1
|
Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03575-w. [PMID: 39520554 DOI: 10.1007/s00210-024-03575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The indoleamine hormone, melatonin, is produced in the pineal gland and has an essential role in many physiological functions. The pineal gland is considered to be the most important organ for producing melatonin. Nevertheless, it is important to point out that the eye is also capable of producing melatonin, and has its own circadian rhythm in producing this hormone. Melatonin is mainly produced by a subpopulation of photoreceptors in a diurnal rhythm. Numerous in vitro and in vivo studies have shown the beneficial effects of melatonin in eye-related disorders. These diseases primarily affect retinal cells, highlighting the therapeutic potential of melatonin, especially in the retina. Melatonin's ability to regulate oxidative stress response pathways and modulate the expression of antioxidant genes makes it a promising candidate for mitigating retinal cell damage. Moreover, melatonin can modulate inflammatory pathways such as NF-кB and further reduce retinal damage, as well as affecting programmed cell death such as apoptosis and autophagy in retinal cells. Therefore, the goal of this review is to explore the ways in which melatonin protects retinal cells from damage and ischemia. We discuss the mechanisms involved in order to gain valuable understanding of the possible therapeutic applications of melatonin in protection of retinal cells and treatment of retinal disorders.
Collapse
Affiliation(s)
- Jingwen Sun
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Yan Liu
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Zhangming Chen
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
2
|
Leung WKC, Yau SY, Yang Y, Kwok AWL, Wong EML, Cheung JKM, Shum EWC, Lam SC, Suen LKP. Effects of exercise interventions on brain-derived neurotrophic factor levels in overweight and obesity: A systematic review and meta-analysis. J Exerc Sci Fit 2024; 22:278-287. [PMID: 38618555 PMCID: PMC11015502 DOI: 10.1016/j.jesf.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Background /Objective. An explosion in global obesity epidemic poses threats to the healthcare system by provoking risks of many debilitating diseases, including cognitive dysfunction. Physical activity has been shown to alleviate the deleterious effects of obesity-associated cognitive deficits across the lifespan. Given the strong neuroprotective role of brain-derived neurotrophic factor (BDNF) and exercise training as a known modulator for its elevation, this systematic review sought to examine the strength of the association between exercise and BDNF levels in healthy people with overweight and obesity. Methods Six electronic databases (PubMed, MEDLINE, EMBASE, Web of Science, Ovid Nursing Database, and SPORTDiscus) were searched from their inceptions through December 2022. The primary outcome of interest was BDNF levels. Interventional studies (randomized and quasi-experimental) with English full text available were included. Risk of bias of the included studies was assessed using the Physiotherapy Evidence Database Scale. Data were extracted for meta-analyses by random-effects models. Results Thirteen studies (n = 750), of which 69.2% (9/13) had low risk of bias, were included. In the meta-analysis, exercise interventions had no significant effect on resting BDNF levels (standardized mean difference: -0.30, 95% CI -0.80 to 0.21, P = 0.25). Subgroup analyses also indicated no effects of age and types of control groups being compared on moderating the association. Conclusion To further inform the role of BDNF in obesity-related cognitive functioning, rigorous studies with larger samples of participants and raw data available were imperatively deserved.
Collapse
Affiliation(s)
- Wilson KC. Leung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yijian Yang
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Anthony WL. Kwok
- School of Medical and Health Sciences, Tung Wah College, 10/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Eliza ML. Wong
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Jasmine KM. Cheung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Edward WC. Shum
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Simon C. Lam
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Lorna KP. Suen
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Yeshaw Y, Madakkatel I, Mulugeta A, Lumsden A, Hyppönen E. Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank. Neuroepidemiology 2024; 58:369-382. [PMID: 38560977 PMCID: PMC11449190 DOI: 10.1159/000538565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk factors of lower hippocampal volume using information from the world's largest brain imaging study. METHODS A combination of machine learning and conventional statistical methods were used to identify predictors of low hippocampal volume. We run gradient boosting decision tree modelling including 2,891 input features measured before magnetic resonance imaging assessments (median 9.2 years, range 4.2-13.8 years) using data from 42,152 dementia-free UK Biobank participants. Logistic regression analyses were run on 87 factors identified as important for prediction based on Shapley values. False discovery rate-adjusted p value <0.05 was used to declare statistical significance. RESULTS Older age, male sex, greater height, and whole-body fat-free mass were the main predictors of low hippocampal volume with the model also identifying associations with lung function and lifestyle factors including smoking, physical activity, and coffee intake (corrected p < 0.05 for all). Red blood cell count and several red blood cell indices such as haemoglobin concentration, mean corpuscular haemoglobin, mean corpuscular volume, mean reticulocyte volume, mean sphered cell volume, and red blood cell distribution width were among many biomarkers associated with low hippocampal volume. CONCLUSION Lifestyles, physical measures, and biomarkers may affect hippocampal volume, with many of the characteristics potentially reflecting oxygen supply to the brain. Further studies are required to establish causality and clinical relevance of these findings.
Collapse
Affiliation(s)
- Yigizie Yeshaw
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia,
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia,
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia,
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa, Ethiopia
| | - Amanda Lumsden
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Cao HL, Wei W, Meng YJ, Deng RH, Li XJ, Deng W, Liu YS, Tang Z, Du XD, Greenshaw AJ, Li ML, Li T, Guo WJ. Interactions between overweight/obesity and alcohol dependence impact human brain white matter microstructure: evidence from DTI. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01760-9. [PMID: 38403735 DOI: 10.1007/s00406-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024]
Abstract
There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ren-Hao Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang-Dong Du
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Youl Moon H, Lee M. Exercise-induced expression of genes associated with aging in the hippocampus of rats. Neurosci Lett 2024; 823:137646. [PMID: 38278317 DOI: 10.1016/j.neulet.2024.137646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Recent research has underscored the influence of aging and exercise on brain function. In this study, we aimed to explore alterations in the expression of novel molecular factors and gain insight into underlying molecular mechanisms in the hippocampus of rats engaged in voluntary wheel running. We assessed the expression of aging-related genes in the hippocampus using a high-throughput whole genome DNA microarray approach in rats engaged in voluntary running for four weeks. The results indicated that compared to the control group, wheel running significantly altered the expressions of aging-related genes in the hippocampus. Functional categorization, utilizing pathway-focused gene classifications and disease state-focused gene classifications, along with Ingenuity Pathway Analysis (IPA), revealed changes in expression pattern in major categories of cell death and survival, renal necrosis/cell death, and cardiovascular disease genes. These findings suggest that exercise may mitigate the risk of age-related cognitive decline by regulating of aging-related genes in the hippocampus. Further research is warranted to elucidate the mechanisms driving changes in gene expression and to determine the long-term effects of exercise on brain function.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Department of Physical Education, College of Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minchul Lee
- Department of Sports Medicine, College of Health Science, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do 11160, Republic of Korea.
| |
Collapse
|
6
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Diaz-Zuluaga AM, Dietze LM, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Jahanshad N, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Ross A, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, Thomopoulos SI, van Haren NEM, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen OA, Thompson PM, Hajek T. Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants. Psychol Med 2023; 53:6743-6753. [PMID: 36846964 PMCID: PMC10600817 DOI: 10.1017/s0033291723000223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Collapse
Affiliation(s)
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Tiana Borgers
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Diaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - Mikael Landén
- Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellin, Colombia
| | | | - Joaquim Raduà
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institute of Psychiartry, King's College Londen, London, UK
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Alex Ross
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neeltje E. M. van Haren
- Department of Child and Adolescents Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Annabel Vreeker
- Department of Child and Adolescents Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Social and Behavioural Sciences Department of Psychology, Education & Child Studies Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | | |
Collapse
|
7
|
Kobiec T, Mardaraz C, Toro-Urrego N, Kölliker-Frers R, Capani F, Otero-Losada M. Neuroprotection in metabolic syndrome by environmental enrichment. A lifespan perspective. Front Neurosci 2023; 17:1214468. [PMID: 37638319 PMCID: PMC10447983 DOI: 10.3389/fnins.2023.1214468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Metabolic syndrome (MetS) is defined by the concurrence of different metabolic conditions: obesity, hypertension, dyslipidemia, and hyperglycemia. Its incidence has been increasingly rising over the past decades and has become a global health problem. MetS has deleterious consequences on the central nervous system (CNS) and neurological development. MetS can last several years or be lifelong, affecting the CNS in different ways and treatments can help manage condition, though there is no known cure. The early childhood years are extremely important in neurodevelopment, which extends beyond, encompassing a lifetime. Neuroplastic changes take place all life through - childhood, adolescence, adulthood, and old age - are highly sensitive to environmental input. Environmental factors have an important role in the etiopathogenesis and treatment of MetS, so environmental enrichment (EE) stands as a promising non-invasive therapeutic approach. While the EE paradigm has been designed for animal housing, its principles can be and actually are applied in cognitive, sensory, social, and physical stimulation programs for humans. Here, we briefly review the central milestones in neurodevelopment at each life stage, along with the research studies carried out on how MetS affects neurodevelopment at each life stage and the contributions that EE models can provide to improve health over the lifespan.
Collapse
Affiliation(s)
- Tamara Kobiec
- Facultad de Psicología, Centro de Investigaciones en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mardaraz
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Kilpatrick LA, An HM, Pawar S, Sood R, Gupta A. Neuroimaging Investigations of Obesity: a Review of the Treatment of Sex from 2010. Curr Obes Rep 2023; 12:163-174. [PMID: 36933153 PMCID: PMC10250271 DOI: 10.1007/s13679-023-00498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE OF REVIEW To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Hyeon Min An
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Shrey Pawar
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- David Geffen School of Medicine, Goodman-Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Wu H, Liu Y, Wang J, Chen S, Xie L, Wu X. Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis? IMETA 2023; 2:e99. [PMID: 38868440 PMCID: PMC10989809 DOI: 10.1002/imt2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2024]
Abstract
Schizophrenia (SZ) places a tremendous burden on public health as one of the leading causes of disability and death. SZ patients are more prone to developing obesity than the general population from the clinical practice. The development of obesity frequently causes poor psychiatric outcomes in SZ patients. In turn, maternal obesity during pregnancy has been associated with an increased risk of SZ in offspring, suggesting that these two disorders may have shared neuropathological mechanisms. The gut microbiota is well known to serve as a major regulator of bidirectional interactions between the central nervous system and the gastrointestinal tract. It also plays a critical role in maintaining physical and mental health in humans. Recent studies have shown that the dysbiosis of gut microbiota is intimately associated with the onset of SZ and obesity through shared pathophysiological mechanisms, particularly the stimulation of immune inflammation. Therefore, gut microbiota may serve as a common biological basis for the etiology in both SZ and obesity, and the perturbed gut-brain axis may therefore account for the high prevalence of obesity in patients with SZ. On the basis of these findings, this review provides updated perspectives and intervention approaches on the etiology, prevention, and management of obesity in SZ patients by summarizing the recent findings on the role of gut microbiota in the pathogenesis of SZ and obesity, highlighting the role of gut-derived inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yaxi Liu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Shengyun Chen
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
| | - Xiaoli Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Keawtep P, Wichayanrat W, Boripuntakul S, Chattipakorn SC, Sungkarat S. Cognitive Benefits of Physical Exercise, Physical-Cognitive Training, and Technology-Based Intervention in Obese Individuals with and without Postmenopausal Condition: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013364. [PMID: 36293943 PMCID: PMC9603710 DOI: 10.3390/ijerph192013364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/14/2023]
Abstract
Obesity and estrogen deprivation have been identified as significant risk factors for cognitive impairment. Thus, postmenopausal conditions when paired with obesity may amplify the risks of developing dementia. Physical exercise has been recommended as a primary treatment for preventing obesity-related comorbidities and alleviating menopausal symptoms. This narrative review aimed to summarize the effects of exercise on cognition in obese individuals with and without menopausal condition, along with potential physiological mechanisms linking these interventions to cognitive improvement. Research evidence has demonstrated that exercise benefits not only physical but also cognitive and brain health. Among various types of exercise, recent studies have suggested that combined physical-cognitive exercise may exert larger gains in cognitive benefits than physical or cognitive exercise alone. Despite the scarcity of studies investigating the effects of physical and combined physical-cognitive exercise in obese individuals, especially those with menopausal condition, existing evidence has shown promising findings. Applying these exercises through technology-based interventions may be a viable approach to increase accessibility and adherence to the intervention. More evidence from randomized clinical trials with large samples and rigorous methodology is required. Further, investigations of biochemical and physiological outcomes along with behavioral changes will provide insight into underlying mechanisms linking these interventions to cognitive improvement.
Collapse
Affiliation(s)
- Puntarik Keawtep
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanachaporn Wichayanrat
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinun Boripuntakul
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Group of Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somporn Sungkarat
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Group of Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Wu H, Dai G, Aizezi M, Tang J, Zou K, Wu Y, Wu X. Gray matter reduction in bilateral insula mediating adverse psychiatric effects of body mass index in schizophrenia. BMC Psychiatry 2022; 22:639. [PMID: 36221050 PMCID: PMC9552355 DOI: 10.1186/s12888-022-04285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both schizophrenia (SZ) and overweight/obesity (OWB) have shown some structural alterations in similar brain regions. As higher body mass index (BMI) often contributes to worse psychiatric outcomes in SZ, this study was designed to examine the effects of OWB on gray matter volume (GMV) in patients with SZ. METHODS Two hundred fifty subjects were included and stratified into four groups (n = 69, SZ patients with OWB, SZ-OWB; n = 74, SZ patients with normal weight, SZ-NW; n = 54, healthy controls with OWB, HC-OWB; and n = 53, HC with NW, HC-NW). All participants were scanned using high-resolution T1-weighted sequence. The whole-brain voxel-based morphometry was applied to examine the GMV alterations, and a 2 × 2 full factorial analysis of variance was performed to identify the main effects of diagnosis (SZ vs HC), BMI (NW vs OWB) factors, and their interactions. Further, the post hoc analysis was conducted to compare the pairwise differences in GMV alterations. RESULTS The main effects of diagnosis were located in right hippocampus, bilateral insula, rectus, median cingulate/paracingulate gyri and thalamus (SZ < HC); while the main effects of BMI were displayed in right amygdala, left hippocampus, bilateral insula, left lingual gyrus, and right superior temporal gyrus (OWB < NW). There were no significant diagnosis-by-BMI interaction effects in the present study, but the results showed that both SZ and OWB were additively associated with lower GMV in bilateral insula. Moreover, mediation analyses revealed the indirect effect of BMI on negative symptom via GMV reduction in bilateral insula. CONCLUSION This study further supports that higher BMI is associated with lower GMV, which may increase the risk of unfavourable disease courses in SZ.
Collapse
Affiliation(s)
- Hui Wu
- grid.412558.f0000 0004 1762 1794Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong China ,The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China
| | - Guochao Dai
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Radiology Department, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Muyeseer Aizezi
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Psychiatry Department, The First People’s Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang China
| | - Juan Tang
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Psychiatry Department, The First People’s Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang China
| | - Ke Zou
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Radiology Department, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Yuhua Wu
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China. .,Psychiatry Department, The First People's Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang, China.
| | - Xiaoli Wu
- Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China. .,The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China.
| |
Collapse
|
13
|
Zapparoli L, Devoto F, Giannini G, Zonca S, Gallo F, Paulesu E. Neural structural abnormalities behind altered brain activation in obesity: Evidence from meta-analyses of brain activation and morphometric data. Neuroimage Clin 2022; 36:103179. [PMID: 36088842 PMCID: PMC9474923 DOI: 10.1016/j.nicl.2022.103179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Obesity represents a risk factor for disability with a major bearing on life expectancy. Neuroimaging techniques are contributing to clarify its neurobiological underpinnings. Here, we explored whether structural brain abnormalities might accompany altered brain activations in obesity. We combined and compared data from brain activation studies for food stimuli and the data reported in structural voxel-based morphometry studies. We found that obese individuals have reduced grey matter density and functional activations in the thalamus and midbrain. A functional connectivity analysis based on these two clusters and its quantitative decoding showed that these regions are part of the reward system functional brain network. Moreover, we found specific grey matter hypo-densities in prefrontal cortex for the obese subjects, regions involved in controlled behaviour. These results support theories of obesity that point to reduced bottom-up reward processes (i.e., the Reward Deficit Theory), but also top-down theories postulating a deficit in cognitive control (i.e., the Inhibitory Control Deficit Theory). The same results also warrant a more systematic exploration of obesity whereby the reward of food and the intentional control over consummatory behaviour is manipulated.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy,Corresponding authors.
| | - Francantonio Devoto
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Gianluigi Giannini
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Sara Zonca
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Gallo
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy,IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
14
|
Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational approaches to predicting treatment response to obesity using neuroimaging. Rev Endocr Metab Disord 2022; 23:773-805. [PMID: 34951003 PMCID: PMC9307532 DOI: 10.1007/s11154-021-09701-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.
Collapse
Affiliation(s)
- Leonard Kozarzewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Lukas Maurer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Anja Mähler
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
15
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Diaz-Zuluaga AM, Lorielle Dietze, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Ross A, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, Thomopoulos SI, van Haren NEM, Van Gestel H, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen O, Thompson PM, Hajek T. Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals. Bipolar Disord 2022; 24:509-520. [PMID: 34894200 PMCID: PMC9187778 DOI: 10.1111/bdi.13172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.
Collapse
Affiliation(s)
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo Norway
| | - Caterina del Mar Bonnin
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Tiana Borgers
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Diaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Lorielle Dietze
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M. Goikolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Mikael Landén
- Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo Norway.,Institute of Clinical Medicine, Department of Neurology, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellin, Colombia
| | | | - Joaquim Raduà
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Institute of Psychiartry, King’s College Londen, London, UK
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Alex Ross
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands.,Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Holly Van Gestel
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Annabel Vreeker
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ole Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | | |
Collapse
|
16
|
Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 2022; 124:151844. [PMID: 35045377 DOI: 10.1016/j.acthis.2022.151844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, β-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
17
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
18
|
Li L, Yu H, Zhong M, Liu S, Wei W, Meng Y, Li ML, Li T, Wang Q. Gray matter volume alterations in subjects with overweight and obesity: Evidence from a voxel-based meta-analysis. Front Psychiatry 2022; 13:955741. [PMID: 36226110 PMCID: PMC9548618 DOI: 10.3389/fpsyt.2022.955741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Obesity is a multi-systemic disease with complex etiology. And consistent evidence indicated obesity or overweight subjects render brain structure changes. Increasing evidence indicates these subjects have shown widespread structural brain gray matter volume (GMV) changes. However, results from other neuroimaging studies have been inconsistent. Consequently, the question remains whether body mass index (BMI), a gold standard to define obesity/overweight, is associated with brain structural changes. METHODS This study will apply an updated meta-analysis of voxel-based GMV studies to compare GMV changes in overweight and obese subjects. Online databases were used to build on relevant studies published before May 2022. The updated Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) explores GMV changes in individuals with overweight and obesity and further examines the correlation between GMV and obesity-related variables, specifically body mass index (BMI). RESULTS This research included fourteen studies and provided a whole-brain analysis of GMV distribution in overweight and obese individuals. It revealed lower GMV in brain regions, including the left putamen and right precentral gyrus, in individuals with overweight and obesity compared to lean controls. Further, meta-regression analyses revealed GMV in the left middle occipital gyrus was negatively correlated with the BMI of the whole sample. CONCLUSION GMV decreased was reported in reward circuit processing areas and sensorimotor processing areas of individuals with overweight and obesity diagnoses, suggesting an underlying structural basis for reward processing and sensorimotor processing dysregulation in overweight and obese subjects. Our results also suggest that GMV in occipital gyrus, a key region for food visual and gustatory encoding, is negatively associated with BMI. These results provide further evidence for the dysregulated reward circuit in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Lei Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hua Yu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ming Zhong
- Department of Sport and Health Science, University of Exeter, Exeter, United Kingdom
| | - Siyi Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wei Wei
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yajing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
19
|
Lambert M, Wurz A, Smith AM, Fang Z, Brunet J. Preliminary Evidence of Improvement in Adolescent and Young Adult Cancer Survivors' Brain Health Following Physical Activity: A Proof-of-Concept Sub-Study. Brain Plast 2021; 7:97-109. [PMID: 34868876 PMCID: PMC8609486 DOI: 10.3233/bpl-210124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Cognitive impairment is common among adolescent and young adult (AYA) cancer survivors. Physical activity (PA) may help mitigate cognitive impairment post-treatment by positively impacting two indicators of general brain health: fractional anisotropy (FA) and functional connectivity (FC). As part of a two-arm, mixed-methods pilot randomized controlled trial (RCT), this sub-study was designed to provide preliminary proof-of-concept evidence for the effects of PA on FA and FC among AYA cancer survivors post-treatment to help inform decisions about proceeding to larger trials. Methods: AYA cancer survivors who had completed cancer treatment and who were enrolled in a larger pilot RCT comparing a 12-week PA intervention to a waitlist control group, were invited to participate in this sub-study. Sub-study participants completed diffusion tensor imaging and resting-state functional magnetic resonance imaging prior to randomization and post-intervention. Data were analyzed with descriptive statistics, independent component analysis, and paired sample t-tests. Results: Post-intervention, participants showed increases in FA of the bilateral hippocampal cingulum, left anterior corona radiata, middle cingulum, left anterior thalamic radiation, and left cerebellum. A decrease in overall FC of the default mode network and increases in the cerebellar and visual networks were also noted post-intervention (p < .05). Conclusion: Results provide preliminary evidence for the possible positive effects of PA on FA and FC among AYA cancer survivors post-treatment. On the basis of these results, larger trials assessing the effects of PA on specific brain health indicators, as captured by FA and FC, among AYA cancer survivors are appropriate and warranted.
Collapse
Affiliation(s)
- Maude Lambert
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Amanda Wurz
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra M Smith
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer Brunet
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Cancer Therapeutic Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Institut du savoir Montfort, Hôpital Montfort, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Bonafiglia JT, Preobrazenski N, Gurd BJ. A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Front Physiol 2021; 12:665044. [PMID: 34819869 PMCID: PMC8606564 DOI: 10.3389/fphys.2021.665044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Many reports describe statistical approaches for estimating interindividual differences in trainability and classifying individuals as "responders" or "non-responders." The extent to which studies in the exercise training literature have adopted these statistical approaches remains unclear. Objectives: This systematic review primarily sought to determine the extent to which studies in the exercise training literature have adopted sound statistical approaches for examining individual responses to exercise training. We also (1) investigated the existence of interindividual differences in trainability, and (2) tested the hypothesis that less conservative thresholds inflate response rates compared with thresholds that consider error and a smallest worthwhile change (SWC)/minimum clinically important difference (MCID). Methods: We searched six databases: AMED, CINAHL, EMBASE, Medline, PubMed, and SportDiscus. Our search spanned the aerobic, resistance, and clinical or rehabilitation training literature. Studies were included if they used human participants, employed standardized and supervised exercise training, and either: (1) stated that their exercise training intervention resulted in heterogenous responses, (2) statistically estimated interindividual differences in trainability, and/or (3) classified individual responses. We calculated effect sizes (ESIR) to examine the presence of interindividual differences in trainability. We also compared response rates (n = 614) across classification approaches that considered neither, one of, or both errors and an SWC or MCID. We then sorted response rates from studies that also reported mean changes and response thresholds (n = 435 response rates) into four quartiles to confirm our ancillary hypothesis that larger mean changes produce larger response rates. Results: Our search revealed 3,404 studies, and 149 were included in our systematic review. Few studies (n = 9) statistically estimated interindividual differences in trainability. The results from these few studies present a mixture of evidence for the presence of interindividual differences in trainability because several ESIR values lay above, below, or crossed zero. Zero-based thresholds and larger mean changes significantly (both p < 0.01) inflated response rates. Conclusion: Our findings provide evidence demonstrating why future studies should statistically estimate interindividual differences in trainability and consider error and an SWC or MCID when classifying individual responses to exercise training. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | | | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
21
|
Changes in white matter microstructure and MRI-derived cerebral blood flow after 1-week of exercise training. Sci Rep 2021; 11:22061. [PMID: 34764358 PMCID: PMC8586229 DOI: 10.1038/s41598-021-01630-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Exercise is beneficial for brain health, inducing neuroplasticity and vascular plasticity in the hippocampus, which is possibly mediated by brain-derived neurotrophic factor (BDNF) levels. Here we investigated the short-term effects of exercise, to determine if a 1-week intervention is sufficient to induce brain changes. Fifteen healthy young males completed five supervised exercise training sessions over seven days. This was preceded and followed by a multi-modal magnetic resonance imaging (MRI) scan (diffusion-weighted MRI, perfusion-weighted MRI, dual-calibrated functional MRI) acquired 1 week apart, and blood sampling for BDNF. A diffusion tractography analysis showed, after exercise, a significant reduction relative to baseline in restricted fraction-an axon-specific metric-in the corpus callosum, uncinate fasciculus, and parahippocampal cingulum. A voxel-based approach found an increase in fractional anisotropy and reduction in radial diffusivity symmetrically, in voxels predominantly localised in the corpus callosum. A selective increase in hippocampal blood flow was found following exercise, with no change in vascular reactivity. BDNF levels were not altered. Thus, we demonstrate that 1 week of exercise is sufficient to induce microstructural and vascular brain changes on a group level, independent of BDNF, providing new insight into the temporal dynamics of plasticity, necessary to exploit the therapeutic potential of exercise.
Collapse
|
22
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Díaz-Zuluaga AM, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, van Haren NEM, Gestel HV, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen O, Thompson PM, Hajek T. Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals. Mol Psychiatry 2021; 26:6806-6819. [PMID: 33863996 PMCID: PMC8760047 DOI: 10.1038/s41380-021-01098-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
Collapse
Affiliation(s)
- Sean R. McWhinney
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Christoph Abé
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Francesco Benedetti
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- grid.55325.340000 0004 0389 8485Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Caterina del Mar Bonnin
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Tiana Borgers
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Díaz-Zuluaga
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Torbjørn Elvsåshagen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA USA
| | - Janice M. Fullerton
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Jose M. Goikolea
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Janik Goltermann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Bartholomeus C. M. Haarman
- grid.4830.f0000 0004 0407 1981Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- grid.7836.a0000 0004 1937 1151Neuroscience Institute, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo T. J. Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rayus T. Kuplicki
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, Tulsa, OK USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- grid.55325.340000 0004 0389 8485Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Department of Neurology, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elena Mazza
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sandra Meier
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany ,grid.8664.c0000 0001 2165 8627Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Leila Nabulsi
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel A. Ophoff
- grid.19006.3e0000 0000 9632 6718UCLA Center for Neurobehavioral Genetics, Los Angeles, CA USA ,grid.5645.2000000040459992XDepartment of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bronwyn J. Overs
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellín, Colombia
| | - Edith Pomarol-Clotet
- grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Joaquim Raduà
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain ,grid.13097.3c0000 0001 2322 6764Institute of Psychiartry, King’s College Londen, London, UK
| | - Jonathan Repple
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Maike Richter
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Raymond Salvador
- grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, Tulsa, OK USA ,grid.267360.60000 0001 2160 264XOxley College of Health Sciences, The University of Tulsa, Tulsa, OK USA
| | - Simon Schmitt
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Kang Sim
- grid.414752.10000 0004 0469 9592West Region, Institute of Mental Health, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151Neuroscience Institute, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Neeltje E. M. van Haren
- grid.6906.90000000092621349Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands ,grid.5477.10000000120346234Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Holly Van Gestel
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Cristian Vargas
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Annabel Vreeker
- grid.6906.90000000092621349Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Lakshmi N. Yatham
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, BC Canada
| | - Christopher R. K. Ching
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA USA
| | - Ole Andreassen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. .,National Institute of Mental Health, Klecany, Czech Republic.
| | | |
Collapse
|
23
|
Fraser MA, Walsh EI, Shaw ME, Anstey KJ, Cherbuin N. Longitudinal Effects of Physical Activity Change on Hippocampal Volumes over up to 12 Years in Middle and Older Age Community-Dwelling Individuals. Cereb Cortex 2021; 32:2705-2716. [PMID: 34671805 DOI: 10.1093/cercor/bhab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
The objectives of this study were to investigate the long-term associations between changes in physical activity levels and hippocampal volumes over time, while considering the influence of age, sex, and APOE-ε4 genotype. We investigated the effects of change in physical activity on hippocampal volumes in 411 middle age (mean age = 47.2 years) and 375 older age (mean age = 63.1 years) adults followed up to 12 years. An annual volume decrease was observed in the left (middle age: 0.46%; older age: 0.51%) but not in the right hippocampus. Each additional 10 metabolic equivalents (METs, ~2 h of moderate exercise) increase in weekly physical activity was associated with 0.33% larger hippocampal volume in middle age (equivalent to ~1 year of typical aging). In older age, each additional MET was associated with 0.05% larger hippocampal volume; however, the effects declined with time by 0.005% per year. For older age APOE-ε4 carriers, each additional MET was associated with a 0.10% increase in hippocampal volume. No sex effects of physical activity change were found. Increasing physical activity has long-term positive effects on hippocampal volumes and appears especially beneficial for older APOE-ε4 carriers. To optimize healthy brain aging, physical activity programs should focus on creating long-term exercise habits.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Ageing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
24
|
Jensen DEA, Leoni V, Klein-Flügge MC, Ebmeier KP, Suri S. Associations of dietary markers with brain volume and connectivity: A systematic review of MRI studies. Ageing Res Rev 2021; 70:101360. [PMID: 33991658 DOI: 10.1016/j.arr.2021.101360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 11/20/2022]
Abstract
The high prevalence of unhealthy dietary patterns and related brain disorders, such as dementia, emphasizes the importance of research that examines the effect of dietary factors on brain health. Identifying markers of brain health, such as volume and connectivity, that relate to diet is an important first step towards understanding the lifestyle determinants of healthy brain ageing. We conducted a systematic review of 52 studies (total n = 21,221 healthy participants aged 26-80 years, 55 % female) that assessed with a range of MRI measurements, which brain areas, connections, and cerebrovascular factors were associated with dietary markers. We report associations between regional brain measures and dietary health. Collectively, lower diet quality was related to reduced brain volume and connectivity, especially in white and grey matter of the frontal, temporal and parietal lobe, cingulate, entorhinal cortex and the hippocampus. Associations were also observed in connecting fibre pathways and in particular the default-mode, sensorimotor and attention networks. However, there were also some inconsistencies in research methods and findings. We recommend that future research use more comprehensive and consistent dietary measures, more representative samples, and examine the role of key subcortical regions previously highlighted in relevant animal work.
Collapse
Affiliation(s)
- Daria E A Jensen
- Department of Psychiatry, University of Oxford, OX3 7JX, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX37JX, UK.
| | - Virginia Leoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Tinsley building, OX1 3SR, UK
| | | | - Sana Suri
- Department of Psychiatry, University of Oxford, OX3 7JX, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX37JX, UK
| |
Collapse
|
25
|
Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White matter integrity differences in obesity: A meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev 2021; 129:133-141. [PMID: 34284063 DOI: 10.1016/j.neubiorev.2021.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023]
Abstract
Some Diffusion Tensor Imaging studies have shown a loss of white matter (WM) integrity linked to impaired cognitive function in obese individuals. However, inconsistent WM integrity changes have been reported. We aimed to identify which WM tracts show consistent changes with obesity. We conducted a systematic search to find studies examining the association between obesity-related measures and Fractional Anisotropy (FA) or Mean Diffusivity. We performed a meta-analysis with FA datasets using Anisotropic Effect Size-Signed Differential Mapping software. The meta-analysis showed that increased obesity measurements were related to reduced FA in the genu of the corpus callosum. We validated our findings using an independent sample from the Human Connectome Project dataset, which supports lower FA in this region in individuals with obesity compared to those with normal weight (p = 0.028). Our findings provide evidence that obesity is associated with reduced WM integrity in the genu of the corpus callosum, a tract linking frontal areas involved in executive function. Future studies are needed on the mechanisms linking obesity with loss of WM integrity.
Collapse
Affiliation(s)
- Justine Daoust
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada
| | - Joelle Schaffer
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Isabel García-García
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Andréanne Michaud
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
26
|
Townsend LK, MacPherson REK, Wright DC. New Horizon: Exercise and a Focus on Tissue-Brain Crosstalk. J Clin Endocrinol Metab 2021; 106:2147-2163. [PMID: 33982072 DOI: 10.1210/clinem/dgab333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
The world population is aging, leading to increased rates of neurodegenerative disorders. Exercise has countless health benefits and has consistently been shown to improve brain health and cognitive function. The purpose of this review is to provide an overview of exercise-induced adaptations in the brain with a focus on crosstalk between peripheral tissues and the brain. We highlight recent investigations into exercise-induced circulating factors, or exerkines, including irisin, cathepsin B, GPLD1, and ketones and the mechanisms mediating their effects in the brain.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Medicine, McMaster University, Hamilton, L8S 4L8, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences and Centre for Neuroscience, Brock University, St. Catharines, L2S 3A1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| |
Collapse
|
27
|
McWhinney S, Kolenic M, Franke K, Fialova M, Knytl P, Matejka M, Spaniel F, Hajek T. Obesity as a Risk Factor for Accelerated Brain Ageing in First-Episode Psychosis-A Longitudinal Study. Schizophr Bull 2021; 47:1772-1781. [PMID: 34080013 PMCID: PMC8530396 DOI: 10.1093/schbul/sbab064] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity is highly prevalent in schizophrenia, with implications for psychiatric prognosis, possibly through links between obesity and brain structure. In this longitudinal study in first episode of psychosis (FEP), we used machine learning and structural magnetic resonance imaging (MRI) to study the impact of psychotic illness and obesity on brain ageing/neuroprogression shortly after illness onset. METHODS We acquired 2 prospective MRI scans on average 1.61 years apart in 183 FEP and 155 control individuals. We used a machine learning model trained on an independent sample of 504 controls to estimate the individual brain ages of study participants and calculated BrainAGE by subtracting chronological from the estimated brain age. RESULTS Individuals with FEP had a higher initial BrainAGE than controls (3.39 ± 6.36 vs 1.72 ± 5.56 years; β = 1.68, t(336) = 2.59, P = .01), but similar annual rates of brain ageing over time (1.28 ± 2.40 vs 1.07±1.74 estimated years/actual year; t(333) = 0.93, P = .18). Across both cohorts, greater baseline body mass index (BMI) predicted faster brain ageing (β = 0.08, t(333) = 2.59, P = .01). For each additional BMI point, the brain aged by an additional month per year. Worsening of functioning over time (Global Assessment of Functioning; β = -0.04, t(164) = -2.48, P = .01) and increases especially in negative symptoms on the Positive and Negative Syndrome Scale (β = 0.11, t(175) = 3.11, P = .002) were associated with faster brain ageing in FEP. CONCLUSIONS Brain alterations in psychosis are manifest already during the first episode and over time get worse in those with worsening clinical outcomes or higher baseline BMI. As baseline BMI predicted faster brain ageing, obesity may represent a modifiable risk factor in FEP that is linked with psychiatric outcomes via effects on brain structure.
Collapse
Affiliation(s)
- Sean McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marian Kolenic
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marketa Fialova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Pavel Knytl
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Matejka
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada,National Institute of Mental Health, Klecany, Czech Republic,To whom correspondence should be addressed; Department of Psychiatry, Dalhousie University, QEII HSC, A. J. Lane Building, Room 3093, 5909 Veteran’s Memorial Lane, Halifax, Nova Scotia B3H 2E2, Canada; tel: (902) 473-8299, fax: (902) 473-1583, e-mail:
| |
Collapse
|
28
|
Wade NE, Wallace AL, Sullivan RM, Swartz AM, Lisdahl KM. Association between brain morphometry and aerobic fitness level and sex in healthy emerging adults. PLoS One 2020; 15:e0242738. [PMID: 33259511 PMCID: PMC7707547 DOI: 10.1371/journal.pone.0242738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Aerobic fitness may be beneficial for neuroanatomical structure. However, few have investigated this in emerging adults while also accounting for potential sex differences. Here we examine aerobic fitness level, sex, and their interaction in relation to cortical thickness, surface area, and volume. METHOD Sixty-three young adults between the ages of 16-26 were balanced for sex and demonstrated a wide range of aerobic fitness levels. Exclusion criteria included left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal medical issues, prenatal alcohol/illicit drug exposure, or excessive substance use. Participants completed an MRI scan and a graded exercise test to volitional fatigue (VO2 max). Data analyses were run in Freesurfer and data was corrected for multiple comparisons with Monte Carlo simulations at .05. RESULTS Males demonstrated higher VO2 values. Higher VO2 values were statistically independently related to thinner lateral occipital, superior parietal, cuneus, precuneus, and inferior parietal regions, smaller lateral occipital volume, and larger inferior parietal surface area. Compared to females, males had larger volume in rostral anterior cingulate, lateral occipital, and superior frontal regions, and greater surface area in fusiform, inferior parietal, rostral and caudal anterior cingulate, and superior parietal regions. VO2*Sex interactions revealed higher-fit females had higher inferior parietal, paracentral, and supramarginal surface area, while lower-fit males showed larger surface area in these same regions. CONCLUSIONS Individuals with higher aerobic fitness performance had thinner cortices, lower volume, and larger surface area in sensorimotor regions than lower fit individuals, perhaps suggesting earlier neuromaturation in higher fit individuals. Larger surface area was associated with higher-fit females and lower-fit males. Thus both sex and aerobic fitness are important in shaping brain health in emerging adults.
Collapse
Affiliation(s)
- Natasha E. Wade
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Alexander L. Wallace
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Ryan M. Sullivan
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Ann M. Swartz
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| |
Collapse
|
29
|
Zhang C, Yang Y, Zhu DM, Zhao W, Zhang Y, Zhang B, Wang Y, Zhu J, Yu Y. Neural correlates of the association between depression and high density lipoprotein cholesterol change. J Psychiatr Res 2020; 130:9-18. [PMID: 32768711 DOI: 10.1016/j.jpsychires.2020.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
There is evidence that major depressive disorder (MDD) is related to serum lipid level alterations. However, the neural correlates underlying this association remain poorly understood. Forty-nine patients with MDD and fifty healthy controls (HCs) underwent structural, resting-state functional and diffusion magnetic resonance imaging scans. Voxel-based morphometry, functional connectivity (FC) and tract-based spatial statistics analyses were performed to assess brain structure and function, respectively. Blood samples were collected to measure serum levels of lipid variables including total cholesterol, triglyceride and high density lipoprotein cholesterol (HDL-C). Correlation and mediation analyses were conducted to investigate the associations of serum lipid levels with brain imaging measures in MDD patients and HCs, respectively. We found that the serum HDL-C level in MDD patients was lower than that in HCs. The lower serum HDL-C level was associated with lower gray matter volume (GMV) in ventromedial prefrontal cortex (VMPFC), higher within-network FC of the default mode network, and lower micro-structural integrity in multiple white matter regions in MDD patients. Moreover, the within-default mode network FC mediated the relationship between GMV in VMPFC and serum HDL-C level; white matter integrity in genu of corpus callosum mediated the relationship between serum HDL-C level and depressive symptom severity. However, we did not observe any correlations between serum lipids and brain imaging parameters in HCs. These findings help to identify neural correlates underlying the association between depression and serum HDL-C change, which may provide new insight into intervention, treatment and prevention of depression from the perspective of regulating serum lipids.
Collapse
Affiliation(s)
- Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China; Hefei Fourth People's Hospital, Hefei, 230022, China; Anhui Mental Health Center, Hefei, 230022, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China; Hefei Fourth People's Hospital, Hefei, 230022, China; Anhui Mental Health Center, Hefei, 230022, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yajun Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
30
|
Wade NE, Kaiver CM, Wallace AL, Hatcher KF, Swartz AM, Lisdahl KM. Objective aerobic fitness level and neuropsychological functioning in healthy adolescents and emerging adults: Unique sex effects. PSYCHOLOGY OF SPORT AND EXERCISE 2020; 51:101794. [PMID: 35495562 PMCID: PMC9053538 DOI: 10.1016/j.psychsport.2020.101794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective Research suggests positive relationships between aerobic fitness and cognition in older adults; however, limited research has adequately investigated the relationship between objectively measured aerobic fitness and broad cognitive functioning in healthy adolescents and young adults without psychiatric or physical health disorders. Further, studies to date have disproportionately examined males and failed to examine sex differences. Here we examine the relationship between aerobic fitness and neuropsychological functioning in physically healthy youth and whether sex moderates these findings. Design Sixty-four healthy emerging adults (16-25 years-old; 32 female) underwent measurement of objective aerobic fitness (VO2 max) and neuropsychological assessment. Exclusion criteria included: left-handedness, prenatal medical issues or alcohol/illicit drug exposure, Axis-I psychiatric disorders, major medical disorders including metabolic conditions such as diabetes, hypertension, hyperlipidemia, major neurologic disorders, LOS greater than 2 min, intellectual disability or learning disability, regular substance use (e.g., greater than biweekly use of cannabis) or positive drug toxicology testing. Method Multiple regressions examined VO2 max, sex, sex*VO2interaction in relation to neurocognition, controlling for objectively measured body fat percentage. Results Prior to including body fat percentage, higher VO2 max related to improved working memory (Letter-Number Sequencing; p = .03) and selective attention (CPT-II hit response time standard error; p = .03). Aerobic fitness significantly interacted with sex, as higher-fit males had better performance on two sustained attention tasks while females did not demonstrate this pattern (CPT-II variability standard error, p = .047; Ruff 2&7 Total Speed, p = .02). Body fat percentage was positively slower cognitive flexibility (D-KEFS color-word switching/inhibition, p = .046). Conclusions VO2 independently predicted better working memory and selective attention. Increased aerobic fitness level related to increased performance on sustained attention tasks in males but not females. Therefore, aerobic fitness may be positively related to better cognitive functioning in physically healthy adolescents and emerging adults without metabolic conditions. Further research into factors (e.g., intensity or type of activity) that may relate to beneficial outcomes by sex are needed.
Collapse
Affiliation(s)
| | | | | | | | - Ann M. Swartz
- University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
31
|
Loprinzi PD, Harper J, Ikuta T. The effects of aerobic exercise on corpus callosum integrity: systematic review. PHYSICIAN SPORTSMED 2020; 48:400-406. [PMID: 32315243 DOI: 10.1080/00913847.2020.1758545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: To evaluate the influence of exercise on the body and genu of the corpus callosum (CC), which is a critical brain structure involved in facilitating interhemispheric communication. Methods: Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus and Google Scholar. The search terms, including their combinations, included exercise, physical activity, cardiorespiratory fitness, interhemispheric, and corpus callosum. To be eligible for inclusion in this review, studies had to be published in English; employ a cross-sectional, prospective or experimental design; include a measure of exercise as the independent variable; and the outcome variable had to include an integrity, volumetric or functional measure of the CC. Extraction parameters include study design, study population, exercise protocol, CC assessment, main findings regarding the relationship between exercise and the CC, and the evaluated or speculated mechanisms of this relationship. Results: 20 articles met the study inclusion criteria. Among these, 5 were conducted in animals and 15 were conducted in humans. Among the 5 animal studies, all provided suggestive evidence associating aerobic exercise with increased white matter integrity. Among the 15 human studies, 6 studies employed tract-based special statistics (TBSS), 4 utilized regions of interest (ROI) approach and 5 executed whole brain voxel wise analysis. Changes in the body was detected by 5 out of 6 TBSS studies and the genu by 3. Out of 4 ROI studies, three detected changes in the genu, but only one did in the body (out of 3 studies). One whole brain voxelwise study detected changes in the CC body of old adults and two found changes in the genu. Conclusion: This review provides evidence to suggest that aerobic exercise, and in turn, enhanced cardiorespiratory fitness, are associated with structural and functional outcomes increasing CC integrity.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Jacob Harper
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Toshikazu Ikuta
- Digital Neuroscience Laboratory Department of Communication Sciences and Disorders, The University of Mississippi , University, MS, USA
| |
Collapse
|
32
|
Lehmann N, Villringer A, Taubert M. Intrinsic Connectivity Changes Mediate the Beneficial Effect of Cardiovascular Exercise on Sustained Visual Attention. Cereb Cortex Commun 2020; 1:tgaa075. [PMID: 34296135 PMCID: PMC8152900 DOI: 10.1093/texcom/tgaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular exercise (CE) is an evidence-based healthy lifestyle strategy. Yet, little is known about its effects on brain and cognition in young adults. Furthermore, evidence supporting a causal path linking CE to human cognitive performance via neuroplasticity is currently lacking. To understand the brain networks that mediate the CE-cognition relationship, we conducted a longitudinal, controlled trial with healthy human participants to compare the effects of a 2-week CE intervention against a non-CE control group on cognitive performance. Concomitantly, we used structural and functional magnetic resonance imaging to investigate the neural mechanisms mediating between CE and cognition. On the behavioral level, we found that CE improved sustained attention, but not processing speed or short-term memory. Using graph theoretical measures and statistical mediation analysis, we found that a localized increase in eigenvector centrality in the left middle frontal gyrus, probably reflecting changes within an attention-related network, conveyed the effect of CE on cognition. Finally, we found CE-induced changes in white matter microstructure that correlated with intrinsic connectivity changes (intermodal correlation). These results suggest that CE is a promising intervention strategy to improve sustained attention via brain plasticity in young, healthy adults.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Mind and Brain Institute, Charité and Humboldt University, Berlin 10117, Germany
| | - Marco Taubert
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
33
|
Kolenič M, Španiel F, Hlinka J, Matějka M, Knytl P, Šebela A, Renka J, Hajek T. Higher Body-Mass Index and Lower Gray Matter Volumes in First Episode of Psychosis. Front Psychiatry 2020; 11:556759. [PMID: 33173508 PMCID: PMC7538831 DOI: 10.3389/fpsyt.2020.556759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurostructural alterations are often reported in first episode of psychosis (FEP), but there is heterogeneity in the direction and location of findings between individual studies. The reasons for this heterogeneity remain unknown. Obesity is disproportionately frequent already early in the course of psychosis and is associated with smaller brain volumes. Thus, we hypothesized that obesity may contribute to brain changes in FEP. METHOD We analyzed MRI scans from 120 participants with FEP and 114 healthy participants. In primary analyses, we performed voxel-based morphometry (VBM) with small volume corrections to regions associated with FEP or obesity in previous meta-analyses. In secondary analyses, we performed whole-brain VBM analyses. RESULTS In primary analyses, we found that when controlling for BMI, FEP had lower GM volume than healthy participants in a) left fronto-temporal region (pTFCE = 0.008) and b) left postcentral gyrus (pTFCE = 0.043). When controlling for FEP, BMI was associated with lower GM volume in left cerebellum (pTFCE < 0.001). In secondary analyses, we found that when controlling for BMI, FEP had lower GM volume than healthy participants in the a) cerebellum (pTFCE = 0.004), b) left frontal (pTFCE = 0.024), and c) right temporal cortex (pTFCE = 0.031). When controlling for FEP, BMI was associated with lower GM volume in cerebellum (pTFCE = 0.004). Levels of C-reactive protein, HDL and LDL-cholesterol correlated with obesity related neurostructural alterations. CONCLUSIONS This study suggests that higher BMI, which is frequent in FEP, may contribute to cerebellar alterations in schizophrenia. As previous studies showed that obesity-related brain alterations may be reversible, our findings raise the possibility that improving the screening for and treatment of obesity and associated metabolic changes could preserve brain structure in FEP.
Collapse
Affiliation(s)
- Marián Kolenič
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Filip Španiel
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Jaroslav Hlinka
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Matějka
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Knytl
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Antonín Šebela
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Jiří Renka
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Hajek
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Chen EY, Eickhoff SB, Giovannetti T, Smith DV. Obesity is associated with reduced orbitofrontal cortex volume: A coordinate-based meta-analysis. Neuroimage Clin 2020; 28:102420. [PMID: 32961404 PMCID: PMC7509458 DOI: 10.1016/j.nicl.2020.102420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Neural models of obesity vary in their focus upon prefrontal and striatal differences. Animal and human studies suggest that differential functioning of the orbitofrontal cortex is associated with obesity. However, meta-analyses of functional neuroimaging studies have not found a clear relationship between the orbitofrontal cortex and obesity. Meta-analyses of structural imaging studies of obesity have shown mixed findings with regards to an association with reduced orbitofrontal cortex gray matter volume. To clarify these findings, we conducted a meta-analysis of 25 voxel-based morphometry studies, and found that greater body mass index is associated with decreased gray matter volume in the right orbitofrontal cortex (Brodmanns' areas 10 and 11), where family-wise corrected p < .05, N = 7,612. Use of the right orbitofrontal cortex as a seed in a Neurosynth Network Coactivation analysis showed that this region is associated with activity in the left frontal medial cortex, left temporal lobe, right precuneus cortex, posterior division of the left middle temporal gyrus, and right frontal pole. When Neurosynth Network Coactivation results were submitted as regions of interest in the Human Connectome Project data, we found that greater body mass index was associated with greater activity in left frontal medial cortex response to the Gambling Task, where p < .05, although this did not survive Bonferroni-correction. Our findings highlight the importance of the orbitofrontal cortex structure and functioning in neural models of obesity. Exploratory analyses suggest more studies are needed that examine the functional significance of reduced orbitofrontal cortex gray matter volume in obesity, and the effect of age and weight changes on this relationship using longitudinal designs.
Collapse
Affiliation(s)
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Germany
| | | | | |
Collapse
|
35
|
Batouli SAH, Saba V. Larger Volume and Different Activation of the Brain in Response to Threat in Military Officers. Basic Clin Neurosci 2020; 11:669-685. [PMID: 33643560 PMCID: PMC7878053 DOI: 10.32598/bcn.9.10.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction: Military missions involve stressful and life-threatening situations; however, soldiers should have a healthy cognition on the battlefield despite their high-stress levels. This is an ability that should be gained during prior military training. Successful and influential training is suggested to be associated with structural and functional improvements of the brain. Methods: This study investigated the pattern of brain activation while observing videos relevant to life-threatening situations, in addition to brain structure. Accordingly, the obtained data were compared between 20 military members and 26 healthy controls. The study participants were all male, aged between 19 to 24 years, right-handed, studying BSc, and from the same socioeconomic status. Results: The obtained data presented a larger volume in a total number of 1103 voxels of the brain (in 5 brain areas) in the military group. Furthermore, the military group suggested higher brain activation in the visual processing areas of the brain when observing real combat videos; however, this increment was mostly in the areas associated with motor processing and executive functions in the controls. Conclusion: This study indicated that military training is associated with positive structural changes in the brain. Besides, it provided a different brain activation in response to stressful situations. These findings highlighted the importance of qualified military training.
Collapse
Affiliation(s)
| | - Valiallah Saba
- Department of Radiology, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res 2020; 382:421-426. [PMID: 32789683 PMCID: PMC7584530 DOI: 10.1007/s00441-020-03266-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.
Collapse
|
37
|
Cardiometabolic determinants of early and advanced brain alterations: Insights from conventional and novel MRI techniques. Neurosci Biobehav Rev 2020; 115:308-320. [DOI: 10.1016/j.neubiorev.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
|
38
|
Neuroanatomical changes in white and grey matter after sleeve gastrectomy. Neuroimage 2020; 213:116696. [DOI: 10.1016/j.neuroimage.2020.116696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
|
39
|
Lehmann N, Villringer A, Taubert M. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning. J Neurosci 2020; 40:2416-2429. [PMID: 32041897 PMCID: PMC7083530 DOI: 10.1523/jneurosci.2310-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular exercise (CE) is a promising intervention strategy to facilitate cognition and motor learning in healthy and diseased populations of all ages. CE elevates humoral parameters, such as growth factors, and stimulates brain changes potentially relevant for learning and behavioral adaptations. However, the causal relationship between CE-induced brain changes and human's ability to learn remains unclear. We tested the hypothesis that CE elicits a positive effect on learning via alterations in brain structure (morphological changes of gray and white matter) and function (functional connectivity and cerebral blood flow in resting state). We conducted a randomized controlled trial with healthy male and female human participants to compare the effects of a 2 week CE intervention against a non-CE control group on subsequent learning of a challenging new motor task (dynamic balancing; DBT) over 6 consecutive weeks. We used multimodal neuroimaging [T1-weighted magnetic resonance imaging (MRI), diffusion-weighted MRI, perfusion-weighted MRI, and resting state functional MRI] to investigate the neural mechanisms mediating between CE and learning. As expected, subjects receiving CE subsequently learned the DBT at a higher rate. Using a modified nonparametric combination approach along with multiple mediator analysis, we show that this learning boost was conveyed by CE-induced increases in cerebral blood flow in frontal brain regions and changes in white matter microstructure in frontotemporal fiber tracts. Our study revealed neural mechanisms for the CE-learning link within the brain, probably allowing for a higher flexibility to adapt to highly novel environmental stimuli, such as learning a complex task.SIGNIFICANCE STATEMENT It is established that cardiovascular exercise (CE) is an effective approach to promote learning and memory, yet little is known about the underlying neural transfer mechanisms through which CE acts on learning. We provide evidence that CE facilitates learning in human participants via plasticity in prefrontal white matter tracts and a colocalized increase in cerebral blood flow. Our findings are among the first to demonstrate a transfer potential of experience-induced brain plasticity. In addition to practical implications for health professionals and coaches, our work paves the way for future studies investigating effects of CE in patients suffering from prefrontal hypoperfusion or white matter diseases.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany,
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, 39104 Magdeburg, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Mind and Brain Institute, Charité and Humboldt University, 10117 Berlin, Germany, and
| | - Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, 39104 Magdeburg, Germany
- Center for Behavioral and Brain Science, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
40
|
Prehn K, Profitlich T, Rangus I, Heßler S, Witte AV, Grittner U, Ordemann J, Flöel A. Bariatric Surgery and Brain Health-A Longitudinal Observational Study Investigating the Effect of Surgery on Cognitive Function and Gray Matter Volume. Nutrients 2020; 12:nu12010127. [PMID: 31906475 PMCID: PMC7019777 DOI: 10.3390/nu12010127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 01/16/2023] Open
Abstract
Dietary modifications leading to weight loss have been suggested as a means to improve brain health. In morbid obesity, bariatric surgery (BARS)-including different procedures, such as vertical sleeve gastrectomy (VSG), gastric banding (GB), or Roux-en-Y gastric bypass (RYGB) surgery-is performed to induce rapid weight loss. Combining reduced food intake and malabsorption of nutrients, RYGB might be most effective, but requires life-long follow-up treatment. Here, we tested 40 patients before and six months after surgery (BARS group) using a neuropsychological test battery and compared them with a waiting list control group. Subsamples of both groups underwent structural MRI and were examined for differences between surgical procedures. No substantial differences between BARS and control group emerged with regard to cognition. However, larger gray matter volume in fronto-temporal brain areas accompanied by smaller volume in the ventral striatum was seen in the BARS group compared to controls. RYGB patients compared to patients with restrictive treatment alone (VSG/GB) had higher weight loss, but did not benefit more in cognitive outcomes. In sum, the data of our study suggest that BARS might lead to brain structure reorganization at long-term follow-up, while the type of surgical procedure does not differentially modulate cognitive performance.
Collapse
Affiliation(s)
- Kristin Prehn
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Psychology, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence: (K.P.); (A.F.); Tel.: +49-40-36122649384 (K.P.); +49-3834-866875 (A.F.)
| | - Thorge Profitlich
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ida Rangus
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sebastian Heßler
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - A. Veronica Witte
- Department of Neurology & NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Neurology, Aging and Obesity Group, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jürgen Ordemann
- Center for Bariatric and Metabolic Surgery, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Center for Bariatric and Metabolic Surgery, Vivantes Klinikum Spandau, 13585 Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University of Greifswald, 17489 Greifswald, Germany
- German Center for Neurodegenerative Diseases, Standort Rostock/Greifswald, 17489 Greifswald, Germany
- Correspondence: (K.P.); (A.F.); Tel.: +49-40-36122649384 (K.P.); +49-3834-866875 (A.F.)
| |
Collapse
|
41
|
Song S, Zhang Y, Qiu J, Li X, Ma K, Chen S, Chen H. Brain structures associated with eating behaviors in normal-weight young females. Neuropsychologia 2019; 133:107171. [PMID: 31425709 DOI: 10.1016/j.neuropsychologia.2019.107171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Eating behaviors play an important role in individuals' development, and restrained eaters have a higher risk of obesity in the future. In the present study, we used the Three-Factor Eating Questionnaire to measure restrained eating, uncontrolled eating, and emotional eating in 158 young, normal-weight, Chinese women. We developed a multiple linear regression model to identify significant structural brain changes associated with the above-mentioned eating behaviors. Uncontrolled eating scores were positively associated with the gray matter volume (GMV) of the cerebellum, and negatively associated with the GMV on the left side of the anterior cingulate cortex, middle cingulate cortex, and supplementary motor areas, indicating that uncontrolled eating behaviors not only are less inhibitory but also appear to be associated with the low-level processing of appetite. Increased GMV on the right side of the precuneus was associated with a higher level of restrained eating, which might be thus related to a lower sensitivity to behavioral inhibition in young females who follow a diet. In addition, we did not find a relationship between emotional eating behavior and GMV. Our findings show that eating-behavior-related structural brain changes may lead to a decrease in inhibition and an increase in food sensitivity.
Collapse
Affiliation(s)
- Shiqing Song
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yixiao Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xianjie Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Ke Ma
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - ShuaiYu Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
42
|
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S, Orock A, Joo KM, Lőrincz A, Deák F. Dysregulation of the SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic neurotransmission: a novel interventional target to protect the aging brain. GeroScience 2019; 41:109-123. [PMID: 31041658 PMCID: PMC6544690 DOI: 10.1007/s11357-019-00067-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
| | - Yun Gi Kim
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
| | - Hee Jang Pyeon
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Chul Ahn
- Department of Biomedical Science, Dankook University, Cheonan, 330-714, South Korea
- Biomedical Translational Research Institute, Dankook University, Cheonan, 330-714, South Korea
| | - Sreemathi Logan
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Albert Orock
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Andrea Lőrincz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Florida State College at Jacksonville, 4500 Capper Rd, Jacksonville, FL, 32218, USA
| | - Ferenc Deák
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA.
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street/SLY-BRC 1309-B, Oklahoma City, OK, 73104-5419, USA.
| |
Collapse
|
43
|
Cadenhead KS, Minichino A, Kelsven S, Addington J, Bearden C, Cannon TD, Cornblatt BA, Mathalon D, McGlashan TH, Perkins DO, Seidman LJ, Tsuang M, Walker EF, Woods SW, Yao J. Metabolic abnormalities and low dietary Omega 3 are associated with symptom severity and worse functioning prior to the onset of psychosis: Findings from the North American Prodrome Longitudinal Studies Consortium. Schizophr Res 2019; 204:96-103. [PMID: 30249470 PMCID: PMC6402991 DOI: 10.1016/j.schres.2018.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Patients with schizophrenia have a high prevalence of metabolic disorders and cardiovascular mortality. It is possible that a vulnerability to metabolic abnormalities is associated with risk for psychosis, symptoms and functionality. In this study, we evaluate demographic information, cardiometabolic indices, symptoms and functioning in an antipsychotic free cohort at Clinical High Risk (CHR) for psychosis from the NAPLS Omega 3 fatty acid clinical trial. METHOD Subjects received physical exams and metabolic monitoring prior to randomization into the Omega 3 versus Placebo trial. Anthropometrical measures, vital signs, glucose, and lipids were assessed along with symptoms, functioning, dietary Omega 3 fatty acids, erythrocyte polyunsaturated fatty acid content and a measure of lipid peroxidation (TBARS, Thiobarbituric acid-reactive substances). RESULTS The sample included 113 CHR subjects (42.1% female; 17.5% Latino) ages 12-29. The mean BMI was 24.3 with a trend toward higher BMI and a higher incidence of metabolic syndrome in Latino subjects; 36% of the sample was obese/overweight; 37.6% met criteria for prehypertension/hypertension; 4.2% met criteria for prediabetes/diabetes; 9.6% showed evidence of insulin resistance and 44.7% had dyslipidemia. The TBARS was elevated at 9.8 μM ± 6.1 (normal 1.86-3.94 μM). Metabolic parameters and a diet low in Omega 3 rich foods were significantly associated with prodromal symptoms and poor functioning. CONCLUSIONS CHR subjects show a high percentage of metabolic abnormalities prior to exposure to antipsychotic medication. These findings reinforce that early detection of metabolic disturbances and food insecurity is crucial since these factors are modifiable with the potential for significant gains in terms of quality of life, physical and mental health.
Collapse
Affiliation(s)
| | | | - Skylar Kelsven
- University of California San Diego, La Jolla, CA,San Diego State University/University of California-San Diego Joint Doctoral Program in Clinical
Psychology
| | - Jean Addington
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Barbara A. Cornblatt
- The Zucker Hillside Hospital, New York, NY; Hofstra North Shore-LIJ School of Medicine, Hempstead, New York;
The Feinstein Institute for Medical Research, Manhasset, New York
| | - Dan Mathalon
- University of California San Francisco, San Francisco, CA
| | | | | | | | - Ming Tsuang
- University of California San Diego, La Jolla, CA
| | | | | | - Jeff Yao
- VA Pittsburgh Healthcare System and University of Pittsburg School of Medicine, Pittsburgh, PA
| | | |
Collapse
|
44
|
Aerobic Fitness Level Moderates the Association Between Cannabis Use and Executive Functioning and Psychomotor Speed Following Abstinence in Adolescents and Young Adults. J Int Neuropsychol Soc 2019; 25:134-145. [PMID: 30474579 PMCID: PMC6374167 DOI: 10.1017/s1355617718000966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The high rate of cannabis (CAN) use in emerging adults is concerning given prior research suggesting neurocognitive deficits associated with CAN use in youth. Regular CAN use downregulates endocannabinoid activity, while aerobic exercise upregulates cannabinoid receptor 1 activity and releases endocannabinoids. Here we investigate the influence of regular CAN use on neuropsychological performance, and whether aerobic fitness moderates these effects. METHODS Seventy-nine young adults (37 CAN users) aged 16-26 participated. Groups were balanced for aerobic fitness level. Exclusion criteria included: left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal issues, or prenatal alcohol/illicit drug exposure. After 3 weeks of abstinence, participants completed a neuropsychological battery and a maximal oxygen consumption test (VO2 max). Multiple regressions tested whether past-year CAN use, VO2 max, and CAN*VO2 max interaction predicted neuropsychological performance, controlling for past-year alcohol use, cotinine, gender, and depression symptoms. RESULTS Increased CAN use was associated with decreased performance on working memory and psychomotor tasks. High aerobic fitness level was related to better performance on visual memory, verbal fluency, and sequencing ability. CAN*VO2 max predicted performance of psychomotor speed, visual memory, and sequencing ability. CONCLUSIONS Following monitored abstinence, increased CAN use was associated with poorer performance in working memory and psychomotor speed. Higher aerobic fitness level moderated the impact of CAN on visual memory, executive function and psychomotor speed, as more aerobically fit CAN users demonstrated better performance relative to low-fit users. Therefore, aerobic fitness may present an affordable and efficacious method to improve cognitive functioning in CAN users. (JINS, 2019, 25, 134-145).
Collapse
|
45
|
Feter N, Penny J, Freitas M, Rombaldi A. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Effects of 12-Week Resistance Exercise on Electroencephalogram Patterns and Cognitive Function in the Elderly With Mild Cognitive Impairment: A Randomized Controlled Trial. Clin J Sport Med 2018; 28:500-508. [PMID: 28727639 DOI: 10.1097/jsm.0000000000000476] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects of a 12-week resistance exercise program with an elastic band on electroencephalogram (EEG) patterns and cognitive function in elderly patients with mild cognitive impairment (MCI). DESIGN Randomized controlled trial. SETTING Community center. PARTICIPANTS Twenty-two subjects with MCI and 25 healthy volunteer subjects were randomly assigned to 1 of 4 groups: subjects with MCI who undertook the exercise program (MCI-EX; n = 10), an MCI control group (MCI-Con; n = 12), a healthy volunteer exercise group (NG-EX; n = 12), and a healthy volunteer control group (NG-Con; n = 13). INTERVENTION The exercise group engaged in a 15-repetition maximum (15RM; 65% of 1RM) resistance exercise program for 12 weeks. MAIN OUTCOME MEASURES Electroencephalograms, neuropsychological tests, and Senior Fitness Test. RESULTS The 12-week 15RM (65% of 1RM) resistance exercise program significantly improved variables related to the physical fitness of the elderly subjects. Furthermore, for the EEG test, the MCI and NG groups showed significant differences at baseline in relative beta waves on electrodes Fp1 (P < 0.05) and F3 (P < 0.05), as well as in relative beta2 waves on F3 (P < 0.05). In addition, after the 12-week exercise intervention, differences in a region that benefits from exercise were observed between (1) the MCI-EX group in the relative theta power on F3 (P < 0.05) and the relative alpha power on T3 (P < 0.05) and in (2) the NG-EX group in the relative theta power on P3 (P < 0.05) and P4 (P < 0.01). In addition, only the score of the digit span backward in the MCI-EX group changed significantly (P < 0.05). CONCLUSIONS The 12-week resistance exercise with an elastic band had a positive effect on EEG patterns in elderly subjects with MCI, along with providing physical benefits and slight changes in cognitive function in MCI-EX group. SIGNIFICANCE A 15RM resistance exercise program can be an effective treatment for delaying cognitive decline and improving physical fitness.
Collapse
|
47
|
Kolenic M, Franke K, Hlinka J, Matejka M, Capkova J, Pausova Z, Uher R, Alda M, Spaniel F, Hajek T. Obesity, dyslipidemia and brain age in first-episode psychosis. J Psychiatr Res 2018; 99:151-158. [PMID: 29454222 DOI: 10.1016/j.jpsychires.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Obesity and dyslipidemia may negatively affect brain health and are frequent medical comorbidities of schizophrenia and related disorders. Despite the high burden of metabolic disorders, little is known about their effects on brain structure in psychosis. We investigated, whether obesity or dyslipidemia contributed to brain alterations in first-episode psychosis (FEP). METHODS 120 participants with FEP, who were undergoing their first psychiatric hospitalization, had <24 months of untreated psychosis and were 18-35 years old and 114 controls within the same age range participated in the study. We acquired 3T brain structural MRI, fasting lipids and body mass index. We used machine learning trained on an independent sample of 504 controls to estimate the individual brain age of study participants and calculated the BrainAGE score by subtracting the chronological from the estimated brain age. RESULTS In a multiple regression model, the diagnosis of FEP (B = 1.15, SE B = 0.31, p < 0.001) and obesity/overweight (B = 0.92, SE B = 0.35, p = 0.008) were each additively associated with BrainAGE scores (R2 = 0.22, F(3, 230) = 21.92, p < 0.001). BrainAGE scores were highest in participants with FEP and obesity/overweight (3.83 years, 95%CI = 2.35-5.31) and lowest in normal weight controls (-0.27 years, 95%CI = -1.22-0.69). LDL-cholesterol, HDL-cholesterol or triglycerides were not associated with BrainAGE scores. CONCLUSIONS Overweight/obesity may be an independent risk factor for diffuse brain alterations manifesting as advanced brain age already early in the course of psychosis. These findings raise the possibility that targeting metabolic health and intervening already at the level of overweight/obesity could slow brain ageing in FEP.
Collapse
Affiliation(s)
- Marian Kolenic
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; 3rd School of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Erlanger Alle 101, D - 07747, Jena, Germany
| | - Jaroslav Hlinka
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; Institute of Computer Science, Czech Academy of Sciences, Pod Vodarenskou Vezi 271/2, 182 07, Prague, Czech Republic
| | - Martin Matejka
- 3rd School of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic; Psychiatric Hospital Bohnice, Ústavní 91, 181 00, Prague, Czech Republic; Psychiatric Hospital Kosmonosy, Lípy 15, 293 06, Kosmonosy, Czech Republic
| | - Jana Capkova
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; 3rd School of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, 686 Bay Street, 10-9705, Toronto, ON M5G 0A4, Canada
| | - Rudolf Uher
- Dalhousie University, Department of Psychiatry, 5909, Veteran's Memorial Lane, Halifax, NS B3H 2E2, Canada
| | - Martin Alda
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; Dalhousie University, Department of Psychiatry, 5909, Veteran's Memorial Lane, Halifax, NS B3H 2E2, Canada
| | - Filip Spaniel
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Tomas Hajek
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; Dalhousie University, Department of Psychiatry, 5909, Veteran's Memorial Lane, Halifax, NS B3H 2E2, Canada.
| |
Collapse
|
48
|
Alfaro FJ, Gavrieli A, Saade-Lemus P, Lioutas VA, Upadhyay J, Novak V. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging. Metabolism 2018; 78:52-68. [PMID: 28920863 PMCID: PMC5732847 DOI: 10.1016/j.metabol.2017.08.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline.
Collapse
Affiliation(s)
- Freddy J Alfaro
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Anna Gavrieli
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Patricia Saade-Lemus
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Vasileios-Arsenios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Jagriti Upadhyay
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215,USA.
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| |
Collapse
|
49
|
Yang N, Levey E, Gelaye B, Zhong QY, Rondon MB, Sanchez SE, Williams MA. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population. Arch Womens Ment Health 2017; 20:777-785. [PMID: 28752260 PMCID: PMC5693738 DOI: 10.1007/s00737-017-0759-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.
Collapse
Affiliation(s)
- Na Yang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, Peking University, Beijing, China
| | - Elizabeth Levey
- Department of Psychiatry, Massachussets General Hospital, Boston, MA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, K505F, Boston, MA, 02115, USA.
| | - Qiu-Yue Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marta B. Rondon
- Department of Medicine, Cayetano Heredia Peruvian University, Lima, Peru
| | - Sixto E. Sanchez
- Universidad de Ciencias Aplicadas, Lima Peru,Asociación Civil PROESA, Lima, Peru
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
50
|
At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behav Brain Res 2017; 332:204-217. [DOI: 10.1016/j.bbr.2017.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/27/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022]
|