1
|
Ortiz-Salguero C, Romero-Bernal M, González-Díaz Á, Doush ES, del Río C, Echevarría M, Montaner J. Hyperhomocysteinemia: Underlying Links to Stroke and Hydrocephalus, with a Focus on Polyphenol-Based Therapeutic Approaches. Nutrients 2024; 17:40. [PMID: 39796474 PMCID: PMC11722995 DOI: 10.3390/nu17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders. Current research suggests that polyphenols, known for their antioxidant and anti-inflammatory properties, may reduce HCys levels and offer neuroprotection. Polyphenols have demonstrated effectiveness in modulating oxidative stress and inflammatory pathways triggered by HHcy. These compounds may also upregulate enzymatic functions involved in HCys metabolism, thus reducing neurotoxicity. Furthermore, polyphenol-rich diets, like the Mediterranean diet, have been linked to lower HCys levels and a reduced incidence of neurovascular disorders. This review provides an overview of HHcy's role in neurovascular pathologies and examines the therapeutic potential of polyphenols in managing HCys levels and preventing HCys-induced neurovascular damage.
Collapse
Affiliation(s)
- Carmen Ortiz-Salguero
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Marina Romero-Bernal
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Ángela González-Díaz
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Elaheh Sobh Doush
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Carmen del Río
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Joan Montaner
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41004 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41004 Sevilla, Spain
| |
Collapse
|
2
|
Prasad K. Atherogenic Effect of Homocysteine, a Biomarker of Inflammation and Its Treatment. Int J Angiol 2024; 33:262-270. [PMID: 39502352 PMCID: PMC11534477 DOI: 10.1055/s-0044-1788280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Ischemic stroke and heart disease, coronary heart disease, and cardiovascular disease are events resulting from long-lasting and silent atherosclerosis. This paper deals with the synthesis of homocysteine (Hcy), causes of HHcy, mechanism of HHcy-induced atherosclerosis, and treatment of HHcy. Synthesis and metabolism of Hcy involves demethylation, transmethylation, and transsulfuration, and these processes require vitamin B 6 and vitamin B 12 folic acid (vitamin B 9 ). Causes of HHcy include deficiency of vitamins B 6 , B 9 , and B 12 , genetic defects, use of smokeless tobacco, cigarette smoking, alcohol consumption, diabetes, rheumatoid arthritis, low thyroid hormone, consumption of caffeine, folic acid antagonist, cholesterol-lowering drugs (niacin), folic acid antagonist (phenytoin), prolonged use of proton pump inhibitors, metformin, and hypertension. HHcy-induced atherosclerosis may be mediated through oxidative stress, decreased availability of nitric oxide (NO), increased expression of monocyte chemoattractant protein-1, smooth muscle cell proliferation, increased thrombogenicity, and induction of arterial connective tissue. HHcy increases the generation of atherogenic biomolecules such as nuclear factor-kappa B, proinflammatory cytokines (IL-1β, IL-6, and IL-8), cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selection), growth factors (IGF-1 and TGF-β), and monocyte colony-stimulating factor which lead to the development of atherosclerosis. NO which is protective against the development of atherosclerosis is reduced by HHcy. Therapy with folic acid, vitamin B 6 , and vitamin B 12 lowers the levels of Hcy, with folic acid being the most effective. Dietary sources of folic acid, vitamin B 6 , vitamin B 12 , omega-3 fatty acid, and green coffee extract reduce Hcy. Abstaining from drinking coffee and alcohol, and smoking also reduces blood levels of Hcy. In conclusion, HHcy induces atherosclerosis by generating atherogenic biomolecules, and treatment of atherosclerosis-induced diseases may be by reducing the levels of Hcy.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Lei Y, Liu R, Zhao Y. Serum homocysteine and left ventricular hypertrophy in adults with chronic kidney disease: A case-control study. Medicine (Baltimore) 2024; 103:e40577. [PMID: 39809205 PMCID: PMC11596535 DOI: 10.1097/md.0000000000040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 01/16/2025] Open
Abstract
Hyperhomocysteinemia (serum homocysteine concentration > 15 μmol/L) is of high prevalence in chronic kidney disease (CKD). And myocardial hypertrophy is a common complication of CKD. Given that both hyperhomocysteinemia and cardiac hypertrophy have an association with CKD, we hypothesized that high level of plasma homocysteine (Hcy) is associated with a higher prevalence of ventricular hypertrophy(LVH) in adults with CKD. The registration number of the case-control study is ChiCTR2200064834. The information of inpatients with CKD including Echocardiograms and analysis of plasma Hcy concentrations were collected. We performed linear and logistic regression to investigate the association of plasma Hcy with left ventricular hypertrophy (LVH) (LVMI ≥ 95th percentile), adjusted for levels of hemoglobin, ferritin, cystatin C and β-adrenergic blocker therapy. Further, a stratified analysis of the relationship between plasma Hcy and LVH was carried out according to eGFR. The case records for 1068 inpatients with CKD were collected. After data soring and case-control matching, there were 374 samples screened for statistical analysis. Univariate logistic regression indicated a high level of serum Hcy had an association with LVH (OR, 1.16; 95% CI, 1.11-1.20). Finally, multivariable logistic regression suggested that hyperhomocysteinemia was independently associated with LVH (OR, 1.14; 95% CI, 1.10-1.19) after adjustment for hemoglobin, ferritin, cystatin C, and β-adrenergic receptor blocker therapy. We constructed a predicting model including the variable of Hcy for cardiac hypertrophy in CKD. The model had an area under the ROC curve (AUC) of 0.86 (95% CI: 0.82-0.89, P < .001). The decision curve analysis (DCA) showed a superior net clinical benefit of model with Hcy over model without Hcy. Elevated level of serum Hcy is closely associated with LVH in adults with CKD.
Collapse
Affiliation(s)
- Yanping Lei
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Rui Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhao
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Gerasimova E, Enikeev D, Yakovlev A, Zakharov A, Sitdikova G. Chronic Hyperhomocysteinemia Impairs CSD Propagation and Induces Cortical Damage in a Rat Model of Migraine with Aura. Biomolecules 2024; 14:1379. [PMID: 39595556 PMCID: PMC11591878 DOI: 10.3390/biom14111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Hyperhomocysteinemia (hHCY) is a metabolic disorder characterized by elevated levels of homocysteine in plasma. hHCY correlates with a high risk of migraine headaches, especially migraine with aura. Cortical spreading depression (CSD) is a wave of depolarization passing through neurons and glial cells of the cortex and is considered an electrophysiological correlate of migraine aura. The aim of the present study was to analyze neuronal activity and CSD in the somatosensory cortex of rats in vivo with prenatal hHCY and to assess cortex viability after 2 h of CSD generation. Female rats were fed a diet high in methionine, and their offspring with high homocysteine levels in plasma were further used in experiments. Recurrent CSD was evoked by local KCl application on the dura surface. Neuronal viability was assessed by measuring the activity of lactate dehydrogenase (LDH) in the brain and 2,3,5-triphenyltetrazolium chloride staining of the somatosensory cortex after two hours of CSD generation. Animals with hHCY exhibited higher neuronal activity, and more CSDs were generated in response to KCl, indicating higher cortical excitability. Propagation of recurrent CSD was impaired in supragranular cortical layers, and the recovery of multiple unit activity and evoked sensory potentials after CSD was delayed in the hHCY group. Finally, in animals with prenatal hHCY, an ischemic focus was identified as a consequence of multiple CSDs, along with elevated levels of LDH activity in brain tissues, suggestive of diminished neuronal viability. These findings imply that prolonged elevated levels of homocysteine may not only predispose to migraine with aura but also potentially elevate the risk of migrainous infarction.
Collapse
Affiliation(s)
- Elena Gerasimova
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Daniel Enikeev
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| | - Andrey Zakharov
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Str., 420012 Kazan, Russia;
- Department of Medical Physics, Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Str., 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| |
Collapse
|
5
|
Sikora M, Bretes E, Perła-Kaján J, Utyro O, Borowczyk K, Piechocka J, Głowacki R, Wojtasz I, Kaźmierski R, Jakubowski H. Homocysteine thiolactone and other sulfur-containing amino acid metabolites are associated with fibrin clot properties and the risk of ischemic stroke. Sci Rep 2024; 14:11222. [PMID: 38755170 PMCID: PMC11099160 DOI: 10.1038/s41598-024-60706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Homocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.
Collapse
Affiliation(s)
- Marta Sikora
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, 61-704, Poznań, Poland
| | - Ewa Bretes
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Kamila Borowczyk
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | - Justyna Piechocka
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | - Rafał Głowacki
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | | | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Góra, 65-046, Zielona Góra, Poland
- Department of Neurology, Poznań University of Medical Sciences, 60-355, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Guo T, Zhou L, Xiong M, Xiong J, Huang J, Li Y, Zhang G, Chen G, Wang Z, Xiao T, Hu D, Bao A, Zhang Z. N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson's disease. Aging Cell 2024; 23:e14124. [PMID: 38380563 PMCID: PMC11113254 DOI: 10.1111/acel.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lingyan Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Huang
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yiming Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guoxin Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guiqin Chen
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Hao Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tingting Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Dan Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Anyu Bao
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
7
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
8
|
Su D, Zhang R, Wang X, Ding Q, Che F, Liu Z, Xu J, Zhao Y, Ji K, Wu W, Yan C, Li P, Tang B. Shedding Light on Lysosomal Malondialdehyde Affecting Vitamin B 12 Transport during Cerebral Ischemia/Reperfusion Injury. J Am Chem Soc 2023; 145:22609-22619. [PMID: 37803879 DOI: 10.1021/jacs.3c07809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yuying Zhao
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kunqian Ji
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuanzhu Yan
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
9
|
Choi CK, Kweon SS, Lee YH, Nam HS, Choi SW, Kim HY, Shin MH. Association Between Plasma Homocysteine Level and Mortality: A Mendelian Randomization Study. Korean Circ J 2023; 53:710-719. [PMID: 37559417 PMCID: PMC10625855 DOI: 10.4070/kcj.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In previous studies, high homocysteine levels were associated with high cardiovascular mortality. However, these results were inconsistent with those of randomized controlled trials. We aimed to evaluate the causal role of homocysteine on all-cause and cardiovascular mortality using Mendelian randomization (MR) analysis. METHODS This study included the 10,005 participants in the Namwon Study. In conventional observational analysis, age, sex, survey years, lifestyles, body mass index, comorbidities, and serum folate level were adjusted using multivariate Cox proportional regression. MR using 2-stage least squares regression was used to evaluate the association between genetically predicted plasma homocysteine levels and mortality. Age, sex, and survey years were adjusted for each stage. The methylenetetrahydrofolate reductase (MTHFR) polymorphism was used as an instrumental variable for predicting plasma homocysteine levels. RESULTS Observed homocysteine levels were positively associated with all-cause (hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.26-1.54) and cardiovascular (HR, 1.62; 95% CI, 1.28-2.06) mortality when plasma homocysteine levels doubled. However, these associations were not significant in MR analysis. The HRs of doubling genetically predicted plasma homocysteine levels for all-cause and cardiovascular mortality were 0.99 (95% CI, 0.62-1.57) and 1.76 (95% CI, 0.54-5.77), respectively. CONCLUSIONS This MR analysis did not support a causal role for elevated plasma homocysteine concentrations in premature deaths.
Collapse
Affiliation(s)
- Chang Kyun Choi
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Hoon Lee
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Korea
| | - Hae-Sung Nam
- Department of Preventive Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seong-Woo Choi
- Department of Preventive Medicine, Chosun University College of Medicine, Gwangju, Korea
| | - Hye-Yeon Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea.
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
10
|
Yeh SJ, Chen CH, Lin YH, Tsai LK, Lee CW, Tang SC, Jeng JS. Association of Ferroptosis with Severity and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: A Case-control Study. Mol Neurobiol 2023; 60:5902-5914. [PMID: 37357230 DOI: 10.1007/s12035-023-03448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Ferroptosis, an iron-dependent form of cell death, is characterized by intracellular accumulation of iron and reactive oxygen species-induced lipid peroxidation. Animal experiments have shown the important roles of ferroptosis in ischemic stroke, but the evidence in human stroke is insufficient. This prospective study evaluated the associations between plasma ferroptosis biomarkers at hyperacute stage and long-term outcomes in patients with acute ischemic stroke undergoing endovascular thrombectomy (EVT). The plasma samples were collected immediately before and after EVT (T1 and T2) and at 24 h (T3) for the 126 stroke patients and once for the 50 stroke-free control subjects. Compared with controls, stroke patients had higher 4-hydroxynonenal (4-HNE) levels at T1 and T2 while lower homocysteine and soluble transferrin receptor (sTfR) levels at T3. In stroke patients, higher National Institutes of Health Stroke Scale scores at admission were correlated with higher 4-HNE and lower sTfR levels. Lower Alberta Stroke Program Early CT (ASPECT) scores and larger infarct core volumes on CT perfusion before EVT were correlated with higher 4-HNE and homocysteine levels. After adjusting for significant parameters, homocysteine levels at T2 were significantly associated with poor functional outcome and mortality at 3 months. In the receiver operating characteristic (ROC) models, adding homocysteine levels at T2 and hemoglobin levels to the reference model for predicting poor functional outcome significantly increased the area under the ROC curve. In summary, this study provides evidence that ferroptosis is associated with stroke severity and outcomes in patients with acute ischemic stroke undergoing EVT.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| |
Collapse
|
11
|
Cheng MK, Guo YY, Kang XN, Zhang L, Wang D, Ren HH, Yuan G. Advances in cardiovascular-related biomarkers to predict diabetic peripheral neuropathy. World J Diabetes 2023; 14:1226-1233. [PMID: 37664477 PMCID: PMC10473952 DOI: 10.4239/wjd.v14.i8.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes mellitus. One of the most common types is distal symmetric poly-neuropathy, which begins as bilateral symmetry pain and hyperesthesia and gradually progresses into hypoesthesia with nerve fibre disorder and is frequently accompanied by depression and anxiety. Notably, more than half of patients with DPN can be asymptomatic, which tends to delay early detection. Furthermore, the study of adverse outcomes showed that DPN is a prominent risk factor for foot ulceration, gangrene and nontraumatic amputation, which decreases quality of life. Thus, it is essential to develop convenient diagnostic biomarkers with high sensitivity for screening and early intervention. It has been reported that there may be common pathways for microvascular and macrovascular complications of diabetes. The pathogenesis of both disorders involves vascular endothelial dys-function. Emerging evidence indicates that traditional and novel cardiovascular-related biomarkers have the potential to characterize patients by subclinical disease status and improve risk prediction. Additionally, beyond traditional cardiovascular-related biomarkers, novel cardiovascular-related biomarkers have been linked to diabetes and its complications. In this review, we evaluate the association between major traditional and nontraditional car-diovascular-related biomarkers of DPN, such as cardiac troponin T, B-type natriuretic peptide, C-reactive protein, myeloperoxidase, and homocysteine, and assess the evidence for early risk factor-based management strategies to reduce the incidence and slow the progression of DPN.
Collapse
Affiliation(s)
- Meng-Ke Cheng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Yao-Yao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Nan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Hui-Hui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
12
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Ding L, Liu Y, Meng X, Jiang Y, Lin J, Cheng S, Xu Z, Zhao X, Li H, Wang Y, Li Z. Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke. Signal Transduct Target Ther 2023; 8:222. [PMID: 37248226 DOI: 10.1038/s41392-023-01465-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Acute ischemic stroke (AIS) is a major cause of disability and mortality worldwide. Non-cardioembolic ischemic stroke (NCIS), which constitutes the majority of AIS cases, is highly heterogeneous, thus requiring precision medicine treatments. This study aimed to investigate the molecular mechanisms underlying NCIS heterogeneity. We integrated data from the Third China National Stroke Registry, including clinical phenotypes, biomarkers, and whole-genome sequencing data for 7695 patients with NCIS. We identified 30 molecular clusters based on 63 biomarkers and explored the comprehensive landscape of biological heterogeneity and subpopulations in NCIS. Dimensionality reduction revealed fine-scale subpopulation structures associated with specific biomarkers. The subpopulations with biomarkers for inflammation, abnormal liver and kidney function, homocysteine metabolism, lipid metabolism, and gut microbiota metabolism were associated with a high risk of unfavorable clinical outcomes, including stroke recurrence, disability, and mortality. Several genes encoding potential drug targets were identified as putative causal genes that drive the clusters, such as CDK10, ERCC3, and CHEK2. We comprehensively characterized the genetic architecture of these subpopulations, identified their molecular signatures, and revealed the potential of the polybiomarkers and polygenic prediction for assessing clinical outcomes. Our study demonstrates the power of large-scale molecular biomarkers and genomics to understand the underlying biological mechanisms of and advance precision medicine for NCIS.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Yu Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
14
|
Wang Y, Hou R, Liu Y. Plasma Homocysteine (Hcy) Concentration Functions as a Predictive Biomarker of SPECT-Evaluated Post-Ischemic Hyperperfusion in Acute Ischemic Stroke. Pharmgenomics Pers Med 2023; 16:481-489. [PMID: 37256202 PMCID: PMC10226540 DOI: 10.2147/pgpm.s400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Homocysteine (Hcy) concentration has been reported to be associated with ischemic stroke. In this study, we aimed to investigate the potential of plasma Hcy in the prediction of post-ischemic hyperperfusion in AIS patients, which was diagnosed with the single-photon emission computed tomography (SPECT) method. Methods A total of 112 ischemic stroke patients were recruited in this study. According to whether the patients were subjected to post-ischemic hyperperfusion, all recruited subjects were divided into a post-ischemic hyperperfusion (+) group (N=48) and post-ischemic hyperperfusion (-) group (N=64). The basic demographical data, clinicopathological data and laboratory biochemical data were collected and compared. Level of homocysteine (Hcy) and cystatin-C (Cys-C) and their potential as predictive biomarker are also investigated. Results No significant differences were spotted between the post-ischemic hyperperfusion group (+) and post-ischemic hyperperfusion (-) group in respect to the basic demographical and clinicopathological data. And the serum Hcy levels were lower in the post-ischemic hyperperfusion (+) group. Moreover, ROC analysis indicated significant relationships between Hcy levels and the onset of post-ischemic hyperperfusion. Conclusion In conclusion, we validated that the plasma Hcy concentration can be used as a predictive biomarker of SPECT-evaluated post-ischemic hyperperfusion in patients suffering from acute ischemic stroke.
Collapse
Affiliation(s)
- Yingqiu Wang
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Renhua Hou
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Yan Liu
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| |
Collapse
|
15
|
Ravikumar A, Moorthy S, Marappa L, Bhaskar E, Ahmed B. Recurrent Young Stroke With Hemianopia. Cureus 2023; 15:e38771. [PMID: 37303369 PMCID: PMC10249707 DOI: 10.7759/cureus.38771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Homocysteine is a toxic, sulphur-containing intermediate of methionine metabolism. Hyperhomocysteinemia has been proposed as an important risk factor for ischemic stroke. We present the case of a 39-year-old male who sustained a cerebrovascular accident with left hemiparesis two years back; the patient was not compliant with his medications, and now presented with complaints of giddiness, reduced vision, and double vision. Vision disturbances were bilateral, acute in onset, progressive over time, and predominantly affected the peripheral vision. On ophthalmic examination, homonymous hemianopia was noted, and finger counting was absent in both eyes. Confrontation test revealed a bilateral reduced field of vision more so in the left eye. Baseline investigations were unremarkable except for mildly elevated serum. Homocysteine and neuroimaging showed acute infarct with hemorrhagic transformation in the right occipito-parietal region and small acute non-hemorrhagic infarcts in the right thalamus and right side of the splfingerenium of the corpus callosum. Given the visual disturbance, Humphrey visual field (HVF) perimetry was done and it revealed left homonymous congruous hemianopia, likely due to right parietal lobe infarct. The patient had recurrent infarcts previously involving anterior and posterior circulation.
Collapse
Affiliation(s)
- Aparajit Ravikumar
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Swathy Moorthy
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Lakshmi Marappa
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Emmanuel Bhaskar
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Basith Ahmed
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
16
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
17
|
Homocysteine is associated with higher risks of ischemic stroke: A systematic review and meta-analysis. PLoS One 2022; 17:e0276087. [PMID: 36227950 PMCID: PMC9560514 DOI: 10.1371/journal.pone.0276087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND High levels of homocysteine (Hct) have been associated with great risks of ischemic stroke. However, some controversy still exists. We performed a systematic review and meta-analysis to compare the levels of Hct between patients with ischemic stroke and controls. METHODS We performed a systematic literature search for articles reporting Hct levels of patients with occurrence of ischemic stroke. We employed a random-effects inverse-variance weighted meta-analytical approach in order to pool standardized mean differences, with estimation of τ2 through the DerSimonian-Laird method. RESULTS The initial search yielded 1361 studies. After careful analysis of abstracts and full texts, the meta-analysis included data from 38 studies, which involved almost 16 000 stroke events. However, only 13 studies reported means and standard deviations for cases and controls, and therefore were used in the meta-analysis. Those studies presented data from 5002 patients with stroke and 4945 controls. Standardized mean difference was 1.67 (95% CI 1.00-2.25, P < 0.01), indicating that Hct levels were significantly larger in patients with ischemic stroke compared to controls. Between-study heterogeneity was very large (I2 = 99%), particularly because three studies showed significantly large mean differences. CONCLUSION This meta-analysis shows that patients with ischemic stroke have higher levels of Hct compared to controls. Whether this is a modifiable risk factor remains to be assessed through larger prospective cohorts.
Collapse
|
18
|
Ma C, Zhang W, Mao L, Zhang G, Shen Y, Chang H, Xu X, Li Z, Lu H. Hyperhomocysteinemia and intracranial aneurysm: A mendelian randomization study. Front Neurol 2022; 13:948989. [PMID: 36247759 PMCID: PMC9554923 DOI: 10.3389/fneur.2022.948989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the link between genetic variants associated with plasma homocysteine levels and risk of intracranial aneurysm (IA) using two-sample Mendelian randomization. Methods We used single-nucleotide polymorphisms associated with human plasma homocysteine levels as instrumental variables for the primary analysis in a genome-wide association study of 44,147 subjects of European ancestry. Summary-level statistics were obtained for 79,429 individuals, including 7,495 IA cases and 71,934 controls. To enhance validity, five different Mendelian randomization methods (MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted mode) were used for the analyses. Results The inverse variance weighted analysis method produced P-values of 0.398 for aneurysmal subarachnoid hemorrhage [odds ratio (OR): 1.104; 95% confidence interval (CI): 0.878–1.387], 0.246 for IA (OR: 1.124; 95% CI: 0.923–1.368), and 0.644 for unruptured IA (OR: 1.126; 95% CI: 0.682–1.858). The MR-Egger analysis showed no association between IAs and homocysteine, with all P > 0.05. Conclusion Using gene-related instrumental variables, the Mendelian randomization analyses demonstrated a lack of an association between plasma homocysteine levels and IAs or aneurysmal subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Chencheng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Weiwei Zhang
- Department of Ophthalmology, Third Medical Center of Chinese PLA General Hospital, Nanjing, China
| | - Lei Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Guangjian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Yuqi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Hanxiao Chang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
| | - Zheng Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
- *Correspondence: Zheng Li
| | - Hua Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, China
- Hua Lu
| |
Collapse
|
19
|
Amini H, Hewadmal H, Rasuli SF, Shahriar CS, Fattah A, Kavanoor Sridhar H, Khan M, Bhat S, Talpur AS, Qadar LT. Role of Serum Homocysteine and Outcome in Patients With Traumatic Brain Injury. Cureus 2022; 14:e28968. [PMID: 36237797 PMCID: PMC9548089 DOI: 10.7759/cureus.28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background There have been indications of a correlation between serum homocysteine (Hcy) levels and poor patient outcomes in traumatic brain injury (TBI). Thus, we aimed to explore the role of serum Hcy in influencing the outcome post TBI. Methods A case-control study was conducted at Liaquat University of Medical and Health Sciences (LUMHS) between January 15, 2022 and July 1, 2022. All patients between the ages of 18 and 75 years who presented with TBI, irrespective of severity, were included in the study. All patients with neurological disorders and infections, including but not limited to cerebral tuberculosis, Alzheimer's disease, epilepsy, brain cancer, Parkinson's, and stroke, were excluded from the study. For comparison, healthy controls with similar demographics were enrolled in the study. All patients and controls underwent biochemical evaluation of serum Hcy and neurological assessment at presentation. In addition, all sociodemographic and clinical parameters, including the Glasgow Outcome Score (GOS), were collected in a predefined pro forma. Results A total of 175 patients were included who had experienced TBIs, along with an equal number of healthy controls. The most common etiology was road traffic accidents in 82 (46.9%) patients. The mean Glasgow Coma Score (GCS) at presentation was 5.78 ± 1.72. The mean Hcy levels were 31.4 ± 7.97 µmol/L in TBI patients and 11.12 ± 5.87 µmol/L in the control healthy patients (p=0.001). It was found that the severity of hyperhomocysteinemia (HHcy) was significantly related to the worst outcome possible, i.e., death (p=0.001). Conclusion The study concluded that patients who had suffered from a TBI had significantly higher serum Hcy levels. Furthermore, the study highlighted that the patients with the worst outcomes had more severe hyperhomocysteinemia (HHcy) than those with better outcomes. Moreover, patients with low GOS scores were more likely to have HHcy.
Collapse
|
20
|
The Effect of 3-Week Betaine Supplementation on Blood Biomarkers of Cardiometabolic Health in Young Physically Active Males. Metabolites 2022; 12:metabo12080731. [PMID: 36005603 PMCID: PMC9415743 DOI: 10.3390/metabo12080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Betaine (BET) supplementation decreases homocysteine concentration in plasma, but it may also have an adverse effect on health by increasing blood lipid concentrations, at least in overweight and obese individuals. The aim of this study was to evaluate the effect of BET supplementation on the lipid profile and concentrations of homocysteine, inflammatory cytokines, and liver enzymes in physically active, healthy males. This was a randomized, placebo (PL)-controlled, double-blinded, crossover trial. BET (2.5 or 5.0 g/d) was administered for 21 days. Before and after supplementation with BET or PL, anthropometric measurements and blood were collected in a fasted state. Our results show that BET supplementation significantly decreased homocysteine concentration (from 17.1 ± 4.0 μmol/L before BET to 15.6 ± 3.5 μmol/L after BET, p = 0.009, η2 = 0.164). However, the intervention had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerol, interleukins 1β and 6, and tumour necrosis factor α concentrations, or alanine and aspartate activities. In addition, there were no interactions between the MTHFR genotype and BET dose. In conclusion, BET supplementation may be beneficial for homocysteine concentration in healthy, physically active males, with no detrimental effect on lipid profile.
Collapse
|
21
|
Total plasma homocysteine measurement: Evaluation of the Abbott immunoassay, comparison with the JEOL ion exchange chromatography and investigation of its clinical utility. Pract Lab Med 2022; 32:e00295. [PMID: 35992628 PMCID: PMC9386494 DOI: 10.1016/j.plabm.2022.e00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Homocysteine is an intermediary amino acid formed in methionine metabolism, with elevated total homocysteine (tHCY) being a biomarker of cardiovascular and cerebrovascular diseases. We evaluated the Abbott ARCHITECT tHCY immunoassay, compared it with the current established JEOL ion exchange chromatography (IEC) method and evaluated its clinical utility. Design and methods Following immunoassay method verification, plasma samples of 91 patients were analysed for tHCY using immunoassay and IEC. Results For the Abbott immunoassay, accuracy was assessed, with UK NEQAS EQA specimens, by the correlation of our Abbott immunoassay measurements to the Abbott ARCHITECT immunoassay mean (bias = 1.6%), and to the overall immunoassay mean (bias = 2.0%). The total imprecision was 2.7% (11.00 μmol/L), 2.4% (16.80 μmol/L) and 2.8% (24.30 μmol/L) respectively. Bias in linearity assessment was 0.12%–2.58%. The inter-method correlation was strong in Passing-Bablok regression: immunoassay = IEC x0.857 + 2.445 (95% CI: slope = [0.742,0.947], intercept = [1.340,3.582]), with Spearman correlation = 0.803 (p < 0.001). The Bland-Altman plot showed an average difference of −0.284 μmol/L (95% CI: [-1.043,0.474]) with limits of agreement (mean ± 1.96SD) from −7.425 μmol/L to 6.857 μmol/L. No significant difference in tHCY was found using both methods in patients with cerebrovascular diseases and cardiovascular diseases. Most tHCY measurements were within the reference ranges of both methods. All homocystinuria patients had tHCY values above the reference ranges of both methods. Conclusions The immunoassay demonstrated robust performance in its verification and showed good comparability with the IEC but with some biases so caution is needed if both are used interchangeably. The immunoassay offers an automated alternative to IEC in the assessment of hyperhomocysteinaemia. The total homocysteine immunoassay is verified to have robust performance. The immunoassay correlates with the ion exchange chromatography but with biases. Caution is needed if both methods are used interchangeably.
Collapse
|
22
|
Wang M, Liang X, Zhang Q, Luo S, Liu H, Wang X, Sai N, Zhang X. Homocysteine can aggravate depressive like behaviors in a middle cerebral artery occlusion/reperfusion rat model: a possible role for NMDARs-mediated synaptic alterations. Nutr Neurosci 2022; 26:483-495. [PMID: 35416761 DOI: 10.1080/1028415x.2022.2060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Post-stroke depression (PSD), the most frequent psychiatric complication following stroke, could have a negative impact on the recuperation of stroke patients. Hyperhomocysteinemia (HHCY) has been reported to be a modifiable risk factor of stroke. OBJECTIVE The study tries to explore the effect of HHCY on PSD and the role of N-methyl-d-aspartate receptors (NMDARs)-mediated synaptic alterations. METHODS Forty-five adult male Sprague-Dawley rats were randomly allocated into five groups: sham operation group, middle cerebral artery occlusion group (MCAO), HCY-treated MCAO group HCY and MK-801 co-treated MCAO group and MK-801-treated MCAO group. 1.6 mg/kg/d D, L-HCY was administered by tail vein injection for 28 d prior to SHAM or MCAO operationand up to 14 d after surgery. The MK-801 (3 mg/kg) was administered by intraperitoneal injection 15 min prior to MCAO operation. RESULTS HCY treatment aggravated depressive-like disorders of post-stroke rats by the open field test and sucrose preference test. Further, HCY significantly decreased central monoamines levels in the MCAO rats by HPLC. The transmission electron microscopy results showed that the number of synapses and the area of postsynaptic density decreased in the hippocampus of the HCY-treated MCAO rats. Additionally, HCY augmented ischemia-induced up-regulation of NMDARs, decreased the levels of synaptic structure-related marker PSD-95and the synaptic transmission-associated synaptic proteins (VGLUT1, SNAP-25 and Complexin Ι/ΙΙ). These effects of HCY were partly reversed by the NMDA antagonist MK-801. CONCLUSIONS The current study suggested that NMDARs-mediated synaptic plasticity may be involved in the adverse effect of HCY on PSD.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Suhui Luo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Baranovicova E, Hnilicova P, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Tomascova A, Lehotsky J. Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia. Biomolecules 2022; 12:554. [PMID: 35454143 PMCID: PMC9032340 DOI: 10.3390/biom12040554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
1H Nuclear Magnetic Resonance (NMR) metabolomics is one of the fundamental tools in the fast-developing metabolomics field. It identifies and quantifies the most abundant metabolites, alterations of which can describe energy metabolism, activated immune response, protein synthesis and catabolism, neurotransmission, and many other factors. This paper summarizes our results of the 1H NMR metabolomics approach to characterize the distribution of relevant metabolites and their alterations induced by cerebral ischemic injury or its combination with hyperhomocysteinemia in the affected tissue and blood plasma in rodents. A decrease in the neurotransmitter pool in the brain tissue likely follows the disordered feasibility of post-ischemic neurotransmission. This decline is balanced by the increased tissue glutamine level with the detected impact on neuronal health. The ischemic injury was also manifested in the metabolomic alterations in blood plasma with the decreased levels of glycolytic intermediates, as well as a post-ischemically induced ketosis-like state with increased plasma ketone bodies. As the 3-hydroxybutyrate can act as a likely neuroprotectant, its post-ischemic increase can suggest its supporting role in balancing ischemic metabolic dysregulation. Furthermore, the 1H NMR approach revealed post-ischemically increased 3-hydroxybutyrate in the remote organs, such as the liver and heart, as well as decreased myocardial glutamate. Ischemic preconditioning, as a proposed protective strategy, was manifested in a lower extent of metabolomic changes and/or their faster recovery in a longitudinal study. The paper also summarizes the pre- and post-ischemic metabolomic changes in the rat hyperhomocysteinemic models. Animals are challenged with hyperglycemia and ketosis-like state. A decrease in several amino acids in plasma follows the onset and progression of hippocampal neuropathology when combined with ischemic injury. The 1H NMR metabolomics approach also offers a high potential for metabolites in discriminatory analysis in the search for potential biomarkers of ischemic injury. Based on our results and the literature data, this paper presents valuable findings applicable in clinical studies and suggests the precaution of a high protein diet, especially foods which are high in Met content and low in B vitamins, in the possible risk of human cerebrovascular neuropathology.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Petra Hnilicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| | - Anna Tomascova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (E.B.); (P.H.); (A.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.K.); (Z.T.)
| |
Collapse
|
24
|
Stoica SI, Bleotu C, Ciobanu V, Ionescu AM, Albadi I, Onose G, Munteanu C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022; 10:481. [PMID: 35203690 PMCID: PMC8962344 DOI: 10.3390/biomedicines10020481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological-adaptive-or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the" Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA") filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/"syntaxes", with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia's mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest (PUB), 060042 Bucharest, Romania;
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
| | - Irina Albadi
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania;
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Department of Research, Romanian Association of Balneology, 022251 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
25
|
Liu L, Su X, Zhao L, Li J, Xu W, Yang L, Yang Y, Gao Y, Chen K, Gao Y, Guo JJ, Wang H, Lin J, Han J, Fan L, Fang X. Association of Homocysteine and Risks of Long-Term Cardiovascular Events and All-Cause Death among Older Patients with Obstructive Sleep Apnea: A Prospective Study. J Nutr Health Aging 2022; 26:879-888. [PMID: 36156680 DOI: 10.1007/s12603-022-1840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study aimed to assess whether raised baseline plasma tHcy concentrations increased the risks of major adverse cardiovascular events (MACE) and all-cause death outcomes in older patients with obstructive sleep apnea (OSA). DESIGN A multicenter, prospective, observational study. SETTING Beijing, Shandong Province, Gansu Province of China. PARTICIPANTS A total of 1, 290 OSA patients aged 60 to 96 years from sleep centers of six hospitals in China consecutively recruited between January 2015 and October 2017. MEASUREMENTS Cox proportional models assessed the association between tHcy and the risk of new-onset all events among Chinese older OSA patients. RESULTS The final analysis (60.1% male; median age, 66 years) used data from 1, 100 subjects during a median follow-up of 42 months, a total of 105 (9.5%) patients developed MACE and 42 (3.8%) patients died. Multivariable Cox regression analysis showed higher adjusted hazard ratios (aHRs) of MACE, myocardial infarction (MI), hospitalization for unstable angina, and composite of all events with tHcy levels in the 4th quartile (HR=5.93, 95% CI: 2.79-12.59; HR=4.72, 95% CI:1.36-4.61; HR=4.26, 95% CI:1.62-5.71; HR=4.17, 95% CI:2.23-7.81) and the 3rd quartile (HR=3.79, 95% CI:1.76-8.20; HR=3.65, 95% CI:1.04-2.98; HR=2.75, 95% CI:1.08-3.76; HR=2.51, 95% CI:1.31-4.83) compared to reference tHcy levels in quartile 1, respectively, while the aHRs (95% CIs) of all-cause death showed significantly higher only in the highest tHcy level quartile than in the lowest quartile (HR=3.20, 95% CI=1.16-8.84, P=0.025) with no significant differences in risks of cardiovascular death and hospitalisation for heart failure among groups (P>0.05). CONCLUSIONS tHcy, a marker of prognosis for older OSA patients, was significantly associated with the increased risk of MACE and all-cause death in this population independent of BMI, smoking status, and other potential risk factors, but not all clinical components events of MACE. New therapeutic approaches for older patients with OSA should mitigate tHcy-associated risks of MACE, and even all-cause death.
Collapse
Affiliation(s)
- L Liu
- Xiangqun Fang, Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China. ; Li Fan, Cardiology Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China. ; Jiming Han, Medical College, Yan'an University,Yan'an, Shaanxi Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lan C, Huang Z, Luo X, Zhang Y. The Correlations Between Serum Hcy Level and Seizures and Cognitive Function in Patients After Stroke. Am J Alzheimers Dis Other Demen 2022; 37:15333175221146738. [PMID: 36541875 PMCID: PMC10581107 DOI: 10.1177/15333175221146738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Post-stroke cognitive dysfunction (PSCI), a set of illnesses ranging from moderate cognitive impairment to dementia, which is one of the most prevalent consequences following a stroke. Homocysteine (Hcy) has been related to a number of neurological and systemic diseases. It's also a known risk factor for cardiovascular disease and systemic atherosclerosis (CVD). The link between Hcy and PSCI, on the other hand, is unknown. METHODS Our hospital evaluated 325 patients with acute cerebral infarction between January 1, 2018 and December 1, 2021. There are biological markers and baseline data available. Patients were divided into two groups based on the results of the Montreal Cognitive Assessment (MoCA). The researchers performed logistic regression analysis to find variables that may be linked to PSCI. RESULTS HCY levels were significantly higher in PSCI patients than in non-PSCI patients. Age, education, seizure manifestation, and income level were all shown to be independent risk variables for PSCI in a multivariate logistic analysis. Hcy levels in PSCI patients differed considerably between the high and low groups. The high and low Hcy levels groups had significantly varied hypertension histories and urine levels. Hcy levels in PSCI patients differed considerably between the high and low groups. The high and low Hcy levels groups had significantly varied hypertension histories and urine levels. CONCLUSION Serum Hcy levels have been linked to PSCI in post-stroke patients, and researchers believe that serum Hcy levels will diminish PSCI.
Collapse
Affiliation(s)
- Chen Lan
- Jinggangshan University, Ji’an, China
- Neurology Department, Affiliated Hospital of Jinggangshan University, Ji’an, China
| | - Zhiqiang Huang
- Neurology Department, Affiliated Hospital of Jinggangshan University, Ji’an, China
| | - Xinxin Luo
- Neurology Department, Affiliated Hospital of Jinggangshan University, Ji’an, China
| | - Yongcheng Zhang
- Neurology Department, Affiliated Hospital of Jinggangshan University, Ji’an, China
| |
Collapse
|
27
|
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, Kubatka P, Golubnitschaja O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J 2021; 12:477-505. [PMID: 34786033 PMCID: PMC8581606 DOI: 10.1007/s13167-021-00263-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Homocysteine (Hcy) metabolism is crucial for regulating methionine availability, protein homeostasis, and DNA-methylation presenting, therefore, key pathways in post-genomic and epigenetic regulation mechanisms. Consequently, impaired Hcy metabolism leading to elevated concentrations of Hcy in the blood plasma (hyperhomocysteinemia) is linked to the overproduction of free radicals, induced oxidative stress, mitochondrial impairments, systemic inflammation and increased risks of eye disorders, coronary artery diseases, atherosclerosis, myocardial infarction, ischemic stroke, thrombotic events, cancer development and progression, osteoporosis, neurodegenerative disorders, pregnancy complications, delayed healing processes, and poor COVID-19 outcomes, among others. This review focuses on the homocysteine metabolism impairments relevant for various pathological conditions. Innovative strategies in the framework of 3P medicine consider Hcy metabolic pathways as the specific target for in vitro diagnostics, predictive medical approaches, cost-effective preventive measures, and optimized treatments tailored to the individualized patient profiles in primary, secondary, and tertiary care.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
28
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
29
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med 2021; 19:97. [PMID: 33888102 PMCID: PMC8063383 DOI: 10.1186/s12916-021-01977-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Whether a modestly elevated homocysteine level is causally associated with an increased risk of cardiovascular disease remains unestablished. We conducted a Mendelian randomization study to assess the associations of circulating total homocysteine (tHcy) and B vitamin levels with cardiovascular diseases in the general population. METHODS Independent single nucleotide polymorphisms associated with tHcy (n = 14), folate (n = 2), vitamin B6 (n = 1), and vitamin B12 (n = 14) at the genome-wide significance level were selected as instrumental variables. Summary-level data for 12 cardiovascular endpoints were obtained from genetic consortia, the UK Biobank study, and the FinnGen consortium. RESULTS Higher genetically predicted circulating tHcy levels were associated with an increased risk of stroke. For each one standard deviation (SD) increase in genetically predicted tHcy levels, the odds ratio (OR) was 1.11 (95% confidence interval (CI), 1.03, 1.21; p = 0.008) for any stroke, 1.26 (95% CI, 1.05, 1.51; p = 0.013) for subarachnoid hemorrhage, and 1.11 (95% CI, 1.03, 1.21; p = 0.011) for ischemic stroke. Higher genetically predicted folate levels were associated with decreased risk of coronary artery disease (ORSD, 0.88; 95% CI, 0.78, 1.00, p = 0.049) and any stroke (ORSD, 0.86; 95% CI, 0.76, 0.97, p = 0.012). Genetically predicted increased vitamin B6 levels were associated with a reduced risk of ischemic stroke (ORSD, 0.88; 95% CI, 0.81, 0.97, p = 0.009). None of these associations persisted after multiple testing correction. There was no association between genetically predicted vitamin B12 and cardiovascular disease. CONCLUSIONS This study reveals suggestive evidence that B vitamin therapy and lowering of tHcy may reduce the risk of stroke, particularly subarachnoid hemorrhage and ischemic stroke.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, 17177, Stockholm, Sweden
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Paul Carter
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, 17177, Stockholm, Sweden.
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Shih CC, Shih YL, Chen JY. The association between homocysteine levels and cardiovascular disease risk among middle-aged and elderly adults in Taiwan. BMC Cardiovasc Disord 2021; 21:191. [PMID: 33879044 PMCID: PMC8056530 DOI: 10.1186/s12872-021-02000-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Our study aimed to determine the association between homocysteine levels and cardiovascular disease (CVD) risk in middle-aged and elderly adults in a community in northern Taiwan. METHODS Participants in our study included adults aged 50 to 85 years old during community health examinations in 2019. A total of 396 people were enrolled, the ethnicity of all participants is Chinese. We divided participants according to tertiles of ln[homocysteine] level (low, middle and high groups). The CVD risk was calculated by the Framingham cardiovascular risk score (FRS). An FRS ≥ 20% indicated high CVD risk. Pearson correlation coefficients were calculated between homocysteine level and other cardio-metabolic risk factors while adjusting for age. Multivariate logistic regression analysis was used to determine the association of high and middle ln[homocysteine] groups with high CVD risk after adjusting age, sex, uric acid, creatinine, and body mass index (BMI). The Youden index and receiver operating characteristic (ROC) curves were performed to determine the optimized cut-off value. RESULTS There were 396 people enrolled for analysis; 41.4% of participants were male, and the average age was 64.79 (± 8.76). In our study, we showed a positive correlation of homocysteine with FRS. In the logistic regression models, higher ln[homocysteine] levels was associated with higher CVD risk with a odds ratio (OR) of 2.499 and 95% confidence interval (CI) of 1.214 to 5.142 in the high homocysteine level group compared with the low homocysteine group after adjusting for traditional CVD risk factors. The area under the ROC curve was 0.667, and a ln[homocysteine] cut-off value of 2.495 µmol/L was determined. CONCLUSIONS Middle-aged and elderly people with increased homocysteine levels were associated with higher FRSs in this Taiwan community. Furthermore, homocysteine was an independent risk factor for high CVD risk in this study.
Collapse
Affiliation(s)
- Chin-Chuan Shih
- General Administrative Department, United Safety Medical Group, 2F, No.302, Zhongzheng Rd., Xinzhuang District, New Taipei City, 242, Taiwan (R.O.C.)
| | - Yu-Lin Shih
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.)
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.).
- Chang Gung University College of Medicine, Taoyuan, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.).
| |
Collapse
|
32
|
Bjørklund G, Peana M, Dadar M, Lozynska I, Chirumbolo S, Lysiuk R, Lenchyk L, Upyr T, Severin B. The role of B vitamins in stroke prevention. Crit Rev Food Sci Nutr 2021; 62:5462-5475. [PMID: 33724098 DOI: 10.1080/10408398.2021.1885341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elevated plasma levels of homocysteine (Hcy) are a recognized risk factor for stroke. This relationship represents one aspect of the debated `Hcy hypothesis'. Elevated Hcy may be an independent and treatable cause of atherosclerosis and thrombotic vascular diseases. Further observations indicate that proper dietary supplementation with B-vitamins decreases total plasma Hcy concentrations and may be an effective intervention for stroke prevention. Metabolic vitamin B12 deficiency is a nutritional determinant of total Hcy and stroke risk. Genetic factors may link B vitamins with stroke severity due to the impact on Hcy metabolism of polymorphism in the genes coding for methylenetetrahydrofolate reductase, methionine-synthase, methionine synthase reductase, and cystathionine β-synthase. Several meta-analyses of large randomized controlled trials exist. However, they are not completely in agreement about B vitamins' role, particularly folic acid levels, vitamin B12, and B6, in lowering the homocysteine concentrations in people at high stroke risk. A very complex relationship exists between Hcy and B vitamins, and several factors appear to modify the preventive effects of B vitamins in stroke. This review highlights the regulating factors of the active role of B vitamins active in stroke prevention. Also, inputs for further large, well-designed studies, for specific, particularly sensitive subgroups are given.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, Iran
| | - Iryna Lozynska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Quality, Standardization and Certification of Medicines of IATPS, National University of Pharmacy, Kharkiv, Ukraine.,CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine.,Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
33
|
Preliminary analysis of immunoregulatory mechanism of hyperhomocysteinemia-induced brain injury in Wistar-Kyoto rats. Exp Ther Med 2021; 21:483. [PMID: 33790992 PMCID: PMC8005698 DOI: 10.3892/etm.2021.9914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) can be used as an independent risk factor for predicting cardiovascular disease, stroke and vitamin B12 deficiency. Patients with HHcy have elevated plasma homocysteine (Hcy) concentrations. Enhancing cerebrovascular permeability of substances such as Hcy and brain damage will synergistically increase the symptoms of hypertension, but the specific immune regulation mechanism is still not clear. The purpose of the present study was to preliminarily explore the immunomodulatory mechanism of brain damage caused by HHcy in Wistar-Kyoto (WKY) rats. A total of 60 WKYs were randomly divided into three groups: WKY control group (WKY-C group), WKY methionine group (WKY-M group) and WKY treatment group (WKY-T group; vitamin B6, B12 and folic acid were used as treatment), with 20 rats in each group. Physical examination of body weight, systolic blood pressure (SBP) and plasma Hcy content was performed routinely. The concentration of cytokines, including IL-6, IL-10, IL-17A and TGF-β, associated with T helper cell 17 (Th17) and regulatory T (Treg) cells and key regulator genes, including retinoic acid-related orphan receptor γ t (RORγt) and forkhead box P3 (FoxP3), were detected by ELISA, reverse transcription-quantitative PCR and western blotting. Th17/Treg lymphocytes were determined by flow cytometry. MRI scan was preliminarily used to detect the changes characteristic of the ischemic stroke. The results revealed that high methionine diets might have a significant effect on the body weight and SBP. The inflammatory response effect of Treg cells was significantly inhibited in the WKY-M group, and that of Th17 cells was upregulated when compared to the WKY-T group. Compared with the WKY-T group, the expression levels of IL-17A and RORγt in the WKY-M group were significantly upregulated, while the mRNA levels of FoxP3 in the WKY-M group were significantly downregulated. The diet intervention (including vitamins B6 and B12 and folic acid) could reduce the level of Hcy in the blood, but also reduce the inflammatory response and rectify the Treg/Th17 immune imbalance to ameliorate the brain tissue damage. In conclusion, the present study indicated that HHcy can promote inflammation by triggering Treg/Th17 immune imbalance to ameliorate the brain tissue damage.
Collapse
|
34
|
Kim JO, Park HS, Ko EJ, Sung JH, Kim J, Oh SH, Kim OJ, Kim NK. The 3'-UTR Polymorphisms in the Thymidylate Synthase (TS) Gene Associated with the Risk of Ischemic Stroke and Silent Brain Infarction. J Pers Med 2021; 11:jpm11030200. [PMID: 33809325 PMCID: PMC8000293 DOI: 10.3390/jpm11030200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Thymidylate synthase (TS) is a key gene involved in the repair of DNA damage and DNA synthesis that plays an important role in vascular development and recovery. In particular, TS gene polymorphisms play a major role in the progression of vascular disease and cancer metastasis. Therefore, the aim of this study was to investigate the association of three TS polymorphisms (1100T>C [rs699517], 1170A>G [rs2790], and 1494ins/del [rs151264360]) with ischemic stroke and silent brain infarction (SBI) in Koreans. A total of 1299 participants (507 stroke patients, 383 SBI patients, and 409 controls) were enrolled in the study. Genotyping of the three TS polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism analysis. To examine the association between TS gene polymorphisms and the diseases, we performed statistical analyses, including multivariable logistic regression and Fisher's exact tests. We found that TS 1100T>C and 1170A>G genotypes were strongly associated with ischemic stroke and SBI susceptibility. More specifically, the TS 1100T>C polymorphism was associated with the likelihood of ischemic stroke (TT vs. CC: AOR = 2.151, 95% CI = 1.275-3.628, P = 0.004) and SBI (TT vs. TC+CC: AOR = 1.443, 95 % CI = 1.009-2.063, P = 0.045). In contrast, the TS 1170A > G polymorphism exhibited lower correlation with the risk of stroke (AA vs. GG: AOR = 0.284, 95% CI = 0.151-0.537, P < 0.0001) and SBI (AA vs. GG: AOR = 0.070, 95% CI = 0.016-0.298, P = 0.0002). Furthermore, we confirmed that the TS 1100T>C polymorphism was synergistic with low folic acid levels (AOR = 6.749, P < 0.0001). Altogether, these results suggest that TS 1100T>C and 1170A > G polymorphisms are associated with the risk of ischemic stroke and SBI, and our study provides the first evidence that 3'-UTR variants in TS are potential biomarkers in ischemic stroke and SBI.
Collapse
Affiliation(s)
- Jung Oh Kim
- Theragen Bio Co., Ltd., Seongnam 13488, Korea;
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.)
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.)
| | - Jung Hoon Sung
- CHA Bundang Medical Center, Department of Neurology, School of Medicine, CHA University, Seongnam 13496, Korea; (J.H.S.); (J.K.); (S.H.O.)
| | - Jinkwon Kim
- CHA Bundang Medical Center, Department of Neurology, School of Medicine, CHA University, Seongnam 13496, Korea; (J.H.S.); (J.K.); (S.H.O.)
| | - Seung Hun Oh
- CHA Bundang Medical Center, Department of Neurology, School of Medicine, CHA University, Seongnam 13496, Korea; (J.H.S.); (J.K.); (S.H.O.)
| | - Ok Joon Kim
- CHA Bundang Medical Center, Department of Neurology, School of Medicine, CHA University, Seongnam 13496, Korea; (J.H.S.); (J.K.); (S.H.O.)
- Correspondence: (O.J.K.); (N.K.K.); Tel.: +82-31-780-5766 (N.K.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.)
- Correspondence: (O.J.K.); (N.K.K.); Tel.: +82-31-780-5766 (N.K.K.)
| |
Collapse
|
35
|
Involvements of Hyperhomocysteinemia in Neurological Disorders. Metabolites 2021; 11:metabo11010037. [PMID: 33419180 PMCID: PMC7825518 DOI: 10.3390/metabo11010037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
Collapse
|
36
|
Kim Y, Lee JH, Lee SH, Kim YJ, Kim C, Jang MU, Jung S, Lim JS, Oh MS, Yu KH, Lee BC. Serum Homocysteine Is Associated With HDL Only in Stroke Patients With Small Vessel Occlusion. Front Neurol 2020; 11:565506. [PMID: 33343484 PMCID: PMC7738472 DOI: 10.3389/fneur.2020.565506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Although controversial, homocysteine (Hcy) and lipid parameters have been associated with particular stroke subtypes. However, there are limited studies concerning the relationship between Hcy and lipid levels in acute ischemic stroke (AIS). We evaluated the impact of Hcy levels on lipid profiles in terms of specific stroke subtypes. Methods: A total of 2,324 patients with first-ever AIS were recruited from two hospitals in South Korea. The exclusion criteria were as follows: (a) pre-stroke modified Rankin scale (mRS) ≥ 1, (b) undetermined or other stroke etiology, and (c) absence of Hcy data. Among the 1,580 eligible patients, the Hcy level was divided into tertile groups. Logistic regression was used to assess association of Hcy levels with lipid levels by stroke subtypes. Results: Significant downward trends in total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were only observed in patients with small vessel occlusion (SVO) as Hcy increased. In logistic regression analysis, while in patients with SVO subtype, the highest level of Hcy tertiles (OR = 1.648, 95% CI = 1.047-2.594) was associated with the lower HDL level (≤40 mg/dL), the significance disappeared in patients with LAA and CE subtypes. Conclusion: Although our study does not demonstrate causal relationship, we suggest that Hcy might play a mediating role between HDL and SVO stroke development. To clarify the role of Hcy on AIS, this study will provide academic support for designing future research.
Collapse
Affiliation(s)
- Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Ju-Hun Lee
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Yeo Jin Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Min Uk Jang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - San Jung
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jae-Sung Lim
- Hallym Neurological Institute, Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si, South Korea
| | - Mi Sun Oh
- Hallym Neurological Institute, Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si, South Korea
| | - Kyung-Ho Yu
- Hallym Neurological Institute, Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si, South Korea
| | - Byung-Chul Lee
- Hallym Neurological Institute, Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si, South Korea
| |
Collapse
|
37
|
Ibi D, Hirashima K, Kojima Y, Sumiya K, Kondo S, Yamamoto M, Ando T, Hiramatsu M. Preventive Effects of Continuous Betaine Intake on Cognitive Impairment and Aberrant Gene Expression in Hippocampus of 3xTg Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 79:639-652. [PMID: 33337369 DOI: 10.3233/jad-200972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The deposition of amyloid-β (Aβ) and hyperphosphorylation of tau are well-known as the pathophysiological features of Alzheimer's disease (AD), leading to oxidative stress and synaptic deficits followed by cognitive symptoms. We already demonstrated that betaine (glycine betaine) prevented cognitive impairment and hippocampal oxidative stress in mice intracerebroventricularly injected with an active fragment of Aβ, whereas the effect of betaine in chronic models of AD remains unknown. OBJECTIVE Our objective was to investigate the effects of chronic betaine intake on cognitive impairment and aberrant expression of genes involved in synapse and antioxidant activity in the hippocampus of a genetic AD model. METHODS We performed cognitive tests and RT-PCR in the hippocampus in 3xTg mice, a genetic AD model. RESULTS Cognitive impairment in the Y-maze and novel object recognition tests became evident in 3xTg mice at 9 months old, and not earlier, indicating that cognitive impairment in 3xTg mice developed age-dependently. To examine the preventive effect of betaine on such cognitive impairment, 3xTg mice were fed betaine-containing water for 3 months from 6 to 9 months old, and subsequently subjected to behavioral tests, in which betaine intake prevented the development of cognitive impairment in 3xTg mice. Additionally, the expression levels of genes involved in synapse and antioxidant activity were downregulated in hippocampus of 3xTg mice at 9 months old compared with age-matched wild-type mice, which were suppressed by betaine intake. CONCLUSION Betaine may be applicable as an agent preventing the progression of AD by improving the synaptic structure/function and/or antioxidant activity.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Kazuki Hirashima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Yuya Kojima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Kahori Sumiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Sari Kondo
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Mirai Yamamoto
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Toshihiro Ando
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| |
Collapse
|
38
|
Rawashdeh SI, Al-Mistarehi AH, Yassin A, Rabab'ah W, Skaff H, Ibdah R. A Concurrent Ischemic Stroke, Myocardial Infarction, and Aortic Thrombi in a Young Patient with Hyperhomocysteinemia: A Case Report. Int Med Case Rep J 2020; 13:581-590. [PMID: 33192104 PMCID: PMC7653271 DOI: 10.2147/imcrj.s279603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
We are presenting a case report of a previously healthy 39-year-old man who was found to have acute inferior ST-elevation myocardial infarction (STEMI) and acute large right middle cerebral artery (MCA) ischemic stroke with hemorrhagic transformation. Transesophageal echocardiogram and chest CT angiogram revealed two thrombi; one attached to the wall of the ascending aorta just above the right coronary artery sinus, and one at the origin of the brachiocephalic trunk. The occlusion of the coronary artery and right MCA most likely could be because of embolization from these thrombi. Extensive workup looking for underlying etiology and risk factors for these concurrent vascular events in this young man revealed hyperhomocysteinemia along with unfavorable lipid profile, and family history of premature coronary artery disease which increased the suspicion of familial hypercholesterolemia. Besides, the presence of vitamin B12 and folate deficiencies. The elevated serum homocysteine is likely a major risk factor for thromboembolism in this patient. The patient received antithrombotics and vitamin supplementations and gradually improved without any worsening of the stroke's hemorrhagic transformation. We suggest that hyperhomocysteinemia needs to be considered in the differential etiology of vascular events in young people or those with no significant history of major vascular risk factors. Besides, vitamin supplementation could be a cost-effective, safe, and efficient way to decrease elevated serum homocysteine levels and prevent vascular complications. As well as this case report demonstrates that antithrombotics can safely be used after stroke's hemorrhagic transformation without neurological deterioration or aggravation of hemorrhagic transformation.
Collapse
Affiliation(s)
- Sukaina I Rawashdeh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel-Hameed Al-Mistarehi
- Department of Public Health and Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Yassin
- Division of Neurology, Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Walaa Rabab'ah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hussam Skaff
- Department of Diagnostic Radiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasheed Ibdah
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
39
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
40
|
Shah B, Jagtap P, Sarmah D, Datta A, Raut S, Sarkar A, Bohra M, Singh U, Baidya F, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Cerebro-renal interaction and stroke. Eur J Neurosci 2020; 53:1279-1299. [PMID: 32979852 DOI: 10.1111/ejn.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Stroke is an event causing a disturbance in cerebral function leading to death and disability worldwide. Both acute kidney injury and chronic kidney disease (CKD) are associated with an increased risk of stroke and cerebrovascular events. The underlying mechanistic approach between impaired renal function and stroke is limitedly explored and has attracted researchers to learn more for developing therapeutic intervention. Common risk factors such as hypertension, hyperphosphatemia, atrial fibrillation, arteriosclerosis, hyperhomocysteinemia, blood-brain barrier disruption, inflammation, etc. are observed in the general population, but are high in renal failure patients. Also, risk factors like bone mineral metabolism, uremic toxins, and anemia, along with the process of dialysis in CKD patients, eventually increases the risk of stroke. Therefore, early detection of risks associated with stroke in CKD is imperative, which may decrease the mortality associated with it. This review highlights mechanisms by which kidney dysfunction can lead to cerebrovascular events and increase the risk of stroke in renal impairment.
Collapse
Affiliation(s)
- Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| |
Collapse
|
41
|
Rehman T, Shabbir MA, Inam‐Ur‐Raheem M, Manzoor MF, Ahmad N, Liu Z, Ahmad MH, Siddeeg A, Abid M, Aadil RM. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr 2020; 8:4696-4707. [PMID: 32994931 PMCID: PMC7500767 DOI: 10.1002/fsn3.1818] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine and homocysteine (Hcy), both sulfur-containing amino acids (AAs), produced from methionine another sulfur-containing amino acid, which is converted to Hcy and further converted to cysteine. This article aims to highlight the link between cysteine and Hcy, and their mechanisms, important functions, play in the body and their role as a biomarker for various types of diseases. So that using cysteine and Hcy as a biomarker, we can prevent and diagnose many diseases. This review concluded that hyperhomocysteinemia (elevated levels of homocysteine) is considered as toxic for cells and is associated with different health problems. Hyperhomocysteinemia and low levels of cysteine associated with various diseases like cardiovascular diseases (CVD), ischemic stroke, neurological disorders, diabetes, cancer like lung and colorectal cancer, renal dysfunction-linked conditions, and vitiligo.
Collapse
Affiliation(s)
- Tahniat Rehman
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Nazir Ahmad
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Zhi‐Wei Liu
- College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | | | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity GeziraWad MedaniSudan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah Arid Agriculture UniversityRawalpindiPakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
42
|
Gasecka A, Siwik D, Gajewska M, Jaguszewski MJ, Mazurek T, Filipiak KJ, Postuła M, Eyileten C. Early Biomarkers of Neurodegenerative and Neurovascular Disorders in Diabetes. J Clin Med 2020; 9:E2807. [PMID: 32872672 PMCID: PMC7564566 DOI: 10.3390/jcm9092807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a common disease worldwide. There is a strong association between DM and neurovascular and neurodegenerative disorders. The first group mainly consists of diabetic retinopathy, diabetic neuropathy and stroke, whereas, the second group includes Alzheimer's disease, Parkinson's disease, mild cognitive impairment and dementia. The aforementioned diseases have a common pathophysiological background including insulin resistance, oxidative stress, atherosclerosis and vascular injury. The increasing prevalence of neurovascular and neurodegenerative disorders among diabetic patients has resulted in an urgent need to develop biomarkers for their prediction and/or early detection. The aim of this review is to present the potential application of the most promising biomarkers of diabetes-related neurodegenerative and neurovascular disorders, including amylin, β-amyloid, C-reactive protein (CRP), dopamine, gamma-glutamyl transferase (GGT), glycogen synthase kinase 3β, homocysteine, microRNAs (mi-RNAs), paraoxonase 1, phosphoinositide 3-kinases, tau protein and various growth factors. The most clinically promising biomarkers of neurovascular and neurodegenerative complications in DM are hsCRP, GGT, homocysteine and miRNAs. However, all biomarkers discussed in this review could become a part of the potential multi-biomarker screening panel for diabetic patients at risk of neurovascular and neurodegenerative complications.
Collapse
Affiliation(s)
- Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (M.G.); (T.M.); (K.J.F.)
| | - Dominika Siwik
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (M.G.); (T.M.); (K.J.F.)
| | - Magdalena Gajewska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (M.G.); (T.M.); (K.J.F.)
| | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (M.G.); (T.M.); (K.J.F.)
| | - Krzysztof J. Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (M.G.); (T.M.); (K.J.F.)
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, 80-211 Warsaw, Poland; (M.P.); (C.E.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, 80-211 Warsaw, Poland; (M.P.); (C.E.)
| |
Collapse
|
43
|
Jung HY, Kim W, Hahn KR, Kang MS, Kim TH, Kwon HJ, Nam SM, Chung JY, Choi JH, Yoon YS, Kim DW, Yoo DY, Hwang IK. Pyridoxine Deficiency Exacerbates Neuronal Damage after Ischemia by Increasing Oxidative Stress and Reduces Proliferating Cells and Neuroblasts in the Gerbil Hippocampus. Int J Mol Sci 2020; 21:ijms21155551. [PMID: 32759679 PMCID: PMC7432354 DOI: 10.3390/ijms21155551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023] Open
Abstract
We investigated the effects of pyridoxine deficiency on ischemic neuronal death in the hippocampus of gerbil (n = 5 per group). Serum pyridoxal 5′-phosphate levels were significantly decreased in Pyridoxine-deficient diet (PDD)-fed gerbils, while homocysteine levels were significantly increased in sham- and ischemia-operated gerbils. PDD-fed gerbil showed a reduction in neuronal nuclei (NeuN)-immunoreactive neurons in the medial part of the hippocampal CA1 region three days after. Reactive astrocytosis and microgliosis were found in PDD-fed gerbils, and transient ischemia caused the aggregation of activated microglia in the stratum pyramidale three days after ischemia. Lipid peroxidation was prominently increased in the hippocampus and was significantly higher in PDD-fed gerbils than in Control diet (CD)-fed gerbils after ischemia. In contrast, pyridoxine deficiency decreased the proliferating cells and neuroblasts in the dentate gyrus in sham- and ischemia-operated gerbils. Nuclear factor erythroid-2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) levels also significantly decreased in PDD-fed gerbils sham 24 h after ischemia. These results suggest that pyridoxine deficiency accelerates neuronal death by increasing serum homocysteine levels and lipid peroxidation, and by decreasing Nrf2 levels in the hippocampus. Additionally, it reduces the regenerated potentials in hippocampus by decreasing BDNF levels. Collectively, pyridoxine is an essential element in modulating cell death and hippocampal neurogenesis after ischemia.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Tae Hyeong Kim
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (D.Y.Y.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.Y.Y.); (I.K.H.)
| |
Collapse
|
44
|
Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia. Biomolecules 2020; 10:biom10081128. [PMID: 32751764 PMCID: PMC7465067 DOI: 10.3390/biom10081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer's disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Collapse
|
45
|
Qin W, Xie W, Xia M, Zhao RC, Zhang J. Intracranial High-Grade Stenosis and Hyperhomocysteinemia Presenting as Cortical Subarachnoid Hemorrhage Concomitant with Acute Ischemic Stroke in a Young Man. Am J Case Rep 2020; 21:e920606. [PMID: 32579543 PMCID: PMC7327752 DOI: 10.12659/ajcr.920606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cortical subarachnoid hemorrhage (cSAH) is a rare clinical presentation with different causes, but rarely happens along with acute ischemic stroke. Intracranial high-grade stenosis originated from brain has been regarded as an unusual cause of cSAH, especially in young adults. CASE REPORT A case of 33-year-old male presented with mild headache and spontaneous left-sided body weakness. Initial brain computed tomography (CT) showed cSAH in the right superior frontal sulcus. Further neuroimaging examinations including magnetic resonance imaging (MRI), digital subtraction angiography (DSA), transesophageal echocardiogram (TEE); in addition, lumbar puncture and blood tests were performed. Diffusion-weighted imaging (DWI) showed an acute infarction in the right frontal lobe and corona radiata of the territory of middle cerebral artery (MCA). The MR angiography (MRA) displayed no flow signal in the right middle cerebral artery M1-segment, while the DSA displayed bloodstream slowness in the right MCA M1-segment which suggested high-grade stenosis of the right MCA. The abnormal laboratory data suggested hyperhomocysteinemia, and excluded causes of thrombosis, infection, or cancer. The mechanism of cSAH may come about in severe atherosclerotic stenosis of MCAs by the broken of expanded tenuous compensatory pial vessels. The patient had good recovered at follow-up. CONCLUSIONS This case demonstrates cSAH with acute ischemic stroke, which is an uncommon complication, in a young adult stroke patient; a high-grade atherosclerotic stenosis of the MCA was identified as the etiology.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Weizheng Xie
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, China (mainland)
| | - Mingrong Xia
- Department of Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (mainland)
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
46
|
Raut S, Singh U, Sarmah D, Datta A, Baidya F, Shah B, Bohra M, Jagtap P, Sarkar A, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chem Neurosci 2020; 11:1525-1538. [PMID: 32348103 DOI: 10.1021/acschemneuro.0c00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migraine and stroke are common, disabling neurological conditions with several theories being proposed to explain this bidirectional relationship. Migraine is considered as a benign neurological disorder, but research has revealed a connection between migraine and stroke, predominantly those having migraine with aura (MA). Among migraineurs, females with MA are more susceptible to ischemic stroke and may have a migrainous infarction. Migrainous infarction mostly occurs in the posterior circulation of young women. Although there are several theories about the potential relationship between MA and stroke, the precise pathological process of migrainous infarction is not clear. It is assumed that cortical spreading depression (CSD) might be one of the essential factors for migrainous infarction. Other factors that may contribute to migrainous infarction may be genetic, hormonal fluctuation, hypercoagulation, and right to left cardiac shunts. Antimigraine drugs, such as ergot alkaloids and triptans, are widely used in migraine care. Still, they have been found to cause severe vasoconstriction, which may result in the development of ischemia. It is reported that patients with stroke develop migraines during the recovery phase. Both experimental and clinical data suggest that cerebral microembolism can act as a potential trigger for MA. Further studies are warranted for the treatment of migraine, which may lead to a decline in migraine-related stroke. In this present article, we have outlined various potential pathways that link migraine and stroke.
Collapse
Affiliation(s)
- Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
47
|
Abato JE, Moftah M, Cron GO, Smith PD, Jadavji NM. Methylenetetrahydrofolate reductase deficiency alters cellular response after ischemic stroke in male mice. Nutr Neurosci 2020; 25:558-566. [PMID: 32448097 DOI: 10.1080/1028415x.2020.1769412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: Elevated homocysteine concentrations are a risk factor for stroke. A common genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR 677 C→T) results in elevated levels of homocysteine. MTHFR plays a critical role in the synthesis of S-adenosylmethionine (SAM), a global methyl donor. Our previous work has demonstrated that Mthfr+/- mice, which model the MTHFR polymorphism in humans, are more vulnerable to ischemic damage. The aim of this study was to investigate the cellular mechanisms by which the MTHFR-deficiency changes the brain in the context of ischemic stroke injury.Methods: In the present study, three-month-old male Mthfr+/- and wild-type littermate mice were subjected to photothrombosis (PT) damage. Four weeks after PT damage, animals were tested on behavioral tasks, in vivo imaging was performed using T2-weighted MRI, and brain tissue was collected for histological analysis.Results: Mthfr+/- animals used their non-impaired forepaw more to explore the cylinder and had a larger damage volume compared to wild-type littermates. In brain tissue of Mthfr+/- mice methionine adenosyltransferase II alpha (MAT2A) protein levels were decreased within the damage hemisphere and increased levels in hypoxia-induced factor 1 alpha (HIF-1α) in non-damage hemisphere. There was an increased antioxidant response in the damage site as indicated by higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in neurons and astrocytes and neuronal superoxide dismutase 2 (SOD2) levels.Conclusions: Our results suggest that Mthfr+/- mice are more vulnerable to PT-induced stroke damage through the regulation of the cellular response. The increased antioxidant response we observed may be compensatory to the damage amount.
Collapse
Affiliation(s)
- Jamie E Abato
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Mahira Moftah
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Greg O Cron
- Department of Radiology, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medical Imaging, The Ottawa Hospital, Ottawa, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
48
|
Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci 2020; 21:ijms21041421. [PMID: 32093165 PMCID: PMC7073042 DOI: 10.3390/ijms21041421] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Increased plasma homocysteine is a risk factor for several pathological disorders. The present review focused on the role of homocysteine (Hcy) in different population groups, especially in risk conditions (pregnancy, infancy, old age), and on its relevance as a marker or etiological factor of the diseases in these age groups, focusing on the nutritional treatment of elevated Hcy levels. In pregnancy, Hcy levels were investigated in relation to the increased risk of adverse pregnancy outcomes such as small size for gestational age at birth, preeclampsia, recurrent abortions, low birth weight, or intrauterine growth restriction. In pediatric populations, Hcy levels are important not only for cardiovascular disease, obesity, and renal disease, but the most interesting evidence concerns study of elevated levels of Hcy in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Finally, a focus on the principal pathologies of the elderly (cardiovascular and neurodegenerative disease, osteoporosis and physical function) is presented. The metabolism of Hcy is influenced by B vitamins, and Hcy-lowering vitamin treatments have been proposed. However, clinical trials have not reached a consensus about the effectiveness of vitamin supplementation on the reduction of Hcy levels and improvement of pathological condition, especially in elderly patients with overt pathologies, suggesting that other dietary and non-dietary factors are involved in high Hcy levels. The importance of novel experimental designs focusing on intra-individual variability as a complement to the typical case-control experimental designs and the study of interactions between different factors it should be emphasized.
Collapse
|
49
|
Montecinos-Oliva C, Arrázola MS, Jara C, Tapia-Rojas C, Inestrosa NC. Hormetic-Like Effects of L-Homocysteine on Synaptic Structure, Function, and Aβ Aggregation. Pharmaceuticals (Basel) 2020; 13:ph13020024. [PMID: 32024240 PMCID: PMC7168909 DOI: 10.3390/ph13020024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s Disease (AD) is the primary cause of dementia among the elderly population. Elevated plasma levels of homocysteine (HCy), an amino acid derived from methionine metabolism, are considered a risk factor and biomarker of AD and other types of dementia. An increase in HCy is mostly a consequence of high methionine and/or low vitamin B intake in the diet. Here, we studied the effects of physiological and pathophysiological HCy concentrations on oxidative stress, synaptic protein levels, and synaptic activity in mice hippocampal slices. We also studied the in vitro effects of HCy on the aggregation kinetics of Aβ40. We found that physiological cerebrospinal concentrations of HCy (0.5 µM) induce an increase in synaptic proteins, whereas higher doses of HCy (30–100 µM) decrease their levels, thereby increasing oxidative stress and causing excitatory transmission hyperactivity, which are all considered to be neurotoxic effects. We also observed that normal cerebrospinal concentrations of HCy slow the aggregation kinetic of Aβ40, whereas high concentrations accelerate its aggregation. Finally, we studied the effects of HCy and HCy + Aβ42 over long-term potentiation. Altogether, by studying an ample range of effects under different HCy concentrations, we report, for the first time, that HCy can exert beneficial or toxic effects over neurons, evidencing a hormetic-like effect. Therefore, we further encourage the use of HCy as a biomarker and modifiable risk factor with therapeutic use against AD and other types of dementia.
Collapse
Affiliation(s)
- Carla Montecinos-Oliva
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena S Arrázola
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510156, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| |
Collapse
|
50
|
Renczés E, Marônek M, Gaál Kovalčíková A, Vavrincová-Yaghi D, Tóthová L, Hodosy J. Behavioral Changes During Development of Chronic Kidney Disease in Rats. Front Med (Lausanne) 2020; 6:311. [PMID: 31998731 PMCID: PMC6962109 DOI: 10.3389/fmed.2019.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023] Open
Abstract
Decreased renal function due to chronic kidney disease (CKD) is associated with anxiety and cognitive decline. Although these mental disorders are often obvious in late stage renal disease patients, they might be unnoticeable or are neglected in early stages of the CKD development. Associations between renal and cognitive dysfunction have been indicated by studies performed mainly in patients undergoing dialysis, which itself represents a stress and decreased quality of life. However, experimental and causal studies are scarce. Our aim was to investigate dynamic changes in behavioral traits during the progression of CKD in an animal model. Thirty 12-week old male rats were used in this experiment. CKD was induced by a subtotal (5/6) nephrectomy. Two, 4, and 6 months after surgical induction of CKD, the open field, the light-dark box and the novel object recognition tests were conducted to assess the locomotor activity, anxiety-like behavior and the memory function of rats. Blood urea nitrogen (BUN), plasma concentration of creatinine (CREAT), albumin to creatinine ratio in urine (ACR) along with the renal histology were assessed to monitor the development and severity of CKD. In comparison to control rats, 5/6 nephrectomized rats had by 46–66% higher concentration of BUN during the whole follow-up period, as well as by 52% and by 167% higher CREAT and ACR, respectively, 6 months after surgery. Although the effect of time was observed in some behavioral parameters, nephrectomy did not significantly influence either locomotor activity, or anxiety-like behavior, or memory function of animals. Two and 4 months after surgery, animals moved shorter distance and spent less time in the center zone. However, the open-field ambulation returned back to the baseline level 6 months after CKD induction. Although nephrectomized rats displayed impaired kidney function as early as 2 months after surgery, no significant differences were found between the CKD and the control rats in any of the observed behaviors. Further studies are needed in order to evaluate whether behavioral abnormalities are related to severity of CKD or might be attributed to psychosocial aspect of end-stage renal disease and decreased quality of life in dialysis patients.
Collapse
Affiliation(s)
- Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Marônek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Paediatrics, National Institute of Children's Diseases and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Diana Vavrincová-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - L'ubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Phsysiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|