1
|
Pham VM. Targeting PI3K/AKT and MEK/ERK pathways for synergic effects on improving features of peripheral diabetic neuropathy. J Diabetes Investig 2024; 15:1537-1544. [PMID: 39162579 PMCID: PMC11527830 DOI: 10.1111/jdi.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Diabetic neuropathy is one of the most serious and common complications of diabetes with a wide spectrum, affecting 30-50% of diabetic patients. However, the current treatments of this disorder, mainly based on controlling blood glucose level, show an inadequate clinical outcome. Better approaches are needed. In this fashion, it is noted that promoting nerve regeneration and preventing nerve degeneration should be focused on equally and appropriately. In this mini review, how more effective approaches are in targeting PI3K/AKT and MEK/ERK pathways in the treatment of peripheral diabetic neuropathy is discussed. Future treatment of peripheral diabetic neuropathy should consider these approaches.
Collapse
Affiliation(s)
- Vuong M. Pham
- Faculty of Biology and EnvironmentHo Chi Minh City University of Industry and TradeHo Chi Minh CityVietnam
| |
Collapse
|
2
|
Dong Q, Xi Y, Brandmaier S, Fuchs M, Huemer MT, Waldenberger M, Niu J, Herder C, Rathmann W, Roden M, Koenig W, Bönhof GJ, Gieger C, Thorand B, Peters A, Rospleszcz S, Grallert H. Subphenotypes of adult-onset diabetes: Data-driven clustering in the population-based KORA cohort. Diabetes Obes Metab 2024. [PMID: 39466719 DOI: 10.1111/dom.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
AIMS A data-driven cluster analysis in a cohort of European individuals with type 2 diabetes (T2D) has previously identified four subgroups based on clinical characteristics. In the current study, we performed a comprehensive statistical assessment to (1) replicate the above-mentioned original clusters; (2) derive de novo T2D subphenotypes in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) cohort and (3) describe underlying genetic risk and diabetes complications. METHODS We used data from n = 301 individuals with T2D from KORA FF4 study (Southern Germany). Original cluster replication was assessed forcing k = 4 clusters using three different hyperparameter combinations. De novo clusters were derived by open k-means analysis. Stability of de novo clusters was assessed by assignment congruence over different variable sets and Jaccard indices. Distribution of polygenic risk scores and diabetes complications in the respective clusters were described as an indication of underlying heterogeneity. RESULTS Original clusters did not replicate well, indicated by substantially different assignment frequencies and cluster characteristics between the original and current sample. De novo clustering using k = 3 clusters and including high sensitivity C-reactive protein in the variable set showed high stability (all Jaccard indices >0.75). The three de novo clusters (n = 96, n = 172, n = 33, respectively) adequately captured heterogeneity within the sample and showed different distributions of polygenic risk scores and diabetes complications, that is, cluster 1 was characterized by insulin resistance with high neuropathy prevalence, cluster 2 was defined as age-related diabetes and cluster 3 showed highest risk of genetic and obesity-related diabetes. CONCLUSION T2D subphenotyping based on its sample's own clinical characteristics leads to stable categorization and adequately reflects T2D heterogeneity.
Collapse
Affiliation(s)
- Qiuling Dong
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Pettenkofer School of Public Health, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Yue Xi
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Pettenkofer School of Public Health, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markéta Fuchs
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, Munich, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Gidon J Bönhof
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, Munich, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, Munich, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University München, Munich, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
3
|
Eid SA, Elzinga SE, Guo K, Hinder LM, Hayes JM, Pacut CM, Koubek EJ, Hur J, Feldman EL. Transcriptomic profiling of sciatic nerves and dorsal root ganglia reveals site-specific effects of prediabetic neuropathy. Transl Res 2024; 270:24-41. [PMID: 38556110 PMCID: PMC11166517 DOI: 10.1016/j.trsl.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Crystal M. Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
6
|
Lee D, Yoon E, Ham SJ, Lee K, Jang H, Woo D, Lee DH, Kim S, Choi S, Chung J. Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila. Nat Commun 2024; 15:468. [PMID: 38212312 PMCID: PMC10784524 DOI: 10.1038/s41467-024-44747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila. Furthermore, loss of UCHL1 induces DSN-like phenotypes, including numbness to external noxious stimuli and axonal degeneration of sensory neurons in flies' legs. Conversely, UCHL1 overexpression improves DSN-like defects of T2D model flies. UCHL1 governs insulin signaling by deubiquitinating insulin receptor substrate 1 (IRS1) and antagonizes an E3 ligase of IRS1, Cullin 1 (CUL1). Consistent with these results, genetic and pharmacological suppression of CUL1 activity rescues T2D- and DSN-associated phenotypes. Therefore, our findings suggest a complete set of genetic factors explaining T2D and DSN, together with potential remedies for the diseases.
Collapse
Affiliation(s)
- Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunju Yoon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunwoo Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Daihn Woo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyeon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sekyu Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
9
|
Kim B, Kang Y, Mendelson FE, Hayes JM, Savelieff MG, Nagrath S, Feldman EL. Palmitate and glucose increase amyloid precursor protein in extracellular vesicles: Missing link between metabolic syndrome and Alzheimer's disease. J Extracell Vesicles 2023; 12:e12340. [PMID: 37898562 PMCID: PMC10613125 DOI: 10.1002/jev2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 10/30/2023] Open
Abstract
The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Faye E. Mendelson
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Estrada JA, Hotta N, Kim HK, Ishizawa R, Fukazawa A, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Blockade of endogenous insulin receptor signaling in the nucleus tractus solitarius potentiates exercise pressor reflex function in healthy male rats. FASEB J 2023; 37:e23141. [PMID: 37566482 PMCID: PMC10430879 DOI: 10.1096/fj.202300879rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 μM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.
Collapse
Affiliation(s)
- Juan A. Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Han-Kyul Kim
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rie Ishizawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Rasmussen VF, Thrysøe M, Nyengaard JR, Tankisi H, Karlsson P, Hansen J, Krogh K, Brock C, Kamperis K, Madsen M, Singer W, Vestergaard ET, Kristensen K, Terkelsen AJ. Neuropathy in adolescents with type 1 diabetes: Confirmatory diagnostic tests, bedside tests, and risk factors. Diabetes Res Clin Pract 2023; 201:110736. [PMID: 37276985 DOI: 10.1016/j.diabres.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
AIMS To estimate the prevalence of large fiber (LFN), small fiber (SFN), and autonomic neuropathy in adolescents with type 1 diabetes using confirmatory tests known from adults and to identify risk factors and bedside methods for neuropathy. METHODS Sixty adolescents with type 1 diabetes (diabetes duration > five years) and 23 control subjects underwent neurological examination and confirmatory diagnostic tests for neuropathy, including nerve conduction studies, skin biopsies determining intraepidermal nerve fiber density, quantitative sudomotor axon reflex test (QSART), cardiovascular reflex tests (CARTs), and tilt table test. Possible risk factors were analyzed. Bedside tests (biothesiometry, DPNCheck®, Sudoscan, and Vagus®device) were compared with the confirmatory tests using ROC analysis. RESULTS The prevalence of neuropathies in the adolescents with diabetes (mean HbA1c 7.6% (60 mmol/mol)) was as follows: 14% confirmed/26% subclinical LFN, 2% confirmed/25% subclinical SFN, 20% abnormal QSART, 8% abnormal CARTs, and 14% orthostatic hypotension. Higher age, higher insulin dose, previous smoking, and higher triglycerides level were found to increase the relative risk for neuropathy. The bedside tests showed poor to acceptable concordance with the confirmatory tests (all, AUC ≤ 0.75). CONCLUSIONS The diagnostic tests confirmed the presence of neuropathy in adolescents with diabetes and underscore the importance of prevention and screening.
Collapse
Affiliation(s)
- Vinni Faber Rasmussen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark; Department of Pediatrics and Adolescent Medicine, Randers Regional Hospital, Randers, Denmark.
| | - Mathilde Thrysøe
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark; Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hatice Tankisi
- Department of Neurophysiology, Department of Clinical Medicine, Aarhus University, Denmark
| | - Páll Karlsson
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - John Hansen
- Institute of Health Science and Technology, Aalborg University, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Christina Brock
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Konstantinos Kamperis
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Denmark
| | - Mette Madsen
- Department of Pediatric and Adolescent Medicine, Aalborg University Hospital, Denmark; Steno Diabetes Center North Denmark, Aalborg, Denmark
| | | | - Esben Thyssen Vestergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark; Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Denmark
| | - Kurt Kristensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Astrid Juhl Terkelsen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
14
|
Wang Y, Lopez-Bellido R, Huo X, Kavelaars A, Galko MJ. The insulin receptor regulates the persistence of mechanical nociceptive sensitization in flies and mice. Biol Open 2023; 12:bio059864. [PMID: 37259940 PMCID: PMC10245137 DOI: 10.1242/bio.059864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
Early phase diabetes is often accompanied by pain sensitization. In Drosophila, the insulin receptor (InR) regulates the persistence of injury-induced thermal nociceptive sensitization. Whether Drosophila InR also regulates the persistence of mechanical nociceptive sensitization remains unclear. Mice with a sensory neuron deletion of the insulin receptor (Insr) show normal nociceptive baselines; however, it is uncertain whether deletion of Insr in nociceptive sensory neurons leads to persistent nociceptive hypersensitivity. In this study, we used fly and mouse nociceptive sensitization models to address these questions. In flies, InR mutants and larvae with sensory neuron-specific expression of RNAi transgenes targeting InR exhibited persistent mechanical hypersensitivity. Mice with a specific deletion of the Insr gene in Nav1.8+ nociceptive sensory neurons showed nociceptive thermal and mechanical baselines similar to controls. In an inflammatory paradigm, however, these mutant mice showed persistent mechanical (but not thermal) hypersensitivity, particularly in female mice. Mice with the Nav1.8+ sensory neuron-specific deletion of Insr did not show metabolic abnormalities typical of a defect in systemic insulin signaling. Our results show that some aspects of the regulation of nociceptive hypersensitivity by the insulin receptor are shared between flies and mice and that this regulation is likely independent of metabolic effects.
Collapse
Affiliation(s)
- Yan Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roger Lopez-Bellido
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaojiao Huo
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Genetics & Epigenetics Graduate Program, The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Association of Non-Dipping Blood Pressure Patterns with Diabetic Peripheral Neuropathy: A Cross-Sectional Study among a Population with Diabetes in Greece. Nutrients 2022; 15:nu15010072. [PMID: 36615728 PMCID: PMC9824387 DOI: 10.3390/nu15010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is present in 20-50% of cases with diabetes. The pathophysiology of DPN is not yet clear regarding hypertension (HTN). The aim of this study was to assess the association between the stages of DPN and HTN in a Greek population with diabetes. We examined 102 adults for diabetic neuropathy (DPN) from November 2020 to December 2021, using the Toronto Clinical Neuropathy Scale System (TCNSS) to categorize them into two groups (no/mild DPN versus medium/severe DPN). Ambulatory blood pressure monitoring was performed to evaluate their hypertensive status. Univariate and multivariate logistic regression analyses were performed to assess the association between the stage of DPN and HTN. The multivariate analysis, considering sex, age, and dipping status, did not show statistically significant associations between stages of HTN and DPN. However, in contrast to dippers, non-dippers had an almost four-times higher risk of developing medium-to-severe DPN (odds ratio (OR) 3.93; 95% confidence interval (CI) [1.33-11.64]); females, in contrast to males, had a 65% lower risk of developing moderate/severe DPN (OR 0.35; 95%CI [0.14-0.92]). In conclusion, our findings showed no statistically significant associations between DPN and HTN; however, dipping status, hyperglycemia, and female sex were shown to play a role in the pathophysiology of DPN.
Collapse
|
17
|
Clinical Utility of Boston-CTS and Six-Item CTS Questionnaires in Carpal Tunnel Syndrome Associated with Diabetic Polyneuropathy. Diagnostics (Basel) 2022; 13:diagnostics13010004. [PMID: 36611296 PMCID: PMC9818529 DOI: 10.3390/diagnostics13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent complication of diabetes. Carpal tunnel syndrome (CTS), one of the most common neuropathies, is a chronic compression of the median nerve at the wrist. In our prospective cross-sectional study, we enrolled patients with type 2 diabetes presenting with signs and symptoms suggestive of DPN (n = 53). We aimed to compare two clinical scales: the Boston Carpal Tunnel Syndrome Questionnaire (BCTQ) and the six-item CTS symptoms scale (CTS-6), with nerve conduction studies (NCS) for detecting CTS in patients with DPN. Carpal tunnel syndrome and DPN were clinically evaluated, and the diagnosis was confirmed by NCS. Depending on the NCS parameters, the study group was divided into patients with and without DPN. For each group, we selected patients with CTS confirmed through NCS, and the results were compared with the BCTQ and CTS-6 scales. The clinical evaluation of CTS performed through BCTQ and CTS-6 was statistically significantly different between patients with and without CTS. When comparing the BCTQ questionnaire with the NCS tests, we found area under the curve (AUC) = 0.76 (95% CI 0.65-0.86) in patients with neuropathy and AUC = 0.72 (95% CI 0.55-0.88) in patients without neuropathy. At the same time, the AUC values of the CTS-6 scale were 0.76 (95% CI 0.61-0.88) in patients with neuropathy and 0.70 (95% CI 0.51-0.86) in patients without neuropathy. Using multiple logistic regression, we demonstrated that DPN increased the chances of detecting CTS using the two questionnaires. The Boston Carpal Tunnel Syndrome and CTS-6 questionnaires can be used in the diagnosis of CTS in diabetic patients with and without DPN but with moderate AUC. The presence of DPN increased the chances of detecting CTS using the BCTQ questionnaire and the CTS-6 scale.
Collapse
|
18
|
Qureshi S, Ali G, Muhammad T, Idrees M, Ullah S, Ali Khan S, Ullah R, Khan R, Ul-Haq Z, Haseeb Mohsin A, Kong IK. Thiadiazine-thione derivatives ameliorate STZ-induced diabetic neuropathy by regulating insulin and neuroinflammatory signaling. Int Immunopharmacol 2022; 113:109421. [PMID: 36403520 DOI: 10.1016/j.intimp.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Diabetes Mellitus is accompanied by chronic hyperglycemia, inflammation, and related molecular processes, which leads to diabetic neuropathy. In this work, we tested Thiadiazine-thione (TDT) synthetic derivatives TDT1 and TDT2 against streptozotocin (STZ)-induced diabetic neuropathy. Sprague Dawley's rats, SH-SY5Y neuronal and BV2 microglial cells were employed in this work, followed by behavioral, biochemical, and morphological studies utilizing RT-qPCR, ELISA, Immunoblotting, immunohistochemistry, Immunofluorescence, and in silico analyses. TDT1 and TDT2 abolished STZ-induced allodynia and hyperalgesia. Next, we examined IRS1/PI3K/AKT signaling to assess TDT1 and TDT2's impact on diabetic neuropathy. STZ downregulated IRS1, PI3K, AKT mRNA and protein expression in rat spinal cord and SH-SY5Y neuronal cells. TDT1 and TDT2 improved IRS1, PI3k, and AKT mRNA and protein expression. STZ elevated GSK3β mRNA and protein expression in vivo and in vitro, whereas TDT1 and TDT2 mitigated it. STZ increased the expression of inflammatory mediators such as p-NF-κB, TNF-α, and COX-2 in rat spinal cord lysates. TDT1 and TDT2 co-treatment with STZ decreased inflammatory cytokine expression by ameliorating astrocytosis (revealed by increased GFAP) and microgliosis (indicated by increased Iba1). TDT1 and TDT2 reduced STZ-induced JNK, Iba1, and COX-2 upregulation in BV2 microglial cells validating our in vivo findings. In silico molecular docking and MD simulations analyses suggested that TDT1 and TDT2 have IRS binding affinity, however, both compounds had an identical binding affinity, but distinct interaction pattern with IRS protein residues. Overall, these findings demonstrate that TDT derivatives mitigated STZ-induced neuropathy through modulating the insulin and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Sonia Qureshi
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan; Krembil Research Institute, University Health Network, M5G 1L7, Toronto, Ontario, Canada
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA
| | - Salman Ali Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Rasool Khan
- Institute of chemical sciences, University of Peshawar, Peshawar, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Institute of chemical sciences, University of Peshawar, Peshawar, Pakistan
| | | | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; The Kingkong Co. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| |
Collapse
|
19
|
Vesicular nucleotide transporter is a molecular target of eicosapentaenoic acid for neuropathic and inflammatory pain treatment. Proc Natl Acad Sci U S A 2022; 119:e2122158119. [PMID: 35858418 PMCID: PMC9335333 DOI: 10.1073/pnas.2122158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.
Collapse
|
20
|
Pham VM, Thakor N. Insulin enhances neurite extension and myelination of diabetic neuropathy neurons. Korean J Pain 2022; 35:160-172. [PMID: 35354679 PMCID: PMC8977202 DOI: 10.3344/kjp.2022.35.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.
Collapse
Affiliation(s)
- Vuong M Pham
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biotechnology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Nitish Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Hori A, Hotta N, Fukazawa A, Estrada JA, Katanosaka K, Mizumura K, Sato J, Ishizawa R, Kim HK, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Insulin potentiates the response to capsaicin in dorsal root ganglion neurons in vitro and muscle afferents ex vivo in normal healthy rodents. J Physiol 2022; 600:531-545. [PMID: 34967443 PMCID: PMC8810710 DOI: 10.1113/jp282740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.
Collapse
Affiliation(s)
- Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Ayumi Fukazawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan A. Estrada
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimiaki Katanosaka
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Jun Sato
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Steinhauff D, Jensen MM, Griswold E, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics 2022; 14:pharmaceutics14010175. [PMID: 35057068 PMCID: PMC8777937 DOI: 10.3390/pharmaceutics14010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Semisynthetic glycosaminoglycan ethers (SAGEs) are short, sulfated hyaluronans which combine the natural properties of hyaluronan with chemical sulfation. In a murine model, SAGEs provide protection against radiation induced proctitis (RIP), a side effect of lower abdominal radiotherapy for cancer. The anti-inflammatory effects of SAGE have been studied in inflammatory diseases at mucosal barrier sites; however, few mechanisms have been uncovered necessitating high throughput methods. SAGEs were combined with silk-elastinlike polymers (SELPs) to enhance rectal accumulation in mice. After high radiation exposure to the lower abdominal area, mice were followed for 3 days or until they met humane endpoints, before evaluation of behavioral pain responses and histological assessment of rectal inflammation. RNA sequencing was conducted on tissues from the 3-day cohort to determine molecular mechanisms of SAGE–SELP. After 3 days, mice receiving the SAGE–SELP combination yielded significantly lowered pain responses and amelioration of radiation-induced rectal inflammation. Mice receiving the drug–polymer combination survived 60% longer than other irradiated mice, with a fraction exhibiting long term survival. Sequencing reveals varied regulation of toll like receptors, antioxidant activities, T-cell signaling, and pathways associated with pain. This investigation elucidates several molecular mechanisms of SAGEs and exhibits promising measures for prevention of RIP.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Martin Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
| | - Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
| | - Siam Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
- Correspondence:
| |
Collapse
|
23
|
Dabbara H, Schultz A, Im SH. Drosophila insulin receptor regulates diabetes-induced mechanical nociceptive hypersensitivity. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34549177 PMCID: PMC8449261 DOI: 10.17912/micropub.biology.000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Painful diabetic neuropathy (PDN) is one of the predominant complications of diabetes that causes numbness, tingling, and extreme pain sensitivity. Understanding the mechanisms of PDN pathogenesis is important for patient treatments. Here we report Drosophila models of diabetes-induced mechanical nociceptive hypersensitivity. Type 2 diabetes-like conditions and loss of insulin receptor function in multidendritic sensory neurons lead to mechanical nociceptive hypersensitivity. Furthermore, we also found that restoring insulin signaling in multidendritic sensory neurons can block diabetes-induced mechanical nociceptive hypersensitivity. Our work highlights the critical role of insulin signaling in nociceptive sensory neurons in the regulation of diabetes-induced nociceptive hypersensitivities.
Collapse
Affiliation(s)
| | | | - Seol Hee Im
- Department of Biology, Haverford College, Haverford, PA
| |
Collapse
|
24
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
25
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
26
|
Saiki T, Nakamura N, Miyabe M, Ito M, Minato T, Sango K, Matsubara T, Naruse K. The Effects of Insulin on Immortalized Rat Schwann Cells, IFRS1. Int J Mol Sci 2021; 22:ijms22115505. [PMID: 34071138 PMCID: PMC8197103 DOI: 10.3390/ijms22115505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Schwann cells play an important role in peripheral nerve function, and their dysfunction has been implicated in the pathogenesis of diabetic neuropathy and other demyelinating diseases. The physiological functions of insulin in Schwann cells remain unclear and therefore define the aim of this study. By using immortalized adult Fischer rat Schwann cells (IFRS1), we investigated the mechanism of the stimulating effects of insulin on the cell proliferation and expression of myelin proteins (myelin protein zero (MPZ) and myelin basic protein (MBP). The application of insulin to IFRS1 cells increased the proliferative activity and induced phosphorylation of Akt and ERK, but not P38-MAPK. The proliferative potential of insulin-stimulated IFRS1 was significantly suppressed by the addition of LY294002, a PI3 kinase inhibitor. The insulin-stimulated increase in MPZ expression was significantly suppressed by the addition of PD98059, a MEK inhibitor. Furthermore, insulin-increased MBP expression was significantly suppressed by the addition of LY294002. These findings suggest that both PI3-K/Akt and ERK/MEK pathways are involved in insulin-induced cell growth and upregulation of MPZ and MBP in IFRS1 Schwann cells.
Collapse
Affiliation(s)
- Tomokazu Saiki
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya 464-8651, Japan;
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
- Correspondence: ; Tel.: +81-52-759-2111; Fax: +81-52-759-2168
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Mizuho Ito
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Tomomi Minato
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, Nagoya 464-8651, Japan;
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; (M.M.); (M.I.); (T.M.); (K.N.)
| |
Collapse
|
27
|
Khasabova IA, Seybold VS, Simone DA. The role of PPARγ in chemotherapy-evoked pain. Neurosci Lett 2021; 753:135845. [PMID: 33774149 PMCID: PMC8089062 DOI: 10.1016/j.neulet.2021.135845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers. Chemotherapy-induced peripheral neuropathy (CIPN) can affect all nerve fibers, but sensory neuropathies are the most common, initially affecting the distal extremities. Symptoms include impaired tactile sensitivity, tingling, numbness, paraesthesia, dysesthesia, and pain. Since neuropathic pain is difficult to manage, and because degenerated nerve fibers may not grow back and regain normal function, considerable research has focused on understanding how chemotherapy causes painful CIPN so it can be prevented. Due to the fact that both therapeutic and side effects of chemotherapy are primarily associated with the accumulation of reactive oxygen species (ROS) and oxidative stress, this review focuses on the activation of endogenous antioxidant pathways, especially PPARγ, in order to prevent the development of CIPN and associated pain. The use of synthetic and natural PPARγ agonists to prevent CIPN is discussed.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Virginia S Seybold
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States.
| |
Collapse
|
28
|
Elzinga SE, Savelieff MG, O'Brien PD, Mendelson FE, Hayes JM, Feldman EL. Sex differences in insulin resistance, but not peripheral neuropathy, in a diet-induced prediabetes mouse model. Dis Model Mech 2021; 14:dmm048909. [PMID: 33692086 PMCID: PMC8077554 DOI: 10.1242/dmm.048909] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillipe D. O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Breton JM, Long KLP, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021; 11:290. [PMID: 33669242 PMCID: PMC7919830 DOI: 10.3390/biom11020290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in myelin, the protective and insulating sheath surrounding axons, affect brain function, as is evident in demyelinating diseases where the loss of myelin leads to cognitive and motor dysfunction. Recent evidence suggests that changes in myelination, including both hyper- and hypo-myelination, may also play a role in numerous neurological and psychiatric diseases. Protecting myelin and promoting remyelination is thus crucial for a wide range of disorders. Oligodendrocytes (OLs) are the cells that generate myelin, and oligodendrogenesis, the creation of new OLs, continues throughout life and is necessary for myelin plasticity and remyelination. Understanding the regulation of oligodendrogenesis and myelin plasticity within disease contexts is, therefore, critical for the development of novel therapeutic targets. In our companion manuscript, we review literature demonstrating that multiple hormone classes are involved in the regulation of oligodendrogenesis under physiological conditions. The majority of hormones enhance oligodendrogenesis, increasing oligodendrocyte precursor cell differentiation and inducing maturation and myelin production in OLs. Thus, hormonal treatments present a promising route to promote remyelination. Here, we review the literature on hormonal regulation of oligodendrogenesis within the context of disorders. We focus on steroid hormones, including glucocorticoids and sex hormones, peptide hormones such as insulin-like growth factor 1, and thyroid hormones. For each hormone, we describe whether they aid in OL survival, differentiation, or remyelination, and we discuss their mechanisms of action, if known. Several of these hormones have yielded promising results in both animal models and in human conditions; however, a better understanding of hormonal effects, interactions, and their mechanisms will ultimately lead to more targeted therapeutics for myelin repair.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthew K Barraza
- Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Olga S Perloff
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
30
|
Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement Ther Clin Pract 2021; 43:101317. [PMID: 33517103 DOI: 10.1016/j.ctcp.2021.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM This randomized study aimed to evaluate the effect of green tea extract (GTE) intake on clinical and neurophysiological parameters in patients with mild-to-moderate diabetic peripheral neuropathy (DPN). PATIENTS AND METHODS The present study included 194 patients with DPN. Patients were randomized into two treatment arms: GTE (n = 96) and placebo (n = 98) arms who received allocated treatment for 16 weeks. Symptoms of DPN were assessed using Toronto Clinical Scoring System (TCSS). Sensorineural pain was assessed using visual analog scale (VAS). Neural dysfunction was evaluated using the vibration perception thresholds (VPT). Assessments were made at baseline and after 4, 8, and 16 weeks of starting treatment. RESULTS At baseline and after 4 weeks of treatment, VAS, TCSS and VPT were comparable in the studied groups. However, after 8 weeks of treatment, patients in GTE group expressed lower VAS scores, significantly lower TCSS scores and significantly lower VPT. As treatment continued, the differences between groups regarding the outcome parameters became more evident at 16 weeks. CONCLUSIONS GTE intake may have a beneficial value in treatment of DPN.
Collapse
|
31
|
Spallone V, Ciccacci C, Latini A, Borgiani P. What Is in the Field for Genetics and Epigenetics of Diabetic Neuropathy: The Role of MicroRNAs. J Diabetes Res 2021; 2021:5593608. [PMID: 34660810 PMCID: PMC8514969 DOI: 10.1155/2021/5593608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high prevalence of diabetic neuropathy, its early start, and its impact on quality of life and mortality, unresolved clinical issues persist in the field regarding its screening implementation, the understanding of its mechanisms, and the search for valid biomarkers, as well as disease-modifying treatment. Genetics may address these needs by providing genetic biomarkers of susceptibility, giving insights into pathogenesis, and shedding light on how to select possible responders to treatment. After a brief summary of recent studies on the genetics of diabetic neuropathy, the current review focused mainly on microRNAs (miRNAs), including the authors' results in this field. It summarized the findings of animal and human studies that associate miRNAs with diabetic neuropathy and explored the possible pathogenetic meanings of these associations, in particular regarding miR-128a, miR-155a, and miR-499a, as well as their application for diabetic neuropathy screening. Moreover, from a genetic perspective, it examined new findings of polymorphisms of miRNA genes in diabetic neuropathy. It considered in more depth the pathogenetic implications for diabetic neuropathy of the polymorphism of MIR499A and the related changes in the downstream action of miR-499a, showing how epigenetic and genetic studies may provide insight into pathogenetic mechanisms like mitochondrial dysfunction. Finally, the concept and the data of genotype-phenotype association for polymorphism of miRNA genes were described. In conclusion, although at a very preliminary stage, the findings linking the genetics and epigenetics of miRNAs might contribute to the identification of exploratory risk biomarkers, a comprehensive definition of susceptibility to specific pathogenetic mechanisms, and the development of mechanism-based treatment of diabetic neuropathy, thus addressing the goals of genetic studies.
Collapse
Affiliation(s)
- V. Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - C. Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - A. Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - P. Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Lee KA, Park TS, Jin HY. Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy. Endocrine 2020; 70:465-478. [PMID: 32895875 DOI: 10.1007/s12020-020-02473-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
In this review, we consider the diverse risk factors in diabetes patients beyond hyperglycemia that are being recognized as contributors to diabetic peripheral neuropathy (DPN). Interest in such alternative mechanisms has been encouraged by the recognition that neuropathy occurs in subjects with metabolic syndrome and pre-diabetes and by the reporting of several large clinical studies that failed to show reduced prevalence of neuropathy after intensive glucose control in patients with type 2 diabetes. Animal models of obesity, dyslipidemia, hypertension, and other disorders common to both pre-diabetes and diabetes have been used to highlight a number of plausible pathogenic mechanisms that may either damage the nerve independent of hyperglycemia or augment the toxic potential of hyperglycemia. While pathogenic mechanisms stemming from hyperglycemia are likely to be significant contributors to DPN, future therapeutic strategies will require a more nuanced approach that considers a range of concurrent insults derived from the complex pathophysiology of diabetes beyond direct hyperglycemia.
Collapse
Affiliation(s)
- Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea
| | - Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea.
| |
Collapse
|
33
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
34
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
35
|
Akintoye OO, Owoyele BV, Fabunmi OA, Raimi TH, Oniyide AA, Akintoye AO, Ajibare AJ, Ajayi DD, Adeleye GS. Diabetic neuropathy is associated with increased pain perception, low serum beta-endorphin and increase insulin resistance among Nigerian cohorts in Ekiti State. Heliyon 2020; 6:e04377. [PMID: 32685721 PMCID: PMC7358268 DOI: 10.1016/j.heliyon.2020.e04377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION There has been an increase in the global prevalence of diabetic polyneuropathy and research evidence suggests that insulin resistance plays an important role in its development and prognosis. However, there seem to be a dearth of information in understanding the likely interplay between beta endorphin, insulin resistance and pain perception especially in the setting of painful diabetic neuropathy. METHOD This study recruited 120 volunteers divided into four groups (30 per group): group 1 healthy volunteer (control); group 2 DM type 2 without neuropathy (DM group); group 3 DM type 2 with painful neuropathy (DPN group); group 4 DM type 2 without painful neuropathy (DN). All subjects were evaluated for pain threshold and neuropathy using an ischemia-induced pain model and biothesiometer respectively. Their beta-endorphin, glycated hemoglobin, fasting plasma insulin, and HOMA values were determined and means compared using ANOVA. RESULT Serum beta-endorphin is significantly reduced in DN and DPN (∗p < 0.001) compared with the control and DM group. Also, DPN and DN patients have significantly increased insulin resistance compared to those without neuropathy (∗p < 0.001; ∗p < 0.0001 respectively). There is a significant positive correlation between the pain threshold and beta-endorphin in all the groups except DN group. The correlation between beta-endorphin and insulin resistance was negative and significant in control and DM groups only. Suggestive that the fact that insulin resistance plays an important role in diabetes polyneuropathy, does not alone explain the chronic pain perception noticed in the DPN patients. CONCLUSION The present study demonstrates that diabetic neuropathy patients have a poor endogenous opioid peptide system which is associated with increased pain perception and high insulin resistance. However, insulin resistance alone does not explain the chronic pain perception noticed in the DPN patients. Thus, further study is required.
Collapse
Affiliation(s)
- Olabode O. Akintoye
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Bamidele V. Owoyele
- Physiology Department, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Oyesanmi A. Fabunmi
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Taiwo H. Raimi
- Department of Medicine, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Adesola A. Oniyide
- Physiology Department, College of Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Abimbola O. Akintoye
- Department of Medicine, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Ayodeji J. Ajibare
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - David D. Ajayi
- Department of Chemical Pathology, Ekiti State University Teaching Hospital, Ado Ekiti, Nigeria
| | - Gbenga S. Adeleye
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
36
|
Ciccacci C, Latini A, Colantuono A, Politi C, D'Amato C, Greco C, Rinaldi ME, Lauro D, Novelli G, Spallone V, Borgiani P. Expression study of candidate miRNAs and evaluation of their potential use as biomarkers of diabetic neuropathy. Epigenomics 2020; 12:575-585. [PMID: 32400192 DOI: 10.2217/epi-2019-0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To evaluate the expression of candidate miRNAs in relation to diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN). Materials & methods: The expression of six candidate miRNAs has been evaluated in 49 Type 2 diabetes patients with neurological evaluation. Results: A higher expression of miR-128a was seen in patients with DPN compared with those without DPN (p = 0.015). miR-155 and miR-499a seemed to be down-expressed in patients with DPN (p = 0.04 and p = 0.05, respectively). A lower expression of miR-155 (p = 0.05) was observed even in patients with CAN with respect to CAN-negative. A higher expression of miR-155 was associated with the rs767649 polymorphism variant allele compared with the wild-type allele (p = 0.03). Conclusion: miR-128a, miR-155 and miR-499a might be involved in diabetic neuropathies development.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy.,Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Colantuono
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Politi
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Maria Elena Rinaldi
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
El-Shafey ES, Elsherbiny ES. The role of apoptosis and autophagy in the insulin-enhancing activity of oxovanadium(IV) bipyridine complex in streptozotocin-induced diabetic mice. Biometals 2020; 33:123-135. [PMID: 32318895 DOI: 10.1007/s10534-020-00237-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
Metal-based therapies (e.g. Vanadium) possess an attractive proposition in medicinal treatment of diabetes mellitus. Defective insulin secretion can result from impaired β-cell function which is mediated by many process including apoptosis and autophagy. In this study. diabetes was induced by administration of streptozotocin then treatment was performed by vanadyl sulfate and [VO(bpy)2 Cl] Cl.H2O complex. Blood glucose level, AST, ALT, BUN, CR, TCHO, TG and total protein were determined in serum. MDA, NO, erythrocyte GSH and SOD were estimated. LC3 and Caspase 3 levels in pancreatic cells were assessed by flow cytometer. Histopathological investigation of pancreatic tissue was performed. Results of Diabetic group showed a significant increase in transaminases activities, TCHO, TG, MDA, NO and Caspase 3 levels and significant decrease in TP, GSH, SOD and LC3 levels. Oral administration of vanadium complex resulted in normoglycemia, significant increase in blood GSH, SOD, TP and LC3 levels, significant decrease in ALT, AST, BUN, TCHO, TG, MDA and NO and Caspase 3 levels. In addition, proliferative effect of complex prevents islet atrophy. From previous results, the insulin-enhancing effect induced by this complex indicated that this new complex can be a valuable candidate as insulin-enhancing and antioxidant compound than inorganic vanadyl sulfate.
Collapse
Affiliation(s)
- Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt.
| | - Eslam Samy Elsherbiny
- Biochemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
38
|
Lázár BA, Jancsó G, Sántha P. Modulation of Sensory Nerve Function by Insulin: Possible Relevance to Pain, Inflammation and Axon Growth. Int J Mol Sci 2020; 21:E2507. [PMID: 32260335 PMCID: PMC7177741 DOI: 10.3390/ijms21072507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin, besides its pivotal role in energy metabolism, may also modulate neuronal processes through acting on insulin receptors (InsRs) expressed by neurons of both the central and the peripheral nervous system. Recently, the distribution and functional significance of InsRs localized on a subset of multifunctional primary sensory neurons (PSNs) have been revealed. Systematic investigations into the cellular electrophysiology, neurochemistry and morphological traits of InsR-expressing PSNs indicated complex functional interactions among specific ion channels, proteins and neuropeptides localized in these neurons. Quantitative immunohistochemical studies have revealed disparate localization of the InsRs in somatic and visceral PSNs with a dominance of InsR-positive neurons innervating visceral organs. These findings suggested that visceral spinal PSNs involved in nociceptive and inflammatory processes are more prone to the modulatory effects of insulin than somatic PSNs. Co-localization of the InsR and transient receptor potential vanilloid 1 (TRPV1) receptor with vasoactive neuropeptides calcitonin gene-related peptide and substance P bears of crucial importance in the pathogenesis of inflammatory pathologies affecting visceral organs, such as the pancreas and the urinary bladder. Recent studies have also revealed significant novel aspects of the neurotrophic propensities of insulin with respect to axonal growth, development and regeneration.
Collapse
Affiliation(s)
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary; (G.J.); (P.S.)
| | - Péter Sántha
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary; (G.J.); (P.S.)
| |
Collapse
|
39
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
41
|
Issar T, Yan A, Kwai NCG, Poynten AM, Borire AA, Arnold R, Krishnan AV. Altered peripheral nerve structure and function in latent autoimmune diabetes in adults. Diabetes Metab Res Rev 2020; 36:e3260. [PMID: 31833206 DOI: 10.1002/dmrr.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
Abstract
AIM The present study was undertaken to investigate mechanisms of peripheral nerve dysfunction in latent autoimmune diabetes in adults (LADA). MATERIALS AND METHODS Participants with LADA (n = 15) underwent median nerve ultrasonography and nerve excitability to examine axonal structure and function, in comparison to cohorts of type 1 diabetes (n = 15), type 2 diabetes (n = 23) and healthy controls (n = 26). The LADA group was matched for diabetes duration, glycaemic control, and neuropathy severity with the type 1 and type 2 diabetes groups. A validated mathematical model of the human axon was utilized to investigate the pathophysiological basis of nerve dysfunction. RESULTS The most severe changes in nerve structure and function were noted in the LADA group. The LADA cohort demonstrated a significant increase in nerve cross-sectional area compared to type 1 participants and controls. Compared to type 1 and 2 diabetes, measures of threshold electrotonus, which assesses nodal and internodal conductances, were significantly worse in LADA in response to both depolarising currents and hyperpolarising currents. In the recovery cycle, participants with LADA had a significant increase in the relative refractory period. Mathematical modelling of excitability recordings indicated the basis of nerve dysfunction in LADA was different to type 1 and 2 diabetes. CONCLUSIONS Participants with LADA exhibited more severe changes in nerve function and different underlying pathophysiological mechanisms compared to participants with type 1 or 2 diabetes. Intensive management of risk factors to delay the progression of neuropathy in LADA may be required.
Collapse
Affiliation(s)
- Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Aimy Yan
- Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Natalie C G Kwai
- Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Exercise Physiology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Adeniyi A Borire
- Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ria Arnold
- Department of Exercise Physiology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Jeannin AC, Salem JE, Massy Z, Aubert CE, Vemeer C, Amouyal C, Phan F, Halbron M, Funck-Brentano C, Hartemann A, Bourron O. Inactive matrix gla protein plasma levels are associated with peripheral neuropathy in Type 2 diabetes. PLoS One 2020; 15:e0229145. [PMID: 32092076 PMCID: PMC7039520 DOI: 10.1371/journal.pone.0229145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS/HYPOTHESIS Diabetic peripheral neuropathy is a frequent and severe complication of diabetes. As Matrix-gla-protein (MGP) is expressed in several components of the nervous system and is involved in some neurological disease, MGP could play a role in peripheral nervous system homeostasis. The aim of this study was to evaluate factors associated with sensitive diabetic neuropathy in Type 2 Diabetes, and, in particular, dephospho-uncarboxylated MGP (dp-ucMGP), the inactive form of MGP. METHODS 198 patients with Type 2 Diabetes were included. Presence of sensitive diabetic neuropathy was defined by a neuropathy disability score (NDS) ≥6. Plasma levels of dp-ucMGP were measured by ELISA. RESULTS In this cohort, the mean age was 64+/-8.4 years old, and 80% of patients were men. Peripheral neuropathy was present in 15.7% of the patients and was significantly associated (r = 0.51, p<0.0001) with dp-ucMGP levels (β = -0.26, p = 0.045) after integrating effects of height (β = -0.38, p = 0.01), insulin treatment (β = 0.42, p = 0.002), retinopathy treated by laser (β = 0.26, p = 0.02), and total cholesterol levels (β = 0.3, p = 0.03) by multivariable analysis. CONCLUSIONS The association between diabetic neuropathy and the inactive form of MGP suggests the existence of new pathophysiological pathways to explore. Further studies are needed to determine if dp-ucMGP may be used as a biomarker of sensitive neuropathy. Since dp-ucMGP is a marker of poor vitamin K status, clinical studies are warranted to explore the potential protective effect of high vitamin K intake on diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Anne-Caroline Jeannin
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Joe-Elie Salem
- Sorbonne Université, Paris, France
- Department of Pharmacology and CIC-1421, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM, CIC-1421, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Ziad Massy
- Division of Nephrology, Ambroise Paré Hospital, AP-HP, Pitié-Salpêtrière Hospital, Université Paris-Saclay, Paris, France
| | - Carole Elodie Aubert
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Cees Vemeer
- Cardiovascular Research Institute CARIM, Maastricht University, Maastricht, The Netherlands
| | - Chloé Amouyal
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Franck Phan
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marine Halbron
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Christian Funck-Brentano
- Sorbonne Université, Paris, France
- Department of Pharmacology and CIC-1421, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- INSERM, CIC-1421, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Agnès Hartemann
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Olivier Bourron
- Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition ICAN, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
43
|
Sodium nitrate preconditioning prevents progression of the neuropathic pain in streptozotocin-induced diabetes Wistar rats. J Diabetes Metab Disord 2020; 19:105-113. [PMID: 32550160 DOI: 10.1007/s40200-019-00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model. Methods Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg). All interventions were done for 60 days immediately following diabetes confirmation. Thermal and mechanical algesia thresholds were measured by means of hot-plate test, von Frey test, and tail-withdrawal test before the diabetic induction and after diabetes confirmation. At the end of the experiment, serum NOx level and serum insulin level were assessed. Blood glucose concentration and body weight have recorded at the base and duration of the experiment. Results Both hypoalgesia, hyperalgesia along with allodynia developed in diabetic rats. Significant alterations including, decrease in tail withdrawal latency (30th day), decreased mechanical threshold (60th day), and an increase in hot plate latency (61st day) were displayed in diabetic rats compared to control rats. Nitrate and insulin preconditioning produced protective effects against diabetes-induced peripheral neuropathy. Data analysis also showed a significant increase in glucose level as well as a considerable reduction in serum insulin and body weight of diabetic rats, which restored by both insulin and nitrate preconditioning. Conclusion Sodium nitrate preconditioning produces a protective effect in diabetic neuropathy, which may be mediated by its antihyperglycemic effects and increased serum insulin level.
Collapse
|
44
|
Andreasen LJ, Kirk RK, Fledelius C, Yorek MA, Lykkesfeldt J, Akerstrom T. Insulin Treatment Attenuates Small Nerve Fiber Damage in Rat Model of Type 2 Diabetes. J Diabetes Res 2020; 2020:9626398. [PMID: 32832565 PMCID: PMC7424504 DOI: 10.1155/2020/9626398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Current clinical guidelines for management of diabetic peripheral neuropathy (DPN) emphasize good glycemic control. However, this has limited effect on prevention of DPN in type 2 diabetic (T2D) patients. This study investigates the effect of insulin treatment on development of DPN in a rat model of T2D to assess the underlying causes leading to DPN. METHODS Twelve-week-old male Sprague-Dawley rats were allocated to a normal chow diet or a 45% kcal high-fat diet. After eight weeks, the high-fat fed animals received a mild dose of streptozotocin to induce hyperglycemia. Four weeks after diabetes induction, the diabetic animals were allocated into three treatment groups receiving either no insulin or insulin-releasing implants in a high or low dose. During the 12-week treatment period, blood glucose and body weight were monitored weekly, whereas Hargreaves' test was performed four, eight, and 12 weeks after treatment initiation. At study termination, several blood parameters, body composition, and neuropathy endpoints were assessed. RESULTS Insulin treatment lowered blood glucose in a dose-dependent manner. In addition, both doses of insulin lowered lipids and increased body fat percentage. High-dose insulin treatment attenuated small nerve fiber damage assessed by Hargreaves' test and intraepidermal nerve fiber density compared to untreated diabetes and low-dose insulin; however, neuropathy was not completely prevented by tight glycemic control. Linear regression analysis revealed that glycemic status, circulating lipids, and sciatic nerve sorbitol level were all negatively associated with the small nerve fiber damage observed. CONCLUSION In summary, our data suggest that high-dose insulin treatment attenuates small nerve fiber damage. Furthermore, data also indicate that both poor glycemic control and dyslipidemia are associated with disease progression. Consequently, this rat model of T2D seems to fit well with progression of DPN in humans and could be a relevant preclinical model to use in relation to research investigating treatment opportunities for DPN.
Collapse
Affiliation(s)
- Laura J. Andreasen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Rikke K. Kirk
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Mark A. Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | |
Collapse
|
45
|
Reis ACD, Cunha MV, Bianchin MA, Freitas MTR, Castiglioni L. Comparison of quality of life and functionality in type 2 diabetics with and without insulin. Rev Assoc Med Bras (1992) 2019; 65:1464-1469. [DOI: 10.1590/1806-9282.65.12.1464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022] Open
Abstract
SUMMARY INTRODUCTION Type 2 diabetes mellitus compromises physical, psychological, economic, and social life. OBJECTIVES To identify and compare the quality of life, depression, functional performance, and physical activity in patients with type 2 diabetes mellitus who use insulin or not. METHODS A observational, descriptive, cross-sectional, comparative study involving 100 patients (50 use insulin and 50 do not) from a Teaching Hospital. Questionnaires used: Identification and Socioeconomic Profile; SF-36; Hospital Anxiety and Depression Scale; Visual Analogue Scale for Pain; Canadian Occupational Performance Measure, and International Physical Activity Questionnaire. RESULTS Sample composed predominantly by middle-aged, female, married, retired, and with incomplete elementary school individuals. There is impairment in all domains of quality of life, being more intense in functional capacity, physical limitations, pain, social aspects, limitation by emotional aspects, and mental health (P<0.05). There is a significant prevalence of anxiety or depressive symptoms in the groups, especially in those using insulin. However, the occurrence of the corresponding psychiatric disorders is unlikely (P<0.05). There was no significant difference in neuropathic pain between the groups (P=0.2296). Functional impairment is similar in both groups regarding self-care activities (P=0.4494) and productivity (P=0.5759), with a greater deterioration of leisure time in patients on insulin (P=0.0091). Most of them practice physical activity, predominantly walking, with no significant difference when comparing the groups (P>0.05), as well as in the other modalities. CONCLUSION Insulinized patients present greater impairment of functional capacity and socialization, as well as greater neuropathic pain, anxiety, and depressive symptoms.
Collapse
|
46
|
Zhang B, Zhao W, Tu J, Wang X, Hao Y, Wang H, Zhao Y, Mizuno K, Tseng Y, Bu H. The relationship between serum 25-hydroxyvitamin D concentration and type 2 diabetic peripheral neuropathy: A systematic review and a meta-analysis. Medicine (Baltimore) 2019; 98:e18118. [PMID: 31770239 PMCID: PMC6890351 DOI: 10.1097/md.0000000000018118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vitamin D is a fat-soluble vitamin that is related to the health of the human body and is an indispensable nutrient for human beings. Some studies indicated that type 2 diabetes mellitus (T2DM) with diabetic peripheral neuropathy (DPN) may be associated with vitamin D deficiency, but the current understanding of this point of view remains controversial. This study aimed to evaluate the correlation between serum 25-hydroxyl vitamin D (25 [OH] D) concentration and DPN in patients with T2DM by a meta-analysis, and to provide a reference for doctors. METHODS Relevant studies were selected from the PubMed, Cochrane Library, China National Knowledge Infrastructure, VIP databases, and Wanfang Data Knowledge Service Platform databases dating from 2000 to December 2017. A total of 75 articles related to serum 25 (OH) D and DPN were selected from 2000 to December 2017. Based on the inclusion and exclusion criteria of the literature, a quality assessment was conducted using the Newcastle-Ottawa scale, and a meta-analysis was performed by RevMan5.3 statistical software. RESULTS Thirteen studies that involved a total of 2814 type 2 diabetic patients were finally included into the meta-analysis. Meta-analysis results, heterogeneity test showed that, P < .000 01, I = 92%, calculation by random effect model revealed that, the serum concentration of 25 (OH) D in T2DM combined with DPN group was lower than that in the group without DPN (weighted mean difference = -0.74, 95% confidence interval: -1.03 to -0.46) CONCLUSIONS:: Vitamin D is associated with type 2 DPN (DPN), and vitamin D deficiency can lead to an increased risk of type 2 DPN. However, more high-quality research is needed.
Collapse
Affiliation(s)
- Binjie Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine
| | - Wenli Zhao
- Department of Neurology, Nankai Hospital, Tianjin Academy of Integrative Medicine, Tianjin, China
- Department of Acupuncture and Moxibustion, Suzuka University of Medical Science, Suzuka, Japan
| | - Jinli Tu
- Department of Language and Culture
| | - Xueying Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine
| | | | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Ye Zhao
- Department of Research and Development, Hangzhou DeBuYou Health Technology Co. Ltd., Hangzhou, Zhejiang, China
| | - Kaito Mizuno
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yiider Tseng
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, FL
| | - Huaien Bu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin
| |
Collapse
|
47
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
48
|
Liu CH, Lan CT, Chen LY, Liao WC, Ko MH, Tseng TJ. Phosphorylation of extracellular signal-regulated kinase 1/2 in subepidermal nerve fibers mediates hyperalgesia following diabetic peripheral neuropathy. Neurotoxicology 2018; 71:60-74. [PMID: 30583000 DOI: 10.1016/j.neuro.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Abstract
Peripheral neuropathy, a chronic complication of diabetes mellitus (DM), is often accompanied by the onset of severe pain symptoms that affect quality of life. However, the underlying mechanisms remain elusive. In the present study, we used Sprague-Dawley rats to establish a rodent model of the human type 1 DM by a single intraperitoneal (i.p.) injection with streptozotocin (STZ) (60 mg/kg). Hypersensitivity, including hyperalgesia and allodynia, developed in the STZ-induced diabetic rats. Cutaneous innervation exhibited STZ-induced reductions of protein gene product 9.5-, peripherin-, and neurofilament 200-immunoreactivity (IR) subepidermal nerve fibers (SENFs). Moreover, the decreases of substance P (SP)- and calcitonin gene-related peptide (CGRP)-IR SENFs were distinct gathered from the results of extracellular signal-regulated kinase 1 and 2 (ERK1/2)- and phosphorylated ERK1/2 (pERK1/2)-IR SENFs in STZ-induced diabetic rats. Double immunofluorescence studies demonstrated that STZ-induced pERK1/2-IR was largely increased in SENFs where only a small portion was colocalized with SP- or CGRP-IR. By an intraplantar (i. pl.) injection with a MEK inhibitor, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), hyperalgesia was attenuated in a dose-responsive manner. Botulinum toxin serotype A had dose-dependent analgesic effects on STZ-induced hyperalgesia and allodynia, which exhibited equivalent results as the efficacy of transient receptor potential vanilloid (TRPV) channel antagonists. Morphological evidence further confirmed that STZ-induced SP-, CGRP- and pERK1/2-IR were reduced in SENFs after pharmacological interventions. From the results obtained in this study, it is suggested that increases of pERK1/2 in SENFs may participate in the modulation of TRPV channel-mediated neurogenic inflammation that triggers hyperalgesia in STZ-induced diabetic rats. Therefore, ERK1/2 provides a potential therapeutic target and efficient pharmacological strategies to address hyperglycemia-induced neurotoxicity.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Li-You Chen
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
49
|
Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: A comparative review. Exp Neurol 2018; 313:10-15. [PMID: 30500332 DOI: 10.1016/j.expneurol.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) insulin resistance is a condition in which the cells within the CNS do not respond to insulin appropriately and is often linked to aberrant CNS insulin levels. CNS insulin is primarily derived from the periphery. Aberrant CNS insulin levels can arise due to various factors including i) decreased endogenous insulin transport into the brain, across the blood-brain barrier (BBB), ii) reduced CNS sequestration of insulin, and iii) increased CNS degradation. While the sole route of endogenous insulin transport into the brain is via the BBB, there are multiple therapeutic routes of administration that have been investigated to deliver exogenous insulin to the CNS. These alternative administrative routes can be utilized to increase the amount of CNS insulin and aid in overcoming CNS insulin resistance. This review focuses on the intravenous, intracerebroventricular, intranasal, ocular, and intrathecal routes of administration and compares the impact of insulin delivery.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Therese S Salameh
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Lázár BA, Jancsó G, Pálvölgyi L, Dobos I, Nagy I, Sántha P. Insulin Confers Differing Effects on Neurite Outgrowth in Separate Populations of Cultured Dorsal Root Ganglion Neurons: The Role of the Insulin Receptor. Front Neurosci 2018; 12:732. [PMID: 30364236 PMCID: PMC6191510 DOI: 10.3389/fnins.2018.00732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Apart from its pivotal role in the regulation of carbohydrate metabolism, insulin exerts important neurotrophic and neuromodulator effects on dorsal root ganglion (DRG) neurons. The neurite outgrowth-promoting effect is one of the salient features of insulin's action on cultured DRG neurons. Although it has been established that a significant population of DRG neurons express the insulin receptor (InsR), the significance of InsR expression and the chemical phenotype of DRG neurons in relation to the neurite outgrowth-promoting effect of insulin has not been studied. Therefore, in this study by using immunohistochemical and quantitative stereological methods we evaluated the effect of insulin on neurite outgrowth of DRG neurons of different chemical phenotypes which express or lack the InsR. Insulin, at a concentration of 10 nM, significantly increased total neurite length, the length of the longest neurite and the number of branch points of cultured DRG neurons as compared to neurons cultured in control medium or in the presence of 1 μM insulin. In both the control and the insulin exposed cultures, ∼43% of neurons displayed InsR-immunoreactivity. The proportions of transient receptor potential vanilloid type 1 receptor (TRPV1)-immunoreactive (IR), calcitonin gene-related peptide (CGRP)-IR and Bandeiraea simplicifolia isolectin B4 (IB4)-binding neurons amounted to ∼61%, ∼57%, and ∼31% of DRG neurons IR for the InsR. Of the IB4-positive population only neurons expressing the InsR were responsive to insulin. In contrast, TRPV1-IR nociceptive and CGRP-IR peptidergic neurons showed increased tendency for neurite outgrowth which was further enhanced by insulin. However, the responsiveness of DRG neurons expressing the InsR was superior to populations of DRG neurons which lack this receptor. The findings also revealed that besides the expression of the InsR, inherent properties of peptidergic, but not non-peptidergic nociceptive neurons may also significantly contribute to the mechanisms of neurite outgrowth of DRG neurons. These observations suggest distinct regenerative propensity for differing populations of DRG neurons which is significantly affected through insulin receptor signaling.
Collapse
Affiliation(s)
- Bence András Lázár
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Laura Pálvölgyi
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Ildikó Dobos
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - István Nagy
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Péter Sántha
- Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|