1
|
Jiménez-Barbosa IA, Grajales Herrera D, Rodríguez Alvarez MF, Khuu SK. Pupil size change in agricultural workers exposed to pesticides. Clin Exp Optom 2024; 107:795-800. [PMID: 38194492 DOI: 10.1080/08164622.2023.2294810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
CLINICAL RELEVANCE Pupil size evaluation using clinical examination may be important for detecting and monitoring individuals at risk of neurotoxic effects from chemical exposure, as it may enable early intervention and the implementation of preventive measures. BACKGROUND This work aimed to investigate the association between pesticide exposure and pupil size. Pupil size is regulated by muscarinic and nicotinic receptors, and it is well-established that common pesticide chemicals disrupt this regulation. METHODS Twenty agricultural workers exposed to pesticides, and twenty participants not exposed, underwent visual screening, and pupil size evaluation under mesopic and photopic conditions. Additionally, signs of neurotoxicity and pesticide exposure in both groups were evaluated using the modified version of the neurotoxic symptoms questionnaire (Q16) and measuring cholinesterase (AChE) levels in blood, respectively. RESULTS Agricultural workers exposed to pesticides had a score indicating medium-high level of neurotoxicity (49.85 (SD ± 8.94)) which was significantly higher (t (36) = 7.659, p ≤ 0.0001) than non-exposed participants who had low levels of neurotoxicity (27.25 SD ± 8.86). There was a significant difference in pupil size (mm) under mesopic (t (19) 4.42 p = 0.003) and scotopic (t (19) 4.63, p = 0.0002) conditions between the two groups. Additionally, there was a significant difference in AChE blood levels (t (19) 2.94 p = 0.008) between exposed and non-exposed participants, indicating that exposed workers had low levels of this enzyme (average exposed group 3381 U/L (SD ± 1306)) compared to the non-exposed group (average non-exposed group 4765 U/L (SD ± 1300)). A significant negative correlation between AChE levels, years of exposure, and pupil size was found. The latter finding importantly showed that smaller pupils are associated with the accumulation of acetylcholine or a decrease in the activity of the enzyme AChE. CONCLUSION Pupil size of agricultural workers exposed to pesticides can be abnormal and is associated with neurotoxicity as indicated by symptomatology and cholinesterase levels. Evaluation of pupil size may be useful for clinically detecting neurotoxicity.
Collapse
Affiliation(s)
- Ingrid Astrid Jiménez-Barbosa
- Health Sciences Faculty, Universidad de La Salle, Bogotá, Colombia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | | | | | - Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Carter BM, Day GJ, Zhang WH, Sessions RB, Jackson CJ, Perriman AW. Partitioning of an Enzyme-Polymer Surfactant Nanocomplex into Lipid-Rich Cellular Compartments Drives In Situ Hydrolysis of Organophosphates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401982. [PMID: 38992997 DOI: 10.1002/smll.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.
Collapse
Affiliation(s)
- Benjamin M Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Day
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - William H Zhang
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Zhang Y, Xie J. Ferroptosis implication in environmental-induced neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172618. [PMID: 38663589 DOI: 10.1016/j.scitotenv.2024.172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Neurotoxicity, stemming from exposure to various chemical, biological, and physical agents, poses a substantial threat to the intricate network of the human nervous system. This article explores the implications of ferroptosis, a regulated form of programmed cell death characterized by iron-dependent lipid peroxidation, in environmental-induced neurotoxicity. While apoptosis has historically been recognized as a primary mechanism in neurotoxic events, recent evidence suggests the involvement of additional pathways, including ferroptosis. The study aims to conduct a comprehensive review of the existing literature on ferroptosis induced by environmental neurotoxicity across diverse agents such as natural toxins, insecticides, particulate matter, acrylamide, nanoparticles, plastic materials, metal overload, viral infections, anesthetics, chemotherapy, and radiation. The primary objective is to elucidate the diverse mechanisms through which these agents trigger ferroptosis, leading to neuronal cell death. Furthermore, the article explores potential preventive or therapeutic strategies that could mitigate ferroptosis, offering insights into protective measures against neurological damage induced by environmental stressors. This comprehensive review contributes to our evolving understanding of neurotoxicological processes, highlighting ferroptosis as a significant contributor to neuronal cell demise induced by environmental exposures. The insights gained from this study may pave the way for the development of targeted interventions to protect against ferroptosis-mediated neurotoxicity and ultimately safeguard public health.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
4
|
Almeida AJD, Hobson BA, Saito N, Bruun DA, Porter VA, Harvey DJ, Garbow JR, Chaudhari AJ, Lein PJ. Quantitative T 2 mapping-based longitudinal assessment of brain injury and therapeutic rescue in the rat following acute organophosphate intoxication. Neuropharmacology 2024; 249:109895. [PMID: 38437913 PMCID: PMC11227117 DOI: 10.1016/j.neuropharm.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.
Collapse
Affiliation(s)
- Alita Jesal D Almeida
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Naomi Saito
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Valerie A Porter
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA.
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Abhijit J Chaudhari
- Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA; Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Hayes TR, Chao CK, Blecha JE, Huynh TL, VanBrocklin HF, Zinn KR, Gerdes JM, Thompson CM. [ 11C]Paraoxon: Radiosynthesis, Biodistribution and In Vivo Positron Emission Tomography Imaging in Rat. J Pharmacol Exp Ther 2024; 388:333-346. [PMID: 37770203 PMCID: PMC10801775 DOI: 10.1124/jpet.123.001832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (∼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Joseph E Blecha
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Tony L Huynh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Henry F VanBrocklin
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Kurt R Zinn
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| |
Collapse
|
6
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
El-Baz MAH, Amin AF, Mohany KM. Exposure to pesticide components causes recurrent pregnancy loss by increasing placental oxidative stress and apoptosis: a case-control study. Sci Rep 2023; 13:9147. [PMID: 37277462 PMCID: PMC10241831 DOI: 10.1038/s41598-023-36363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
We investigated the plasma levels of pesticides components namely polychlorinated biphenyls (PCBs), dieldrin, dichlorodiphenyldichloroethylene (DDE), ethion, malathion, and chlorpyrifos in recurrent pregnancy loss (RPL) cases, and tested their associations with placental oxidative stress (OS) biomarkers [nitric oxide (NO.), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and superoxide dismutase (SOD)] and with placental apoptotic/antiapoptotic indices (Bcl-2 and caspase-3), and evaluated their possible cut-off points to distinguish RPL cases. The study recruited 101 pregnant women divided into; G1 [n = 49, control, normal 1st-trimester pregnancy, normal obstetric history with at least one previous normal live birth], G2 [n = 26, cases with missed abortion (< 3 abortions) before 24 weeks of gestation], and G3 [n = 26, cases with missed abortion (≥ 3 abortions) before 24 weeks of gestation]. The plasma pesticide levels were analyzed by gas chromatography-mass spectrometry. Plasma human chorionic gonadotrophin (HCG), placental OS, Bcl-2, and caspase-3, were analyzed by their corresponding methods and kits. Plasma PCBs, DDE, dieldrin, and ethion levels were significantly higher in RPL cases than in normal pregnancies (p ≤ 0.001). These levels correlated positively with placental OS and apoptosis and negatively with plasma HCG levels. Also, these levels were reliable markers of risk to RPL. Malathion and chlorpyrifos were not detected in any of the study's participants. Pesticides may be risk factors in cases of spontaneous RPL cases. They are associated with an increasing placental OS and placental apoptosis. Specific measures should be taken to decrease maternal exposure to these pollutants' sources, especially in underdeveloped and developing countries.
Collapse
Affiliation(s)
- Mona A H El-Baz
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt
| | - Ahmed F Amin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Women Health Hospital, Assiut University, Assiut City, 71515, Egypt
| | - Khalid M Mohany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt.
| |
Collapse
|
9
|
Pampalakis G, Kostoudi S. Chemical, Physical, and Toxicological Properties of V-Agents. Int J Mol Sci 2023; 24:ijms24108600. [PMID: 37239944 DOI: 10.3390/ijms24108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
V-agents are exceedingly toxic organophosphate nerve agents. The most widely known V-agents are the phosphonylated thiocholines VX and VR. Nonetheless, other V-subclasses have been synthesized. Here, a holistic overview of V-agents is provided, where these compounds have been categorized based on their structures to facilitate their study. A total of seven subclasses of V-agents have been identified, including phospho(n/r)ylated selenocholines and non-sulfur-containing agents, such as VP and EA-1576 (EA: Edgewood Arsenal). Certain V-agents have been designed through the conversion of phosphorylated pesticides to their respective phosphonylated analogs, such as EA-1576 derived from mevinphos. Further, this review provides a description of their production, physical properties, toxicity, and stability during storage. Importantly, V-agents constitute a percutaneous hazard, while their high stability ensures the contamination of the exposed area for weeks. The danger of V-agents was highlighted in the 1968 VX accident in Utah. Until now, VX has been used in limited cases of terrorist attacks and assassinations, but there is an increased concern about potential terrorist production and use. For this reason, studying the chemistry of VX and other less-studied V-agents is important to understand their properties and develop potential countermeasures.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stavroula Kostoudi
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Palus K, Bulc M, Całka J. Glyphosate affects the neurochemical phenotype of the intramural neurons in the duodenum in the pig. Neurogastroenterol Motil 2023; 35:e14507. [PMID: 36502523 DOI: 10.1111/nmo.14507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glyphosate-based herbicides have been one of the most intensively used pollutants worldwide and food products containing glyphosate are an essential component of human and animal diet. The aim of present study was to determine the effect of glyphosate intoxication on the neurochemical properties of the enteric nervous system (ENS) neurons located in the wall of the porcine duodenum. METHODS Fifteen sexually immature gilts divided into 3 groups were used: control-animals receiving empty gelatin capsules; G1-animals receiving a low dose of glyphosate-corresponding to the theoretical maximum daily intake (TMDI) - 0.05 mg/kg bw/day; G2-animals receiving a higher dose of glyphosate-corresponding to the acceptable daily intake (ADI)-0.5 mg/kg/day in gelatin capsules orally for 28 days. After this time, the animals were euthanized and small intestine samples were collected. Frozen sections were then subjected to the procedure of double immunofluorescent staining. KEY RESULTS Glyphosate supplementation led to alterations in the neurochemical code of the ENS neurons in the porcine duodenum. Generally, increased population of neurons immunoreactive to PACAP, CGRP, CART, nNOS, and a decreased number of VAChT-like immunoreactive neurons were noted. CONCLUSIONS AND INFERENCES It may be a first preclinical symptom of digestive tract dysfunction in the course of glyphosate intoxication and further studies are needed to assess the toxicity and risks of glyphosate to humans.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
11
|
Costa LMO, Reis IS, Fernandes C, Marques MM, Resende JALC, Krenske EH, Schenk G, Gahan LR, Horn A. Synthesis, characterization and computational investigation of the phosphatase activity of a dinuclear Zinc(II) complex containing a new heptadentate asymmetric ligand. J Inorg Biochem 2023; 239:112064. [PMID: 36410306 DOI: 10.1016/j.jinorgbio.2022.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
We report the synthesis of a new asymmetric heptadentate ligand based on the 1,3-diaminopropan-2-ol backbone. The ligand 3-[[3-(bis-pyridin-2-ylmethyl-amino)-2-hydroxy-propyl]-(2-carbamoyl-ethyl)-amino]-propionamide (HL1) contains two amide and two pyridine groups attached to the 1,3-diaminopropan-2-ol core. Reaction between HL1 and Zn(ClO4)2.6H2O resulted in the formation of the dinuclear [Zn2(L1)(μ-OAc)](ClO4)2 complex, characterized by single crystal X-ray diffraction, 1H, 13C and 15N NMR, ESI-(+)-MS, CHN elemental analysis as well as infrared spectroscopy. The phosphatase activity of the complex was studied in the pH range 6-11 employing pyridinium bis(2,4-dinitrophenyl)phosphate (py(BDNPP)) as substrate. The complex exhibited activity dependent on the pH, presenting an asymmetric bell shape profile with the highest activity at pH 9; at high pH ligand exchange is rate-limiting. The hydrolysis of BDNPP- at pH 9 displayed behavior characteristic of Michaelis-Menten kinetics, with kcat = 5.06 × 10-3 min-1 and Km = 5.7 ± 1.0 mM. DFT calculations map out plausible reaction pathways and identify a terminal, Zn(II)-bound hydroxide as likely nucleophile.
Collapse
Affiliation(s)
- Luel M O Costa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Iago S Reis
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marcelo M Marques
- Colégio Universitário Geraldo Reis, Universidade Federal Fluminense, Niterói, RJ 24210-200, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia, 4072; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
12
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
13
|
Ireland D, Collins EMS. New Worm on the Block: Planarians in (Neuro)Toxicology. Curr Protoc 2022; 2:e637. [PMID: 36571713 PMCID: PMC9797031 DOI: 10.1002/cpz1.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional mammalian testing is too time- and cost-intensive to keep up with the large number of environmental chemicals needing assessment. This has led to a dearth of information about the potential adverse effects of these chemicals, especially on the developing brain. Thus, there is an urgent need for rapid and cost-effective neurotoxicity and developmental neurotoxicity testing. Because of the complexity of the brain, metabolically competent organismal models are necessary to understand the effects of chemicals on nervous system development and function on a systems level. In this overview, we showcase asexual freshwater planarians as an alternative invertebrate ("non-animal") organismal model for neurotoxicology research. Planarians have long been used to study the effects of chemicals on regeneration and behavior. But they have only recently moved back into the spotlight because modern molecular and computational approaches now enable quantitative high-content and high-throughput toxicity studies. Here, we present a short history of the use of planarians in toxicology research, highlight current techniques to measure toxicity qualitatively and quantitatively in planarians, and discuss how to further promote this non-animal organismal system into mainstream toxicology research. The articles in this collection will help work towards this goal by providing detailed protocols that can be adopted by the community to standardize planarian toxicity testing. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
14
|
Araújo RAL, Cremonese C, Santos R, Piccoli C, Carvalho G, Freire C, Canuto R. Association of occupational exposure to pesticides with overweight and abdominal obesity in family farmers in southern Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2798-2809. [PMID: 34844470 DOI: 10.1080/09603123.2021.1991284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The association of chronic exposure to pesticides with overweight and abdominal obesity in adult farmers was investigated. This cross-sectional study included a random sample of 122 farmers and their family members of both sexes (61% were male), living in the municipality of Farroupilha, southern Brazil. Pesticide groups and their individual compounds were self-reported and classified according to major functional and chemical classes (never used, 1-20 years, or > 20 years of use). Abdominal obesity and overweight were the outcomes of interest. A multivariate Poisson regression model was analyzed. After confounding factors were controlled, chronic use (>20 years) of insecticides (PR: 1.45; 95% CI: 1.00-2.10) and organophosphorus pesticides (PR: 1.48, 95% CI: 1.02-2.12) was associated with a higher prevalence of overweight but not abdominal obesity. Additional studies are needed to confirm our findings and clarify the specific mechanisms of these pollutants in the etiology of obesity.
Collapse
Affiliation(s)
- Roberta Andressa Line Araújo
- Postgraduate Program in Food, Nutrition and Health - Universidade Federal Do Rio Grande Do Sul - UFRGS, Porto Alegre, Brazil
| | - Cleber Cremonese
- Institute of Collective Health /ISC Universidade Federal da Bahia - UFBA, Salvador, Brazil
| | - Ramison Santos
- Postgraduate Program in Biological Science - Universidade Federal do Rio Grande do Sul UFRGS, Porto Alegre, Brazil
| | - Camila Piccoli
- Postgraduate Program in Public Health and Environment,National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriela Carvalho
- Postgraduate Program in Nutrition - Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Hospital Universitario San Cecilio, Granada, Spain
| | - Raquel Canuto
- Postgraduate Program in Food, Nutrition and Health - Universidade Federal Do Rio Grande Do Sul - UFRGS, Porto Alegre, Brazil
- Postgraduate Program in Nutrition - Universidade Federal de Pernambuco - UFPE, Recife, Brazil
| |
Collapse
|
15
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
16
|
Ireland D, Zhang S, Bochenek V, Hsieh JH, Rabeler C, Meyer Z, Collins EMS. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians. FRONTIERS IN TOXICOLOGY 2022; 4:948455. [PMID: 36267428 PMCID: PMC9578561 DOI: 10.3389/ftox.2022.948455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022] Open
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Siqi Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Veronica Bochenek
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Zane Meyer
- Department of Engineering, Swarthmore College, Swarthmore, PA, United States
- Department of Computer Science, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Sarailoo M, Afshari S, Asghariazar V, Safarzadeh E, Dadkhah M. Cognitive Impairment and Neurodegenerative Diseases Development Associated with Organophosphate Pesticides Exposure: a Review Study. Neurotox Res 2022; 40:1624-1643. [PMID: 36066747 DOI: 10.1007/s12640-022-00552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
A significant body of literature emphasizes the role of insecticide, particularly organophosphates (OPs), as the major environmental factor in the etiology of neurodegenerative diseases. This review aims to study the relationship between OP insecticide exposure, cognitive impairment, and neurodegenerative disease development. Human populations, especially in developing countries, are frequently exposed to OPs due to their extensive applications. The involvement of various signaling pathways in OP neurotoxicity are reported, but the OP-induced cognitive impairment and link between OP exposure and the pathophysiology of neurodegenerative diseases are not clearly understood. In the present review, we have therefore aimed to come to new conclusions which may help to find protective and preventive strategies against OP neurotoxicity and may establish a possible link between organophosphate exposure, cognitive impairment, and OP-induced neurotoxicity. Moreover, we discuss the findings obtained from animal and human research providing some support for OP-induced cognitive impairment and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Masoomeh Dadkhah
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
18
|
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 22:100223. [PMID: 35844258 PMCID: PMC9281386 DOI: 10.1016/j.comtox.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.
Collapse
Affiliation(s)
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Mamta Behl
- Division of the National Toxicology Program, National
Institutes of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yaroslav G. Chushak
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental
Medicine & Medical Faculty Heinrich-Heine-University, Düsseldorf,
Germany
| | - Jeffery M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | | | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment
Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775
Paris Cedex 16, France
| | - Rajamani Selvam
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | - Timothy J. Shafer
- Biomolecular and Computational Toxicology Division, Center
for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC,
USA
| | - Lidiya Stavitskaya
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | | | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI 48667, USA
| | | | - Glenn J. Myatt
- Instem, Columbus, OH 43215, USA
- Corresponding author.
(G.J. Myatt)
| |
Collapse
|
19
|
Comprehensive insight into the neurotoxic mechanisms of low dose Pb exposure in Wistar rats: Benchmark dose analysis. Chem Biol Interact 2022; 360:109932. [DOI: 10.1016/j.cbi.2022.109932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023]
|
20
|
Caioni G, Cimini A, Benedetti E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022; 14:nu14071467. [PMID: 35406080 PMCID: PMC9003245 DOI: 10.3390/nu14071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Importance of a healthy lifestyle in maintaining the population’s well-being and health, especially in terms of balanced nutrition, is well known. Food choice of and dieting habits could impact disease management, which is especially true for Parkinson’s disease (PD). However, nowadays, it is not that simple to maintain a balance in nutrition, and the idea of a healthy diet tends to fade as the consequence of a western lifestyle. This should not only be dealt with in the context of food choice, but also from an environmental point of view. What we put into our bodies is strictly related to the quality of ecosystems we live in. For these reasons, attention should be directed to all the pollutants, which in many cases, we unknowingly ingest. It will be necessary to explore the interaction between food and environment, since human activity also influences the raw materials destined for consumption. This awareness can be achieved by means of an innovative scientific approach, which involves the use of new models, in order to overcome the traditional scientific investigations included in the study of Parkinson’s disease.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Correspondence: ; Tel.: +39-086-243-3267
| |
Collapse
|
21
|
Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Melchor Martínez EM, Sosa-Hernández JE, Bilal M, Iqbal HMN, Barceló D, Parra-Saldívar R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151879. [PMID: 34826476 DOI: 10.1016/j.scitotenv.2021.151879] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | | |
Collapse
|
22
|
Esfandiarifar A, Azarbayjani MA, Peeri M, Jameie SB. The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats. Basic Clin Neurosci 2021; 12:373-382. [PMID: 34917296 PMCID: PMC8666922 DOI: 10.32598/bcn.2021.2250.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of Unfolded Protein Response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the effect of Resistance Training (RT) and Berberine Chloride (BC) on the apoptosis-related UPR signaling pathway in the hippocampus of diazinon-poisoned rats. Methods: In this experimental study, 40 male Wistar rats weighing 250 ±50 g were randomly divided into eight groups of five rats of 1) diazinon + 2 mg/kg BC + RT, 2) diazinon + 15 mg/kg BC + RT, 3) diazinon, 4) diazinon + RT, 5) diazinon + 2 mg/kg BC, 6) diazinon + 15 mg/kg BC, 7) healthy control, and 8) sham. The groups were treated for 5 weeks. At the end of the fifth week, ATF-4, ATF-6, and CHOP gene expression in hippocampus tissue were measured by quantitative real-time RT-PCR. Results: Diazinon significantly increased the expression of ATF-4, ATF-6, and CHOP in the hippocampus tissue of rats. Administrating 15 mg/kg BC with RT significantly decreased these genes, indicating a decrease in the rate of apoptosis in the hippocampus. Conclusion: This study showed that RT and BC have a protective effect against diazinon-induced toxicity in the hippocampus.
Collapse
Affiliation(s)
- Ali Esfandiarifar
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Maghsood Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
23
|
Autism Spectrum Disorder and Prenatal or Early Life Exposure to Pesticides: A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010991. [PMID: 34682738 PMCID: PMC8535369 DOI: 10.3390/ijerph182010991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Background: Autism spectrum disorder (ASD) diagnoses have rapidly increased globally. Both environmental and genetic factors appear to contribute to the development of ASD. Several studies have shown a potential association between prenatal or postnatal pesticide exposure and the risk of developing ASD. Methods: We reviewed the available literature concerning the relationship between early life exposure to pesticides used in agriculture, such as organochlorines, organophosphates and pyrethroids, and ASD onset in childhood. We searched on Medline and Scopus for cohort or case–control studies published in English from 1977 to 2020. Results: A total of seven articles were selected for the review. We found a remarkable association between the maternal exposure to pyrethroid, as well as the exposure to organophosphate during pregnancy or in the first years of childhood, and the risk of ASD onset. This association was found to be less evident with organochlorine pesticides. Pregnancy seems to be the time when pesticide exposure appears to have the greatest impact on the onset of ASD in children. Conclusions: Among the different environmental pollutants, pesticides should be considered as emerging risk factors for ASD. The potential association identified between the exposure to pesticides and ASD needs to be implemented and confirmed by further epidemiological studies based on individual assessment both in outdoor and indoor conditions, including multiple confounding factors, and using statistical models that take into account single and multiple pesticide residues.
Collapse
|
24
|
Miller DR, McClain ES, Dodds JN, Balinski A, May JC, McLean JA, Cliffel DE. Chlorpyrifos Disrupts Acetylcholine Metabolism Across Model Blood-Brain Barrier. Front Bioeng Biotechnol 2021; 9:622175. [PMID: 34513802 PMCID: PMC8431803 DOI: 10.3389/fbioe.2021.622175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/16/2021] [Indexed: 01/25/2023] Open
Abstract
Despite the significant progress in both scientific understanding and regulations, the safety of agricultural pesticides continues to be called into question. The need for complementary analytics to identify dysregulation events associated with chemical exposure and leverage this information to predict biological responses remains. Here, we present a platform that combines a model organ-on-chip neurovascular unit (NVU) with targeted mass spectrometry (MS) and electrochemical analysis to assess the impact of organophosphate (OP) exposure on blood-brain barrier (BBB) function. Using the NVU to simulate exposure, an escalating dose of the organophosphate chlorpyrifos (CPF) was administered. With up to 10 μM, neither CPF nor its metabolites were detected across the BBB (limit of quantitation 0.1 µM). At 30 µM CPF and above, targeted MS detected the main urinary metabolite, trichloropyridinol (TCP), across the BBB (0.025 µM) and no other metabolites. In the vascular chamber where CPF was directly applied, two primary metabolites of CPF, TCP and diethylthiophosphate (DETP), were both detected (0.1–5.7 µM). In a second experiment, a constant dose of 10 µM CPF was administered to the NVU, and though neither CPF nor its metabolites were detected across the BBB after 24 h, electrochemical analysis detected increases in acetylcholine levels on both sides of the BBB (up to 24.8 ± 3.4 µM) and these levels remained high over the course of treatment. In the vascular chamber where CPF was directly applied, only TCP was detected (ranging from 0.06 μM at 2 h to 0.19 μM at 24 h). These results provide chemical evidence of the substantial disruption induced by this widely used commercial pesticide. This work reinforces previously observed OP metabolism and mechanisms of impact, validates the use of the NVU for OP toxicology testing, and provides a model platform for analyzing these organotypic systems.
Collapse
Affiliation(s)
- Dusty R Miller
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ethan S McClain
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - James N Dodds
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - Andrzej Balinski
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Lucero B, Muñoz-Quezada MT. Neurobehavioral, Neuromotor, and Neurocognitive Effects in Agricultural Workers and Their Children Exposed to Pyrethroid Pesticides: A Review. Front Hum Neurosci 2021; 15:648171. [PMID: 34335205 PMCID: PMC8322659 DOI: 10.3389/fnhum.2021.648171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
In recent years, pyrethroids have emerged as a less toxic alternative to eliminate insect pests. However, some animal studies and studies with children show that these pesticides are toxic and lead to neurobehavioral effects similar to other pesticides, such as organophosphates. The purpose of this review was to systematize the epidemiological scientific evidence about the neurobehavioral, neuromotor, and neurocognitive effects in agricultural workers and their children exposed to pyrethroid pesticides. We conducted two searches (with different terms) in PubMed and Scopus databases, including articles in Spanish and English language on the effects of occupational exposure to pyrethroid pesticides associated with neurobehavioral, neuromotor, and neurocognitive functioning of agricultural workers and their children. There were no filters by year, and the search included studies till march 2021. To develop the search, we followed the recommendations contained in the PRISMA guidelines and the PICO strategy. The results show that in 66.6% of the studies reviewed (8 of 12 studies), agricultural workers or their children occupationally exposed to pyrethroid pesticides have a higher risk of presenting difficulties in their neurocognitive, neuromotor, or neurobehavioral performance, mainly associated with attention, processing speed (linked to hand-eye coordination), and motor coordination. There are still few studies that address this issue. However, the quality of most of the research conducted (83% intermediate or high quality) confirms the risk for neurobehavioral health in agricultural workers due to occupational exposure to pyrethroids. More research is required evaluating the exposure to pyrethroids, including biomarkers and validated neurobehavioral and neuromotor tests, in addition to evaluating the effect of simultaneous exposure to other hazardous pesticides. Assuming that the use of pyrethroids is increasing considerably and faster than the scientific evidence, it is suggested as a precautionary principle to regulate, more strictly, the sale of pyrethroids and other pesticides.
Collapse
Affiliation(s)
| | - María Teresa Muñoz-Quezada
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
26
|
Abstract
The canonical mechanism of organophosphate (OP) neurotoxicity is the inhibition of acetylcholinesterase (AChE). However, multiple lines of evidence suggest that mechanisms in addition to or other than AChE inhibition contribute to the neurotoxic effects associated with acute and chronic OP exposures. Characterizing the role(s) of AChE inhibition versus noncholinergic mechanisms in OP neurotoxicity remains an active area of research with significant diagnostic and therapeutic implications. Here, we review recently published studies that provide mechanistic insights regarding (1) OP-induced status epilepticus, (2) long-term neurologic consequences of acute OP exposures, and (3) neurotoxic effects associated with repeated low-level OP exposures. Key data gaps and challenges are also discussed.
Collapse
Affiliation(s)
- Yi-Hua Tsai
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
28
|
Sibomana I, Rohan JG, Mattie DR. 21-Day dermal exposure to aircraft engine oils: effects on esterase activities in brain and liver tissues, blood, plasma, and clinical chemistry parameters for Sprague Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:357-388. [PMID: 33380269 DOI: 10.1080/15287394.2020.1867680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.
Collapse
Affiliation(s)
- Isaie Sibomana
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH, USA
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
29
|
Organophosphate Pesticide Exposures in Early and Late Pregnancy Influence Different Aspects of Infant Developmental Performance. TOXICS 2021; 9:toxics9050099. [PMID: 33946194 PMCID: PMC8145728 DOI: 10.3390/toxics9050099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Organophosphate (OP) pesticides can transfer from mother to fetus via the placenta and amniotic fluid and may affect the development of infants. This study aims to evaluate the associations between maternal OP concentrations collected in the 1st-2nd trimester and the 3rd trimester of pregnancy and the infant developmental performance. The Screening Test of the Bayley Scales of Infants and Toddler Development, Third Edition (BSID-III screening test) was used to assess development performance at 2 and 6 months of age. Multiple regression analysis showed a negative correlation between cognitive performance at 2 months and maternal diethylthiophosphate (DETP) levels in the 1st-2nd trimester (β ± SE = -0.012 ± 0.004, p < 0.05). We also found that expressive communication and fine motor performance at 6 months were negatively associated with maternal diethyldithiophosphate (DEDTP) levels in the 3rd trimester (β ± SE = -0.047 ± 0.016, p < 0.05, and β ± SE = -0.044 ± 0.017, p < 0.05, respectively). These results suggest that maternal ethylated OP concentrations at different timing of exposure during pregnancy may influence different aspects of infant developmental performance.
Collapse
|
30
|
Gomes MAGB, Fernandes C, Gahan LR, Schenk G, Horn A. Recent Advances in Heterogeneous Catalytic Systems Containing Metal Ions for Phosphate Ester Hydrolysis. Chemistry 2021; 27:877-887. [PMID: 32659052 DOI: 10.1002/chem.202002333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Organophosphates are a class of organic compounds that are important for living organisms, forming the building blocks for DNA, RNA, and some essential cofactors. Furthermore, non-natural organophosphates are widely used in industrial applications, including as pesticides; in laundry detergents; and, unfortunately, as chemical weapons agents. In some cases, the natural degradation of organophosphates can take thousands of years; this longevity creates problems associated with handling and the storage of waste generated by such phosphate esters, in particular. Efforts to develop new catalysts for the cleavage of phosphate esters have progressed in recent decades, mainly in the area of homogeneous catalysis. In contrast, the development of heterogeneous catalysts for the hydrolysis of organophosphates has not been as prominent. Herein, examples of heterogeneous systems are described and the importance of the development of heterogeneous catalysts applicable to organophosphate hydrolysis is highlighted, shedding light on recent advances related to different solid matrices that have been employed.
Collapse
Affiliation(s)
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
31
|
Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020; 12:40. [PMID: 33327943 PMCID: PMC7745485 DOI: 10.1186/s11689-020-09342-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity. Organophosphorus (OP) pesticides have been identified as potential environmental risk factors. Epidemiological studies suggest that children exposed prenatally to the OP pesticide chlorpyrifos (CPF) have significant mental and motor delays and strong positive associations for the development of a clinical diagnosis of intellectual delay or disability, ADHD, or ASD. METHODS We tested the hypothesis that developmental CPF exposure impairs behavior relevant to NDD phenotypes (i.e., deficits in social communication and repetitive, restricted behavior). Male and female rat pups were exposed to CPF at 0.1, 0.3, or 1.0 mg/kg (s.c.) from postnatal days 1-4. RESULTS These CPF doses did not significantly inhibit acetylcholinesterase activity in the blood or brain but significantly impaired pup ultrasonic vocalizations (USV) in both sexes. Social communication in juveniles via positive affiliative 50-kHz USV playback was absent in females exposed to CPF at 0.3 mg/kg and 1.0 mg/kg. In contrast, this CPF exposure paradigm had no significant effect on gross locomotor abilities or contextual and cued fear memory. Ex vivo magnetic resonance imaging largely found no differences between the CPF-exposed rats and the corresponding vehicle controls using strict false discovery correction; however, there were interesting trends in females in the 0.3 mg/kg dose group. CONCLUSIONS This work generated and characterized a rat model of developmental CPF exposure that exhibits adverse behavioral phenotypes resulting from perinatal exposures at levels that did not significantly inhibit acetylcholinesterase activity in the brain or blood. These data suggest that current regulations regarding safe levels of CPF need to be reconsidered.
Collapse
Affiliation(s)
- Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tianna M Ching
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Donald A Bruun
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Josef K Rivera
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Milo Careaga
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Pamela J Lein
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
32
|
Rodrigues JVF, Vidigal APP, Minassa VS, Batista TJ, de Lima RMS, Funck VR, Antero LS, Resstel LBM, Coitinho JB, Bertoglio LJ, Sampaio KN, Beijamini V. A single dose of the organophosphate triazophos induces fear extinction deficits accompanied by hippocampal acetylcholinesterase inhibition. Neurotoxicol Teratol 2020; 82:106929. [DOI: 10.1016/j.ntt.2020.106929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
|
33
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
34
|
Ait-Bali Y, Ba-M'hamed S, Gambarotta G, Sassoè-Pognetto M, Giustetto M, Bennis M. Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: evidence of cortical ad hippocampal dysfunction. Arch Toxicol 2020; 94:1703-1723. [PMID: 32067069 DOI: 10.1007/s00204-020-02677-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
Glyphosate-based herbicides (GBH) are the most widely used pesticides worldwide. Despite considerable progress in describing the neurotoxic potential of GBH, the harmful effects on brain cytoarchitecture and behavior are still unclear. Here, we addressed the developmental impact of GBH by exposing female mice to 250 or 500 mg/kg doses of GBH during both pregnancy and lactation and then examined the downstream effects at the behavioral, neurochemical and molecular levels. We show that pre- and neonatal exposure to GBH impairs fertility and reproduction parameters as well as maternal behavior of exposed mothers. In offspring, GBH was responsible for a global delay in innate reflexes and a deficit in motor development. At the adult age, exposed animals showed a decrease of locomotor activity, sociability, learning and short- and long-term memory associated with alterations of cholinergic and dopaminergic systems. Furthermore, GBH-activated microglia and astrocytes, sign of neuroinflammation event in the medial prefrontal cortex and hippocampus. At the molecular level, a down-regulation of brain-derived neurotrophic factor (BDNF) expression and an up-regulation of tyrosine-related kinase receptor (TrkB), NR1 subunit of NMDA receptor as well as tumor necrosis factor α (TNFα) were found in the brain of GBH-exposed mice. The present work demonstrates that GBH induces numerous behavioral and cognitive abnormalities closely associated with significant histological, neurochemical and molecular impairments. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during developmental periods of central nervous system.
Collapse
Affiliation(s)
- Yassine Ait-Bali
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience, University of Turin, Turin, Italy
- National Institute of Neuroscience-Italy, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Turin, Turin, Italy
- National Institute of Neuroscience-Italy, Turin, Italy
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, BP. 2390, 40000, Marrakech, Morocco.
| |
Collapse
|
35
|
Proskocil BJ, Grodzki ACG, Jacoby DB, Lein PJ, Fryer AD. Organophosphorus Pesticides Induce Cytokine Release from Differentiated Human THP1 Cells. Am J Respir Cell Mol Biol 2020; 61:620-630. [PMID: 30978295 DOI: 10.1165/rcmb.2018-0257oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiologic studies link organophosphorus pesticides (OPs) to increased incidence of asthma. In guinea pigs, OP-induced airway hyperreactivity requires macrophages and TNF-α. Here, we determined whether OPs interact directly with macrophages to alter cytokine expression or release. Human THP1 cells were differentiated into macrophages and then exposed to parathion, chlorpyrifos, or diazinon, or their oxon, phosphate, or phosphorothioate metabolites for 24 hours in the absence or presence of reagents that block cholinergic receptors. TNF-α, IL-1β, platelet-derived growth factor, and transforming growth factor-β mRNA and protein were quantified by qPCR and ELISA, respectively. The effects of OPs on NF-κB, acetylcholinesterase, and intracellular calcium were also measured. Parent OPs and their oxon metabolites upregulated cytokine mRNA and stimulated cytokine release. TNF-α release, which was the most robust response, was triggered by parent, but not oxon, compounds. Cytokine expression was also increased by diethyl dithiophosphate but not diethyl thiophosphate or diethyl phosphate metabolites. Parent OPs, but not oxon metabolites, activated NF-κB. Parent and oxon metabolites decreased acetylcholinesterase activity, but comparable acetylcholinesterase inhibition by eserine did not mimic OP effects on cytokines. Consistent with the noncholinergic mechanisms of OP effects on macrophages, pharmacologic antagonism of muscarinic or nicotinic receptors did not prevent OP-induced cytokine expression or release. These data indicate that phosphorothioate OP compounds directly stimulate macrophages to release TNF-α, potentially via activation of NF-κB, and suggest that therapies that target NF-κB may prevent OP-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
36
|
Kudavidanage EP, Dissanayake DMI, Keerthirathna WLR, Nishshanke NLW, Peiris LDC. Commercial Formulation of Chlorpyrifos Alters Neurological Behaviors and Fertility. BIOLOGY 2020; 9:biology9030049. [PMID: 32156097 PMCID: PMC7150932 DOI: 10.3390/biology9030049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/23/2022]
Abstract
Pesticides are known to result in toxic insult. We aimed to evaluate Judo 40, the commercial formulation of chlorpyrifos on the neurological activities, fertility, and hormone levels of male rats. Male Wistar rats were treated orally with 1 mL of 20 or 50 mg/kg Judo 40. The doses were administered four times, twice a day. Sexual and exploratory behavior indices, fertility indices, serum androgen levels, blood acetylcholinesterase (BChE) levels, and neurological and muscular effects were evaluated. Serum testosterone and luteinizing hormone were significantly reduced in the rats receiving 50 mg/kg Judo 40. A reduction in viable implantation sites and live pups born were evident in the female rats mated with the male rats treated with the highest dose. Similarly, in the rats treated with the highest dose of Judo 40, a significant reduction in plasma BChE enzyme was observed. According to the results, prolonged Judo 40 exposure can cause impairment of the neurological alterations and sex hormones leading to impaired fertility. Therefore, chemical handlers should be educated on protection and risk minimization.
Collapse
Affiliation(s)
- Enoka P. Kudavidanage
- Department of Natural Sciences, Sabaragamuwa University, Belhiloya 70140, Sri Lanka;
| | - D. M. I. Dissanayake
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (D.M.I.D.); (W.L.R.K.); (N.L.W.N.)
| | - W. L. Rangi Keerthirathna
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (D.M.I.D.); (W.L.R.K.); (N.L.W.N.)
| | - N. Lasni Wathima Nishshanke
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (D.M.I.D.); (W.L.R.K.); (N.L.W.N.)
| | - L. Dinithi C. Peiris
- Department of Zoology, Faculty of Applied Sciences (Center for Biotechnology), University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (D.M.I.D.); (W.L.R.K.); (N.L.W.N.)
- Correspondence: ; Tel.: +94-714-018-537
| |
Collapse
|
37
|
Anger WK, Farahat FM, Lein PJ, Lasarev MR, Olson JR, Farahat TM, Rohlman DS. Magnitude of behavioral deficits varies with job-related chlorpyrifos exposure levels among Egyptian pesticide workers. Neurotoxicology 2020; 77:216-230. [PMID: 32006538 DOI: 10.1016/j.neuro.2020.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
Chronic occupational exposure to organophosphorus pesticides (OPs) is consistently associated with deficits on behavioral tests when compared to unexposed comparison groups. However, a dose-response relationship has yet to be established, leading some to doubt an association between occupational OP exposure and behavioral deficits. Pesticide application teams in Egypt who are primarily exposed to one OP, chlorpyrifos (CPF), were recruited into a field assessment. Trail Making A and the more challenging Trail Making B tests were administered to 54 engineers (who supervise the pesticide application process, usually from the side of the field), 59 technicians (who guide the pesticide applicators in the field), 31 applicators (who mix and apply pesticides using knapsack sprayers), and 150 controls (who did not work in the fields) at two different times during the OP application season as well as immediately after applications had ended and 1.5 months later. All participants were males since only males work on pesticide application teams in Egypt. Urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of CPF, confirmed the pattern of lower to higher CPF exposures from engineers to technicians to applicators, and these were all greater than urinary metabolite levels in controls. A consistent relationship between job title and performance speed on the behavioral task was observed: Controls had the best (fastest) performance on Trail Making A and B tests throughout the application season, and applicators had significantly slower performance than engineers on Trail Making A (p = 0.015) and B (p = 0.003). However, individual urinary TCPy, blood acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) levels did not predict individual performance. This study identifies a dose-related effect based on job title, which serves as a surrogate for chronic exposure in that differing job titles exhibit varying group exposure levels. The results establish that chronic occupational exposure to chlorpyrifos is neurotoxic and suggest that the classic biomarkers of recent CPF exposure are not predictive of chronic exposure effects.
Collapse
Affiliation(s)
- W Kent Anger
- Oregon Health & Science University, Institute of Occupational Health Sciences, Portland, OR 97239, USA.
| | - Fayssal M Farahat
- Menoufia University, Department of Public Health and Community Medicine, Menoufia, Egypt; King AbdulAziz Medical City, King Saud bin AbdulAziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Pamela J Lein
- Oregon Health & Science University, Institute of Occupational Health Sciences, Portland, OR 97239, USA; Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Michael R Lasarev
- Oregon Health & Science University, Institute of Occupational Health Sciences, Portland, OR 97239, USA
| | - James R Olson
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Taghreed M Farahat
- Menoufia University, Department of Public Health and Community Medicine, Menoufia, Egypt
| | - Diane S Rohlman
- Oregon Health & Science University, Institute of Occupational Health Sciences, Portland, OR 97239, USA; Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
39
|
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76:1275-1297. [PMID: 30570672 PMCID: PMC6420889 DOI: 10.1007/s00018-018-2988-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition of heterogeneous etiology. While it is widely recognized that genetic and environmental factors and their interactions contribute to autism phenotypes, their precise causal mechanisms remain poorly understood. This article reviews our current understanding of environmental risk factors of ASD and their presumed adverse physiological mechanisms. It comprehensively maps the significance of parental age, teratogenic compounds, perinatal risks, medication, smoking and alcohol use, nutrition, vaccination, toxic exposures, as well as the role of extreme psychosocial factors. Further, we consider the role of potential protective factors such as folate and fatty acid intake. Evidence indicates an increased offspring vulnerability to ASD through advanced maternal and paternal age, valproate intake, toxic chemical exposure, maternal diabetes, enhanced steroidogenic activity, immune activation, and possibly altered zinc-copper cycles and treatment with selective serotonin reuptake inhibitors. Epidemiological studies demonstrate no evidence for vaccination posing an autism risk. It is concluded that future research needs to consider categorical autism, broader autism phenotypes, as well as autistic traits, and examine more homogenous autism variants by subgroup stratification. Our understanding of autism etiology could be advanced by research aimed at disentangling the causal and non-causal environmental effects, both founding and moderating, and gene-environment interplay using twin studies, longitudinal and experimental designs. The specificity of many environmental risks for ASD remains unknown and control of multiple confounders has been limited. Further understanding of the critical windows of neurodevelopmental vulnerability and investigating the fit of multiple hit and cumulative risk models are likely promising approaches in enhancing the understanding of role of environmental factors in the etiology of ASD.
Collapse
Affiliation(s)
- Sven Bölte
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden.
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia.
| | - Sonya Girdler
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Peter B Marschik
- Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- iDN-interdisciplinary Developmental Neuroscience, Department of Phoniatrics, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer's disease. NPJ Aging Mech Dis 2019; 5:3. [PMID: 30701080 PMCID: PMC6342990 DOI: 10.1038/s41514-018-0033-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to organophosphate pesticides, such as chlorpyrifos (CPF), increases the risk of Alzheimer's disease (AD), though the mechanism is unclear. To investigate this, we subjected 4-month-old male and female wild-type (WT) and TgF344-AD rats, a transgenic AD model, to an occupational CPF exposure paradigm that recapitulates biomarkers and behavioral impairments experienced by agricultural workers. Subsequent cognition and neuropathology were analyzed over the next 20 months. CPF exposure caused chronic microglial dysregulation and accelerated neurodegeneration in both males and females. The effect on neurodegeneration was more severe in males, and was also associated with accelerated cognitive impairment. Females did not exhibit accelerated cognitive impairment after CPF exposure, and amyloid deposition and tauopathy were unchanged in both males and females. Microglial dysregulation may mediate the increased risk of AD associated with occupational organophosphate exposure, and future therapies to preserve or restore normal microglia might help prevent AD in genetically vulnerable individuals exposed to CPF or other disease-accelerating environmental agents.
Collapse
|
41
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
42
|
The Antidiabetic Drug Liraglutide Minimizes the Non-Cholinergic Neurotoxicity of the Pesticide Mipafox in SH-SY5Y Cells. Neurotox Res 2018; 35:150-159. [PMID: 30088187 DOI: 10.1007/s12640-018-9941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Organophosphorus (OPs) compounds have been widely used in agriculture, industry, and household, and the neurotoxicity induced by them is still a cause of concern. The main toxic mechanism of OPs is the inhibition of acetylcholinesterase (AChE); however, the delayed neuropathy induced by OPs (OPIDN) is mediated by other mechanisms such as the irreversible inhibition of 70% of NTE activity (neuropathy target esterase) that leads to axonal degeneration. Liraglutide is a long-lasting GLP-1 analog clinically used as antidiabetic. Its neurotrophic and neuroprotective effects have been demonstrated in vitro and in experimental models of neurodegenerative diseases. As in OPIDN, axonal degeneration also plays a role in neurodegenerative diseases. Therefore, this study investigated the protective potential of liraglutide against the neurotoxicity of OPs by using mipafox as a neuropathic agent (at a concentration able to inhibit and age 70% of NTE activity) and a neuronal model with SH-SY5Y neuroblastoma cells, which express both esterases. Liraglutide protected cells against the neurotoxicity of mipafox by increasing neuritogenesis, the uptake of glucose, the levels of cytoskeleton proteins, and synaptic-plasticity modulators, besides decreasing the pro-inflammatory cytokine interleukin 1β and caspase-3 activity. This is the first study to suggest that liraglutide might induce beneficial effects against the delayed, non-cholinergic neurotoxicity of OPs.
Collapse
|
43
|
Olivares-Bañuelos TN, Martínez-Hernández I, Hernández-Kelly LC, Chi-Castañeda D, Vega L, Ortega A. The neurotoxin diethyl dithiophosphate impairs glutamate transport in cultured Bergmann glia cells. Neurochem Int 2018; 123:77-84. [PMID: 29908254 DOI: 10.1016/j.neuint.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Glutamate, the main excitatory neurotransmitter in the vertebrate Central Nervous System, is involved in almost every aspect of brain physiology, and its signaling properties are severely affected in most neurodegenerative diseases. This neurotransmitter has to be efficiently removed from the synaptic cleft in order to prevent an over-stimulation of glutamate receptors that leads to neuronal death. Specific sodium-dependent membrane transporters, highly enriched in glial cells, elicit the clearance of glutamate. Once internalized, it is metabolized to glutamine by the glia-enriched enzyme Glutamine synthetase. Accumulated glutamine is released into the extracellular space for its uptake into pre-synaptic neurons and its conversion to glutamate that is packed into synaptic vesicles completing the glutamate/glutamine cycle. Diverse chemical compounds, like organophosphates, directly affect brain chemistry by altering levels of neurotransmitters in the synaptic cleft. Organophosphate compounds are widely used as pesticides, and all living organisms are continuously exposed to these substances, either in a direct or indirect manner. Its metabolites, like the diethyl dithiophosphate, are capable of causing brain damage through diverse mechanisms including perturbation of neuronal-glial cell interactions and have been associated with attention-deficit disorders and other mental illness. In order to characterize the neurotoxic mechanisms of diethyl dithiophosphate, we took advantage of the well characterized model of chick cerebellar Bergmann glia cultures. A significant impairment of [3H] d-Aspartate transport was found upon exposure to the metabolite. These results indicate that glia cells are targets of neurotoxic substances such as pesticides and that these cells might be critically involved in the associated neuronal death.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, 22860, Mexico
| | - Isabel Martínez-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07000, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07000, Mexico
| | - Donají Chi-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07000, Mexico; Soluciones para un México Verde S.A. de C.V, Ciudad de México, 01210, Mexico
| | - Libia Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, 07000, Mexico.
| |
Collapse
|
44
|
Chu S, Baker MR, Leong G, Letcher RJ, Li QX. Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins. CHEMOSPHERE 2018; 199:154-159. [PMID: 29433029 PMCID: PMC5847477 DOI: 10.1016/j.chemosphere.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus (OP) compounds can bind covalently to many types of proteins and form protein adducts. These protein adducts can indicate the exposure to and neurotoxicity of OPs. In the present work, we studied adduction of tubulin with the OP insecticide profenofos in vitro and optimized the method for detection of adducted peptides. Porcine tubulin was incubated with profenofos and was then digested with trypsin, followed by mass spectrometric identification of the profenofos-modified tubulin and binding sites. With solvent-assisted digestion (80% acetonitrile in digestion solution), the protein was digested for peptide identification, especially for some peptides with low mass. The MALDI-TOF-MS and LC-ESI-TOF-MS analysis results showed that profenofos bound covalently to Tyr83 in porcine α-tubulin (TGTY*83R) and to Tyr281 in porcine β-tubulin (GSQQY*281R) with a mass increase of 166.02 Da from the original peptide fragments of porcine tubulin proteins. Tyrosine adduct sites were also confirmed by MALDI-TOF/TOF-MS analysis. This result may partially explain the neurotoxicity of profenofos at low doses and prolonged periods of exposure.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Gladys Leong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
45
|
Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S, Mónaco N, Gumilar F, Giménez MS, Minetti A. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory. Neurotox Res 2018; 34:363-374. [PMID: 29611151 DOI: 10.1007/s12640-018-9894-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/18/2023]
Abstract
Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Carlos Javier Baier
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Sergio Domínguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - María Sofía Giménez
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, IMIBIO-SL, CONICET, San Luis, Argentina
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
46
|
Abstract
One of the major classes of pesticides is that of the organophosphates (OPs). Initial developments date back almost 2 centuries but it was only in the mid-1940s that OPs reached a prominent status as insecticides, a status that, albeit declining, is still ongoing. OPs are highly toxic to nontarget species including humans, the primary effects being an acute cholinergic toxicity (responsible for thousands of poisoning each year) and a delayed polyneuropathy. Several issues of current debate and investigation on the toxicology of OPs are discussed in this brief review. These include (1) possible additional targets of OPs, (2) OPs as developmental neurotoxicants, (3) OPs and neurodegenerative diseases, (4) OPs and the "aerotoxic syndrome," (5) OPs and the microbiome, and (6) OPs and cancer. Some of these issues have been debated and studied for some time, while others are newer, suggesting that the study of the toxicology of OPs will remain an important scientific and public health issue for years to come.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
- Department of Medicine and Surgery, University of Parma, Parma 43100, Italy
| |
Collapse
|
47
|
Comfort N, Re DB. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Curr Environ Health Rep 2018; 4:392-404. [PMID: 29063415 DOI: 10.1007/s40572-017-0171-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review discusses the sex-specific effects of exposure to various organophosphate (OP) pesticides throughout the life course and potential reasons for the differential vulnerabilities observed across sexes. RECENT FINDINGS Sex is a crucial factor in the response to toxicants, yet the sex-specific effects of OP exposure, particularly in juveniles and adults, remain unresolved. This is largely due to study design and inconsistencies in exposure and outcome assessments. Exposure to OPs results in multiple adverse outcomes influenced by many factors including sex. Reported sex-specific effects suggest that males are more susceptible to OPs, which reflects the sex-dependent prevalence of various neurodevelopmental and neurodegenerative disorders such as autism and amyotrophic lateral sclerosis (ALS), in which males are at greater risk. Thus, this review proposes that the biological sex-specific effects elicited by OP exposure may in part underlie the dimorphic susceptibilities observed in neurological disorders. Understanding the immediate and long-term effects of OP exposure across sexes will be critical in advancing our understanding of OP-induced neurotoxicity and disease.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street, 11th floor, New York, NY, 10032, USA.
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street Suite 1107B, New York, NY, 10032, USA.
| |
Collapse
|
48
|
In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly. J Biomol Struct Dyn 2018; 37:307-320. [PMID: 29322868 DOI: 10.1080/07391102.2018.1426046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Organophosphate compounds (OPC) have become the primary choice as insecticides and are widely used across the world. Additionally, OPCs were also commonly used as a chemical warfare agent that triggers a great challenge to public safety. Exposure of OPCs to human causes immediate excitation of cholinergic neurotransmission through transient elevation of synaptic acetylcholine (ACh) levels and accumulations. Likewise, prolonged exposure of OPCs can affect the processes in immune response, carbohydrate metabolism, cardiovascular toxicity, and several others. Studies revealed that the toxicity of OPCs was provoked by inhibition of acetylcholinesterase (AChE). Therefore, combined in silico approaches - pharmacophore-based 3D-QSAR model; docking and Molecular Dynamics (MD) - were used to assess the precise and comprehensive effects of series of known OP-derived compounds together with its -log LD50 values. The selected five-featured pharmacophore model - AAHHR.61 - displayed the highest correlation (R2 = .9166), cross-validated coefficient (Q2 = .8221), F = 63.2, Pearson-R = .9615 with low RMSE = .2621 values obtained using five component PLS factors. Subsequently, the well-validated model was then used as a 3D query to search novel OPCs using a high-throughput virtual screening technique. Simultaneously, the docking studies predicted the binding pose of the most active OPC in the MdAChE binding pocket. Additionally, the stability of docking was verified using MD simulation. The results revealed that OP22 and predicted lead compounds bound tightly to S315 of MdAChE through potential hydrogen bond interaction over time. Overall, this study might provide valuable insight into binding mode of OPCs and hit compounds to inhibit AChE in housefly.
Collapse
|
49
|
Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Sci Rep 2018; 8:2841. [PMID: 29434277 PMCID: PMC5809488 DOI: 10.1038/s41598-018-20876-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Organophosphate-based compounds (OPs) represent a significant threat to warfighters (nerve agents) and civilian populations (pesticides). There is a pressing need to develop in vitro brain models that correlate to the in vivo brain to rapidly study OPs for neurotoxicity. Here we report on a microfluidic-based three-dimensional, four-cell tissue construct consisting of 1) a blood-brain barrier that has dynamic flow and membrane-free culture of the endothelial layer, and 2) an extracellular matrix (ECM)-embedded tissue construct with neuroblastoma, microglia, and astrocytes. We demonstrated this platform’s utility by measuring OP effects on barrier integrity, acetylcholinesterase (AChE) inhibition, viability and residual OP concentration with four model OPs. The results show that the OPs penetrate the blood brain barrier (BBB) and rapidly inhibit AChE activity, and that in vitro toxicity was correlated with available in vivo data. This paper demonstrates the potential utility of a membrane-free tetra-cultured brain on chip that can be scaled to high throughput as a cost-effective alternative method to animal testing.
Collapse
|
50
|
Liu J, Zhang X, Yang M, Hu M, Zhong G. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci Rep 2018; 8:2152. [PMID: 29391422 PMCID: PMC5794795 DOI: 10.1038/s41598-018-20265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaoying Zhang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mengran Yang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Meiying Hu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|