1
|
Klein SD, Teich CD, Pokorny VJ, Rawls E, Olman CA, Sponheim SR. Altered Use of Context During Visual Perception in Psychotic Psychopathology: A Neurophysiological Investigation of Tuned and Untuned Suppression During Contrast Perception. Schizophr Bull 2024; 51:170-185. [PMID: 39148463 PMCID: PMC11661954 DOI: 10.1093/schbul/sbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND HYPOTHESIS The human visual system streamlines visual processing by suppressing responses to textures that are similar to their surrounding context. Surround suppression is weaker in individuals with schizophrenia (ISZ); this altered use of visuospatial context may relate to the characteristic visual distortions they experience. STUDY DESIGN To understand atypical surround suppression in psychotic psychopathology, we investigated neurophysiological responses in ISZ, healthy controls (HC), individuals with bipolar disorder (IBP), and first-degree relatives (ISZR/IBPR). Participants performed a contrast judgment task on a circular target with annular surrounds, with concurrent electroencephalography. Orientation-independent (untuned) suppression was estimated from responses to central targets with orthogonal surrounds; the orientation-dependence of suppression was estimated by fitting an exponential function to the increase in suppression as surrounds became more aligned with the center. RESULTS ISZ exhibited weakened untuned suppression coupled with enhanced orientation-dependence of suppression. The N1 visual evoked potential was associated with the orientation-dependence of suppression, with ISZ and ISZR (but not IBP or IBPR) showing enhanced orientation-dependence of the N1. Collapsed across orientation conditions, the N1 for ISZ lacked asymmetry toward the right hemisphere; this reduction in N1 asymmetry was associated with reduced untuned suppression, real-world perceptual anomalies, and psychotic psychopathology. The overall amplitude of the N1 was reduced in ISZ and IBP. CONCLUSIONS Key measures of symptomatology for ISZ are associated with reductions in untuned suppression. Increased sensitivity for ISZ to the relative orientation of suppressive surrounds is reflected in the N1 VEP, which is commonly associated with higher-level visual functions such as allocation of spatial attention or scene segmentation.
Collapse
Affiliation(s)
- Samuel D Klein
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Collin D Teich
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Victor J Pokorny
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Eric Rawls
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Yong K, Petzold A, Foster P, Young A, Bell S, Bai Y, Leff AP, Crutch S, Greenwood JA. The Graded Incomplete Letters Test (GILT): a rapid test to detect cortical visual loss, with UK Biobank implementation. Behav Res Methods 2024; 56:7748-7760. [PMID: 38890263 PMCID: PMC11362218 DOI: 10.3758/s13428-024-02448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Impairments of object recognition are core features of neurodegenerative syndromes, in particular posterior cortical atrophy (PCA; the 'visual-variant Alzheimer's disease'). These impairments arise from damage to higher-level cortical visual regions and are often missed or misattributed to common ophthalmological conditions. Consequently, diagnosis can be delayed for years with considerable implications for patients. We report a new test for the rapid measurement of cortical visual loss - the Graded Incomplete Letters Test (GILT). The GILT is an optimised psychophysical variation of a test used to diagnose cortical visual impairment, which measures thresholds for recognising letters under levels of increasing visual degradation (decreasing "completeness") in a similar fashion to ophthalmic tests. The GILT was administered to UK Biobank participants (total n=2,359) and participants with neurodegenerative conditions characterised by initial cortical visual (PCA, n=18) or memory loss (typical Alzheimer's disease, n=9). UK Biobank participants, including both typical adults and those with ophthalmological conditions, were able to recognise letters under low levels of completeness. In contrast, participants with PCA consistently made errors with only modest decreases in completeness. GILT sensitivity to PCA was 83.3% for participants reaching the 80% accuracy cut-off, increasing to 88.9% using alternative cut-offs (60% or 100% accuracy). Specificity values were consistently over 94% when compared to UK Biobank participants without or with documented visual conditions, regardless of accuracy cut-off. These first-release UK Biobank and clinical verification data suggest the GILT has utility in both rapidly detecting visual perceptual losses following posterior cortical damage and differentiating perceptual losses from common eye-related conditions.
Collapse
Affiliation(s)
- Kxx Yong
- Queen Square Institute of Neurology, University College London, London, UK.
| | - A Petzold
- Queen Square Institute of Neurology, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Neuro-ophthalmology Expertise Centre, Amsterdam UMC, Amsterdam, NL, The Netherlands
| | - P Foster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - A Young
- Big Data Institute, Nuffield, Department of Population Health, University of Oxford, Oxford, UK
| | - S Bell
- UK Biobank, Stockport, UK
| | - Y Bai
- Queen Square Institute of Neurology, University College London, London, UK
| | - A P Leff
- Queen Square Institute of Neurology, University College London, London, UK
| | - S Crutch
- Queen Square Institute of Neurology, University College London, London, UK
| | - J A Greenwood
- Experimental Psychology, University College London, London, UK.
| |
Collapse
|
3
|
Abdul Razzak R, Bagust J. Perceptual lateralization on the Rod-and-Frame Test in young and older adults. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:405-411. [PMID: 35138959 DOI: 10.1080/23279095.2022.2030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
INTRODUCTION There is an overall left visual field/right hemisphere advantage in young adults for masked, tachistoscopically presented images on the Rod-and-Frame Test (RFT). This study explored potential age-related lateralization differences in processing of visual context on the RFT. METHODS The 35 young and 33 older adults aligned a rod surrounded either by no frame, a vertical, or leftward/rightward tilted frame to their perceived vertical. Algebraic errors of rod alignment were used to derive the rod-and-frame effect (RFE) and asymmetry index. RESULTS Young adults had frequent indirect effects, mostly to the right-tilted frame, while older adults hardly produced any. Compared with nontilted frames, young adults displayed larger alignment errors with left-tilted frames; however, older adults exhibited this same effect for both frame tilt conditions. Young adults had smaller RFE values than older adults for the right-tilted frame, with no age-related difference in RFE for the left-tilted frame or asymmetry index. The negative asymmetry index was statistically different from the true vertical only in young adults. CONCLUSION There is an age-related reduction in the right hemisphere processing of left-sided visual contexts on the RFT. Such findings can assist clinicians to improve interpretation of RFT findings in clinical patients.
Collapse
Affiliation(s)
- Rima Abdul Razzak
- Department of Physiology, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Jeff Bagust
- Faculty of Health and Social Sciences, Bournemouth University, Poole, UK
| |
Collapse
|
4
|
Camenzind M, Göbel N, Eberhard-Moscicka A, Knobel S, Hegi H, Single M, Kaufmann B, Schumacher R, Nyffeler T, Nef T, Müri R. The phenomenology of pareidolia in healthy subjects and patients with left- or right-hemispheric stroke. Heliyon 2024; 10:e27414. [PMID: 38468958 PMCID: PMC10926141 DOI: 10.1016/j.heliyon.2024.e27414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Pareidolia are perceptions of recognizable images or meaningful patterns where none exist. In recent years, this phenomenon has been increasingly studied in healthy subjects and patients with neurological or psychiatric diseases. The current study examined pareidolia production in a group of 53 stroke patients and 82 neurologically healthy controls who performed a natural images task. We found a significant reduction of absolute pareidolia production in left- and right-hemispheric stroke patients, with right-hemispheric patients producing overall fewest pareidolic output. Responses were categorized into 28 distinct categories, with 'Animal', 'Human', 'Face', and 'Body parts' being the most common, accounting for 72% of all pareidolia. Regarding the percentages of the different categories of pareidolia, we found a significant reduction for the percentage of "Body parts" pareidolia in the left-hemispheric patient group as compared to the control group, while the percentage of this pareidolia type was not significantly reduced in right-hemispheric patients compared to healthy controls. These results support the hypothesis that pareidolia production may be influenced by local-global visual processing with the left hemisphere being involved in local and detailed analytical visual processing to a greater extent. As such, a lesion to the right hemisphere, that is believed to be critical for global visual processing, might explain the overall fewest pareidolic output produced by the right-hemispheric patients.
Collapse
Affiliation(s)
- M. Camenzind
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - N. Göbel
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Research and Analysis Services, University Hospital Basel and University of Basel, Basel, Switzerland
| | - A.K. Eberhard-Moscicka
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - S.E.J. Knobel
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - H. Hegi
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - M. Single
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - B.C. Kaufmann
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - R. Schumacher
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - T. Nyffeler
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - T. Nef
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - R.M. Müri
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ten Brink AF, Bultitude JH, Van der Stigchel S, Nijboer TCW. Zooming in on abnormal local and global processing biases after stroke: Frequency, lateralization, and associations with cognitive functions. J Int Neuropsychol Soc 2024; 30:67-76. [PMID: 37066832 DOI: 10.1017/s1355617723000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVES The 'attentional spotlight' can be adjusted depending on the task requirements, resulting in processing information at either the local or global level. Stroke can lead to local or global processing biases, or the inability to simultaneously attend both levels. In this study, we assessed the (1) prevalence of abnormal local and global biases following stroke, (2) differences between left- and right-sided brain damaged patients, and (3) relations between local and global interference, the ability to attend local and global levels simultaneously, and lateralized attention, search organization, search speed, visuo-construction, executive functioning, and verbal (working) memory. METHODS Stroke patients admitted for inpatient rehabilitation completed directed (N = 192 total; N = 46 left-sided/N = 48 right-sided lesion) and divided (N = 258 total; N = 67 left-sided/N = 66 right-sided lesion) local-global processing tasks, as well as a conventional neuropsychological assessment. Processing biases and interference effects were separately computed for directed and divided tasks. RESULTS On the local-global tasks, 7.8-10.9% of patients showed an abnormal local bias and 6.3-8.3% an abnormal global bias for directed attention, and 5.4-10.1% an abnormal local bias and 6.6-15.9% an abnormal global bias for divided attention. There was no significant difference between patients with left- and right-sided brain damage. There was a moderate positive relation between local interference and search speed, and a small positive relation between global interference and neglect. CONCLUSIONS Abnormal local and global biases can occur after stroke and might relate to a range of cognitive functions. A specific bias might require a different approach in assessment, psycho-education, and treatment.
Collapse
Affiliation(s)
- Antonia F Ten Brink
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Psychology, University of Bath, Bath, UK
| | | | - Stefan Van der Stigchel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Nuernberger M, Finke K, Nuernberger L, Ruiz-Rizzo AL, Gaser C, Klingner C, Witte OW, Brodoehl S. Visual stimulation by extensive visual media consumption can be beneficial for motor learning. Sci Rep 2023; 13:22056. [PMID: 38086999 PMCID: PMC10716399 DOI: 10.1038/s41598-023-49415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
In this randomized controlled intervention trial, we investigated whether intense visual stimulation through television watching can enhance visual information processing and motor learning performance. 74 healthy young adults were trained in a motor skill with visual information processing demands while being accommodated in a controlled environment for five days. The experimental manipulation (n = 37) consisted of prolonged television watching (i.e., 8 h/day, + 62.5% on average) to induce intense exposure to visual stimulation. The control group (n = 37) did not consume visual media. The groups were compared by motor learning performance throughout the study as well as pre/post visual attention parameters and resting-state network connectivity in functional MRI. We found that the intervention group performed significantly better in the motor learning task (+ 8.21% (95%-CI[12.04, 4.31], t(70) = 4.23, p < 0.001) while showing an increased capacity of visual short-term memory (+ 0.254, t(58) = - 3.19, p = 0.002) and increased connectivity between visual and motor-learning associated resting-state networks. Our findings suggest that the human brain might enter a state of accentuated visuomotor integration to support the implementation of motor learning with visual information processing demands if challenged by ample input of visual stimulation. Further investigation is needed to evaluate the persistence of this effect regarding participants exposed to accustomed amounts of visual media consumption.Clinical Trials Registration: This trial was registered in the German Clinical Trials Register/Deutsches Register klinischer Studien (DRKS): DRKS00019955.
Collapse
Affiliation(s)
- Matthias Nuernberger
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Lisa Nuernberger
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Adriana L Ruiz-Rizzo
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- German Center for Mental Health (DZPG), Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Gantz L, Paritzky D, Wunch I, Kageyama AH, Wolf N, Cherny C, Rosenfield M. Validation of the DYOP visual acuity test. JOURNAL OF OPTOMETRY 2023; 16:268-276. [PMID: 36400682 PMCID: PMC10518763 DOI: 10.1016/j.optom.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE The dynamic optotype (DYOP) visual acuity (VA) test is based on motion detection rather than element resolution and has been proposed for routine clinical assessment. This investigation examined the validity, inter- and intra-session repeatability and subjective preference for the DYOP versus a static letter chart and examined its utility in detecting astigmatic defocus. METHODS VA of 103 participants was measured three times with the letter and DYOP charts and repeated within two weeks in 75 participants who also rated their subjective experience. The VA of 29 participants was measured using DYOP, letter, Landolt C, and Tumbling E charts, with habitual correction and astigmatism induced with +1.00, +2.00 or +3.00 cylinders at 45, 60, 90 and 180°. RESULTS The charts differed by a mean of 0.02 logMAR, with 81% of the measurements within one line of acuity. Inter-session, intraclass correlation coefficients, within-subject SD and repeatability were 0.03 logMAR, 0.95, 0.11 and 0.30 versus 0.01 logMAR, 0.92, 0.15 and 0.42 for the DYOP and letter charts, respectively. The DYOP was significantly more frustrating (1.79 vs.1.36), with 59% preferring the letter chart. The DYOP was least affected by induced astigmatism. CONCLUSIONS The DYOP and letter charts differed significantly in their mean values with wide limits of agreement. DYOP had better within-subject SD and narrower limits of agreement between sessions, though clinically insignificant, and performed significantly worse for the detection of uncorrected astigmatism. Thus, it is difficult to recommend this test for the clinical determination of refractive error.
Collapse
Affiliation(s)
- Liat Gantz
- Department of Optometry and Vision Science, Hadassah Academic College, Haneviim 37, Jerusalem 91010, Israel.
| | - Dinah Paritzky
- Department of Optometry and Vision Science, Hadassah Academic College, Haneviim 37, Jerusalem 91010, Israel
| | - Inbar Wunch
- Department of Optometry and Vision Science, Hadassah Academic College, Haneviim 37, Jerusalem 91010, Israel
| | - Andrew H Kageyama
- SUNY College of Optometry, 33 West 42(nd) Street, New York, NY 10036, United States
| | - Nadav Wolf
- Department of Optometry and Vision Science, Hadassah Academic College, Haneviim 37, Jerusalem 91010, Israel
| | - Christina Cherny
- SUNY College of Optometry, 33 West 42(nd) Street, New York, NY 10036, United States
| | - Mark Rosenfield
- SUNY College of Optometry, 33 West 42(nd) Street, New York, NY 10036, United States
| |
Collapse
|
8
|
Liu R, Ye Q, Hao S, Li Y, Shen L, He W. The relationship between ensemble coding and individual representation of crowd facial emotion. Biol Psychol 2023:108593. [PMID: 37257814 DOI: 10.1016/j.biopsycho.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
In recent years, the processing mechanism of group expression has gradually gained the attention of researchers owing to its high ecological validity. However, research on the relationship between ensemble coding and individual representation is still in the early stage of the investigation, with many studies remaining at the behavioral level and findings varying widely. Based on our behavioral research (Experiment 1), we used EEG measures (Experiments 2A and 2B) to investigate the relationship between summary and object representations by manipulating the exposure time of crowd emotions. The behavioral results indicated that participants performed better in judging emotions of multiple faces compared to a single face during the shorter exposure time, whereas the reverse occurred during the long exposure time. Furthermore, ERP results revealed that the N2pc effect was not affected by the number of faces in the short exposure time; however, as the exposure time increased, the N2pc increased as a function of the number of faces. The findings of the current investigation align with time-dependent assumption, indicating that during short time of visual processing, although individual representations may not be fully developed, ensemble representations are initially established. With longer processing times, detailed individual representations become complete and take precedence.
Collapse
Affiliation(s)
- Renhao Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China
| | - Qianjun Ye
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China
| | - Shuang Hao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China
| | - Yuchen Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China
| | - Lin Shen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China
| | - Weiqi He
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian116029, China.
| |
Collapse
|
9
|
Razzak AR, Jahrami H, Husni M, Ali ME, Bagust J. Symptom severity is associated with leftward lateralization upon contextual modulation of visual vertical in patients with schizophrenia. Front Psychiatry 2022; 13:948114. [PMID: 35923447 PMCID: PMC9339704 DOI: 10.3389/fpsyt.2022.948114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Contextual processing dysfunction in patients with schizophrenia (SCZ) is not uniform and task-dependent. In SCZ, studies on the rod and frame test (RFT), which evaluates contextual modulation of verticality perception, are sparse. A main study that utilized a two-alternative forced choice design for judging rod verticality reported equivalent strength of RFT contextual modulation in healthy controls and SCZ. The current study aims to uncover any potential differences in contextual modulation between controls and SCZ with an adjustment method on a computerized RFT. MATERIALS AND METHODS A total of 17 healthy controls and 15 SCZ aligned an oriented rod to their perceived vertical with a computer mouse under four randomized frame presentations: absent frame, non-tilted (Frame0°), or tilted by 18 degrees leftward (Frame-18°) or rightward (Frame+18°). Rod deviation error was assigned a negative or positive value when aligned leftward or rightward, respectively, of 0°. Signed and absolute errors, the rod and frame effect (RFE), and intra-individual variability (inconsistency) were used for analysis. RESULTS There was no group difference in rod alignment errors or derived measures, except that SCZ displayed greater inconsistency in rod alignment, compared to controls. The negative symptom scale (PANSS-N) scores correlated positively with the variability measure and with unsigned Frame-18° error. CONCLUSIONS Only the variability measure was sensitive enough to distinguish between controls and SCZ. SCZ with more severe negative symptoms had larger variability in rod alignment, probably reflecting a state of indifference. The larger deviation errors only with a leftward tilted frame, as PANSS-N scores increased, may indicate a lateralized attentional abnormality that is correlated with severity of symptoms in SCZ.
Collapse
Affiliation(s)
- Abdul Rima Razzak
- Department of Physiology, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain
| | - Haitham Jahrami
- Ministry of Health (MOH), Manama, Bahrain.,Department of Psychiatry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain
| | - Mariwan Husni
- Department of Psychiatry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Bahrain.,Northern Ontario School of Medicine University, Ontario, ON, Canada
| | | | - Jeff Bagust
- Faculty of Health and Social Sciences, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
10
|
Pascucci D, Ruethemann N, Plomp G. The anisotropic field of ensemble coding. Sci Rep 2021; 11:8212. [PMID: 33859281 PMCID: PMC8050251 DOI: 10.1038/s41598-021-87620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Human observers can accurately estimate statistical summaries from an ensemble of multiple stimuli, including the average size, hue, and direction of motion. The efficiency and speed with which statistical summaries are extracted suggest an automatic mechanism of ensemble coding that operates beyond the capacity limits of attention and memory. However, the extent to which ensemble coding reflects a truly parallel and holistic mode of processing or a non-uniform and biased integration of multiple items is still under debate. In the present work, we used a technique, based on a Spatial Weighted Average Model (SWM), to recover the spatial profile of weights with which individual stimuli contribute to the estimated average during mean size adjustment tasks. In a series of experiments, we derived two-dimensional SWM maps for ensembles presented at different retinal locations, with different degrees of dispersion and under different attentional demands. Our findings revealed strong spatial anisotropies and leftward biases in ensemble coding that were organized in retinotopic reference frames and persisted under attentional manipulations. These results demonstrate an anisotropic spatial contribution to ensemble coding that could be mediated by the differential activation of the two hemispheres during spatial processing and scene encoding.
Collapse
Affiliation(s)
- David Pascucci
- Department of Psychology, University of Fribourg, Fribourg, Switzerland. .,Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Nadia Ruethemann
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gijs Plomp
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Sex hormones modulate sex differences and relate to hemispheric asymmetries in a divided visual field Navon task. Behav Brain Res 2021; 408:113281. [PMID: 33839162 DOI: 10.1016/j.bbr.2021.113281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
Sex differences in functional hemispheric asymmetries (FHA) have been hypothesized as a fundamental mechanism behind sex differences in global-local processing. So far, it has not been assessed how interactive effects of sex and hemifield presentation influence common indicators of global precedence. The current study is the first to investigate the involvement of FHAs by using a divided visual field Navon paradigm and controlling for sex hormone status. Moreover, various factors that have previously shown a reliable influence on global-local processing performance are verified within the context of unilateral presentation. 39 men and 39 naturally cycling women in their luteal cycle phase completed a divided visual field Navon task with the instruction to detect targets either at any level (divided attention) or only at the global or local level (selective attention) in three different spacing conditions. The obtained evidence reveals significant sex differences in the global advantage effect (faster reaction to global vs. local level targets) for densely spaced letter stimuli, as well as significant sex differences in global-local level interference, with findings on both measures being mediated by testosterone. Also, estradiol showed different relationships to the global advantage effect in men and women together with a positive relationship to global advantage for the selective attention condition. Behavioural reaction time results were mirrored by accuracy measures but presented significantly higher global- over local-level accuracy in women compared to men for the divided attention condition. Our results did not show significant sex differences in FHAs but indicate differential relationships between progesterone and FHAs in men and women. In conclusion, sex hormones emerged as central mediators of sex differences in global precedence and possible moderators of hemispheric asymmetries.
Collapse
|
12
|
Hemispheric Asymmetry in Visual Processing: An ERP Study on Spatial Frequency Gratings. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A hemispheric asymmetry for the processing of global versus local visual information is known. In this study, we investigated the existence of a hemispheric asymmetry for the visual processing of low versus high spatial frequency gratings. The event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemifields. The stimulus duration was 80 ms, and the interstimulus interval (ISI) ranged between 850 and 1000 ms. Participants paid attention and responded to targets based on their spatial frequency and location. The C1 and P1 visual responses, as well as a later selection negativity and a P300 component of event-related potentials (ERPs), were quantified and subjected to repeated-measure analyses of variance (ANOVAs). Overall, the performance was faster for the right visual field (RVF), thus suggesting a left hemispheric advantage for the attentional selection of local elements. Similarly, the analysis of the mean area amplitude of the C1 (60–110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F−L+) at the left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry.
Collapse
|
13
|
Global precedence changes by environment: A systematic review and meta-analysis on effect of perceptual field variables on global-local visual processing. Atten Percept Psychophys 2020; 82:2348-2359. [PMID: 32189234 DOI: 10.3758/s13414-020-01997-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perceptual organization and, in particular, visual processing have been debated for many years. The global precedence effect in local-global visual processing, as introduced by David Navon, refers to the condition that global aspects of a scene are processed more rapidly than are local details. This perceptual dynamic is influenced by many factors that can be divided into two major categories: subjective or internal factors (e.g., age, disorder, culture) and the external factors called perceptual field variables (PFVs; e.g., stimulus size, eccentricity, sparsity). The aim of the current study was to identify the latter factors using a meta-analysis followed by a systematic literature review. In accordance of the standard framework suggested by PRISMA, 28 PFVs were observed through a literature search on articles published from 1982 to 2019, among which 10 factors have been qualified to be included in a meta-analysis. Subsequently, the random effects model proposed by Hedges and Olkin was used to estimate pooled effect sizes of PFVs. These effect sizes were used to compare and sort the PFVs on the basis of their intensity. According to Cohen's index, our analyses show that relevance, sparsity, and solidness type are categorized as small effects; visual field, level repetition, spatial frequency, and shape type are categorized as medium effects; and congruency, eccentricity, and size as large effect PFVs on global precedence.
Collapse
|
14
|
Mutlu MC, Erdoğan SB, Öztürk OC, Canbeyli R, Saybaşιlι H. Functional Near-Infrared Spectroscopy Indicates That Asymmetric Right Hemispheric Activation in Mental Rotation of a Jigsaw Puzzle Decreases With Task Difficulty. Front Hum Neurosci 2020; 14:252. [PMID: 32694987 PMCID: PMC7339288 DOI: 10.3389/fnhum.2020.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Mental rotation (MR) is a cognitive skill whose neural dynamics are still a matter of debate as previous neuroimaging studies have produced controversial results. In order to investigate the underlying neurophysiology of MR, hemodynamic responses from the prefrontal cortex of 14 healthy subjects were recorded with functional near-infrared spectroscopy (fNIRS) during a novel MR task that had three categorical difficulty levels. Hemodynamic activity strength (HAS) parameter, which reflects the ratio of brain activation during the task to the baseline activation level, was used to assess the prefrontal cortex activation localization and strength. Behavioral data indicated that the MR requiring conditions are more difficult than the condition that did not require MR. The right dorsolateral prefrontal cortex (DLPFC) was found to be active in all conditions and to be the dominant region in the easiest task while more complex tasks showed widespread bilateral prefrontal activation. A significant increase in left DLPFC activation was observed with increasing task difficulty. Significantly higher right DLPFC activation was observed when the incongruent trials were contrasted against the congruent trials, which implied the possibility of a robust error or conflict-monitoring process during the incongruent trials. Our results showed that the right DLPFC is a core region for the processing of MR tasks regardless of the task complexity and that the left DLPFC is involved to a greater extent with increasing task complexity, which is consistent with the previous neuroimaging literature.
Collapse
Affiliation(s)
- Murat Can Mutlu
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Sinem Burcu Erdoğan
- Department of Medical Engineering, Acιbadem Mehmet Ali Aydιnlar University, Istanbul, Turkey
| | - Ozan Cem Öztürk
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University, Istanbul, Turkey
| | - Hale Saybaşιlι
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
15
|
On the roles of central and peripheral vision in the extraction of material and form from a scene. Atten Percept Psychophys 2019; 81:1209-1219. [PMID: 30989582 DOI: 10.3758/s13414-019-01731-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventional wisdom tells us that the appreciation of local (detail) and global (form and spatial relations) information from a scene is preferentially processed by central and peripheral vision, respectively. Using an eye monitor with high spatial and temporal precision, we sought to provide direct evidence for this idea by controlling whether carefully designed hierarchical scenes were viewed only with central vision (the periphery was masked), only with peripheral vision (the central region was masked), or with full vision. The scenes consisted of a neutral form (a D shape) composed of target circles or squares, or a target circle or square composed of neutral material (Ds). The task was for the participant to determine as quickly as possible whether the scene contained circle(s) or square(s). Increasing the size of the masked region had deleterious effects on performance. This deleterious effect was greater for the extraction of form information when the periphery was masked, and greater for the extraction of material information when central vision was masked, thus providing direct evidence for conventional ideas about the processing predilections of central and peripheral vision.
Collapse
|
16
|
Pancaro C, Boulanger-Bertolus J, Segal S, Watson CJ, St Charles I, Mashour GA, Marchand JE. Maternal Noninfectious Fever Enhances Cell Proliferation and Microglial Activation in the Neonatal Rat Dentate Gyrus. Anesth Analg 2019; 128:1190-1198. [PMID: 31094787 DOI: 10.1213/ane.0000000000004051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fever and increased maternal interleukin-6 (IL-6) plasma levels in labor are associated with an increased risk of adverse events in offspring, including neonatal seizures, cerebral palsy, and low intelligence scores at school age. However, the neural changes in the neonate that might mediate the adverse effects of maternal noninfectious fever are not fully characterized. This study was designed to test the hypothesis that induced maternal noninfectious fever alters neonatal neural progenitor cell proliferation and enhances microglial activation in the rat dentate gyrus of the hippocampus. METHODS Systemic vehicle or IL-6 was given 3 times to near-term pregnant rats (n = 7/group) every 90 minutes, and maternal core temperature was recorded. Neonatal brains were processed and analyzed for dentate gyrus cell proliferation (using Ki-67, n = 10/group, and glial fibrillary acidic protein, n = 6/group) and resident microglia activation (using ionized calcium-binding adaptor protein-1 [Iba-1], n = 6/group). In separate studies, the authors assessed microglia proliferation using Ki-67/Iba-1 costaining (n = 5/group). RESULTS Compared to controls, exposure to IL-6 resulted in significant maternal temperature increase [mean temperature difference 0.558°C (95% CI, 0.417-0.698; P < .0001)]. Following maternal IL-6, Ki-67 cell proliferation in the dentate gyrus was 55 % higher in neonates whose mother received IL-6 (38.8 ± 9.2) compared with those that received vehicle (25.1 ± 7.8); mean difference 13.7 (95% CI, 5.68-21.71); (P = .0021). Glial fibrillary acidic protein cell proliferation was 40% higher in the neonatal dentate gyrus whose mother received IL-6 when compared to controls (713 ± 85.52 vs 500 ± 115); mean difference 212 (95% CI, 82.2-343.4); (P = .004). Resident microglial activation was 90% higher in the dentate gyrus of neonates whose mother received IL-6 when compared to controls (71.8 ± 9.3 vs 37.8 ± 5.95); mean Iba-1 in stained cells was significantly different between IL-6 and vehicle groups 34 (95% CI, 23.94-44.05); (P < .0001). Proliferating microglia, determined by the colocalization of Ki-67 and Iba-1, were not different in the vehicle (8.8 % ± 3.19 %) and the IL-6 (5.6% ± 2.3%) groups (mean difference 3.2% (95% CI, -0.8-7.25) (P = .1063). CONCLUSIONS IL-6 is sufficient to induce maternal systemic temperature increases in near-term pregnant rats as well as neuronal, glial, and neuroinflammatory changes in the dentate gyrus of the neonatal hippocampus. These alterations might disrupt fetal neurodevelopment during a vulnerable period.
Collapse
Affiliation(s)
- Carlo Pancaro
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Julie Boulanger-Bertolus
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Scott Segal
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chris J Watson
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Irene St Charles
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - George A Mashour
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - James E Marchand
- Department of Anesthesiology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
17
|
Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol 2019; 10:295. [PMID: 31001187 PMCID: PMC6454116 DOI: 10.3389/fneur.2019.00295] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.
Collapse
Affiliation(s)
- Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurology, The Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Palma-Tortosa S, García-Culebras A, Moraga A, Hurtado O, Perez-Ruiz A, Durán-Laforet V, Parra JDL, Cuartero MI, Pradillo JM, Moro MA, Lizasoain I. Specific Features of SVZ Neurogenesis After Cortical Ischemia: a Longitudinal Study. Sci Rep 2017; 7:16343. [PMID: 29180821 PMCID: PMC5703956 DOI: 10.1038/s41598-017-16109-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
Stroke is a devastating disease with an increasing prevalence. Part of the current development in stroke therapy is focused in the chronic phase, where neurorepair mechanisms such as neurogenesis, are involved. In the adult brain, one of the regions where neurogenesis takes place is the subventricular zone (SVZ) of the lateral ventricles. Given the possibility to develop pharmacological therapies to stimulate this process, we have performed a longitudinal analysis of neurogenesis in a model of cortical ischemia in mice. Our results show an initial decrease of SVZ proliferation at 24 h, followed by a recovery leading to an increase at 14d and a second decrease 28d after stroke. Coinciding with the 24 h proliferation decrease, an increase in the eutopic neuroblast migration towards the olfactory bulb was observed. The analysis of the neuroblast ectopic migration from the SVZ toward the lesion showed an increase in this process from day 14 after the insult. Finally, our data revealed an increased number of new cortical neurons in the peri-infarct cortex 65d after the insult. In summary, we report here critical check-points about post-stroke neurogenesis after cortical infarcts, important for the pharmacological modulation of this process in stroke patients.
Collapse
Affiliation(s)
- S Palma-Tortosa
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - A García-Culebras
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - A Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
- James Black Centre, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom
| | - O Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - A Perez-Ruiz
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - J de la Parra
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - M I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - J M Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain.
| | - M A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología and Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense; Instituto de Investigación Hospital 12 Octubre (i+12), Madrid, Spain.
| |
Collapse
|
19
|
Cross-cultural and hemispheric laterality effects on the ensemble coding of emotion in facial crowds. ACTA ACUST UNITED AC 2017; 5:125-152. [PMID: 29230379 DOI: 10.1007/s40167-017-0054-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In many social situations, we make a snap judgment about crowds of people relying on their overall mood (termed "crowd emotion"). Although reading crowd emotion is critical for interpersonal dynamics, the sociocultural aspects of this process have not been explored. The current study examined how culture modulates the processing of crowd emotion in Korean and American observers. Korean and American (non-East Asian) participants were briefly presented with two groups of faces that were individually varying in emotional expressions and asked to choose which group between the two they would rather avoid. We found that Korean participants were more accurate than American participants overall, in line with the framework on cultural viewpoints: Holistic versus analytic processing in East Asians versus Westerners. Moreover, we found a speed advantage for other-race crowds in both cultural groups. Finally, we found different hemispheric lateralization patterns: American participants were more accurate to perceive the facial crowd to be avoided when it was presented in the left visual field than the right visual field, indicating a right hemisphere advantage for processing crowd emotion of both European American and Korean facial crowds. However, Korean participants showed weak or nonexistent laterality effects, with a slight right hemisphere advantage for European American facial crowds and no advantage in perceiving Korean facial crowds. Instead, Korean participants showed positive emotion bias for own-race faces. This work suggests that culture plays a role in modulating our crowd emotion perception of groups of faces and responses to them.
Collapse
|
20
|
Im HY, Albohn DN, Steiner TG, Cushing CA, Adams RB, Kveraga K. Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion. Nat Hum Behav 2017; 1:828-842. [PMID: 29226255 DOI: 10.1038/s41562-017-0225-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In crowds, where scrutinizing individual facial expressions is inefficient, humans can make snap judgments about the prevailing mood by reading "crowd emotion". We investigated how the brain accomplishes this feat in a set of behavioral and fMRI studies. Participants were asked to either avoid or approach one of two crowds of faces presented in the left and right visual hemifields. Perception of crowd emotion was improved when crowd stimuli contained goal-congruent cues and was highly lateralized to the right hemisphere. The dorsal visual stream was preferentially activated in crowd emotion processing, with activity in the intraparietal sulcus and superior frontal gyrus predicting perceptual accuracy for crowd emotion perception, whereas activity in the fusiform cortex in the ventral stream predicted better perception of individual facial expressions. Our findings thus reveal significant behavioral differences and differential involvement of the hemispheres and the major visual streams in reading crowd versus individual face expressions.
Collapse
Affiliation(s)
- Hee Yeon Im
- Department of Radiology, Harvard Medical School, Charlestown, MA, 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Daniel N Albohn
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Troy G Steiner
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Cody A Cushing
- Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Reginald B Adams
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Kestutis Kveraga
- Department of Radiology, Harvard Medical School, Charlestown, MA, 02129, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
21
|
Mean size estimation yields left-side bias: Role of attention on perceptual averaging. Atten Percept Psychophys 2017; 79:2538-2551. [DOI: 10.3758/s13414-017-1409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
23
|
Saraiva C, Ferreira L, Bernardino L. Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. NEUROGENESIS 2016; 3:e1256855. [PMID: 28405588 DOI: 10.1080/23262133.2016.1256855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the selective degeneration of the nigrostriatal dopaminergic pathway, is a major socio-economic burden in modern society. While there is presently no cure for PD, enhancing the number of neural stem cells (NSCs) and/or stimulating their differentiation into new neurons are promising therapeutic strategies. Many proneurogenic factors have been implicated in controlling NSCs activity, including the microRNA (miR)-124. However, current strategies described for the intracellular delivery of miR involve mostly unspecific or inefficient platforms. In Saraiva et al. we developed miR-124 loaded nanoparticles (NPs) able to efficiently deliver miR-124 into neural stem/progenitor cells and boost neuronal differentiation and maturation in vitro. In vivo, the intracerebroventricular injection of miR-124 NPs increased the number of new neurons in the olfactory bulb of healthy and 6-hydroxidopamine (6-OHDA) lesioned mice, a model for PD. Importantly, miR-124 NPs enhanced the migration of new neurons into the 6-OHDA lesioned striatum, culminating in motor function improvement. Given the recent advent of clinical trials for miR-based therapies and the theranostic applications of our NPs, we expect to support the clinical translation of our delivery platform in the context of PD and other neurodegenerative diseases which may benefit from enhancing miR levels.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| |
Collapse
|
24
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Park SE, Lee J, Chang EH, Kim JH, Sung JH, Na DL, Chang JW. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: neurogenesis induced by MSCs via activin A. Arch Pharm Res 2016; 39:1171-9. [DOI: 10.1007/s12272-016-0799-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023]
|
26
|
Lin Y, Zhang JC, Yao CY, Wu Y, Abdelgawad AF, Yao SL, Yuan SY. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis 2016; 7:e2273. [PMID: 27336717 PMCID: PMC5143370 DOI: 10.1038/cddis.2015.284] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 09/02/2015] [Indexed: 01/26/2023]
Abstract
The brain and the immune system interact in complex ways after ischemic stroke, and the long-term effects of immune response associated with stroke remain controversial. As a linkage between innate and adaptive immunity, interleukin-17 A (IL-17 A) secreted from gamma delta (γδ) T cells has detrimental roles in the pathogenesis of acute ischemic stroke. However, to date, the long-term actions of IL-17 A after stroke have not been investigated. Here, we found that IL-17 A showed two distinct peaks of expression in the ischemic hemisphere: the first occurring within 3 days and the second on day 28 after stroke. Our data also showed that astrocyte was the major cellular source of IL-17 A that maintained and augmented subventricular zone (SVZ) neural precursor cells (NPCs) survival, neuronal differentiation, and subsequent synaptogenesis and functional recovery after stroke. IL-17 A also promoted neuronal differentiation in cultured NPCs from the ischemic SVZ. Furthermore, our in vitro data revealed that in primary astrocyte cultures activated astrocytes released IL-17 A via p38 mitogen-activated protein kinase (MAPK). Culture media from reactive astrocytes increased neuronal differentiation of NSCs in vitro. Blockade of IL-17 A with neutralizing antibody prevented this effect. In addition, after screening for multiple signaling pathways, we revealed that the p38 MAPK/calpain 1 signaling pathway was involved in IL-17 A-mediated neurogenesis in vivo and in vitro. Thus, our results reveal a previously uncharacterized property of astrocytic IL-17 A in the maintenance and augment of survival and neuronal differentiation of NPCs, and subsequent synaptogenesis and spontaneous recovery after ischemic stroke.
Collapse
Affiliation(s)
- Y Lin
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - J-C Zhang
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - C-Y Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - A F Abdelgawad
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Anesthesia, Faculty of Medicine, Benha University, Benha, Egypt
| | - S-L Yao
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S-Y Yuan
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:2411-24. [PMID: 26228187 DOI: 10.1007/s00586-015-4168-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/26/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE The potential of stem cell niches (SCNs) in the intervertebral disc (IVD) region, which may be of great significance in the regeneration process, was recently proposed. To the best of our knowledge, no previous in vitro study has examined the characteristics of stem cells derived from the potential SCN of IVD (ISN). Therefore, increasing knowledge on ISN-derived stem cells (ISN-SCs) may provide a greater understanding of IVD degeneration and regeneration processes. We aimed to demonstrate the existence of ISN-SCs and to compare their characteristics with bone marrow mesenchymal stem cells (BMSCs) in vitro. METHODS Sprague-Dawley rats (male, 10-week-old) were used in this study. ISN tissues were separated by ophthalmic surgical instruments under a dissecting microscope according to the anatomical areas. BMSCs and cells isolated from the ISN tissues were cultured and expanded in vitro. Passage 4 populations were used for further analysis with respect to colony-forming ability, cellular immunophenotype, cell cycle, stem cell-related gene expression, and proliferation and multipotential differentiation capacities. RESULTS In general, both of ISN-SCs and mesenchymal stromal cells (MSCs) met the minimal criteria for the definition of multipotent mesenchymal stromal cells, including adherence to plastic, specific surface antigen expression, and multipotent differentiation potential. Especially, ISN-SCs even showed greater potential of osteogenesis and chondrogenesis. The ISN-SCs also expressed stem cell-related genes that were comparable to those of BMSCs, and had colony-forming and self-renewal abilities. CONCLUSIONS To the best of our knowledge, this is the first in vitro study aimed towards determining the existence and characteristics of ISN-SCs, which belong to the MSC family and with greater osteogenic and chondrogenic abilities than BMSCs according to our data. This finding may be of great significance for additional studies that investigate the migration of ISN-SCs into the IVD, and may provide a new perspective on different biological approaches for IVD self-regeneration.
Collapse
|
28
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
29
|
Casarosa S, Bozzi Y, Conti L. Neural stem cells: ready for therapeutic applications? MOLECULAR AND CELLULAR THERAPIES 2014; 2:31. [PMID: 26056597 PMCID: PMC4452059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/05/2014] [Indexed: 11/21/2023]
Abstract
Neural stem cells (NSCs) offer a unique and powerful tool for basic research and regenerative medicine. However, the challenges that scientists face in the comprehension of the biology and physiological function of these cells are still many. Deciphering NSCs fundamental biological aspects represents indeed a crucial step to control NSCs fate and functional integration following transplantation, and is essential for a safe and appropriate use of NSCs in injury/disease conditions. In this review, we focus on the biological properties of NSCs and discuss how these cells may be exploited to provide effective therapies for neurological disorders. We also review and discuss ongoing NSC-based clinical trials for these diseases.
Collapse
Affiliation(s)
- Simona Casarosa
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Yuri Bozzi
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Luciano Conti
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| |
Collapse
|
30
|
Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E, Vinci P, Veglianese P, D’Amico G, Verderio C, De Simoni MG. Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 2014; 11:679-95. [PMID: 24965140 PMCID: PMC4121458 DOI: 10.1007/s13311-014-0277-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microglia/macrophages (M) are major contributors to postinjury inflammation, but they may also promote brain repair in response to specific environmental signals that drive classic (M1) or alternative (M2) polarization. We investigated the activation and functional changes of M in mice with traumatic brain injuries and receiving intracerebroventricular human bone marrow mesenchymal stromal cells (MSCs) or saline infusion. MSCs upregulated Ym1 and Arginase-1 mRNA (p < 0.001), two M2 markers of protective M polarization, at 3 and 7 d postinjury, and increased the number of Ym1(+) cells at 7 d postinjury (p < 0.05). MSCs reduced the presence of the lysosomal activity marker CD68 on the membrane surface of CD11b-positive M (p < 0.05), indicating reduced phagocytosis. MSC-mediated induction of the M2 phenotype in M was associated with early and persistent recovery of neurological functions evaluated up to 35 days postinjury (p < 0.01) and reparative changes of the lesioned microenvironment. In vitro, MSCs directly counteracted the proinflammatory response of primary murine microglia stimulated by tumor necrosis factor-α + interleukin 17 or by tumor necrosis factor-α + interferon-γ and induced M2 proregenerative traits, as indicated by the downregulation of inducible nitric oxide synthase and upregulation of Ym1 and CD206 mRNA (p < 0.01). In conclusion, we found evidence that MSCs can drive the M transcriptional environment and induce the acquisition of an early, persistent M2-beneficial phenotype both in vivo and in vitro. Increased Ym1 expression together with reduced in vivo phagocytosis suggests M selection by MSCs towards the M2a subpopulation, which is involved in growth stimulation and tissue repair.
Collapse
Affiliation(s)
- Elisa R. Zanier
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Francesca Pischiutta
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Loredana Riganti
- />CNR Institute of Neuroscience, 20129 Milan, Italy
- />Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Federica Marchesi
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elena Turola
- />CNR Institute of Neuroscience, 20129 Milan, Italy
- />Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Stefano Fumagalli
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
- />Department of Pathophysiology and Transplantation, IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo Perego
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Emanuela Parotto
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
- />Institute of Anesthesia and Intensive Care, University of Padova, 35128 Padova, Italy
| | - Paola Vinci
- />Centro Ricerca Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Pietro Veglianese
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Giovanna D’Amico
- />Centro Ricerca Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Claudia Verderio
- />CNR Institute of Neuroscience, 20129 Milan, Italy
- />Humanitas Clinical and Research Center, 20089 Rozzano, Milan Italy
| | - Maria-Grazia De Simoni
- />Department of Neuroscience, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| |
Collapse
|
31
|
Sellaro R, Hommel B, de Kwaadsteniet EW, van de Groep S, Colzato LS. Increasing interpersonal trust through divergent thinking. Front Psychol 2014; 5:561. [PMID: 24936194 PMCID: PMC4047710 DOI: 10.3389/fpsyg.2014.00561] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 12/31/2022] Open
Abstract
Interpersonal trust is an essential ingredient of many social relationships but how stable is it actually, and how is it controlled? There is evidence that the degree of trust into others might be rather volatile and can be affected by manipulations like drawing attention to personal interdependence or independence. Here we investigated whether the degree of interpersonal trust can be biased by inducing either a more integrative or a more focused/exclusive cognitive control mode by means of a creativity task requiring divergent or convergent thinking, respectively. Participants then performed the trust game, which provides an index of interpersonal trust by assessing the money units one participant (the trustor) transfers to another (the trustee). As expected, trustors transferred significantly more money to trustees after engaging in divergent thinking as compared to convergent thinking. This observation provides support for the idea that interpersonal trust is controlled by domain-general (i.e., not socially dedicated) cognitive states.
Collapse
Affiliation(s)
| | | | | | | | - Lorenza S. Colzato
- Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
32
|
Symmetry Detection in Visual Impairment: Behavioral Evidence and Neural Correlates. Symmetry (Basel) 2014. [DOI: 10.3390/sym6020427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Hecht D. Cerebral lateralization of pro- and anti-social tendencies. Exp Neurobiol 2014; 23:1-27. [PMID: 24737936 PMCID: PMC3984952 DOI: 10.5607/en.2014.23.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/18/2014] [Accepted: 02/17/2014] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence suggest that the right-hemisphere (RH) has a relative advantage, over the left-hemisphere (LH), in mediating social intelligence - identifying social stimuli, understanding the intentions of other people, awareness of the dynamics in social relationships, and successful handling of social interactions. Furthermore, a review and synthesis of the literature suggest that pro-social attitudes and behaviors are associated with physiological activity in the RH, whereas unsocial and anti-social tendencies are mediated primarily by the LH. This hemispheric asymmetry is rooted in several neurobiological and functional differences between the two hemispheres. (I) Positive social interactions often require inhibiting one's immediate desires and considering the perspectives and needs of others. Given that self-control is mediated by the RH, pro-social emotions and behaviors are, therefore, inherently associated with the RH as it subserves the brain's self-restraint mechanisms. (II) The RH mediates experiences of vulnerability. It registers the relative clumsiness and motor weakness of the left limbs, and it is involved, more than the LH, in processing threats and mediating fear. Emotional states of vulnerability trigger the need for affiliation and sociality, therefore the RH has a greater role in mediating pro-social attitudes and behaviors. (III) The RH mediates a holistic mode of representing the world. Holistic perception emphasizes similarities rather than differences, takes a long-term perspective, is associated with divergent thinking and seeing other points-of-view, and it mediates a personal mode of relating to people. All these features of holistic perception facilitate a more empathetic attitude toward others and pro-social behaviors.
Collapse
Affiliation(s)
- David Hecht
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
34
|
Zhao W, Xu W, Yang WW. Neuroregeneration in the nucleus ambiguus after recurrent laryngeal nerve avulsion in rats. Ann Otol Rhinol Laryngol 2014; 123:490-9. [PMID: 24627406 DOI: 10.1177/0003489414524170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objective was to investigate neuroregeneration, the origins of newborn cells and the proliferation of neuronal and glial cells in the nucleus ambiguus (NA) after ipsilateral recurrent laryngeal nerve (RLN) avulsion. METHODS All of the animals received a CM-Dil injection in the left lateral ventricle. Forty-five adult rats were subjected to a left RLN avulsion injury, while 9 rats were used as controls. 5-Bromo-2-deoxyuridine (BrdU) was injected intraperitoneally. Neuron quantification and immunohistochemical analysis were performed in the brain stems at different time points after RLN injury. RESULTS After RLN avulsion, CM-Dil labeled neural progenitor cells (NPCs) migrated to the ipsilateral NA and differentiated into astrocytes but not into neurons. In the NA, the neuronal cells re-expressed nestin. Only a small number of neuronal and glial cells in the NA showed BrdU immunoreactivity. CONCLUSIONS After RLN avulsion, the NPCs in the ependymal layer of the fourth ventricle or central canal are activated, migrate to the lesion in the NA and differentiate exclusively into astrocytes. The newborn neural stem cells in the NA may arise from the mature region neurons. The presence of both cell types in the NA may play a role in repairing RLN injuries.
Collapse
|
35
|
Affiliation(s)
- Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, Burlington Danes, Hammersmith Hospital, London, UK
| |
Collapse
|
36
|
Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab 2014; 34:e1-9. [PMID: 24169850 PMCID: PMC3887359 DOI: 10.1038/jcbfm.2013.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Previous studies have highlighted the enormous potential of cell-based therapies for stroke not only to prevent ischemic brain damage, but also to amplify endogenous repair processes. Considering its widespread availability and low immunogenicity human umbilical cord blood (HUCB) is a particularly attractive stem cell source. Our goal was to investigate the neurorestorative potential of cryopreserved HUCB mononuclear cells (MNC) after permanent middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats (SHR). Human umbilical cord blood MNC or vehicle solution was administered intravenously 24 hours after MCAO. Experimental groups were as follows: (1) quantitative polymerase chain reaction (PCR) of host-derived growth factors up to 48 hours after stroke; (2) immunohistochemical analysis of astroglial scarring; (3) magnetic resonance imaging (MRI) and weekly behavioral tests for 2 months after stroke. Long-term functional outcome and lesion development on MRI were not beneficially influenced by HUCB MNC therapy. Furthermore, HUCB MNC treatment did not change local growth factor levels and glial scarring extent. In summary, we could not demonstrate neurorestorative properties of HUCB MNC after stroke in SHR. Our results advise caution regarding a prompt translation of cord blood therapy into clinical stroke trials as long as deepened knowledge about its precise modes of action is missing.
Collapse
|
37
|
Giles GE, Mahoney CR, Brunyé TT, Taylor HA, Kanarek RB. Caffeine promotes global spatial processing in habitual and non-habitual caffeine consumers. Front Hum Neurosci 2013; 7:694. [PMID: 24146646 PMCID: PMC3797965 DOI: 10.3389/fnhum.2013.00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/02/2013] [Indexed: 11/13/2022] Open
Abstract
Information processing is generally biased toward global cues, often at the expense of local information. Equivocal extant data suggests that arousal states may accentuate either a local or global processing bias, at least partially dependent on the nature of the manipulation, task, and stimuli. To further differentiate the conditions responsible for such equivocal results we varied caffeine doses to alter physiological arousal states and measured their effect on tasks requiring the retrieval of local versus global spatial knowledge. In a double-blind, repeated-measures design, non-habitual (Experiment 1; N = 36, M = 42.5 ± 28.7 mg/day caffeine) and habitual (Experiment 2; N = 34, M = 579.5 ± 311.5 mg/day caffeine) caffeine consumers completed four test sessions corresponding to each of four caffeine doses (0, 100, 200, 400 mg). During each test session, participants consumed a capsule containing one of the three doses of caffeine or placebo, waited 60 min, and then completed two spatial tasks, one involving memorizing maps and one spatial descriptions. A spatial statement verification task tested local versus global spatial knowledge by differentially probing memory for proximal versus distal landmark relationships. On the map learning task, results indicated that caffeine enhanced memory for distal (i.e., global) compared to proximal (i.e., local) comparisons at 100 (marginal), 200, and 400 mg caffeine in non-habitual consumers, and marginally beginning at 200 mg caffeine in habitual consumers. On the spatial descriptions task, caffeine enhanced memory for distal compared to proximal comparisons beginning at 100 mg in non-habitual but not habitual consumers. We thus provide evidence that caffeine-induced physiological arousal amplifies global spatial processing biases, and these effects are at least partially driven by habitual caffeine consumption.
Collapse
Affiliation(s)
- Grace E Giles
- Department of Psychology, Tufts University , Medford, MA , USA
| | | | | | | | | |
Collapse
|
38
|
Hugdahl K. Visual-spatial information processing in the two hemispheres of the brain is dependent on the feature characteristics of the stimulus. Front Neurosci 2013; 7:10. [PMID: 23378828 PMCID: PMC3561660 DOI: 10.3389/fnins.2013.00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Department of Radiology, Haukeland University Hospital Bergen, Norway ; Division of Psychiatry, Haukeland University Hospital Bergen, Norway
| |
Collapse
|