad NK, Zahiri J. Discovering Common Pathogenic Mechanisms of COVID-19 and Parkinson Disease: An Integrated Bioinformatics Analysis. J Mol Neurosci 2022; 72:2326-2337. [PMID: 36301487 PMCID: PMC9607846 DOI: 10.1007/s12031-022-02068-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged since December 2019 and was later characterized as a pandemic by WHO, imposing a major public health threat globally. Our study aimed to identify common signatures from different biological levels to enlighten the current unclear association between COVID-19 and Parkinson's disease (PD) as a number of possible links, and hypotheses were reported in the literature. We have analyzed transcriptome data from peripheral blood mononuclear cells (PBMCs) of both COVID-19 and PD patients, resulting in a total of 81 common differentially expressed genes (DEGs). The functional enrichment analysis of common DEGs are mostly involved in the complement system, type II interferon gamma (IFNG) signaling pathway, oxidative damage, microglia pathogen phagocytosis pathway, and GABAergic synapse. The protein-protein interaction network (PPIN) construction was carried out followed by hub detection, revealing 10 hub genes (MX1, IFI27, C1QC, C1QA, IFI6, NFIX, C1S, XAF1, IFI35, and ELANE). Some of the hub genes were associated with molecular mechanisms such as Lewy bodies-induced inflammation, microglia activation, and cytokine storm. We investigated regulatory elements of hub genes at transcription factor and miRNA levels. The major transcription factors regulating hub genes are SOX2, XAF1, RUNX1, MITF, and SPI1. We propose that these events may have important roles in the onset or progression of PD. To sum up, our analysis describes possible mechanisms linking COVID-19 and PD, elucidating some unknown clues in between.
Collapse
Affiliation(s)
- Aria Jahanimoghadam
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Hadis Abdolahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Zahiri
- Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
22
|
Shannon KM. Infections and Changes in Commensal Bacteria and the Pathogenesis of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S45-S51. [PMID: 35723116 PMCID: PMC9535579 DOI: 10.3233/jpd-223271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cause of Parkinson’s disease (PD) is unknown, but environmental factors are purported to influence risk. Interest in PD as a sequel of infection dates back to reports of parkinsonism arising from encephalitis lethargica. The objective of this paper is to review the literature as it relates to infections and changes in microbiome and the genesis of PD. There is evidence to support prior infection with Helicobacter pylori, hepatitis C virus, Malassezia, and Strep pneumonia in association with PD. A large number of studies support an association between changes in commensal bacteria, especially gut bacteria, and PD. Extant literature supports a role for some infections and changes in commensal bacteria in the genesis of PD. Studies support an inflammatory mechanism for this association, but additional research is required for translation of these findings to therapeutic options.
Collapse
Affiliation(s)
- Kathleen M. Shannon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
23
|
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Almeida ÉD, Dos Santos NB, Firmino EM, Paiva IM, Almeida GM, Sebollela A, Polonio CM, Zanluqui NG, de Oliveira MG, da Silva P, Gastão Davanzo G, Ayupe MC, Loureiro Salgado C, de Souza Filho AF, de Araújo MV, Silva-Pereira TT, de Almeida Campos AC, Góes LGB, Dos Passos Cunha M, Caldini EG, Lima MRDI, Fonseca DM, de Sá Guimarães AM, Minoprio PC, Munhoz CD, Mori CMC, Moraes-Vieira PM, Cunha TM, Martins-de-Souza D, Peron JPS. SARS-CoV-2 Infection Impacts Carbon Metabolism and Depends on Glutamine for Replication in Syrian Hamster Astrocytes. J Neurochem 2022; 163:113-132. [PMID: 35880385 PMCID: PMC9350388 DOI: 10.1111/jnc.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023]
Abstract
COVID‐19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID‐19. Here we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS‐CoV‐2 infected Syrian hamsters. We show that SARS‐CoV‐2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real‐time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS‐CoV‐2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID‐19, as memory loss, confusion, and cognitive impairment.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Yamamoto
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lícia Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro Henrique Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica Duque Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Egidi Mayara Firmino
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Glaucia Maria Almeida
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Nagela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Marília Garcia de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marina Caçador Ayupe
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Antônio Francisco de Souza Filho
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Valdemir de Araújo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Elia Garcia Caldini
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Denise Morais Fonseca
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ana Márcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Madalena Cabrera Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, Brazil
| | - Pedro Manoel Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, SP, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
COVID-19 and Parkinsonism: A Critical Appraisal. Biomolecules 2022; 12:biom12070970. [PMID: 35883526 PMCID: PMC9313170 DOI: 10.3390/biom12070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
A few cases of parkinsonism linked to COVID-19 infection have been reported so far, raising the possibility of a post-viral parkinsonian syndrome. The objective of this review is to summarize the clinical, biological, and neuroimaging features of published cases describing COVID-19-related parkinsonism and to discuss the possible pathophysiological mechanisms. A comprehensive literature search was performed using NCBI’s PubMed database and standardized search terms. Thirteen cases of COVID-19-related parkinsonism were included (7 males; mean age: 51 years ± 14.51, range 31–73). Patients were classified based on the possible mechanisms of post-COVID-19 parkinsonism: extensive inflammation or hypoxic brain injury within the context of encephalopathy (n = 5); unmasking of underlying still non-symptomatic Parkinson’s Disease (PD) (n = 5), and structural and functional basal ganglia damage (n = 3). The various clinical scenarios show different outcomes and responses to dopaminergic treatment. Different mechanisms may play a role, including vascular damage, neuroinflammation, SARS-CoV-2 neuroinvasive potential, and the impact of SARS-CoV-2 on α-synuclein. Our results confirm that the appearance of parkinsonism during or immediately after COVID-19 infection represents a very rare event. Future long-term observational studies are needed to evaluate the possible role of SARS-CoV-2 infection as a trigger for the development of PD in the long term.
Collapse
|
25
|
Parkinson’s Disease and SARS-CoV-2 Infection: Particularities of Molecular and Cellular Mechanisms Regarding Pathogenesis and Treatment. Biomedicines 2022; 10:biomedicines10051000. [PMID: 35625737 PMCID: PMC9138688 DOI: 10.3390/biomedicines10051000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulating data suggest that chronic neuroinflammation-mediated neurodegeneration is a significant contributing factor for progressive neuronal and glial cell death in age-related neurodegenerative pathology. Furthermore, it could be encountered as long-term consequences in some viral infections, including post-COVID-19 Parkinsonism-related chronic sequelae. The current systematic review is focused on a recent question aroused during the pandemic’s successive waves: are there post-SARS-CoV-2 immune-mediated reactions responsible for promoting neurodegeneration? Does the host’s dysregulated immune counter-offensive contribute to the pathogenesis of neurodegenerative diseases, emerging as Parkinson’s disease, in a complex interrelation between genetic and epigenetic risk factors? A synthetic and systematic literature review was accomplished based on the ”Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses” (PRISMA) methodology, including registration on the specific online platform: International prospective register of systematic reviews—PROSPERO, no. 312183. Initially, 1894 articles were detected. After fulfilling the five steps of the selection methodology, 104 papers were selected for this synthetic review. Documentation was enhanced with a supplementary 47 bibliographic resources identified in the literature within a non-standardized search connected to the subject. As a final step of the PRISMA method, we have fulfilled a Population-Intervention-Comparison-Outcome-Time (PICOT)/Population-Intervention-Comparison-Outcome-Study type (PICOS)—based metanalysis of clinical trials identified as connected to our search, targeting the outcomes of rehabilitative kinesitherapeutic interventions compared to clinical approaches lacking such kind of treatment. Accordingly, we identified 10 clinical trials related to our article. The multi/interdisciplinary conventional therapy of Parkinson’s disease and non-conventional multitarget approach to an integrative treatment was briefly analyzed. This article synthesizes the current findings on the pathogenic interference between the dysregulated complex mechanisms involved in aging, neuroinflammation, and neurodegeneration, focusing on Parkinson’s disease and the acute and chronic repercussions of COVID-19. Time will tell whether COVID-19 neuroinflammatory events could trigger long-term neurodegenerative effects and contribute to the worsening and/or explosion of new cases of PD. The extent of the interrelated neuropathogenic phenomenon remains obscure, so further clinical observations and prospective longitudinal cohort studies are needed.
Collapse
|
26
|
Hok L, Rimac H, Mavri J, Vianello R. COVID-19 infection and neurodegeneration: Computational evidence for interactions between the SARS-CoV-2 spike protein and monoamine oxidase enzymes. Comput Struct Biotechnol J 2022; 20:1254-1263. [PMID: 35228857 PMCID: PMC8868002 DOI: 10.1016/j.csbj.2022.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although COVID-19 has been primarily associated with pneumonia, recent data show that its causative agent, the SARS-CoV-2 coronavirus, can infect many vital organs beyond the lungs, including the heart, kidneys and the brain. The literature agrees that COVID-19 is likely to have long-term mental health effects on infected individuals, which signifies a need to understand the role of the virus in the pathophysiology of brain disorders that is currently unknown and widely debated. Our docking and molecular dynamics simulations show that the affinity of the spike protein from the wild type (WT) and the South African B.1.351 (SA) variant towards MAO enzymes is comparable to that for its ACE2 receptor. This allows for the WT/SA⋅⋅⋅MAO complex formation, which changes MAO affinities for their neurotransmitter substrates, thereby impacting their metabolic conversion and misbalancing their levels. Knowing that this fine regulation is strongly linked with the etiology of various brain pathologies, these results are the first to highlight the possibility that the interference with the brain MAO catalytic activity is responsible for the increased neurodegenerative illnesses following a COVID-19 infection, thus placing a neurobiological link between these two conditions in the spotlight. Since the obtained insight suggests that a more contagious SA variant causes even larger disturbances, and with new and more problematic strains likely emerging in the near future, we firmly advise that the presented prospect of the SARS-CoV-2 induced neurological complications should not be ignored, but rather requires further clinical investigations to achieve an early diagnosis and timely therapeutic interventions.
Collapse
Affiliation(s)
- Lucija Hok
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Rimac
- Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
27
|
Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022; 32:e2334. [PMID: 35138001 PMCID: PMC9111040 DOI: 10.1002/rmv.2334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
With the progression of investigations on the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), neurological complications have emerged as a critical aspect of the ongoing coronavirus disease 2019 (Covid‐19) pandemic. Besides the well‐known respiratory symptoms, many neurological manifestations such as anosmia/ageusia, headaches, dizziness, seizures, and strokes have been documented in hospitalised patients. The neurotropism background of coronaviruses has led to speculation that the neurological complications are caused by the direct invasion of SARS‐CoV‐2 into the nervous system. This invasion is proposed to occur through the infection of peripheral nerves or via systemic blood circulation, termed neuronal and haematogenous routes of invasion, respectively. On the other hand, aberrant immune responses and respiratory insufficiency associated with Covid‐19 are suggested to affect the nervous system indirectly. Deleterious roles of cytokine storm and hypoxic conditions in blood‐brain barrier disruption, coagulation abnormalities, and autoimmune neuropathies are well investigated in coronavirus infections, as well as Covid‐19. Here, we review the latest discoveries focussing on possible molecular mechanisms of direct and indirect impacts of SARS‐CoV‐2 on the nervous system and try to elucidate the link between some potential therapeutic strategies and the molecular pathways.
Collapse
Affiliation(s)
- Mohammad Mahboubi Mehrabani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Pedram Maafi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
28
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
29
|
Satoh T, Trudler D, Oh CK, Lipton SA. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants (Basel) 2022; 11:124. [PMID: 35052628 PMCID: PMC8772720 DOI: 10.3390/antiox11010124] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rosemary (Rosmarinus officinalis [family Lamiaceae]), an herb of economic and gustatory repute, is employed in traditional medicines in many countries. Rosemary contains carnosic acid (CA) and carnosol (CS), abietane-type phenolic diterpenes, which account for most of its biological and pharmacological actions, although claims have also been made for contributions of another constituent, rosmarinic acid. This review focuses on the potential applications of CA and CS for Alzheimer's disease (AD), Parkinson's disease (PD), and coronavirus disease 2019 (COVID-19), in part via inhibition of the NLRP3 inflammasome. CA exerts antioxidant, anti-inflammatory, and neuroprotective effects via phase 2 enzyme induction initiated by activation of the KEAP1/NRF2 transcriptional pathway, which in turn attenuates NLRP3 activation. In addition, we propose that CA-related compounds may serve as therapeutics against the brain-related after-effects of SARS-CoV-2 infection, termed "long-COVID." One factor that contributes to COVID-19 is cytokine storm emanating from macrophages as a result of unregulated inflammation in and around lung epithelial and endovascular cells. Additionally, neurological aftereffects such as anxiety and "brain fog" are becoming a major issue for both the pandemic and post-pandemic period. Many reports hold that unregulated NLRP3 inflammasome activation may potentially contribute to the severity of COVID-19 and its aftermath. It is therefore possible that suppression of NLRP3 inflammasome activity may prove efficacious against both acute lung disease and chronic neurological after-effects. Because CA has been shown to not only act systemically but also to penetrate the blood-brain barrier and reach the brain parenchyma to exert neuroprotective effects, we discuss the evidence that CA or rosemary extracts containing CA may represent an effective countermeasure against both acute and chronic pathological events initiated by SARS-CoV-2 infection as well as other chronic neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan
| | - Dorit Trudler
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Chang-Ki Oh
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Radhakrishnan RK, Kandasamy M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221078418. [PMID: 35133907 PMCID: PMC10581113 DOI: 10.1177/15333175221078418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
Collapse
Affiliation(s)
- Risna K. Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| |
Collapse
|
31
|
Dutta D, Liu J, Xiong H. NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:138-160. [PMID: 35891930 PMCID: PMC9301183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 04/13/2023]
Abstract
Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a consequence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 inflammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome activation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| |
Collapse
|
32
|
Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci 2021; 45:158-170. [PMID: 34906391 DOI: 10.1016/j.tins.2021.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with multiple functions in health and disease. Their response during encephalitis depends on whether inflammation is triggered in a sterile or infectious manner, and in the latter case on the type of the infecting pathogen. Even though recent technological innovations advanced the understanding of the broad spectrum of microglia responses during viral encephalitis (VE), it is not entirely clear which microglia gene expression profiles are associated with antiviral and detrimental activities. Here, we review novel approaches to study microglia and the latest concepts of their function in VE. Improved understanding of microglial functions will be essential for the development of new therapeutic interventions for VE.
Collapse
|
33
|
Carod-Artal FJ, García-Moncó JC. Epidemiology, pathophysiology, and classification of the neurological symptoms of post-COVID-19 syndrome. NEUROLOGY PERSPECTIVES 2021; 1:S5-S15. [PMID: 36798683 PMCID: PMC8669691 DOI: 10.1016/j.neurop.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Introduction Post-COVID-19 syndrome is a series of chronic signs and symptoms that may appear after SARS-CoV-2 infection, including fatigue, dyspnoea, chest pain, palpitations, anxiety, depression, and joint and muscle pain. The purpose of this study was to review the controversies on post-COVID-19 syndrome, the frequency of neurological symptoms, and the potential pathophysiological mechanisms. Methods We present a narrative review of studies published in PubMed since the beginning of the pandemic (January 2020-July 2021). Results Patients with history of COVID-19 have been found to present persistent neurological symptoms, including cognitive complaints, memory and concentration problems, headache, anosmia, ageusia, vertigo, and insomnia. Post-COVID-19 syndrome is a heterogeneous disease that lacks a universally accepted definition, which may explain the great variability in the estimated prevalence (2.3%-85%) and symptom duration. The criteria differentiating post-COVID-19 syndrome from chronic fatigue syndrome or critical illness syndrome are ambiguous. Risk factors include older age, female sex, certain comorbidities, and greater number of symptoms in the acute phase. The pathophysiology of the syndrome is largely unknown, although it is probably multifactorial, including immunological mechanisms, neural network dysfunction, neurotransmitter alterations, persistent viral damage, and functional impairment. Conclusions Post-COVID-19 syndrome may present after mild or even asymptomatic SARS-CoV-2 infection, causing limitations in activities of daily living and in quality of life. Further research will clarify the origin and most appropriate management of these neurological alterations.
Collapse
Affiliation(s)
| | - J C García-Moncó
- Servicio de Neurología, Hospital Universitario de Basurto, Bilbao, Spain
| |
Collapse
|
34
|
Azar G, Bonnin S, Vasseur V, Faure C, Salviat F, Clermont CV, Titah C, Farès S, Boulanger E, Derrien S, Couturier A, Duvilliers A, Manassero A, Hage R, Tadayoni R, Behar-Cohen F, Mauget-Faÿsse M. Did the COVID-19 Pandemic Increase the Incidence of Acute Macular Neuroretinopathy? J Clin Med 2021; 10:jcm10215038. [PMID: 34768555 PMCID: PMC8585041 DOI: 10.3390/jcm10215038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Acute macular neuroretinopathy (AMN) is an increasingly diagnosed disorder associated with several diseases. The aim of this study was to report the incidence of AMN cases diagnosed during the 2020 coronavirus disease 2019 (COVID-19) pandemic year in a French hospital, and to describe their different forms. Methods: All patients diagnosed between 2019 and 2020, in Paris Rothschild Foundation Hospital, with AMN, paracentral acute middle maculopathy (PAMM) and multiple evanescent white dot syndrome (MEWDS) were retrospectively collected using the software Ophtalmoquery® (Corilus, V1.86.0018, 9050 Gand, Belgium). Systemic and ophthalmological data from AMN patients were analyzed. Results: Eleven patients were diagnosed with AMN in 2020 vs. only one patient reported in 2019. The incidence of AMN significantly increased from 0.66/100,000 visits in 2019 to 8.97/100,000 visits in 2020 (p = 0.001), whereas the incidence of PAMM and MEWDS remained unchanged. Four (36%) of these AMN patients were tested for COVID-19 and received positive polymerase chain reaction (PCR) tests. Conclusions: The incidence of AMN cases increased significantly in our institution in 2020, which was the year of the COVID-19 pandemic. All AMN-tested patients received a positive COVID PCR test, suggesting a possible causative link. According to the different clinical presentations, AMN may reflect different severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pathogenic mechanisms.
Collapse
Affiliation(s)
- Georges Azar
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
- Anterior Segment Department, Adolphe de Rothschild Foundation, 75019 Paris, France
- Correspondence:
| | - Sophie Bonnin
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Vivien Vasseur
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Céline Faure
- Ramsay Générale de Santé, Private Hospital Saint Martin, 14000 Caen, France;
| | - Flore Salviat
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Catherine Vignal Clermont
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Cherif Titah
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
- Anterior Segment Department, Adolphe de Rothschild Foundation, 75019 Paris, France
| | - Selim Farès
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
- Anterior Segment Department, Adolphe de Rothschild Foundation, 75019 Paris, France
| | - Elise Boulanger
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Sabine Derrien
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Aude Couturier
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
- Ophthalmology Department, Lariboisière Hospital—Assistance Publique-Hôpitaux de Paris, AP-HP, 75010 Paris, France
| | - Amélie Duvilliers
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Anthony Manassero
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Rabih Hage
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| | - Ramin Tadayoni
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
- Ophthalmology Department, Lariboisière Hospital—Assistance Publique-Hôpitaux de Paris, AP-HP, 75010 Paris, France
| | - Francine Behar-Cohen
- Ophthalmology Department, OphtalmoPôle, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, AP-HP, Université de Paris, 75014 Paris, France;
- Centre de Recherche des Cordeliers, Team 17, INSERM U1138, Université de Paris, 75006 Paris, France
| | - Martine Mauget-Faÿsse
- Clinical Investigative Platform Department, Adolphe de Rothschild Foundation, 75019 Paris, France; (S.B.); (V.V.); (F.S.); (C.V.C.); (C.T.); (S.F.); (E.B.); (S.D.); (A.C.); (A.D.); (A.M.); (R.H.); (R.T.); (M.M.-F.)
| |
Collapse
|
35
|
Leite ADOF, Bento Torres Neto J, dos Reis RR, Sobral LL, de Souza ACP, Trévia N, de Oliveira RB, Lins NADA, Diniz DG, Diniz JAP, Vasconcelos PFDC, Anthony DC, Brites D, Picanço Diniz CW. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front Cell Neurosci 2021; 15:749595. [PMID: 34744633 PMCID: PMC8570167 DOI: 10.3389/fncel.2021.749595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic imposed a series of behavioral changes that resulted in increased social isolation and a more sedentary life for many across all age groups, but, above all, for the elderly population who are the most vulnerable to infections and chronic neurodegenerative diseases. Systemic inflammatory responses are known to accelerate neurodegenerative disease progression, which leads to permanent damage, loss of brain function, and the loss of autonomy for many aged people. During the COVID-19 pandemic, a spectrum of inflammatory responses was generated in affected individuals, and it is expected that the elderly patients with chronic neurodegenerative diseases who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a worsening of their neurodegenerative conditions. Using mouse prion disease as a model for chronic neurodegeneration, we review the effects of social isolation, sedentary living, and viral infection on the disease progression with a focus on sickness behavior and on the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular and molecular mechanisms related to immunosenescence in chronic neurodegenerative diseases and how infections may accelerate their progression.
Collapse
Affiliation(s)
- Amanda de Oliveira Ferreira Leite
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciane Lobato Sobral
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Aline Cristine Passos de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nonata Trévia
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Roseane Borner de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara Alves de Almeida Lins
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | | | | | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|