1
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Fang B, Wang Z, Nan G. Dietary inflammatory potential and the risk of cognitive impairment: A meta-analysis of prospective cohort studies. J Nutr Health Aging 2024; 29:100428. [PMID: 39689376 DOI: 10.1016/j.jnha.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Dietary inflammatory potential, measured by the dietary inflammatory index (DII) has been linked to cognitive impairment. However, evidence was mostly driven by cross-sectional studies. This meta-analysis of prospective cohort studies aims to evaluate the relationship between DII and the risk of cognitive impairment, including mild cognitive impairment (MCI) and dementia. METHODS We conducted a systematic search of PubMed, Web of Science, and Embase for studies published up to July 25, 2024. Prospective cohort studies with adults aged 18 years or older, without dementia at baseline, and reporting the incidence of cognitive impairment by DII category were included. Data were analyzed using a random-effects model to calculate pooled risk ratios (RRs) with 95% confidence intervals (CIs). RESULTS Nine prospective cohort studies with 266,169 participants were included. A high DII at baseline was associated with an increased risk of cognitive impairment during follow-up (RR: 1.34, 95% CI: 1.15-1.55, p < 0.001) with moderate heterogeneity (I² = 56%). Subgroup analyses revealed consistent associations across types of cognitive impairment (MCI, overall dementia, Alzheimer's disease) and study characteristics (p for subgroup difference all >0.05). Sensitivity analyses confirmed the robustness of the results. CONCLUSIONS This meta-analysis suggests that a higher dietary inflammatory potential is independently associated with an increased risk of cognitive impairment. These findings underscore the potential impact of dietary inflammation on cognitive health and highlight the need for dietary strategies to mitigate cognitive decline risk.
Collapse
Affiliation(s)
- Boyu Fang
- The Second Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhipeng Wang
- The Second Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Guangxian Nan
- The Second Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
3
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function. Front Microbiol 2024; 15:1463958. [PMID: 39659426 PMCID: PMC11628546 DOI: 10.3389/fmicb.2024.1463958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The gut-brain-metabolic axis has emerged as a critical area of research, highlighting the intricate connections between the gut microbiome, metabolic processes, and cognitive function. This review article delves into the complex interplay between these interconnected systems, exploring their role in the development of insulin resistance and cognitive decline. The article emphasizes the pivotal influence of the gut microbiota on central nervous system (CNS) function, demonstrating how microbial colonization can program the hypothalamic-pituitary-adrenal (HPA) axis for stress response in mice. It further elucidates the mechanisms by which gut microbial carbohydrate metabolism contributes to insulin resistance, a key factor in the pathogenesis of metabolic disorders and cognitive impairment. Notably, the review highlights the therapeutic potential of targeting the gut-brain-metabolic axis through various interventions, such as dietary modifications, probiotics, prebiotics, and fecal microbiota transplantation (FMT). These approaches have shown promising results in improving insulin sensitivity and cognitive function in both animal models and human studies. The article also emphasizes the need for further research to elucidate the specific microbial species and metabolites involved in modulating the gut-brain axis, as well as the long-term effects and safety of these therapeutic interventions. Advances in metagenomics, metabolomics, and bioinformatics are expected to provide deeper insights into the complex interactions within the gut microbiota and their impact on host health. Overall, this comprehensive review underscores the significance of the gut-brain-metabolic axis in the pathogenesis and treatment of metabolic and cognitive disorders, offering a promising avenue for the development of novel therapeutic strategies targeting this intricate system.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Alireza Afshar
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
4
|
Zhao X, Lu J, Zhang J, Liu C, Wang H, Wang Y, Du Q. Sleep restriction promotes brain oxidative stress and inflammation, and aggravates cognitive impairment in insulin-resistant mice. Psychoneuroendocrinology 2024; 166:107065. [PMID: 38718616 DOI: 10.1016/j.psyneuen.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024]
Abstract
Sleep deprivation and insulin resistance (IR) are two risk factors for Alzheimer's disease. As the population of people with IR increases and sleep restriction (SR) due to staying up late becomes the "new normal", it is necessary to investigate the effects and molecular pathogenesis of chronic SR on cognitive function in insulin resistance. In this study, 4-week-old mice were fed a high-fat diet (HFD) for 8 weeks to establish IR model, and then the mice were subjected to SR for 21 days, and related indicators were assessed, including cognitive capacity, apoptosis, oxidative stress, glial cell activation, inflammation, blood-brain barrier (BBB) permeability and adiponectin levels, for exploring the potential regulatory mechanisms. Compared with control group, IR mice showed impaired cognitive capacity, meanwhile, SR not only promoted Bax/Bcl2-induced hippocampal neuronal cell apoptosis and Nrf2/HO1- induced oxidative stress, but also increased microglia activation and inflammatory factor levels and BBB permeability, thus aggravating the cognitive impairment in IR mice. Consequently, changing bad living habits and ensuring sufficient sleep are important intervention strategies to moderate the aggravation of IR-induced cognitive impairment.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Ce Liu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou 510515, China; Division of Gastroenterology and Hepatology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China.
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| |
Collapse
|
5
|
Pomilio C, Presa J, Oses C, Vinuesa A, Bentivegna M, Gregosa A, Riudavets M, Sevlever G, Galvan V, Levi V, Beauquis J, Saravia F. Loss of Direct Vascular Contact to Astrocytes in the Hippocampus as an Initial Event in Alzheimer's Disease. Evidence from Patients, In Vivo and In Vitro Experimental Models. Mol Neurobiol 2024; 61:5142-5160. [PMID: 38172288 DOI: 10.1007/s12035-023-03897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus-a complex brain structure with a pivotal role in learning and memory-is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice-a model of AD-and to determine the impact of Aβ40 and Aβ42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood-brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aβ40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aβ42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer's disease.
Collapse
Affiliation(s)
- C Pomilio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - J Presa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - C Oses
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - A Vinuesa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M Bentivegna
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A Gregosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M Riudavets
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - G Sevlever
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - V Galvan
- Department of Biochemistry and Molecular Biology and Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA
| | - V Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - J Beauquis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - F Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Ceprián N, Martínez de Toda I, Maté I, Garrido A, Gimenez-Llort L, De la Fuente M. Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease. Int J Mol Sci 2024; 25:6976. [PMID: 39000092 PMCID: PMC11241217 DOI: 10.3390/ijms25136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.
Collapse
Affiliation(s)
- Noemí Ceprián
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martínez de Toda
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Ianire Maté
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Antonio Garrido
- Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lydia Gimenez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
8
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
9
|
Yadikar H, Ansari MA, Abu-Farha M, Joseph S, Thomas BT, Al-Mulla F. Deciphering Early and Progressive Molecular Signatures in Alzheimer's Disease through Integrated Longitudinal Proteomic and Pathway Analysis in a Rodent Model. Int J Mol Sci 2024; 25:6469. [PMID: 38928172 PMCID: PMC11203991 DOI: 10.3390/ijms25126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.
Collapse
Affiliation(s)
- Hamad Yadikar
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sabah AlSalem University City, Kuwait City 13060, Kuwait
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Shibu Joseph
- Department of Special Service Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Betty T. Thomas
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| |
Collapse
|
10
|
Ojo OA, Gyebi GA, Ezenabor EH, Iyobhebhe M, Emmanuel DA, Adelowo OA, Olujinmi FE, Ogunwale TE, Babatunde DE, Ogunlakin AD, Ojo AB, Adeyemi OS. Exploring beetroot ( Beta vulgaris L.) for diabetes mellitus and Alzheimer's disease dual therapy: in vitro and computational studies. RSC Adv 2024; 14:19362-19380. [PMID: 38887650 PMCID: PMC11181461 DOI: 10.1039/d4ra03638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
This study explored the flavonoid-rich extract of beetroot (Beta vulgaris L.) for type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) dual therapy by using in vitro and molecular simulation studies. Flavonoid-rich extracts of B. vulgaris fruit were evaluated for their antidiabetic and anti-alzheimic activities. Molecular docking and dynamic simulation were performed to identify potential bioactive flavonoids with dual therapeutic effects on T2D and AD. Flavonoid-rich extracts of B. vulgaris fruit (IC50 = 73.062 ± 0.480 μg mL-1) had moderate activity against α-amylase compared to the standard acarbose (IC50 = 27.104 ± 0.270 μg mL-1). Compared with acarbose, flavonoid-rich extracts of B. vulgaris fruit had appreciable activity against α-glucosidase (IC50 = 17.389 ± 0.436 μg mL-1) (IC50 = 37.564 ± 0.620 μg mL-1). For AChE inhibition, flavonoid-rich extracts of B. vulgaris fruit exhibited (p < 0.0001) inhibitory activity (IC50 = 723.260 ± 5.466 μg mL-1), albeit weaker than that of the standard control, galantamine (IC50 = 27.950 ± 0.122 μg mL-1). Similarly, flavonoid-rich extracts of B. vulgaris fruit showed considerable (p < 0.0001) inhibitory effects on BChE (IC50 = 649.112 ± 0.683 μg mL-1). In contrast, galantamine (IC50 = 23.126 ± 0.683 μg mL-1) is more potent than the extracts of B. vulgaris fruit. Monoamine oxidase (MAO) activity increased in FeSO4-induced brain damage. In contrast, flavonoid-rich extracts of B. vulgaris fruit protected against Fe2+-mediated brain damage by suppressing MAO activity in a concentration-dependent manner. HPLC-DAD profiling of the extracts identified quercetrin, apigenin, rutin, myricetin, iso-quercetrin, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid. Molecular docking studies revealed quercetrin, apigenin, rutin, iso-queretrin, and myricetin were the top docked bioactive flavonoids against the five top target proteins (α-amylase, α-glucosidase AchE, BchE, and MAO). Molecular dynamic simulations revealed that the complexes formed remained stable over the course of the simulation. Collectively, the findings support the prospect of flavonoid-rich extracts of B. vulgaris root functioning as a dual therapy for T2D and AD.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | - Gideon Ampoma Gyebi
- Natural Products and Structural (Bio-Chem)-Informatics Research Laboratory (NpsBC-RI), Department of Biochemistry, Bingham University Karu Nigeria
| | | | | | | | | | | | | | | | - Akingbolabo Daniel Ogunlakin
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| | | | - Oluyomi Stephen Adeyemi
- Biochemistry Programme, Bowen University Iwo 232102 Nigeria +2347037824647
- Good Health and Wellbeing Research Clusters (SDG 03) Bowen University Iwo 232102 Nigeria
| |
Collapse
|
11
|
Ma X, Niu Y, Nan S, Zhang W. Effect of Salvia sclarea L. extract on growth performance, antioxidant capacity, and immune function in lambs. Front Vet Sci 2024; 11:1367843. [PMID: 38659454 PMCID: PMC11039921 DOI: 10.3389/fvets.2024.1367843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
The aim of this experiment is to explore the effects of salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of lambs. Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of twelve lambs in each. While the control group (CK) received only basal feed, the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04 mL/kg (group CL1), 0.08 mL/kg (group CL2), 0.12 mL/kg (group CL3), and 0.16 mL/kg (group CL4). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test for the determination of immune and antioxidant indices. The results showed that the average daily gain and average daily feed intake of lambs were significantly increased in CL3 group compared to CK group (p < 0.05). Also, the apparent nutrient digestibility of crude protein and neutral detergent fiber was significantly increased (p < 0.05). The Dry matter, acid detergent fiber and Ether extract were not significantly different (p > 0.05). The serum levels of superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups compared to CK group, while malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). In conclusion, the addition of salvia sclarea extract to the ration promotes growth performance and nutrient digestion in lambs. Improvement of immune response by increasing immunoglobulin and cytokine concentrations. And it enhances the antioxidant status by increasing the antioxidant enzyme activity in lambs. Introduction This study aimed to explore the effects of Salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of the lambs. Methods Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of 12 lambs each. The control group (CK) received only basal feed, whereas the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04, 0.08, 0.12, and 0.16 mL/kg (CL1, CL2, CL3, and CL4, respectively). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test to determine immune and antioxidant indices. Results The results showed that the average daily weight gain and feed intake of the lambs were significantly higher in the CL3 group than in the CK group (p < 0.05). In addition, the apparent nutrient digestibility of crude protein and neutral detergent fiber increased significantly (p < 0.05). The dry matter, acid detergent fiber, and ether extract were not significantly different (p > 0.05). Serum levels of superoxide dismutase, catalase, and glutathione peroxidase and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups than in the CK group, whereas malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). Discussion In conclusion, the addition of the S. sclarea extract to the diet promoted growth performance and nutrient digestion in lambs. Immune response was improved by increasing Ig and cytokine concentrations. It enhances antioxidant status by increasing antioxidant enzyme activity in lambs.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Momina SS, Gandla K. Flavonoid-Rich Trianthema decandra Ameliorates Cognitive Dysfunction in the Hyperglycemic Rats. Biochem Genet 2024:10.1007/s10528-024-10744-2. [PMID: 38570442 DOI: 10.1007/s10528-024-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The present study was aimed at the evaluation of neuroprotective ability of methanolic extract of Trianthema decandra (METD) against hyperglycemia-related cognitive impairment in rats. The extract of T. decandra was standardized by TLC and HPTLC methods. To verify the identity and purity of isolated compounds, they were segregated and characterized using various techniques, including UV-visible spectrophotometry, FT-IR, H-NMR, and Mass spectroscopy. α-Amylase and α-glucosidase inhibition property of the extracts were assessed in-vitro. The screening of the neuroprotective effects of METD in hyperglycemic rats was done utilizing Morri's water (MWM) and elevated plus maze (EPM) model, as well as acetylcholinesterase (AChE) activity. The extracts of Trianthema decandra and its chemical constituents, namely quercetin and phytol, demonstrated a significant protective effect on enzymes like α-amylase and α-glucosidase. Methanol and hydroalcoholic extracts have shown the strongest inhibitory activity followed by chloroform extract. Quercetin and phytol were associated with the methanolic and chloroform extracts which were identified using TLC and HPTLC techniques. During the thirty days of the study, the induction of diabetes in the rats exhibited persistent hyperglycemia, hyperlipidemia, higher escape latency during training trials and reduced time spent in target quadrant in probe trial in Morris water maze test, and increased escape latency in EPM task. Regimen of METD (200 and 400 mg/kg) in the diabetic rats reduced the glucose levels in blood, lipid, and liver profile and showed positive results on Morri's water and elevated plus maze tasks. During the investigation, it was determined that Trianthema decandra extracts and the chemical constituent's quercetin and phytol in it had anti-diabetic and neuroprotective activities.
Collapse
Affiliation(s)
- Sayyada Saleha Momina
- Department of Pharmacognosy and Phytochemistry, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India
| | - Kumaraswamy Gandla
- Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India.
| |
Collapse
|
13
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
14
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
15
|
Pereira VM, Pradhanang S, Prather JF, Nair S. Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment. Curr Neuropharmacol 2024; 23:58-74. [PMID: 38963109 PMCID: PMC11519823 DOI: 10.2174/1570159x22666240517090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Suyasha Pradhanang
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
16
|
Grant WB. A Brief History of the Progress in Our Understanding of Genetics and Lifestyle, Especially Diet, in the Risk of Alzheimer's Disease. J Alzheimers Dis 2024; 100:S165-S178. [PMID: 39121130 PMCID: PMC11380269 DOI: 10.3233/jad-240658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The two major determining factors for Alzheimer's disease (AD) are genetics and lifestyle. Alleles of the apolipoprotein E (APOE) gene play important roles in the development of late-onset AD, with APOEɛ4 increasing risk, APOEɛ3 being neutral, and APOEɛ2 reducing risk. Several modifiable lifestyle factors have been studied in terms of how they can modify the risk of AD. Among these factors are dietary pattern, nutritional supplements such as omega-3 fatty acids, and B vitamins, physical exercise, and obesity, and vitamin D. The Western diet increases risk of AD, while dietary patterns such as the Mediterranean and vegetarian/vegan diets reduce risk. Foods associated with reduced risk include coffee, fruits and vegetables, whole grains and legumes, and fish, while meat and ultraprocessed foods are associated with increased risk, especially when they lead to obesity. In multi-country ecological studies, the amount of meat in the national diet has the highest correlation with risk of AD. The history of research regarding dietary patterns on risk of AD is emphasized in this review. The risk of AD can be modified starting at least by mid-life. People with greater genetic risk for AD would benefit more by choosing lifestyle factors to reduce and/or delay incidence of AD.
Collapse
Affiliation(s)
- William B Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| |
Collapse
|
17
|
Sun M, Lu Z, Chen WM, Wu SY, Zhang J. Sarcopenia and diabetes-induced dementia risk. Brain Commun 2023; 6:fcad347. [PMID: 38179233 PMCID: PMC10766377 DOI: 10.1093/braincomms/fcad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
This study aimed to investigate whether sarcopenia independently increases the risk of diabetes-induced dementia in elderly individuals diagnosed with type 2 diabetes mellitus. The study cohort consisted of a large sample of elderly individuals aged 60 years and above, who were diagnosed with type 2 diabetes mellitus between 2008 and 2018. To minimize potential bias and achieve covariate balance between the sarcopenia and non-sarcopenia groups, we employed propensity score matching. Various statistical analyses, including Cox regression models to assess dementia risk and associations, competing risk analysis to account for mortality and Poisson regression analysis for incidence rates, were used. Before propensity score matching, the study included 406 573 elderly type 2 diabetes mellitus patients, with 20 674 in the sarcopenia group. Following propensity score matching, the analysis included a total of 41 294 individuals, with 20 647 in the sarcopenia group and 20 647 in the non-sarcopenia group. Prior to propensity score matching, elderly type 2 diabetes mellitus patients with sarcopenia exhibited a significantly higher risk of dementia (adjusted hazard ratio: 1.12, 95% confidence interval: 1.07-1.17). After propensity score matching, the risk remained significant (adjusted hazard ratio: 1.14, 95% confidence interval: 1.07-1.21). Incidence rates of dementia were notably higher in the sarcopenia group both before and after propensity score matching, underscoring the importance of sarcopenia as an independent risk factor. Our study highlights sarcopenia as an independent risk factor for diabetes-induced dementia in elderly type 2 diabetes mellitus patients. Advanced age, female gender, lower income levels, rural residency, higher adapted diabetes complication severity index and Charlson Comorbidity Index scores and various comorbidities were associated with increased dementia risk. Notably, the use of statins was linked to a reduced risk of dementia. This research underscores the need to identify and address modifiable risk factors for dementia in elderly type 2 diabetes mellitus patients, offering valuable insights for targeted interventions and healthcare policies.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450052 China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450052 China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei 242, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei 242, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei 242, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Management, College of Management, Fo Guang University, Yilan 262, Taiwan
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450052 China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
18
|
Nguyen-Thi PT, Nguyen TT, Phan HL, Ho TT, Vo TV, Vo GV. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int 2023; 170:105612. [PMID: 37714337 DOI: 10.1016/j.neuint.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Central nervous system (CNS) diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), glioblastoma (GBM), and peripheral nerve injury have been documented as incurable diseases, which lead to serious impacts on human health especially prevalent in the aging population worldwide. Most of the treatment strategies fail due to low efficacy, toxicity, and poor brain penetration. Recently, advancements in nanotechnology have helped alleviate the challenges associated with the application of cell membrane-based nanomaterials against CNS diseases. In the following review, the existing types of cell membrane-based nanomaterials systems which have improved therapeutic efficacy for CNS diseases would be described. A summary of recent progress in the incorporation of nanomaterials in cell membrane-based production, separation, and analysis will be provided. Addition to, challenges relate to large-scale manufacturing of cell membrane-based nanomaterials and future clinical trial of such platforms will be discussed.
Collapse
Affiliation(s)
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Viet Nam.
| | - Hoang Long Phan
- Faculty of Pharmacy, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
19
|
Alves-Borba L, Espinosa-Fernández V, Canseco-Rodríguez A, Sánchez-Pérez AM. ABA Supplementation Rescues IRS2 and BDNF mRNA Levels in a Triple-Transgenic Mice Model of Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1007-1013. [PMID: 37849638 PMCID: PMC10578322 DOI: 10.3233/adr-230056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/19/2023] Open
Abstract
Insulin resistance underlies Alzheimer's disease (AD) by affecting neuroinflammation and brain-derived neurotrophic factor (BDNF) expression. Here, we evaluated the effect of early and late-start abscisic acid (ABA) intervention on hippocampal BDNF, tumor necrosis factor α (TNFα), and insulin receptors substrates (IRS) 1/2 mRNA levels in a triple-transgenic mice model of AD. Transgenic mice displayed lower BDNF and IRS2, equal IRS1, and higher TNFα expression compared to wild-type mice. Late ABA treatment could rescue TNFα and increased IRS1/2 expression. However, early ABA administration was required to increase BDNF expression. Our data suggests that early intervention with ABA can prevent AD, via rescuing IRS1/2 and BDNF expression.
Collapse
Affiliation(s)
- Laryssa Alves-Borba
- Neurobiotecnologia group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Castelló de la Plana, Spain
| | - Verónica Espinosa-Fernández
- Neurobiotecnologia group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Castelló de la Plana, Spain
| | - Ania Canseco-Rodríguez
- Neurobiotecnologia group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Castelló de la Plana, Spain
| | - Ana María Sánchez-Pérez
- Neurobiotecnologia group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
20
|
Bregonzio C. Metabolic syndrome as a risk for Parkinson's disease: A new therapeutic opportunity. Brain Behav Immun 2023; 111:125-126. [PMID: 37011866 DOI: 10.1016/j.bbi.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Claudia Bregonzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina.
| |
Collapse
|
21
|
Veshkini A, Ceciliani F, Bonnet M, Hammon HM. Review: Effect of essential fatty acids and conjugated linoleic acid on the adaptive physiology of dairy cows during the transition period. Animal 2023; 17 Suppl 2:100757. [PMID: 36966026 DOI: 10.1016/j.animal.2023.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Cows fed total mixed rations (silage-based) may not receive as much essential fatty acids (EFAs) and conjugated linoleic acids (CLAs) as cows fed pasture-based rations (fresh grass) containing rich sources of polyunsaturated fatty acids. CLA-induced milk fat depression allows dairy cows to conserve more metabolisable energy, thereby shortening the state of negative energy balance and reducing excessive fat mobilisation at early lactation. EFAs, particularly α-linolenic acid, exert anti-inflammatory and antioxidative properties, thereby modulating immune functions. Thus, combined EFA and CLA supplementation seems to be an effective nutritional strategy to relieve energy metabolism and to improve immune response, which are often compromised during the transition from late pregnancy to lactation in high-yielding dairy cows. There has been extensive research on this idea over the last two decades, and despite promising results, several interfering factors have led to varying findings, making it difficult to conclude whether and under what conditions EFA and CLA supplementations are beneficial for dairy cows during the transition period. This article reviews the latest studies on the effects of EFA and CLA supplementation, alone or in combination, on dairy cow metabolism and health during various stages around parturition. Our review article summarises and provides novel insights into the mechanisms by which EFA and/or CLA influence markers of metabolism, energy homeostasis and partitioning, immunity, and inflammation revealed by a deep molecular phenotyping.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Harald Michael Hammon
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
22
|
Rahimi-Tari M, Sadeghi AA, Motamedi-Sedeh F, Aminafshar M, Chamani M. Hematological parameters, antioxidant status, and gene expression of γ-INF and IL-1β in vaccinated lambs fed different type of lipids. Trop Anim Health Prod 2023; 55:168. [PMID: 37084030 DOI: 10.1007/s11250-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
This study was aimed to evaluate the effects of vegetable oils as calcium salt on immune responses and the expression of immune-related genes in vaccinated lambs. Twenty-four lambs (35 kg body weight, 6 months old) were assigned to four treatments with six replicates in a completely randomized design for 40 days. Four concentrates were formulated in which the calcium salts of palm oil, canola oil, corn oil, and flaxseed oil were used. On day 30 of the experiment, lambs were vaccinated by a dose of foot-and-mouth disease virus. The blood samples were collected from jugular vein 10 days after vaccination. The level of malondialdehyde and the activity of liver enzymes were the highest in lambs receiving corn oil and the lowest in lambs receiving flaxseed oil. The highest lymphocytes and the lowest neutrophil percentages were observed in lambs receiving flaxseed oil. There was a significant difference among treatments for the relative genes expression. Flaxseed oil significantly upregulated interferon-γ and corn oil upregulated interleukin-1β. The highest titer against foot-and-mouth disease virus was related to lambs receiving flaxseed oil, and the lowest titer was related to lambs that received corn oil. Flaxseed oil had more beneficial effects on immune response than other oils.
Collapse
Affiliation(s)
- Morteza Rahimi-Tari
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj, Iran
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Kakoty V, Kc S, Kumari S, Yang CH, Dubey SK, Sahebkar A, Kesharwani P, Taliyan R. Brain insulin resistance linked Alzheimer's and Parkinson's disease pathology: An undying implication of epigenetic and autophagy modulation. Inflammopharmacology 2023; 31:699-716. [PMID: 36952096 DOI: 10.1007/s10787-023-01187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
In metabolic syndrome, dysregulated signalling activity of the insulin receptor pathway in the brain due to persistent insulin resistance (IR) condition in the periphery may lead to brain IR (BIR) development. BIR causes an upsurge in the activity of glycogen synthase kinase-3 beta, increased amyloid beta (Aβ) accumulation, hyperphosphorylation of tau, aggravated formation of Aβ oligomers and simultaneously neurofibrillary tangle formation, all of which are believed to be direct contributors in Alzheimer's Disease (AD) pathology. Likewise, for Parkinson's Disease (PD), BIR is associated with alpha-synuclein alterations, dopamine loss in brain areas which ultimately succumbs towards the appearance of classical motor symptoms corresponding to the typical PD phenotype. Modulation of the autophagy process for clearing misfolded proteins and alteration in histone proteins to alleviate disease progression in BIR-linked AD and PD have recently evolved as a research hotspot, as the majority of the autophagy-related proteins are believed to be regulated by histone posttranslational modifications. Hence, this review will provide a timely update on the possible mechanism(s) converging towards BIR induce AD and PD. Further, emphasis on the potential epigenetic regulation of autophagy that can be effectively targeted for devising a complete therapeutic cure for BIR-induced AD and PD will also be reviewed.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India, Jalandhar-Delhi G.T Road, Phagwara
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Sarathlal Kc
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
24
|
Grant WB, Blake SM. Diet's Role in Modifying Risk of Alzheimer's Disease: History and Present Understanding. J Alzheimers Dis 2023; 96:1353-1382. [PMID: 37955087 PMCID: PMC10741367 DOI: 10.3233/jad-230418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Diet is an important nonpharmacological risk-modifying factor for Alzheimer's disease (AD). The approaches used here to assess diet's role in the risk of AD include multi-country ecological studies, prospective and cross-sectional observational studies, and laboratory studies. Ecological studies have identified fat, meat, and obesity from high-energy diets as important risk factors for AD and reported that AD rates peak about 15-20 years after national dietary changes. Observational studies have compared the Western dietary pattern with those of the Dietary Approaches to Stop Hypertension (DASH), Mediterranean (MedDi), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. Those studies identified AD risk factors including higher consumption of saturated and total fats, meat, and ultraprocessed foods and a lower risk of AD with higher consumption of fruits, legumes, nuts, omega-3 fatty acids, vegetables, and whole grains. Diet-induced factors associated with a significant risk of AD include inflammation, insulin resistance, oxidative stress, elevated homocysteine, dietary advanced glycation end products, and trimethylamine N-oxide. The molecular mechanisms by which dietary bioactive components and specific foods affect risk of AD are discussed. Given most countries' entrenched food supply systems, the upward trends of AD rates would be hard to reverse. However, for people willing and able, a low-animal product diet with plenty of anti-inflammatory, low-glycemic load foods may be helpful.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| | - Steven M. Blake
- Nutritional Neuroscience, Maui Memory Clinic, Wailuku, HI, USA
| |
Collapse
|
25
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
26
|
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|
27
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
28
|
Mehdipour M, Daghigh-Kia H, Najafi A, Mehdipour Z, Mohammadi H. Protective effect of rosiglitazone on microscopic and oxidative stress parameters of ram sperm after freeze-thawing. Sci Rep 2022; 12:13981. [PMID: 35978030 PMCID: PMC9385643 DOI: 10.1038/s41598-022-18298-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of rosiglitazone on ram semen after cryopreservation on the quality of thawed sperm. Sperm motility, membrane functionality, viability, total abnormality, acrosome membrane integrity, mitochondrial activity, reactive oxygen species production, ATP content and apoptotic features were assessed after thawing. Rosiglitazone at concentration of 60 µM resulted in the highest (P < 0.05) total motility, progressive motility and straight-line velocity. The percentages of average path velocity and curvilinear velocity were greater in the 60 µM group. Different concentrations of rosiglitazone did not have significant effects on amplitude of the lateral head displacement, linearity and straightness. The highest amounts of membrane functionality and mitochondrial activity after freeze-thawing were observed in groups containing 60 µM. By increasing the rosiglitazone level to 80 µM, no positive effect was observed in most of the evaluated parameters. The lowest ROS concentration was recorded in 60 µM rosiglitazone group (P < 0.05). The group containing 60 µM rosiglitazone also produced the lowest significant percentage of apoptosis-like changes and dead sperm. A greater (P < 0.05) percentage of acrosome integrity in frozen-thawed spermatozoa was observed in the 60 µM rosiglitazone group. There was no significant difference between 40 and 60 µM rosiglitazone in intact acrosome of ram thawed semen. The result showed that supplementation in ram semen extender with rosiglitazone had a positive role in the regulation of ram sperm motility and had strong protective effect on the sperm membrane and acrosome integrity.
Collapse
Affiliation(s)
- Mahdieh Mehdipour
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Abouzar Najafi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Zohreh Mehdipour
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
29
|
Richard R, Mousa S. Necroptosis in Alzheimer's disease: Potential therapeutic target. Biomed Pharmacother 2022; 152:113203. [PMID: 35665670 DOI: 10.1016/j.biopha.2022.113203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is the sixth leading cause of death in the United States, and the number of patients with the disease is set to hit 20 million by 2050. In addition, necroptosis is a form of cell death that is found to occur in virtually all tissues. Its key feature is the disruption of the cell membrane that results in an inflammatory immune response. This study aimed to investigate the role of necroptosis in the development of Alzheimer's disease through a literature review. It was found that necroptosis not only occurs in Alzheimer's disease but also may play a crucial role due to several factors. Hyperglycemia activates the switch from apoptosis to necroptosis, and Alzheimer's disease is considered "diabetes type 3.' Second, reactive oxygen species are produced in excess during necroptosis, and affect the production of amyloid beta in Alzheimer's. Inflammation, a key consequence of necroptosis, also increases neurodegeneration and contributes to the overproduction of amyloid beta. These connections lend themselves to the 'starving brain' theory of Alzheimer's disease, and insulin resistance exacerbates the role of necroptosis in the development of Alzheimer's disease. Necroptosis may have a vicious-cycle effect in Alzheimer's disease due to various factors, and it is a key therapeutic target in Alzheimer's disease that should be further examined.
Collapse
Affiliation(s)
| | - Shaker Mousa
- Albany College of Pharmacy and Health Sciences, United States.
| |
Collapse
|
30
|
Alvariño R, Alfonso A, Pech-Puch D, Gegunde S, Rodríguez J, Vieytes MR, Jiménez C, Botana LM. Furanoditerpenes from Spongia (Spongia) tubulifera Display Mitochondrial-Mediated Neuroprotective Effects by Targeting Cyclophilin D. ACS Chem Neurosci 2022; 13:2449-2463. [PMID: 35901231 PMCID: PMC9686139 DOI: 10.1021/acschemneuro.2c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuroprotective properties of five previously described furanoditerpenes 1-5, isolated from Spongia (Spongia) tubulifera, were evaluated in an in vitro oxidative stress model in SH-SY5Y cells. Dose-response treatments revealed that 1-5 improved cell survival at nanomolar concentrations through the restoration of mitochondrial membrane potential and the reduction of reactive oxygen species. Their ability to prevent the mitochondrial permeability transition pore opening was also assessed, finding that 4 and 5 inhibited the channel at 0.001 μM. This inhibition was accompanied by a decrease in the expression of cyclophilin D, the main regulator of the pore, which was also reduced by 1 and 2. However, the activation of ERK and GSK3β, upstream modulators of the channel, was not affected by compounds. Therefore, their ability to bind cyclophilin D was evaluated by surface plasmon resonance, observing that 2-5 presented equilibrium dissociation constants in the micromolar range. All compounds also showed affinity for cyclophilin A, being 1 selective toward this isoform, while 2 and 5 exhibited selectivity for cyclophilin D. When the effects on the intracellular expression of cyclophilins A-C were determined, it was found that only 1 decreased cyclophilin A, while cyclophilins B and C were diminished by most compounds, displaying enhanced effects under oxidative stress conditions. Results indicate that furanoditerpenes 1-5 have mitochondrial-mediated neuroprotective properties through direct interaction with cyclophilin D. Due to the important role of this protein in oxidative stress and inflammation, compounds are promising drugs for new therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Dawrin Pech-Puch
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,Departamento
de Biología Marina, Campus de Ciencias Biológicas y
Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, 97100 Mérida, Yucatán, Mexico
| | - Sandra Gegunde
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Fundación
Instituto de Investigación Sanitario Santiago de Compostela
(FIDIS), Hospital Universitario Lucus Augusti, 27002 Lugo, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mercedes R. Vieytes
- Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,. Phone/Fax: +34881012170
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,. Phone/Fax: +34982822233
| |
Collapse
|
31
|
Abbas HA, Salama AM, El-Toumy SA, A. Salama AA, Tadros SH, El Gedaily RA. Novel Neuroprotective Potential of Bunchosia armeniaca (Cav.) DC against Lipopolysaccharide Induced Alzheimer’s Disease in Mice. PLANTS 2022; 11:plants11141792. [PMID: 35890426 PMCID: PMC9322164 DOI: 10.3390/plants11141792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Bunchosia armeniaca (Cav.) DC (Malpighiaceae) is one of the well-known traditionally used remedies worldwide. This study aims to explore the leaves’ metabolome via Quadrupole-Time-of-Flight-Liquid-Chromatography-Mass Spectrometry and to investigate the neuroprotective effect of leaves using lipopolysaccharide (LPS) induced Alzheimer’s disease model. Mice were administered LPS (0.25 mg/kg/day; intraperitoneal) as well as methanolic extract (BME), dichloromethane (BDMF), and butanol (BBF) fractions (each 200 mg/kg/day; oral) for one week. BME and BBF improved behavioral activity on the Y maze test, decreased brain content of inflammatory markers such as nuclear factor kappa B and interleukin 1 beta, and prevented the elevation of cytochrome P450 2E1, and glial fibrillary acidic protein compared to the LPS-administered group. Histopathological examination of several brain parts confirmed the neuroprotective effect of the tested extracts. In addition, BBF exhibited higher activity in all tested in vitro antioxidant and acetylcholinesterase inhibition assays. Metabolic profiling offered tentative identification of 88 metabolites, including mainly flavonoids, phenolic acids, and coumarins. Several detected metabolites, such as quercetin, apigenin, baicalin, vitexin, and resveratrol, had previously known neuroprotective effects. The current study highlighted the possible novel potential of B. armeniaca in preventing memory impairment, possibly through its antioxidant effect and inhibition of acetylcholinesterase, inflammatory and oxidative stress mediators.
Collapse
Affiliation(s)
- Haidy A. Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt; (H.A.A.); (A.M.S.)
| | - Ahmed M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt; (H.A.A.); (A.M.S.)
| | - Sayed A. El-Toumy
- Chemistry of Tannins Department, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt;
| | - Abeer A. A. Salama
- Department of Pharmacology, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt;
| | - Soad H. Tadros
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
- Correspondence: ; Tel.: +20-1006910089
| |
Collapse
|
32
|
Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, Wang M, Yu CJ, Tang Y. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 2022; 17:40. [PMID: 35658903 PMCID: PMC9166437 DOI: 10.1186/s13024-022-00542-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane immune receptor that is mainly expressed on microglia in the brain and macrophages in the periphery. Recent studies have identified TREM2 as a risk factor for Alzheimer’s disease (AD). Increasing evidence has shown that TREM2 can affect lipid metabolism both in the central nervous system (CNS) and in the periphery. In the CNS, TREM2 affects the metabolism of cholesterol, myelin, and phospholipids and promotes the transition of microglia into a disease-associated phenotype. In the periphery, TREM2 influences lipid metabolism by regulating the onset and progression of obesity and its complications, such as hypercholesterolemia, atherosclerosis, and nonalcoholic fatty liver disease. All these altered lipid metabolism processes could influence the pathogenesis of AD through several means, including affecting inflammation, insulin resistance, and AD pathologies. Herein, we will discuss a potential pathway that TREM2 mediates lipid metabolism to influence the pathogenesis of AD in both the CNS and periphery. Moreover, we discuss the possibility that TREM2 may be a key factor that links central and peripheral lipid metabolism under disease conditions, including AD. This link may be due to impacts on the integrity of the blood–brain barrier, and we introduce potential pathways by which TREM2 affects the blood–brain barrier. Moreover, we discuss the role of lipids in TREM2-associated treatments for AD. We propose some potential therapies targeting TREM2 and discuss the prospect and limitations of these therapies.
Collapse
Affiliation(s)
- Rui-Yang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Han-Chen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yun-Si Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chao-Ji Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
33
|
Fan YC, Chou CC, Bintoro BS, Chien KL, Bai CH. High sensitivity C-reactive protein and glycated hemoglobin levels as dominant predictors of all-cause dementia: a nationwide population-based cohort study. Immun Ageing 2022; 19:10. [PMID: 35172860 PMCID: PMC8849019 DOI: 10.1186/s12979-022-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic inflammation might play a major role in the pathogenesis linking diabetes mellitus (DM) to cognition. In addition, DM might be the main driver of dementia risk. The purpose of the present study was to evaluate whether inflammation, glycation, or both are associated with the risk of developing all-cause dementia (ACD). METHODS A nationwide population-based cohort study was conducted with 4113 participants. The data were obtained from the Taiwanese Survey on Prevalence of Hypertension, Hyperglycemia, and Hyperlipidemia (TwSHHH) in 2007, which was linked with the Taiwan National Health Insurance Research Database (NHIRD). The markers of inflammation, expressed as hs-CRP, and glycation, presented as HbA1c, were measured. High levels of hs-CRP and HbA1c were defined as values greater than or equal to the 66th percentile. Developed ACD was identified based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. RESULTS During 32,926.90 person-years, 106 individuals developed ACD in up to 8 years of follow-up. The study participants were separated into four categories by the top tertiles of hs-CRP and HbA1c based on the 66th percentile: high levels of both hs-CRP and HbA1c, only high levels of hs-CRP, only high levels of HbA1c, and non-high levels of hs-CRP nor HbA1c. Those who with a high level of only hs-CRP had the higher hazard for developing ACD (adjusted HR = 2.58; 95% CI = 1.29 ~ 5.17; P = 0.007), followed by the group with a high level of only HbA1c (adjusted HR = 2.52; 95% CI = 1.34 ~ 4.74; P = 0.004) and the group with high levels of both hs-CRP and HbA1c (adjusted HR = 2.36; 95% CI = 1.20 ~ 4.62; P = 0.012). Among those aged less than 65 years, hs-CRP was the only significant predictor of ACD risk (P = 0.046), whereas it did not yield any significant result in the elderly. CONCLUSIONS A higher risk of developing ACD was found not only in patients with high levels of inflammation but also high levels of glycated hemoglobin. Future studies should focus on the clinical implementation of hs-CRP or HbA1c to monitor cognitive deficits.
Collapse
Affiliation(s)
- Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Chou
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Bagas Suryo Bintoro
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Center of Health Behavior and Promotion, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kuo-Liong Chien
- Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. .,Department of Public Health, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
35
|
Maluchenko NV, Feofanov AV, Studitsky VM. PARP-1-Associated Pathological Processes: Inhibition by Natural Polyphenols. Int J Mol Sci 2021; 22:11441. [PMID: 34768872 PMCID: PMC8584120 DOI: 10.3390/ijms222111441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in processes of cell cycle regulation, DNA repair, transcription, and replication. Hyperactivity of PARP-1 induced by changes in cell homeostasis promotes development of chronic pathological processes leading to cell death during various metabolic disorders, cardiovascular and neurodegenerative diseases. In contrast, tumor growth is accompanied by a moderate activation of PARP-1 that supports survival of tumor cells due to enhancement of DNA lesion repair and resistance to therapy by DNA damaging agents. That is why PARP inhibitors (PARPi) are promising agents for the therapy of tumor and metabolic diseases. A PARPi family is rapidly growing partly due to natural polyphenols discovered among plant secondary metabolites. This review describes mechanisms of PARP-1 participation in the development of various pathologies, analyzes multiple PARP-dependent pathways of cell degeneration and death, and discusses representative plant polyphenols, which can inhibit PARP-1 directly or suppress unwanted PARP-dependent cellular processes.
Collapse
Affiliation(s)
- Natalya V. Maluchenko
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluko-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
- Fox Chase Cancer Center, Cottman Avenue 333, Philadelphia, PA 19111, USA
| |
Collapse
|
36
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
37
|
Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, Camins A, Javan M. Metformin a Potential Pharmacological Strategy in Late Onset Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2021; 14:ph14090890. [PMID: 34577590 PMCID: PMC8465337 DOI: 10.3390/ph14090890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to "type 3 diabetes" and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.
Collapse
Affiliation(s)
- Saghar Rabiei Poor
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sanchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Patricia Regina Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
- Correspondence: (A.C.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (A.C.); (M.J.)
| |
Collapse
|
38
|
Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The State of The Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer's Disease. J Cent Nerv Syst Dis 2021; 13:11795735211029113. [PMID: 34285627 PMCID: PMC8267037 DOI: 10.1177/11795735211029113] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic disabling disease that affects the central nervous system. The main consequences of AD include the decline of cognitive functions and language disorders. One of the causes leading to AD is the decrease of neurotransmitter acetylcholine (ACh) levels in the brain, in part due to a higher activity of acetylcholinesterase (AChE), the enzyme responsible for its degradation. Many acetylcholinesterase inhibitors (AChEIs), both natural and synthetic, have been developed and used through the years to counteract the progression of the disease. The first of such drugs approved for a therapeutic use was tacrine, that binds through a reversible bond to the enzyme. However, tacrine has since been withdrawn because of its adverse effects. Currently, donepezil and galantamine are very promising AChEIs with clinical benefits. Moreover, rivastigmine is considered a pseudo-irreversible compound with anti-AChE action, providing similar effects at the clinical level. The purpose of this review is to provide an overview of what has been published over the last decade on the effectiveness of AChEIs in AD, analysing the most relevant issues under the clinical and methodological profiles and the consequent possible welfare effects for the whole world. Furthermore, novel drugs and possible therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Immacolata Vecchio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | | | - Annamaria Paoletti
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Rosario Marra
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| |
Collapse
|