1
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2024:10.1007/s00125-024-06306-1. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Samanta Moraes Laranjeira R, Eduarda de Albuquerque Borborema M, Milene Dos Santos Barbosa A, Vieira de Barros Arcoverde J, Albertina Dantas de Lima C, de Rezende Duarte A, Guiomar Sales Gomes da Silva B, de Azevêdo Silva J, Santos N. Investigating the influence of inflammasome complex genes on Turner syndrome. Hum Immunol 2024; 85:111164. [PMID: 39447524 DOI: 10.1016/j.humimm.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Turner syndrome (TS) is associated with an increased susceptibility to inflammatory and autoimmune diseases. This study investigates the association between genetic polymorphisms in the IL1B and NLRP3 genes, as well as the expression profiles of IL1B, NLRP3, and NLRP1, and the risk of inflammatory and autoimmune conditions in TS patients compared to healthy controls. The genetic association analysis included 92 TS patients (case) and 146 healthy controls (HC), evaluating IL1B rs16944, NLRP3 rs10754558 and rs4925659 using TaqMan genotyping assays. In addition, mRNA expression levels of IL1B, NLRP3, and NLRP1 were also compared in 17 TS patients and 17 healthy females (control group) using qPCR-based fluorogenic probes. The study found significant associations with the G allele of rs16944 (p = 0.001) and the GG genotype (p = 0.002) in TS patients, though these were not associated with inflammatory disorders in this group., On the other hand, rs4925659 exhibited a significantly higher frequency of the A allele (p = 0.02) and AA genotype (p = 0.0001) in HC, while the A allele and GA genotype were more common in the TS group (p = 0.0001). Expression analysis revealed a downregulation of IL1B and NLRP3 (fold change: FC = -6.78 and -15.73, respectively) and an upregulation of NLRP1 (FC = 21.5) in TS patients compared to HC. These results indicate a differential distribution of IL1B and NLRP3 polymorphisms in TS patients, and suggest that alterations in the expression of IL1B, NLRP3, and NLRP1 may contribute to an inflammatory imbalance in the Turner syndrome.
Collapse
Affiliation(s)
| | - Maria Eduarda de Albuquerque Borborema
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Andréa de Rezende Duarte
- Serviço de Genética Médica, Instituto de Medicina Integral Professor Fernando Figueira, Recife, PE, Brazil
| | | | - Jaqueline de Azevêdo Silva
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Neide Santos
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
3
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
4
|
Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced depression and anxiety behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611461. [PMID: 39314481 PMCID: PMC11418943 DOI: 10.1101/2024.09.06.611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles in the Ryanodex formulation (DNRF) pretreatment to inhibit lipopolysaccharide (LPS)-induced depressive and anxiety behavior in mice. Both wild-type (WT) B6SJLF1/J and 5XFAD adult mice were pretreated with intranasal DNRF (5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression and anxiety were performed 24 hours after a one-time LPS injection. Biomarkers for inflammation (IL-1β and IL-18) in blood were measured using enzyme-linked immunosorbent assay (ELISA). In both types of mice, intranasal DNRF significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood. Intranasal DNRF abolished LPS-induced depression and anxiety behaviors behavior in both WT and 5XFAD mice, without obvious side effects, which was associated with its significant inhibition of pathological elevation of pyroptosis related cytokines in blood.
Collapse
|
5
|
Yang K, Tiwari S, Liu D, Xu Q, Qi L, Zhu Y, Jiang L, Zouqin H, Wong J, Chen J, Han Z. Acupuncture and Escitalopram for Treating Major Depression Clinical Study (AE-TMDCS): protocol for a factorial randomised controlled trial. BMJ Open 2024; 14:e091214. [PMID: 39260834 DOI: 10.1136/bmjopen-2024-091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD), the second leading cause of disability globally, is considered to be associated with a consequent deterioration in the quality of life and can lead to a major economic burden on medical service and suicide-related costs. Previous research has shown that acupuncture may be beneficial for treating MDD. However, there is a lack of rigorous evidence from previous studies comparing acupuncture with antidepressant medications. This study aims to assess the therapeutic potential of acupuncture in the management of depressive disorders. METHODS AND ANALYSIS A multicentre, randomised, participant-blind, sham-controlled, 2×2 factorial clinical trial, Acupuncture and Escitalopram for Treating Major Depression Clinical Study, aims to compare the efficacy of acupuncture versus escitalopram in treating depression. This study will be conducted at three hospitals in China, enrolling 260 patients with moderate-to-severe major depression, as defined by DSM-5 criteria and Hamilton Depression Rating Scale (HDRS-17) Scores above 17. Participants will be randomly assigned in equal proportions to one of four groups (acupuncture/escitalopram, sham acupuncture/escitalopram, acupuncture/placebo and sham acupuncture/placebo) and undergo 30 sessions across 10 weeks. The primary outcome is change in HDRS-17 Score and secondary outcomes include BDI, Clinical Global Impression, Generalised Anxiety Disorder-7 and Mini-Mental State Examination Scores, alongside potential biological markers. ETHICS AND DISSEMINATION Ethical approval for the study was granted by the Ethics Committees of the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (2023-7th-HIRB-020), Shanghai Mental Health Centre (2022-86) and Shanghai Pudong New Area Hospital of Traditional Chinese Medicine (2023-003). Informed consent will be obtained from all participants. The study's findings are intended for publication in a scholarly journal. TRIAL REGISTRATION NCT05901571.
Collapse
Affiliation(s)
- Kaiqi Yang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sagun Tiwari
- Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinfeng Xu
- Department of Statistics and Data Science, Fudan University, Shanghai, Shanghai, China
| | - Lili Qi
- Department of Emergency, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of TCM, Shanghai, China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Jangsu Collaborative Innovation Center of Chinese Medicine Resource Industrialization, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Liling Jiang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Zouqin
- Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - John Wong
- School of Nursing and Department of Occupational Therapy, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Jianhua Chen
- Department of Acupuncture, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of TCM, Shanghai, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Mulligan AA, Lentjes MAH, Skinner J, Welch AA. The Dietary Inflammatory Index and Its Associations with Biomarkers of Nutrients with Antioxidant Potential, a Biomarker of Inflammation and Multiple Long-Term Conditions. Antioxidants (Basel) 2024; 13:962. [PMID: 39199208 PMCID: PMC11351935 DOI: 10.3390/antiox13080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
We aimed to validate the Dietary Inflammatory Index (DII®) and assess the cross-sectional associations between the DII® and multiple long-term conditions (MLTCs) and biomarker concentrations and MLTCs using data from the European Prospective Investigation into Cancer (EPIC-Norfolk) study (11,113 men and 13,408 women). The development of MLTCs is associated with low-grade chronic inflammation, and ten self-reported conditions were selected for our MLTC score. Data from a validated FFQ were used to calculate energy-adjusted DII® scores. High-sensitivity C-reactive protein (hs-CRP) and circulating vitamins A, C, E, β-carotene and magnesium were available. Micronutrient biomarker concentrations were significantly lower as the diet became more pro-inflammatory (p-trend < 0.001), and hs-CRP concentrations were significantly higher in men (p-trend = 0.006). A lower DII® (anti-inflammatory) score was associated with 12-40% higher odds of MLTCs. Lower concentrations of vitamin C and higher concentrations of hs-CRP were associated with higher odds of MLTCs. The majority of the associations in our study between MLTCs, nutritional biomarkers, hs-CRP and the DII® were as expected, indicating that the DII® score has criterion validity. Despite this, a more anti-inflammatory diet was associated with higher odds of MLTCs, which was unexpected. Future studies are required to better understand the associations between MLTCs and the DII®.
Collapse
Affiliation(s)
- Angela A. Mulligan
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| | - Marleen A. H. Lentjes
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | - Jane Skinner
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| | - Ailsa A. Welch
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| |
Collapse
|
7
|
Jin J, Kang DH, Lee GH, Kim WM, Choi JI. Intrathecal gastrodin alleviates allodynia in a rat spinal nerve ligation model through NLRP3 inflammasome inhibition. BMC Complement Med Ther 2024; 24:213. [PMID: 38835032 PMCID: PMC11149323 DOI: 10.1186/s12906-024-04519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastrodin (GAS), a main bioactive component of the herbal plant, Gastrodia elata Blume, has shown to have beneficial effects on neuroinflammatory diseases such as Alzheimer's disease in animal studies and migraine in clinical studies. Inflammasome is a multimeric protein complex having a core of pattern recognition receptor and has been implicated in the development of neuroinflammatory diseases. Gastrodin has shown to modulate the activation of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. This study investigated the effects of GAS on the intensity of mechanical allodynia and associated changes in NLRP3 inflammasome expression at the spinal level using L5/6 spinal nerve ligation model (SNL) in rats. METHODS Intrathecal (IT) catheter implantation and SNL were used for drug administration and pain model in male Sprague-Dawley rats. The effect of gastrodin or MCC950 (NLRP3 inflammasome inhibitor) on mechanical allodynia was measured by von Frey test. Changes in NLRP3 inflammasome components and interleukin-1β (IL-1β) and cellular expression were examined in the spinal cord and dorsal root ganglion. RESULTS The expression of NLRP3 inflammasome components was found mostly in the neurons in the spinal cord and dorsal root ganglion. The protein and mRNA levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and IL-1β were upregulated in SNL animals compared to Sham animals. IT administration of GAS significantly attenuated the expression of NLRP3 inflammasome and the intensity of SNL-induced mechanical allodynia. NLRP3 inflammasome inhibitor, MCC950, also attenuated the intensity of allodynia, but the effect is less strong and shorter than that of GAS. CONCLUSIONS Expression of NLRP3 inflammasome and IL-1β is greatly increased and mostly found in the neurons at the spinal level in SNL model, and IT gastrodin exerts a significant anti-allodynic effect in SNL model partly through suppressing the expression of NLRP3 inflammasome.
Collapse
Affiliation(s)
- JunXiu Jin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ho Kang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Geon Hui Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea.
| |
Collapse
|
8
|
López-Teros M, Alarcón-Aguilar A, Castillo-Aragón A, Königsberg M, Luna-López A. Cytokine profiling in senescent and reactive astrocytes: A systematic review. Neurobiol Aging 2024; 138:28-35. [PMID: 38522384 DOI: 10.1016/j.neurobiolaging.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Astrocytes play an important role in neuroinflammation by producing proinflammatory molecules. In response to various stressful stimuli, astrocytes can become senescent or reactive, both are present in age-associated cognitive impairment and other neurodegenerative diseases, and contribute to neuroinflammation. However, there are no studies that compare the cytokines secreted by these types of astrocytes in the brain during aging. Hence, we aimed to broaden the picture of the secretory profiles and to differentiate the variability between them. Therefore, a systematic review was conducted following the guidelines of the "Reporting Items for Systematic Review and Meta-Analyses". Only three studies that met the inclusion terms evaluated age-related cytokine secretion, however, no evaluation of senescence or gliosis was performed. Consequently, to increase the spectrum of the review, studies where those phenotypes were induced and cytokines determined were included. Although some cytokines were common for gliosis and senescence, some interesting differences were also found. The dissimilarities in cytokines secretion between these phenotypes could be studied in the future as potential markers.
Collapse
Affiliation(s)
- Michel López-Teros
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico; Posgrado en Biología Experimental. Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Alejandra Castillo-Aragón
- Centro de Investigación en Nutrición y Salud-Instituto de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico.
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, Mexico.
| |
Collapse
|
9
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
10
|
Bozzatello P, Novelli R, Montemagni C, Rocca P, Bellino S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2024; 25:4824. [PMID: 38732043 PMCID: PMC11084672 DOI: 10.3390/ijms25094824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Correct nutrition and diet are directly correlated with mental health, functions of the immune system, and gut microbiota composition. Diets with a high content of some nutrients, such as fibers, phytochemicals, and short-chain fatty acids (omega-3 fatty acids), seem to have an anti-inflammatory and protective action on the nervous system. Among nutraceuticals, supplementation of probiotics and omega-3 fatty acids plays a role in improving symptoms of several mental disorders. In this review, we collect data on the efficacy of nutraceuticals in patients with schizophrenia, autism spectrum disorders, major depression, bipolar disorder, and personality disorders. This narrative review aims to provide an overview of recent evidence obtained on this topic, pointing out the direction for future research.
Collapse
Affiliation(s)
- Paola Bozzatello
- Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (R.N.); (C.M.); (P.R.); (S.B.)
| | | | | | | | | |
Collapse
|
11
|
Lim YA, Tan LS, Lee WT, Sim WL, Lv Y, Takakuni M, Saito S, Ihara M, Arumugam TV, Chen C, Wong FWS, Dawe GS. Hope for vascular cognitive impairment: Ac-YVAD-cmk as a novel treatment against white matter rarefaction. PLoS One 2024; 19:e0299703. [PMID: 38630707 PMCID: PMC11023579 DOI: 10.1371/journal.pone.0299703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024] Open
Abstract
Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.
Collapse
Affiliation(s)
- Yun-An Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Si Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yang Lv
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maki Takakuni
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fred Wai-Shiu Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Zhai SY, Gu HW, Wang C, Li YS, Tang HB. Gynura procumbens and selected metabolites: Amelioration of depressive-like behaviors in mice and risperidone-induced hyperprolactinemia in rats. Biomed Pharmacother 2024; 173:116361. [PMID: 38428310 DOI: 10.1016/j.biopha.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Gynura procumbens (Lour.) Merr., utilized in traditional Chinese medicine, is known for its liver-protective, liver-soothing, and depression-alleviating properties. This research examines the antidepressant and anti-hyperprolactinemia potentials of an ethanol extract from G. procumbens stems (EEGS) and specific metabolites. To model depression and hyperprolactinemia, chronic unpredictable mild stress (CUMS) was induced in mice and risperidone was administered to rats, respectively. Treatments involved administering low (5 mg/kg), medium (25 mg/kg), and high (125 mg/kg) doses of EEGS and certain metabolites to both models. Behavioral assessments were conducted in the CUMS-induced mice, while the CA3 neuronal damage in mice and histopathological alterations in rat mammary glands were evaluated using Nissl and Hematoxylin & Eosin staining techniques, respectively. EEGS decreased immobility times in the forced swimming and tail suspension tests in mice, enhancing their exploration of the central zone. It elevated the serum levels of 5-hydroxytryptamine, norepinephrine, estradiol, luteinizing hormone (LH), and testosterone in mice. Moreover, EEGS restored the neuronal cell arrangement in the CA3 area, reduced interleukin-1beta mRNA production, and increased the expression of interleukin-10 and beta-catenin mRNA. In the context of risperidone-induced hyperprolactinemia, EEGS lowered blood prolactin levels, reduced the dimensions of rat nipples, and enhanced LH, progesterone, and dopamine levels, alongside mitigating mammary hyperplasia. Among the EEGS selected metabolites, the combined effect of chlorogenic acid and trans-p-coumaric acid was found to be more effective than the action of each compound in isolation. Collectively, the findings indicate that EEGS and its selected metabolites offer promising antidepressant benefits while counteracting hyperprolactinemia.
Collapse
Affiliation(s)
- Si-Yu Zhai
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China
| | - Hong-Wei Gu
- Department of Pharmacy, Wuhan Mental Health Center, NO. 89, Gongnongbing Road, Jiang'an District, Wuhan 430012, China
| | - Cong Wang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China.
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China.
| |
Collapse
|
13
|
Chen IC, Chen WL, Chang KH, Lee JW, Lin TH, Lin W, Chen CM, Lee-Chen GJ. Investigating the therapeutic effects of novel compounds targeting inflammatory IL-1β and IL-6 signaling pathways in spinocerebellar ataxia type 3. Eur J Pharmacol 2024; 967:176370. [PMID: 38320719 DOI: 10.1016/j.ejphar.2024.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1β and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.
Collapse
Affiliation(s)
- I-Cheng Chen
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Jun-Wei Lee
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan.
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
14
|
Tan Q, Zhang C, Rao X, Wan W, Lin W, Huang S, Ying J, Lin Y, Hua F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: mechanisms and therapeutic application. Front Immunol 2024; 15:1358719. [PMID: 38533497 PMCID: PMC10963420 DOI: 10.3389/fimmu.2024.1358719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.
Collapse
Affiliation(s)
- Qianqian Tan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Lin
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shupeng Huang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
16
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
17
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
18
|
Guo J, Fang M, Xiong Z, Zhou K, Zeng P. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:583-598. [PMID: 37490124 DOI: 10.1007/s00210-023-02628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Curcumin (CUR) exhibits a definite curative effect in the treatment of depression. To identify potential antidepressant targets and mechanisms of action of CUR. This study used network pharmacology to explore the signaling pathways and CUR-related targets in depression. C57BL/6 J mice (male,12-14 weeks old) were randomly divided into four groups (n = 8): saline-treated (control mice), lipopolysaccharide (LPS, 2 mg/kg/day, intraperitoneally), LPS + CUR (50 mg/kg/day, intragastrically), and LPS + CUR + LY294002 (7.5 mg/kg/day, intraperitoneally). After 1 week, behavioral tests were performed. Then, neuronal damage in the prefrontal cortex of mice was evaluated by hematoxylin-eosin (HE) staining. We uncovered the main active mechanism of CUR against depression using Western blotting and enzyme-linked immunosorbent assay (ELISA). Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the most significantly enriched pathway in CUR against depression was the PI3K-Akt pathway. Moreover, 52 targets were significantly correlated with the PI3K-Akt signaling pathway and CUR-related targets. In addition, among the top 50 targets ranked by degree in the protein-protein interaction (PPI) network, there were 23 targets involved in the 52 intersection targets. Administration of LPS alone extended immobility time in the open field test (OFT) and tail suspension test (TST) and decreased sucrose consumption in the sucrose preference test (SPT). Pretreatment with CUR relieved LPS-induced changes in the behavioral tests, activity of the PI3K-Akt signaling pathway, neuronal damage in the prefrontal cortex (PFC), and inflammatory response. Moreover, inhibition of the PI3K-Akt signaling pathway by LY294002 blocked the therapeutic effects of CUR. Our study indicates that CUR may be an effective antidepressant agent in an LPS-induced mouse model, partly because of its anti-inflammatory action through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Meng Fang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhe Xiong
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ke Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| |
Collapse
|
19
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
22
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
23
|
Li D, Bühler M, Runft S, Gerold G, Marek K, Baumgärtner W, Strowig T, Gerhauser I. ASC- and caspase-1-deficient C57BL/6 mice do not develop demyelinating disease after infection with Theiler's murine encephalomyelitis virus. Sci Rep 2023; 13:10960. [PMID: 37414913 PMCID: PMC10326010 DOI: 10.1038/s41598-023-38152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces an acute polioencephalomyelitis and a chronic demyelinating leukomyelitis in SJL mice. C57BL/6 (B6) mice generally do not develop TMEV-induced demyelinating disease (TMEV-IDD) due to virus elimination. However, TMEV can persist in specific immunodeficient B6 mice such as IFNβ-/- mice and induce a demyelinating process. The proinflammatory cytokines IL-1β and IL-18 are activated by the inflammasome pathway, which consists of a pattern recognition receptor molecule sensing microbial pathogens, the adaptor molecule Apoptosis-associated speck-like protein containing a CARD (ASC), and the executioner caspase-1. To analyze the contribution of the inflammasome pathway to the resistance of B6 mice to TMEV-IDD, ASC- and caspase-1-deficient mice and wild type littermates were infected with TMEV and investigated using histology, immunohistochemistry, RT-qPCR, and Western Blot. Despite the antiviral activity of the inflammasome pathway, ASC- and caspase-1-deficient mice eliminated the virus and did not develop TMEV-IDD. Moreover, a similar IFNβ and cytokine gene expression was found in the brain of immunodeficient mice and their wild type littermates. Most importantly, Western Blot showed cleavage of IL-1β and IL-18 in all investigated mice. Consequently, inflammasome-dependent activation of IL-1β and IL-18 does not play a major role in the resistance of B6 mice to TMEV-IDD.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Till Strowig
- Department for Microbial Immune Regulation, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
24
|
Schlotterose L, Pravdivtseva MS, Ellermann F, Jansen O, Hövener JB, Sönnichsen FD, Cossais F, Lucius R, Hattermann K. Resveratrol Mitigates Metabolism in Human Microglia Cells. Antioxidants (Basel) 2023; 12:1248. [PMID: 37371977 DOI: 10.3390/antiox12061248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The recognition of the role of microglia cells in neurodegenerative diseases has steadily increased over the past few years. There is growing evidence that the uncontrolled and persisting activation of microglial cells is involved in the progression of diseases such as Alzheimer's or Parkinson's disease. The inflammatory activation of microglia cells is often accompanied by a switch in metabolism to higher glucose consumption and aerobic glycolysis. In this study, we investigate the changes induced by the natural antioxidant resveratrol in a human microglia cell line. Resveratrol is renowned for its neuroprotective properties, but little is known about its direct effect on human microglia cells. By analyzing a variety of inflammatory, neuroprotective, and metabolic aspects, resveratrol was observed to reduce inflammasome activity, increase the release of insulin-like growth factor 1, decrease glucose uptake, lower mitochondrial activity, and attenuate cellular metabolism in a 1H NMR-based analysis of whole-cell extracts. To this end, studies were mainly performed by analyzing the effect of exogenous stressors such as lipopolysaccharide or interferon gamma on the metabolic profile of microglial cells. Therefore, this study focuses on changes in metabolism without any exogenous stressors, demonstrating how resveratrol might provide protection from persisting neuroinflammation.
Collapse
Affiliation(s)
| | - Mariya S Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Kiel University, 24118 Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | | |
Collapse
|
25
|
Lee SE, Park S, Jang GY, Lee J, Moon M, Ji YJ, Jung JW, Nam Y, Shin SJ, Lee Y, Choi J, Kim DH. Extract of Aster koraiensis Nakai Leaf Ameliorates Memory Dysfunction via Anti-inflammatory Action. Int J Mol Sci 2023; 24:ijms24065765. [PMID: 36982837 PMCID: PMC10052554 DOI: 10.3390/ijms24065765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, phosphorylated-tau (p-tau), and the expression of inflammatory proteins in lipopolysaccharide- or amyloid-β-treated cells. AK extract exhibited inhibitory activity of control specific binding on N-methyl-D-aspartate (NMDA) receptors. Scopolamine-induced AD models were used chronically in rats and acutely in mice. Relative to negative controls (NC), hippocampal choline acetyltransferase (ChAT) and B-cell lymphoma 2 (Bcl2) activity was increased in rats chronically treated with scopolamine and fed an AK extract-containing diet. In the Y-maze test, spontaneous alterations were increased in the AK extract-fed groups compared to NC. Rats administered AK extract showed increased escape latency in the passive avoidance test. In the hippocampus of rats fed a high-AK extract diet (AKH), the expression of neuroactive ligand–receptor interaction-related genes, including Npy2r, Htr2c, and Rxfp1, was significantly altered. In the Morris water maze assay of mice acutely treated with scopolamine, the swimming times in the target quadrant of AK extract-treated groups increased significantly to the levels of the Donepezil and normal groups. We used Tg6799 Aβ-overexpressing 5XFAD transgenic mice to investigate Aβ accumulation in animals. In the AD model using 5XFAD, the administration of AK extract decreased amyloid-β (Aβ) accumulation and increased the number of NeuN antibody-reactive cells in the subiculum relative to the control group. In conclusion, AK extract ameliorated memory dysfunction by modulating ChAT activity and Bcl2-related anti-apoptotic pathways, affecting the expression of neuroactive ligand–receptor interaction-related genes and inhibiting Aβ accumulation. Therefore, AK extract could be a functional material improving cognition and memory.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
- Correspondence:
| | - Saetbyeol Park
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jeonghoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Ji Wook Jung
- Division of Biotechnology and Convergence, College of Cosmetics and Pharm, Daegu Haany University, Kyungsan 38610, Republic of Korea;
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yunji Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jehun Choi
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Dong Hwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| |
Collapse
|
26
|
Chen J, Zhang D, Zhang J, Wang Y. Pathological changes in the brain after peripheral burns. BURNS & TRAUMA 2023; 11:tkac061. [PMID: 36865685 PMCID: PMC9972189 DOI: 10.1093/burnst/tkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/22/2022] [Indexed: 02/09/2023]
Abstract
Brain injuries are common complications in patients with thermal burns and are associated with unpleasant outcomes. In clinical settings, it was once believed that brain injuries were not major pathological processes after burn, at least in part due to the unavailability of specific clinical manifestations. Burn-related brain injuries have been studied for more than a century, but the underlying pathophysiology has not been completely clarified. This article reviews the pathological changes in the brain following peripheral burns at the anatomical, histological, cytological, molecular and cognitive levels. Therapeutic indications based on brain injury as well as future directions for research have been summarized and proposed.
Collapse
Affiliation(s)
- Jigang Chen
- Department of Burn and Plastic Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Danfeng Zhang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | | | | |
Collapse
|
27
|
Bi F, Bai Y, Zhang Y, Liu W. Ligustroflavone exerts neuroprotective activity through suppression of NLRP1 inflammasome in ischaemic stroke mice. Exp Ther Med 2022; 25:8. [PMID: 36561613 PMCID: PMC9748641 DOI: 10.3892/etm.2022.11707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is thought to play an important role in the pathophysiology of ischaemic stroke, which is a main cause of disability and morbidity worldwide. Inhibition of the NOD-like receptor protein 1 (NLRP1) inflammasome has been reported to alleviate the inflammatory response in cell and animal models. Ligustroflavone (LIG) is a compound derived from Ligustrum lucidum, which shows anti-inflammatory activity and may play a beneficial role in a number of neurological diseases. To date, the potential for LIG to act through NLRP1 as a treatment for ischemic stroke has not been studied. The present study established an ischaemic stroke model by middle cerebral artery occlusion (MCAO). Modified neurological severity scoring, open-field and the Rotarod test were used to assess neurological deficits. Staining with Hoechst 33258 and western blotting were used to evaluate neuronal damage. Expression levels of NLRP1 inflammasome complexes and inflammatory cytokines were determined using western blotting, enzyme-linked immunosorbent assay and reverse transcription-quantitative PCR. Treatment with LIG minimized the impairment of neurological function and blocked neuronal damage in MCAO mice. In addition, treatment with LIG attenuated the upregulation of expression levels of the NLRP1 inflammasome complexes and the inflammatory cytokines TNF-α, IL-18, IL-6 and IL-1β. Overall, LIG played an important role in anti-inflammatory and neuroprotective activity in MCAO models of ischaemic stroke.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Medicine, Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Ya Bai
- Department of Neurosurgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Yiyong Zhang
- Department of Neurosurgery, Jinan Jiyang District People's Hospital, Jinan, Shandong 251401, P.R. China
| | - Wenbo Liu
- Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Professor Wenbo Liu, Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, 7166 Baotong West Street, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
28
|
Lachner C, Day GS, Camsari GB, Kouri N, Ertekin-Taner N, Boeve BF, Labuzan SA, Lucas JA, Thompson EA, Siddiqui H, Crook JE, Cabrera-Rodriguez JN, Josephs KA, Petersen RC, Dickson DW, Reichard RR, Mielke MM, Knopman DS, Graff-Radford NR, Murray ME. Cancer and Vascular Comorbidity Effects on Dementia Risk and Neuropathology in the Oldest-Old. J Alzheimers Dis 2022; 90:405-417. [PMID: 36213996 PMCID: PMC9661335 DOI: 10.3233/jad-220440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-β plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.
Collapse
Affiliation(s)
- Christian Lachner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naomi Kouri
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - John A. Lucas
- Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Habeeba Siddiqui
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Julia E. Crook
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Departments of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa E. Murray
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Correspondence to: Melissa E. Murray, PhD, Associate Professor, Translational Neuropathology Laboratory, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 1083; Fax: +1 904 953 7117; E-mail:
| |
Collapse
|
29
|
Jin R, Chan AKY, Wu J, Lee TMC. Relationships between Inflammation and Age-Related Neurocognitive Changes. Int J Mol Sci 2022; 23:12573. [PMID: 36293430 PMCID: PMC9604276 DOI: 10.3390/ijms232012573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The relationship between inflammation and age-related neurocognitive changes is significant, which may relate to the age-related immune dysfunctions characterized by the senescence of immune cells and elevated inflammatory markers in the peripheral circulation and the central nervous system. In this review, we discuss the potential mechanisms, including the development of vascular inflammation, neuroinflammation, organelle dysfunctions, abnormal cholesterol metabolism, and glymphatic dysfunctions as well as the role that the key molecules play in the immune-cognition interplay. We propose potential therapeutic pharmacological and behavioral strategies for ameliorating age-related neurocognitive changes associated with inflammation. Further research to decipher the multidimensional roles of chronic inflammation in normal and pathological aging processes will help unfold the pathophysiological mechanisms underpinning neurocognitive disorders. The insight gained will lay the path for developing cost-effective preventative measures and the buffering or delaying of age-related neurocognitive decline.
Collapse
Affiliation(s)
- Run Jin
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| | - Aidan Kai Yeung Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Tatia Mei Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
30
|
Li Y, Li Z, He F, Qin C, Fan R, Zhang F, Wang B. Electroacupuncture alleviates cognitive dysfunction and neuronal pyroptosis in septic mice. Acupunct Med 2022:9645284221117847. [PMID: 36255337 DOI: 10.1177/09645284221117847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sepsis is defined as organ dysfunction caused by an uncontrolled response to infection and is followed by a high incidence of cognitive dysfunction, which can severely affect patients' quality of life. Previous studies have suggested that electroacupuncture (EA) is protective against sepsis-associated cognitive dysfunction and that pyroptosis plays a vital role in cognitive function. The aim of this study was to investigate the effect of EA on cognition and neuronal pyroptosis in a mouse model of sepsis. METHODS Sepsis was induced by cecal ligation and puncture (CLP) surgery. Mice were randomly divided into three groups (control, CLP and CLP + EA). EA was performed at bilateral ST36 for three consecutive days after the surgery. The 7-day survival rate of each group was observed on the seventh day after the surgery. The Morris water maze (MWM) was used to test cognitive function from the 8th to 12th day after the surgery. We used transmission electron microscopy (TEM) and transferase dUTP nick-end labeling (TUNEL) staining to determine the structural integrity of hippocampal neuronal membranes and the number of surviving neurons in the hippocampal tissues, respectively. Expression of nucleotide-binding domain-like receptor protein 1 (NLRP1), caspase-1 and gasdermin-D (GSDM D) in hippocampal CA1 neurons was detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and caspase-1 concentrations were measured by enzyme-linked immunosorbent assay. RESULTS Compared with the CLP group, 7-day survival rates and cognitive function were significantly improved in the CLP + EA group. After EA treatment, the integrity of the hippocampal CA1 neuronal membrane and mortality of hippocampal neurons were significantly decreased, and expression of NLRP1, caspase-1 and GSDM D was downregulated. CONCLUSION EA can alleviate cognitive dysfunction and neuronal pyroptosis in septic mice.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhaoying Li
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fujuan He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chenguang Qin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rui Fan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bin Wang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
31
|
Aghelan Z, Karima S, Khazaie H, Abtahi SH, Farokhi AR, Rostampour M, Bahrehmand F, Khodarahmi R. IL-1α and TNF-α as an inducer for ROS-mediated NLRP1/NLRP3 inflammasomes activation in mononuclear blood cells from individuals with chronic insomnia disorder. Eur J Neurol 2022; 29:3647-3657. [PMID: 36048129 DOI: 10.1111/ene.15540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are some evidence that cytokines may play an important role in sleep deprivation; however, the underlying mechanisms are still unknown. So, the present study aim to evaluate the relationship between NLRP1 and NLRP3 inflammasomes activation of blood cells and serum levels of cytokines in individuals with chronic insomnia disorder (CID). METHODS Blood samples were collected from 24 individuals with CID and 24 healthy volunteers. The inflammasomes activation was evaluated using real time PCR of NLRP1, NLRP3, ASC, and Caspase-1; western blot of NLRP1 and NLRP3; caspase-1 activity assay; and serum levels of IL-1β, IL-18 and other cytokines using enzyme-linked immunosorbent assay (ELISA). ROS generation in blood cells were detected by flow cytometry assay. As well, MRI scans were obtained on a Siemens Magnetom Avanto 1.5 T MRI whole body scanner using an 8-channel head coil. RESULTS We found the increased activity of NLRP1 and NLRP3 inflammasomes in blood cells; the increased serum levels of pro-inflammatory cytokines; and the decreased serum levels of IL-10 and TGF-β in individuals with CID. We observed significant correlation between increased serum concentration of IL-1β and the severity of insomnia in individuals with CID. The levels of ROS in blood cells was found to be correlated with IL-1α and TNF-α concentrations in serums from individuals with CID. Moreover, the included individuals with CID demonstrated the increased right-cerebellum-cortex and lateral ventricle MD bilaterally compared to controls. CONCLUSIONS This study provided new insights on the pathogenesis of CID and the effects of cytokines on inflammasome activation.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Farokhi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Distinct and Dynamic Transcriptome Adaptations of iPSC-Generated Astrocytes after Cytokine Stimulation. Cells 2022; 11:cells11172644. [PMID: 36078052 PMCID: PMC9455058 DOI: 10.3390/cells11172644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Astrocytes (ACs) do not only play a role in normal neurogenesis and brain homeostasis, but also in inflammatory and neurodevelopmental disorders. We studied here the different patterns of inflammatory activation triggered by cytokines in human induced pluripotent stem cell (iPSC)-derived ACs. An optimized differentiation protocol provided non-inflamed ACs. These cells reacted to TNFα with a rapid translocation of NFκB, while AC precursors showed little response. Transcriptome changes were quantified at seven time points (2–72 h) after stimulation with TNFα, IFNγ or TNFα plus IFNγ. TNFα triggered a strong response within 2 h. It peaked from 12–24 h and reverted towards the ground state after 72 h. Activation by IFNγ was also rapid, but the response pattern differed from that of TNFα. For instance, several chemokines up-regulated by TNFα were not affected by IFNγ. Instead, MHC-II-related antigen presentation was drastically enhanced. The combination of the two cytokines led to a stronger and more persistent response. For instance, TRIB3 up-regulation by the combination of TNFα plus IFNγ may have slowed NFκB inactivation. Additionally, highly synergistic regulation was observed for inflammation modifiers, such as CASP4, and for STAT1-controlled genes. The combination of the cytokines also increased oxidative stress markers (e.g., CHAC1), led to phenotypic changes in ACs and triggered markers related to cell death. In summary, these data demonstrate that there is a large bandwidth of pro-inflammatory AC states, and that single markers are not suitable to describe AC activation or their modulation in disease, development and therapy.
Collapse
|
33
|
Chaturvedi S, Naseem Z, El-Khamisy SF, Wahajuddin M. Nanomedicines targeting the Inflammasome as a promising therapeutic approach for cell senescence. Semin Cancer Biol 2022; 86:46-53. [PMID: 36030027 DOI: 10.1016/j.semcancer.2022.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023]
Abstract
Technological advancements in the present era have enhanced drug discovery and development. Nanomedicines are valuable pharmacotherapeutic tools against several diseases and disorders including aging related disorders. The mechanistic association between nanomedicines and molecular modulation have been investigated by many researchers. Notwithstanding the availability of tremendous amount of data, role of nanomedicines in aging related disorders intending inflammasome transfiguration have not been thoroughly reviewed till now. In the present review, we discuss the application of nanomedicines in aging related disorders. Further, we highlight the recent updates on modulated upstream and downstream signalling molecules of inflammasome cascade due to nanomedicines. The review will benefit researchers targeting nanomedicines as a therapeutic approach towards treatment age related disorders through inflammasome inflection.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Zaiba Naseem
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India
| | - Sherif F El-Khamisy
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom; Healthy Lifespan Institute, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
34
|
Yu TM, Chuang YW, Huang ST, Huang JA, Chen CH, Chung MC, Wu CY, Chang PY, Hsu CC, Wu MJ. Risk of Dementia after Exposure to Contrast Media: A Nationwide, Population-Based Cohort Study. Biomedicines 2022; 10:biomedicines10082015. [PMID: 36009563 PMCID: PMC9406096 DOI: 10.3390/biomedicines10082015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Contrast-medium-associated kidney injury is caused by the infusion of contrast media. Small vessel disease is significantly associated with various diseases, including simultaneous conditions of the kidney and brain, which are highly vulnerable to similar vascular damage and microvascular pathologies. Data to investigate the adverse effect of contrast media on the brain remain extremely lacking. In this study, 11,332,616 NHI enrollees were selected and divided into two groups, exposed and not exposed to a contrast medium during the observation period, from which 1,461,684 pairs were selected for analyses through matching in terms of age, sex, comorbidities, and frequency of outpatient visits during the previous year. In total, 1,461,684 patients exposed to a contrast medium and 1,461,684 controls not exposed to one were enrolled. In multivariable Cox proportional hazard models, patients exposed to a contrast medium had an overall 2.09-fold higher risk of dementia. In multivariable-stratified analyses, the risk of Alzheimer’s disease was remarkably high in younger patients without any underlying comorbidity. This study is the first to discover that exposure to contrast media is significantly associated with the risk of dementia. A four-fold increased risk of vascular dementia was observed after exposure to a contrast medium. Further studies on the influence of exposure to contrast media on the brain are warranted.
Collapse
Affiliation(s)
- Tung-Min Yu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Ya-Wen Chuang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jin-An Huang
- Department of Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Health Business Administration, Hungkuang University, Taichung 43302, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
| | - Chun-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
| | - Pi-Yi Chang
- Department of Radiology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chih-Cheng Hsu
- Department of Health Business Administration, Hungkuang University, Taichung 43302, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
- Correspondence: (C.-C.H.); (M.-J.W.)
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 40705, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: (C.-C.H.); (M.-J.W.)
| |
Collapse
|
35
|
Hou Y, Li H, Yang H, Chen R, Yu J. Prognostic significance of combined score of fibrinogen and neutrophil-lymphocyte ratio for functional outcome in patients with aneurysmal subarachnoid hemorrhage. Front Neurol 2022; 13:916968. [PMID: 36051223 PMCID: PMC9424491 DOI: 10.3389/fneur.2022.916968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Objective To explore the relationship between fibrinogen and neutrophil to lymphocyte ratio (F-NLR) score and functional outcomes after aneurysmal subarachnoid hemorrhage (aSAH). Method A retrospective study was conducted that involved all consecutive patients with aSAH admitted to our institution from March 2018 to October 2021. Factors, such as demographics, comorbidities, clinical characteristics, neuroradiological data, and laboratory parameters, were collected from institutional databases. All patients achieved neurological assessment using the modified Rankin Scale (mRS) score 3 months after discharge to clarify the functional outcomes. The results were classified as favorable (mRS score 0–2) and unfavorable (mRS score 3–6). Univariate and multivariable analyses were performed to identify the relevant factors between inflammatory markers and functional outcomes after aSAH. Subsequently, a receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predicting performance of variables. A propensity score match (PSM) was performed to correct imbalances in patients' baseline characteristics. Results Finally, 256 patients with aSAH were included in the study cohort. A total of 94 (36.7%) patients had an unfavorable outcome. F-NLR scores were 0 [interquartile range (IQR) 0–1] and 1 (IQR 1–2) in patients with favorable and unfavorable outcomes, respectively (p < 0.001). After adjustment, the F-NLR score on admission remained significantly associated with unfavorable outcomes in patients with aSAH. In the multivariable analysis, the F-NLR score was regarded as an independent risk factor of unfavorable outcomes [odds ratio (OR) 3.113, 95% CI 1.755–5.523, p < 0.001]. In ROC analysis, the optimal cutoff value of the F-NLR score was 0.5 points. Two cohorts (n = 86 in each group) obtained from PSM with low F-NLR scores (0 points) and high F-NLR scores (1–2 points) were used for analysis. A significantly higher unfavorable functional outcome rate was observed in patients with high F-NLR scores (33.7 vs. 9.3%, p < 0.001). The area under the curve (AUC) values of F-NLR scores before and after PSM were 0.767 and 0.712, respectively. Conclusion Fibrinogen and neutrophil to lymphocyte ratio score was an independent risk parameter associated with unfavorable functional outcomes at 3 months after aSAH. A higher F-NLR score predicts the occurrence of poor functional outcomes.
Collapse
|
36
|
Shen Y, Qian L, Luo H, Li X, Ruan Y, Fan R, Si Z, Chen Y, Li L, Liu Y. The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sci 2022; 12:brainsci12081057. [PMID: 36009120 PMCID: PMC9406040 DOI: 10.3390/brainsci12081057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
The NLRP inflammasome is a multi-protein complex which mainly consists of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain. Its activation is linked to microglial-mediated neuroinflammation and partial neuronal degeneration. Many neuropsychiatric illnesses have increased inflammatory responses as both a primary cause and a defining feature. The NLRP inflammasome inhibition delays the progression and alleviates the deteriorating effects of neuroinflammation on several neuropsychiatric disorders. Evidence on the central effects of the NLRP inflammasome potentially provides the scientific base of a promising drug target for the treatment of neuropsychiatric disorders. This review elucidates the classification, composition, and functions of the NLRP inflammasomes. It also explores the underlying mechanisms of NLRP inflammasome activation and its divergent role in neuropsychiatric disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, depression, drug use disorders, and anxiety. Furthermore, we explore the treatment potential of the NLRP inflammasome inhibitors against these disorders.
Collapse
Affiliation(s)
- Yao Shen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Liyin Qian
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Hu Luo
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xiaofang Li
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Yuer Ruan
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Runyue Fan
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
- Ningbo Yinzhou District Center for Disease Control and Prevention, Ningbo 315199, China
| | - Zizhen Si
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Department of Pharmacology, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yunpeng Chen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Longhui Li
- Ningbo Kangning Hospital, Ningbo 315201, China
| | - Yu Liu
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Correspondence:
| |
Collapse
|
37
|
Finlay S, Rudd D, McDermott B, Sarnyai Z. Allostatic load and systemic comorbidities in psychiatric disorders. Psychoneuroendocrinology 2022; 140:105726. [PMID: 35339811 DOI: 10.1016/j.psyneuen.2022.105726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are complex, disabling, and chronic conditions that are often accompanied by one or more systemic medical comorbidities. In this narrative review, we provide an overview of the allostatic load concept, which represents a multi-system dysregulation in response to chronic stress and link it to systemic comorbidities associated with psychiatric disorders. We synthesized published literature gathered using Medline (Ovid), Scopus, and PsychInfo and identified a high frequency of systemic comorbidities for both mood and psychotic disorders. The identified cardiovascular, metabolic, and immune comorbidities may represent the result of chronic wear and tear caused by a complex interaction between chronic psychosocial stress, health risk behaviors, pharmacological stressors, and the biological systems involved in the development of allostatic load. These findings support the notion that psychiatric disorders should be re-conceptualized as systemic disorders, affecting the brain and systemic biological pathways in an interconnected fashion to result in systemic comorbidities. We suggest that the multi-systemic and multi-dimensional approach that drives the allostatic load concept should be considered for understanding comorbidities in vulnerable psychiatric patients.
Collapse
Affiliation(s)
- Sabine Finlay
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia
| | - Donna Rudd
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia
| | - Brett McDermott
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia.
| |
Collapse
|
38
|
Zhang X, Zhang S, Wang C, Li A. Neutrophil-to-albumin ratio as a novel marker predicting unfavorable outcome in aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2022; 99:282-288. [DOI: 10.1016/j.jocn.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
|
39
|
Cao LH, Zhao YY, Bai M, Geliebter D, Geliebter J, Tiwari R, He HJ, Wang ZZ, Jia XY, Li J, Li XM, Miao MS. Mechanistic Studies of Gypenosides in Microglial State Transition and its Implications in Depression-Like Behaviors: Role of TLR4/MyD88/NF-κB Signaling. Front Pharmacol 2022; 13:838261. [PMID: 35370734 PMCID: PMC8973912 DOI: 10.3389/fphar.2022.838261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Depression is a prevalent psychiatric disorder. Microglial state transition has been found in many neurological disorders including depression. Gypenosides (Gypenosides I-LXXVIII, Gps) are saponin extracts isolated from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino that exert anti-inflammatory and neuroprotective activities and regulate depression-like behaviors. However, its effect on microglial state transition in depression remains unknown. We aimed to evaluate the potential relationship between Gps and TLR4/MyD88/NF-κB signaling in microglial state transition in vitro and in vivo. First, BV-2 cells (microglial cell line) were exposed to lipopolysaccharides (LPS) and treated with 10 or 5 μg/ml Gps. Second, the chronic unpredictable mild stress (CUMS)-induced depression mouse model was used to investigate the antidepressant-like behaviors effects of Gps (100 or 50 mg/kg). We determined depression-like behaviors using the open-field test (OFT), forced swim test (FST), and sucrose preference test (SPT). Proteins and inflammatory factors in the TLR4/MyD88/NF-κB signaling pathway and the different microglial reaction states markers were subsequently conducted using enzyme-linked immunosorbent assay, immunocytochemistry, immunofluorescence, qPCR, or Western blotting analyses to evaluate the anti-inflammatory and antidepressant properties of Gps and the underlying molecular mechanisms. We found that Gps regulated the microglial cell line state transition in LPS-exposed BV-2 cells, as evidenced by the significantly decreased expression of inflammatory parameters iNOS, IL-1β, IL-6, and TNF-α and significantly promoted anti-inflammatory microglial phenotypes markers CD206 (Mrc1) and IL-10. More importantly, Gps protected against the loss of monoamine neurotransmitters and depression-like behavior in a mouse model of depression, which was accompanied by a regulation of the microglial state transition. Mechanistically, Gps inhibited TLR4/MyD88/NF-κB signaling, which reduced the release of downstream inflammatory cytokines (IL-1β, IL-6, and TNF-α) and promoted microglial phenotype transition, which all together contributed to the antidepressant effect. Our results suggest that Gps prevents depression-like behaviors by regulating the microglial state transition and inhibiting the TLR4/MyD88/NF-κB signaling pathway. Thus, Gps could be a promising therapeutic strategy to prevent and treat depression-like behaviors and other psychiatric disorders.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | | | - Jan Geliebter
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Raj Tiwari
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Jin Li
- Department of Neurology, New York Medical College, Westchester Medical Center, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
40
|
Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr 2022; 9:859189. [PMID: 35399689 PMCID: PMC8993146 DOI: 10.3389/fnut.2022.859189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Acrylamide (ACR), a potential neurotoxin, is produced by the Maillard reaction between reducing sugars and free amino acids during food processing. Over the past decade, the neurotoxicity of ACR has caused increasing concern, prompting many related studies. This review summarized the relevant literature published in recent years and discussed the exposure to occupational, environmental, and daily ACR contamination in food. Moreover, ACR metabolism and the potential mechanism of ACR-induced neurotoxicity were discussed, with particular focus on the axonal degeneration of the nervous system, nerve cell apoptosis, oxidative stress, inflammatory response, and gut-brain axis homeostasis. Additionally, the limitations of existing knowledge, as well as new perspectives, were examined, specifically regarding the connection between the neurotoxicity caused by ACR and neurodegenerative diseases, NOD-like receptor protein 3 (NLRP3) inflammasome-related neuroinflammation, and microbiota-gut-brain axis signaling. This review might provide systematic information for developing an alternative pathway approach to assess ACR risk.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Boya Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
41
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
42
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
43
|
Ünal GÖ, Öztürk KH, Erkılınç G, Dönmez F, Doğuç DK, Özmen Ö, Sezik M. Maternal prenatal stress and depression-like behavior associated with hippocampal and cortical neuroinflammation in the offspring: An experimental study. Int J Dev Neurosci 2022; 82:231-242. [PMID: 35261075 DOI: 10.1002/jdn.10176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
Prenatal stress can negatively impact neonatal health, growth, and bonding with the mother. However, molecular basis of these modifications is not completely understood. The aim of this experimental study was to test the hypothesis that intrauterine stress exposure may contribute to subsequent depression-like comorbidities associated with neuroinflammation. Wistar Albino nulliparous female rats were divided into two groups (each, n=6): controls and pregnancy stress (days one through 21). Two live rat pups (one female and one male) from each term delivery were randomly selected, and depression-like behavior tests were performed on postpartum days 30-34, followed by euthanasia on day 35. NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) pathway gene expressions in the hippocampus and immunohistochemical caspase 3 (cas-3), mammalian target of rapamycin (mTOR), and transient receptor potential melastatin (TRPM) staining in the temporal and prefrontal cortices were evaluated. Compared to controls, exposure to prenatal stress was associated with increased depression and anxiety-like behavior, hippocampal NLRP3 inflammasome activation (p=0.022 and p=0.035 for female and male pups, respectively), neuronal degeneration and increased cas-3, mTOR, and TRPM immunostaining in the prefrontal and temporal cortices of both female and male offspring (p<0.05 for all comparisons except p<0.01 for cas-3 in the male cortex and female temporal cortex). Exposure to antenatal stress can lead to depression-like behavior in the infant, mainly driven by hippocampal NLRP3 inflammasome activation, cortical neuroinflammation, and neurodegeneration. Future perspectives include NLRP3-targeted therapies with anti-inflammatory and anti-apoptotic effects against adverse prenatal effects of maternal stress.
Collapse
Affiliation(s)
- Gülin Özdamar Ünal
- Department of Psychiatry, Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Kuyaş Hekimler Öztürk
- Department of Medical Genetics, Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Gamze Erkılınç
- Urla State Hospital, Department of Pathology, Izmir, Turkey
| | - Feyza Dönmez
- Atakoy Mental Health and Neurological Diseases Hospital, Department of Psychiatry, Trabzon, Turkey
| | - Duygu Kumbul Doğuç
- Department of Biochemistry, Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Burdur, Turkey
| | - Mekin Sezik
- Department of Obstetrics and Gynecology, Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
44
|
Mohamed DI, Alaa El-Din Aly El-Waseef D, Nabih ES, El-Kharashi OA, Abd El-Kareem HF, Abo Nahas HH, Abdel-Wahab BA, Helmy YA, Alshawwa SZ, Saied EM. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics 2022; 14:529. [PMID: 35335908 PMCID: PMC8948796 DOI: 10.3390/pharmaceutics14030529] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain-like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | | | - Enas S. Nabih
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | | | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71111, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40503, USA;
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
45
|
Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl Psychiatry 2022; 12:76. [PMID: 35197458 PMCID: PMC8866486 DOI: 10.1038/s41398-022-01844-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1β, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and β-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.
Collapse
|
46
|
Kagoya R, Toma-Hirano M, Yamagishi J, Matsumoto N, Kondo K, Ito K. Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation. J Neuroinflammation 2022; 19:13. [PMID: 35012562 PMCID: PMC8744287 DOI: 10.1186/s12974-022-02378-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postviral olfactory dysfunction (PVOD) following a viral upper respiratory tract infection (URI) is one of the most common causes of olfactory disorders, often lasting for over a year. To date, the molecular pathology of PVOD has not been elucidated. METHODS A murine model of Toll-like receptor 3 (TLR3)-mediated upper respiratory tract inflammation was used to investigate the impact of URIs on the olfactory system. Inflammation was induced via the intranasal administration of polyinosinic-polycytidylic acid (poly(I:C), a TLR3 ligand) to the right nostril for 3 days. Peripheral olfactory sensory neurons (OSNs), immune cells in the olfactory mucosa, and glial cells in the olfactory bulb (OB) were analyzed histologically. Proinflammatory cytokines in the nasal tissue and OB were evaluated using the quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS In the treated mice, OSNs were markedly reduced in the olfactory mucosa, and T cell and neutrophil infiltration therein was observed 1 day after the end of poly(I:C) administration. Moreover, there was a considerable increase in microglial cells and slight increase in activated astrocytes in the OB. In addition, qPCR and ELISA revealed the elevated expression of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma both in the OB and nasal tissue. CONCLUSIONS Taken together, the decreased peripheral OSNs, OB microgliosis, and elevated proinflammatory cytokines suggest that immunological changes in the OB may be involved in the pathogenesis of PVOD.
Collapse
Affiliation(s)
- Ryoji Kagoya
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Junya Yamagishi
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoyuki Matsumoto
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Otolaryngology and Head and Neck Surgery, Kameda Medical Center, 929, Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Ito
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
47
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
48
|
Movsisyan AB, Oganezova ZG, Egorov EA. [Use and outcomes of antioxidant therapy in ophthalmic practice]. Vestn Oftalmol 2022; 138:126-132. [PMID: 36288427 DOI: 10.17116/oftalma2022138051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advances in medical diagnostic technologies, particularly in ophthalmology, help researchers understand histological characteristics of the human eye and study vision at the cellular level. In addition to its role in the ocular function associated with the control of movements, senses and protective responses, the nervous system plays a key role in regulation of the visual process. Neurodegenerative disorders hold a special place among systemic diseases. Presently, the development of such pathologies are associated with neuroinflammation, which has been proven to also contribute to the glaucomatous process. For this reason, achieving target intraocular pressure does not always guarantee stabilization of the degenerative process. In this context, neuroprotective agents are recommended for glaucoma management to all patients taking into consideration pathogenetic characteristics of the disease. Based on its antioxidative and neuroprotective effects, ethylmethylhydroxypyridine succinate (Mexidol) is commonly used in ophthalmic practice, specifically in the treatment of patients with glaucomatous optic neuropathy and retinal diseases. The results of studies demonstrate that Mexidol is effective in slowing down neurodegeneration and stabilizing visual functions in patients with primary open-angle glaucoma due to its antihypoxic, antioxidant and membrane-stabilizing properties, as well as its positive impact on the neuromediator balance and ocular blood flow.
Collapse
Affiliation(s)
- A B Movsisyan
- Hospital for War Veterans No. 2, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Zh G Oganezova
- Pirogov Russian National Research Medical University, Moscow, Russia
- N.P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - E A Egorov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
49
|
Role of IL-33/ST2 Axis in Chronic Inflammatory Neurological Disorderss. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Interleukin-33 (IL-33) is a member of IL-1 family of cytokines, produced constitutively by fibroblasts, endothelial cells, and epithelial cells. IL-33 can be released passively from cells during tissue damage and cell necrosis, suggesting that it may act as an alarmin. Function of IL-33 is mediated by its interaction with ST2 molecule that is expressed on many immune cells: Th2 lymphocytes, NK, NKT and mast cells, monocytes, dendritic cells and granulocytes. IL-33/ST2 pathway plays, often dual, roles in different physiological and inflammatory processes, mediating both, pathological immune responses and tissue repair. Expression of IL-33 in the central nervous system (CNS) is significantly enhanced during various pathological processes, indicating its important role in the pathogenesis of neurological inflammatory and degenerative diseases. In this review the biological features, expression of IL-33 and its ligand ST2 in CNS, and the role of IL- 33/ST2 pathway in development of Alzheimer’s disease and multiple sclerosis are discussed.
Collapse
|
50
|
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS - understanding various aspects of the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2021; 19:16-31. [PMID: 34856902 PMCID: PMC9127729 DOI: 10.2174/1567205018666211202143935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok. Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok. Poland
| | | |
Collapse
|