1
|
Ghanem J, Totzek JF, Henri-Bellemare C, Raucher-Chéné D, Kiar G, Patel R, Chakravarty MM, Shah JL, Joober R, Malla A, Lepage M, Lavigne KM. White matter integrity and verbal memory following a first episode of psychosis: A longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111294. [PMID: 39986368 DOI: 10.1016/j.pnpbp.2025.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Psychotic disorders are heterogeneous disorders for which there is evidence of structural and functional brain abnormalities. The role of white matter integrity, often measured via Fractional Anisotropy (FA), has played a controversial role in individuals with a first episode of psychosis (FEP). Similarly, some FEP studies have observed that higher FA is associated with better verbal memory, but others failed to find such an association. Studying the early stages of psychosis represents a promising avenue to overcome previous confounding factors and characterize the disease in its early clinical stages. Eighty individuals with a FEP were recruited from a specialized early intervention program for psychosis alongside 55 non-clinical controls from the community matched for age and sex. Both groups were followed and scanned 4 times: at baseline (within 3 months after program entry), 6 months, 12 months, and 18 months. Tract-Based Spatial Statistics (TBSS) were used on 3.0 Tesla diffusion-weighted images to extract fractional anisotropy values for white matter regions of interest in accordance with the John Hopkins University white-matter tractography atlas. The analysis revealed no significant main effect of group or time, and no significant associations between FA and verbal memory. Overall, differences in FA are small early in the course of illness and longer follow-up periods may be required to identify possible changes during a critical intervention window.
Collapse
Affiliation(s)
- Joseph Ghanem
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada
| | - Jana F Totzek
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Delphine Raucher-Chéné
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, USA
| | - Raihaan Patel
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - M Mallar Chakravarty
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jai L Shah
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ridha Joober
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Katie M Lavigne
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Li J, He J, Ren H, Li C, Li Z, Chen X, He Y, Tang J. Hemispheric asymmetry of the white matter microstructure in schizophrenia patients with persistent auditory verbal hallucinations. Cereb Cortex 2025; 35:bhaf030. [PMID: 39953891 DOI: 10.1093/cercor/bhaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
The link between hemispheric asymmetry and auditory verbal hallucinations in schizophrenia is underexplored with neuroimaging evidence. This study examined white matter asymmetries in schizophrenia patients. Diffusion tensor imaging data from 52 patients with persistent auditory verbal hallucinations, 33 who never experienced auditory verbal hallucinations, and 40 healthy controls were analyzed. Asymmetry indices for fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity were calculated for the whole-brain white matter skeleton and 22 pairs of regions of interest. The persistent auditory verbal hallucination group showed reduced fractional anisotropy asymmetry index in the whole-brain white matter skeleton compared to healthy control and never experienced auditory verbal hallucination groups, indicating altered asymmetry. Region of interest analysis revealed decreased fractional anisotropy asymmetry index in nine pairs and increased mean diffusivity AI in two pairs in the persistent auditory verbal hallucination group. Greater rightward asymmetry in the superior longitudinal fasciculus correlated with more severe auditory verbal hallucinations in persistent auditory verbal hallucination patients. No significant asymmetry differences were found between never experienced auditory verbal hallucinations and healthy control groups. Ridge regression analysis demonstrated that including the fractional anisotropy asymmetry index of the superior longitudinal fasciculus increased the explained variance in auditory verbal hallucination severity. These findings highlight distinct white matter asymmetry patterns in persistent auditory verbal hallucination patients, suggesting that hemispheric asymmetry plays a key role in the pathology of auditory verbal hallucinations in schizophrenia. HIGHLIGHTS
Collapse
Affiliation(s)
- Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Furong District, Changsha 410011, Hunan, China
- Department of Psychiatry, Wuhan Mental Health Center, No. 89 Gongnongbing Road, Jianghan District, Wuhan 430022, Hubei, China
| | - Jingqi He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, Zhejiang, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Furong District, Changsha 410011, Hunan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Huaiyin District, Jinan 250021, Shandong, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, No. 86 Ziyuan Road, Yuhua District, Changsha 410007, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Furong District, Changsha 410011, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Furong District, Changsha 410011, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Furong District, Changsha 410011, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
3
|
Deng L, Feng L, Li J, Huang Y, Ou P, Shi L, Chen H, Zhang Y, Dai L, He Y, Wei C, Chen H, Wang J, Li L, Liu C. Effects of trace element dysregulation on brain structure and function in spinocerebellar Ataxia type 3. Neurobiol Dis 2025; 207:106816. [PMID: 39921113 DOI: 10.1016/j.nbd.2025.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder caused by excess CAG repeats in the ATXN3 gene, leads to progressive cerebellar ataxia and other symptoms. The results of previous studies suggest that trace element dysregulation contributes to neurodegenerative disorder onset. Here, we investigated the relationships of trace element dysregulation with CAG repeat length, clinical severity, and brain structural and functional connectivity in 45 patients with SCA3 and 44 healthy controls (HCs). Blood levels of lithium (Li), selenium (Se), and copper (Cu) were significantly lower in patients with SCA3 than in HCs; Li and Se levels were negatively correlated with CAG repeat length, especially in the manifest subgroup. Diffusion tensor imaging combined with resting-state functional magnetic resonance imaging revealed that Li levels were negatively correlated with fractional anisotropy in the white matter (WM) of bilateral frontal and parietal regions; tractography mapping showed disorder structural connectivity of Li-associated region nerve fiber pathways in patients with SCA3. Dynamic causal modeling analyses showed bidirectional causal connectivity from the inferior parietal lobule(IPL) to the cerebellum was significantly correlated with the blood level of Li in patients with SCA3. Time series correlation-based functional connectivity analysis revealed that the intrinsic connectivities of the bilateral dorsal premotor cortex(PMd) and IPL with local cerebellar regions were significantly weaker in patients with SCA3 than in HCs. Our results suggest that trace element dysregulation, especially Li deficiency, induces brain alterations and clinical manifestations in patients with SCA3; Li supplementation may be beneficial for WM or astrocytes in this patient population.
Collapse
Affiliation(s)
- LiHua Deng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Feng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - JingWen Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YongHua Huang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - PeiLing Ou
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LinFeng Shi
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Chen
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YuHan Zhang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LiMeng Dai
- Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan He
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Wei
- MR Research Collaboration Teams, Siemens Healthineers Ltd., Guangzhou, China
| | - HuaFu Chen
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Wang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Leinian Li
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Chen Liu
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Mirmosayyeb O, Yazdan Panah M, Vaheb S, Ghoshouni H, Mahmoudi F, Kord R, Kord A, Zabeti A, Shaygannejad V. Association between diffusion tensor imaging measurements and cognitive performances in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2025; 94:106261. [PMID: 39798200 DOI: 10.1016/j.msard.2025.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alterations in structural connectivity of brain networks have been linked to complex cognitive functions in people with multiple sclerosis (PwMS). However, a definitive consensus on the optimal diffusion tensor imaging (DTI) markers as indicators of cognitive performance remains incomplete and inconclusive. This systematic review and meta-analysis aimed to explore the evidence on the correlation between DTI metrics and cognitive functions in PwMS. METHODS A comprehensive literature search was conducted across PubMed/MEDLINE, Embase, Scopus, and the Web of Science up to March 2024 to identify studies reporting the correlation between DTI metrics and cognitive functions. Cognitive function was assessed using the Symbol Digit Modalities Test (SDMT), California Verbal Learning Test (CVLT), and Brief Visuospatial Memory Test-Revised (BVMT-R). The pooled correlation coefficients were estimated using R software version 4.4.0 with the random effect model. RESULTS Out of 1952 studies, 38 studies on 2055 PwMS fulfilled the inclusion criteria. The meta-analysis indicated that the SDMT exhibited the greatest correlation with corpus callosum fractional anisotropy (FA) (r = 0.54, 95 % CI: 0.4 to 0.66, p-value < 0.001, I2 = 34.1 %, p-heterogeneity = 0.19) and mean diffusivity (MD) (r = -0.48, 95 % CI: 0.61 to -0.33, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.77), white matter FA (r = 0.39, 95 % CI: 0.24 to 0.52, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.1), and fornix FA (r = 0.35, 95 % CI: 0.12 to 0.54, p-value = 0.003, I2 = 50.7 %, p-heterogeneity = 0.18) and MD (r = -0.35, 95 % CI: 0.49 to -0.19, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.5). CONCLUSION DTI measurements, including corpus callosum FA and MD, white matter FA, and fornix FA and MD, represent the indicators of cognitive performance in PwMS. Nonetheless, these findings warrant cautious interpretation due to the restricted kinds of cognitive tests and methodological variability across studies.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Mahmoudi
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Reza Kord
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Ali Kord
- Division of Interventional Radiology, Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - Aram Zabeti
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Lima Santos JP, Soehner AM, Ladouceur CD, Versace A. The Impact of Insufficient Sleep on White Matter Development in Late Childhood and Early Adolescence. J Adolesc Health 2025; 76:220-227. [PMID: 39580729 DOI: 10.1016/j.jadohealth.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Sleep is vital for brain development. Animal models have suggested that insufficient sleep affects axons and dendrites (known as neurites). However, the effects of insufficient sleep on neurites during brain development in humans remain understudied. Deriving neurite density index and orientation dispersion index (ODI) in a large sample (N = 1,016; 47.44% girls), we aimed to identify the effects of insufficient sleep on white matter development between late childhood (mean age [standard deviation] = 9.96 [0.62] years) and early adolescence (mean age [standard deviation] = 11.94 [0.64] years). METHODS Longitudinal Latent Class Analysis was used to derive longitudinal classes based on sleep duration from the Sleep Disturbance Scale for Children. The Child Behavior Checklist characterized behavioral (internalizing: anxious/depressed, withdrawn/depressed, somatic; externalizing: social, thought, attention, rule-breaking, and aggressive) problems. Regression analyses evaluated the effects of sleep classes on neurite density index, ODI, and standard tensor-based metrics (Fractional Anisotropy) changes over time, the focal or widespread effects along the tracts, and whether these effects were associated with behavioral problems. RESULTS Insufficient (<9 hours; N = 569) and sufficient sleep (>9 hours; N = 447) groups were identified. Insufficient sleep was associated with worsening fiber coherence (greater ODI) in most tracts, including cingulum bundle (F(1,982) = 9.22, p = .002, Q = 0.009), forceps minor (F(1,982) = 5.30, p = .021, Q = 0.026), and superior longitudinal fasciculus (F(1,982) = 7.41, p = .007, Q = 0.015). These effects were focal, particularly in the frontal portions of the tracts. No other metric was affected (p > .050). In addition, greater ODI in the cingulum bundle was associated with more anxious/depressed problems (β = 0.10, p = .012, Q = 0.036). DISCUSSION Our findings suggest that insufficient sleep during this sensitive period affects white matter development, which in turn affects internalizing problems. Our findings support the importance of promoting sufficient sleep during early adolescence.
Collapse
Affiliation(s)
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Kadler GT, zur Linden A, Gaitero L, James FMK. Diffusion tensor imaging for detecting biomarkers of idiopathic epilepsy in dogs. Front Vet Sci 2025; 11:1480860. [PMID: 39840328 PMCID: PMC11747663 DOI: 10.3389/fvets.2024.1480860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). Because the diagnosis of IE is largely based on the exclusion of other diseases, it would be beneficial to indicate an IE biomarker to better understand, diagnose, and treat this disease. Diffusion tensor imaging (DTI), a magnetic resonance imaging (MRI) sequence, is used in human medicine to detect microstructural biomarkers of epilepsy. Based on the translational model between people and dogs, the use of DTI should be investigated in a veterinary context to determine if it is a viable resource for detecting microstructural white matter abnormalities in the brains of dogs with IE. As well, to determine if there are differences in white matter microstructure between dogs who are responsive to ASMs and dogs who are resistant to ASMs. Using DTI to better understand neurostructural abnormalities associated with IE and ASM resistance might help refine diagnostic approaches and treatment processes in veterinary medicine.
Collapse
Affiliation(s)
- Grace T. Kadler
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Alex zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Luis Gaitero
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Fiona M. K. James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Feng Y, Chandio BQ, Villalon‐Reina JE, Thomopoulos SI, Nir TM, Benavidez S, Laltoo E, Chattopadhyay T, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Reid RI, Jack CR, Weiner MW, Thompson PM. Microstructural mapping of neural pathways in Alzheimer's disease using macrostructure-informed normative tractometry. Alzheimers Dement 2025; 21:e14371. [PMID: 39737627 PMCID: PMC11782200 DOI: 10.1002/alz.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Diffusion-weighted magnetic resonance imaging (dMRI) is sensitive to the microstructural properties of brain tissues and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest without considering the underlying fiber geometry. METHODS We propose a novel macrostructure-informed normative tractometry (MINT) framework to investigate how white matter (WM) microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compared MINT-derived metrics with univariate diffusion tensor imaging (DTI) metrics to examine how fiber geometry may impact the interpretation of microstructure. RESULTS In two multisite cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. DISCUSSION We show that MINT, by jointly modeling tract shape and microstructure, has the potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways. HIGHLIGHTS Changes in diffusion tensor imaging metrics may be due to macroscopic changes. Normative models encode normal variability of diffusion metrics in healthy controls. Variational autoencoder applied on tractography can learn patterns of fiber geometry. WM microstructure and macrostructure are modeled with multivariate methods. Transfer learning uses pretraining and fine-tuning for increased efficiency.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Bramsh Q. Chandio
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Talia M. Nir
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sebastian Benavidez
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Emily Laltoo
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Tamoghna Chattopadhyay
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS)BangaloreIndia
| | - Ganesan Venkatasubramanian
- Translational Psychiatry LaboratoryNational Institute of Mental Health and Neuro Sciences (NIMHANS)BangaloreIndia
| | - John P. John
- Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS)BangaloreIndia
| | - Neda Jahanshad
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Robert I. Reid
- Department of Information TechnologyMayo Clinic and FoundationRochesterMinnesotaUSA
- Department of RadiologyMayo Clinic and FoundationRochesterMinnesotaUSA
| | - Clifford R. Jack
- Department of RadiologyMayo Clinic and FoundationRochesterMinnesotaUSA
| | - Michael W. Weiner
- Department of Radiology and Biomedical ImagingUCSF School of MedicineSan FranciscoCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | | |
Collapse
|
8
|
Muri R, Reed MB, Maissen‐Abgottspon S, Kreis R, Hochuli M, Lanzenberger R, Trepp R, Everts R. Reversible white matter changes following a 4-week high phenylalanine exposure in adults with phenylketonuria. J Inherit Metab Dis 2025; 48:e12823. [PMID: 39604093 PMCID: PMC11670274 DOI: 10.1002/jimd.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Alterations in brain structure are frequently observed in adults with early-treated phenylketonuria (PKU) compared to healthy controls, with cerebral white matter (WM) being particularly affected. The extent to which temporary elevation of phenylalanine (Phe) levels impacts WM remains unclear. We conducted a double-blind, randomised, placebo-controlled crossover trial to investigate the effects of a 4-week high Phe exposure on cerebral WM and its relationship to cognitive performance and metabolic parameters in adults with PKU. In this study, 27 adults with early-treated classical PKU (aged 19-48 years) underwent diffusion tensor imaging (DTI) before and after the 4-week Phe and placebo interventions. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were analysed using tract-based spatial statistics. Neuropsychological examinations at each timepoint evaluated executive functions and attention. Additionally, brain Phe levels were measured using MR spectroscopy, and blood levels of Phe, tyrosine, and tryptophan were assessed after an overnight fast. Following the Phe period, significant decreases in AD, MD, and RD were observed compared to the placebo period, particularly in the posterior corona radiata and optic radiation. Notably, these WM changes were reversible in patients who first received Phe (n = 13). Cognitive performance and metabolic parameters were not significantly related to DTI scalars after the Phe period. In conlcusion, a 4-week Phe elevation induced reversible microstructural alterations in cerebral WM. Further investigation is necessary to determine the clinical implication of these changes.
Collapse
Affiliation(s)
- Raphaela Muri
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital and University of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
| | - Murray Bruce Reed
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaViennaAustria
| | - Stephanie Maissen‐Abgottspon
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
| | - Roland Kreis
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Rupert Lanzenberger
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaViennaAustria
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Regula Everts
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, InselspitalBern University Hospital and University of BernBernSwitzerland
| |
Collapse
|
9
|
Caranova M, Soares JF, Pereira DJ, Lima AC, Sousa L, Batista S, Castelo-Branco M, Duarte JV. Longitudinal Identification of Pre-Lesional Tissue in Multiple Sclerosis With Advanced Diffusion MRI. J Neuroimaging 2025; 35:e70022. [PMID: 39937068 DOI: 10.1111/jon.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND AND PURPOSE Structural MRI (sMRI) is used in monitoring multiple sclerosis (MS) but lacks sensitivity in detecting clinically relevant damage to normal-appearing white matter (NAWM), that is, pre-lesional tissue, and specificity for identifying the underlying substrate of injury. In this longitudinal study, we identified pre-lesional tissue in MS patients and investigated its microstructure by modeling diffusion-weighted imaging (DWI) data using diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI). METHODS We enrolled 18 patients with relapsing-remitting MS (10 females, 31.92 ± 8.09 years, disease duration 0.91 ± 1.81 years) and 18 healthy controls (10 females, 31.89 ± 8.15 years). Participants underwent two sMRI and DWI sessions (baseline and follow-up) with the same protocols. Average apparent diffusion coefficient (ADC), fractional anisotropy (FA), orientation dispersion index (ODI), and neurite density index (NDI) were estimated in data-driven regions of interest: nonpersistent lesional tissue (lesional tissue at baseline, resolved at follow-up), lesions that only existed at follow-up (pre-lesional tissue at baseline, lesions at follow-up), persistent lesional tissue (lesions at baseline and follow-up), and NAWM. RESULTS Compared to NAWM, pre-lesional tissue showed lower ODI, and resolved lesional tissue showed higher FA and ADC and lower ODI and NDI. Over time, persistent lesional tissue showed a decrease in FA and ODI and an increase in NDI. Compared to nonpersistent lesional tissue, persistent lesional tissue showed higher ADC and lower NDI. CONCLUSIONS DWI and, more particularly, NODDI, can reveal the unique microstructure of persistent, resolved, and pre-lesional tissue in MS.
Collapse
Affiliation(s)
- Maria Caranova
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Júlia F Soares
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Daniela Jardim Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Neuroradiology Functional Unit, Imaging Service, Coimbra Local Health Unit, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Lima
- Neurology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Lívia Sousa
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Sónia Batista
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João V Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
10
|
Barrios‐Martinez JV, Almast A, Lin I, Youssef A, Aung T, Fernandes‐Cabral D, Yeh F, Chang Y, Mettenburg J, Modo M, Henry L, Gonzalez‐Martinez JA. Structural connectivity changes in focal epilepsy: Beyond the epileptogenic zone. Epilepsia 2025; 66:226-239. [PMID: 39576226 PMCID: PMC11741924 DOI: 10.1111/epi.18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE Epilepsy is recognized increasingly as a network disease, with changes extending beyond the epileptogenic zone (EZ). However, more studies of structural connectivity are needed to better understand the behavior and nature of this condition. METHODS In this study, we applied differential tractography, a novel technique that measures changes in anisotropic diffusion, to assess widespread structural connectivity alterations in a total of 42 patients diagnosed with medically refractory epilepsy (MRE), including 27 patients with focal epilepsy and 15 patients with multifocal epilepsy that were included to validate our hypothesis. All patients were compared individually to an averaged database constructed from 19 normal controls regressed by age and sex. RESULTS Statistical analyses revealed specific distribution patterns of tracts with increased connectivity that were located in multiple subcortical structures across all patients including the arcuate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, uncinate fasciculus, fornix, and short U fibers. Conversely, pathways with a significant decrease in connectivity (p < .05) exhibited a more central distribution near mesial structures across all patients (corpus callosum, cingulum, corticospinal tract, and sensory fibers). SIGNIFICANCE Our findings add to the growing evidence that focal epilepsy is not solely anatomically confined, but is rather a network disorder that extends beyond the EZ, and differential tractography shows strong potential as a clinical biomarker for assessing structural connectivity alterations in patients with epilepsy.
Collapse
Affiliation(s)
| | - Anmol Almast
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Ivan Lin
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Aya Youssef
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Thandar Aung
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - David Fernandes‐Cabral
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yue‐Fang Chang
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Joseph Mettenburg
- Department of RadiologyUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Michel Modo
- Department of RadiologyUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | - Luke Henry
- Department of Neurological SurgeryUniversity of Pittsburgh, UPMCPittsburghPennsylvaniaUSA
| | | |
Collapse
|
11
|
Lewis CJ, Chipman SI, Johnston JM, Acosta MT, Toro C, Tifft CJ. Tay-Sachs and Sandhoff Diseases: Diffusion tensor imaging and correlational fiber tractography findings differentiate late-onset GM2 Gangliosidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318793. [PMID: 39802759 PMCID: PMC11722463 DOI: 10.1101/2024.12.13.24318793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
GM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in HEXA encoding the α-subunit and Sandhoff disease is caused by variants in HEXB encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable. We applied diffusion tensor imaging (DTI) and correlational fiber tractography to assess phenotypic differences in these two diseases. 40 DTI scans from 16 Late-Onset GM2 patients (NCT00029965) with either Sandhoff (n = 4), or Tay-Sachs (n = 12) disease. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and quantitative anisotropy (QA) were calculated in fiber tracts throughout the whole brain, arcuate fasciculus, corpus callosum, and cerebellum. Correlational tractography was also performed to identify fiber tracts with group wide differences in DTI metrics between Tay-Sachs and Sandhoff patients. A linear mixed effects model was used to analyze the differences between Tay-Sachs and Sandhoff patients. Tay-Sachs patients had higher MD in the left cerebellum (p = 0.003703), right cerebellum (p = 0.003435), superior cerebellar peduncle (SCP, p = 0.007332), and vermis (p = 0.01007). Sandhoff patients had higher FA in the left cerebellum (p = 0.005537), right cerebellum (p = 0.01905), SCP (p = 0.02844), and vermis (p = 0.02469). Correlational fiber tractography identified fiber tracts almost exclusively in cerebellar pathways with higher FA and QA, and lower MD, AD, and RD in Sandhoff patients compared to Tay-Sachs patients. Our study shows neurobiological differences between these two related disorders. To our knowledge, this is the first study using correlational tractography in a lysosomal storage disorder demonstrating these differences. This result indicates a greater burden of cerebellar pathology in Tay-Sachs patients compared with Sandoff patients.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Selby I Chipman
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Camilo Toro
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
12
|
Zhou M, Zhou Y, Jing J, Wang M, Jin A, Cai X, Meng X, Liu T, Wang Y, Wang Y, Pan Y. Insulin resistance and white matter microstructural abnormalities in nondiabetic adult: A population-based study. Int J Stroke 2024; 19:1162-1171. [PMID: 38916129 DOI: 10.1177/17474930241266796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Insulin resistance (IR) is of growing concern yet its association with white matter integrity remains controversial. We aimed to investigate the association between IR and white matter integrity in nondiabetic adults. METHODS This cross-sectional analysis was conducted based on the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study. A total of 1709 nondiabetic community-dwelling adults with available diffusion-weighted imaging based on brain magnetic resonance imaging and completed oral glucose tolerance test were included. IR was measured noninvasively by insulin sensitivity indices (ISI), including ISIcomposite and ISI0,120, as well as homeostasis model assessment of insulin resistance (HOMA-IR). White matter microstructure abnormalities were identified by diffusion-weighted imaging along with tract-based spatial statistical analysis to compare diffusion metrics between groups. The multivariable linear regression models were applied to measure the association between white matter microstructure abnormalities and IR. RESULTS A total of 1709 nondiabetic individuals with a mean age of 60.8 ± 6.4 years and 54.1% female were included. We found that IR was associated with a significant increase in mean diffusivity, axial diffusivity, and radial diffusivity extensively in cerebral white matter in regions such as the anterior corona radiata, superior corona radiata, anterior limb of internal capsule, external capsule, and body of corpus callosum. The pattern of associations was more marked for ISIcomposite and ISI0,120. However, the effect of IR on white matter integrity was attenuated after, in addition, adjustment for history of hypertension and cardiovascular disease and antihypertensive medication use. CONCLUSION Our findings indicate a significant association between IR and white matter microstructural abnormalities in nondiabetic middle-aged community residents, while these associations were greatly influenced by the history of hypertension and cardiovascular disease, and antihypertensive medication use. Further investigation is needed to clarify the role of IR in white matter integrity, whereas prophylactic strategies of maintaining a low IR status may ameliorate disturbances in white matter integrity. DATA ACCESSIBILITY STATEMENT The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
13
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructural abnormalities in HIV infected individuals with cognitive impairment. Sci Rep 2024; 14:28839. [PMID: 39572727 PMCID: PMC11582667 DOI: 10.1038/s41598-024-80372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. In this study, we hypothesized that tensor-valued diffusion encoding metrics would provide greater sensitivity than conventional diffusion tensor imaging (DTI) metrics in detecting HIV-associated brain microstructural injury. We further hypothesized that tensor-valued metrics would exhibit stronger associations with blood markers of neuronal and glial injury, such as neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), as well as with cognitive performance. Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in tensor-valued diffusion encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, NFL and GFAP. Moreover, a significant interaction between HIV status and imaging metrics in gray and white matter was observed, particularly impacting total cognitive scores. Of interest, DTI metrics were less likely to be associated with HIV status than tensor-valued diffusion metrics. These findings suggest that tensor-valued diffusion encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection. Longitudinal studies are needed to further evaluate responsiveness of tensor-valued diffusion b-tensor encoding metrics in the contest HIV-associate mild chronic neuroinflammation.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
| | - Meera V Singh
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Abrar Faiyaz
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | | | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Zachary D Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Karli R Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Miriam T Weber
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
14
|
Peterson BS, Delavari S, Sadik J, Ersland L, Elgen IB, Sawardekar S, Bansal R, Aukland SM. Brain tissue microstructure in a prospective, longitudinal, population-based cohort of preterm and term-born young adults. J Child Psychol Psychiatry 2024. [PMID: 39561978 DOI: 10.1111/jcpp.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Fifteen million infants annually are born prematurely, placing them at high risk for life-long adverse neurodevelopmental outcomes. Whether brain tissue abnormalities that accompany preterm birth persist into young adulthood and are associated with long-term cognitive or psychiatric outcomes is not known. METHODS From infancy into young adulthood, we followed a population-based sample of consecutively identified preterm infants and their matched term controls. The preterm group was born at an average gestational age of 31.5 ± 2.6 weeks. We obtained Diffusion Tensor Imaging scans and assessed cognitive and psychiatric outcomes in young adulthood, at a mean age of 19 (range 17.6-20.8) years. Usable data were acquired from 180 participants (89 preterm, 91 term). RESULTS Preterm birth was associated with lower fractional anisotropy (FA) and higher average diffusion coefficient (ADC) values in deep white matter tracts of the internal capsule, cerebral peduncles, inferior frontal-occipital fasciculus, sagittal stratum and splenium of the corpus callosum, as well as in grey matter of the caudate, putamen and thalamus. A younger gestational age at birth accentuated these tissue abnormalities. Perinatal characteristics, including lower 5-min APGAR score, history of bronchopulmonary dysplasia, more days of oxygen supplementation and multiple births all increased ADC values in deep white matter tracts and grey matter throughout the brain. Preterm individuals had significantly lower full-scale IQ and more frequent lifetime psychiatric disorders. Those with psychiatric illnesses had significantly higher ADC and lower FA values throughout the deep posterior white matter. CONCLUSIONS Abnormalities in brain tissue microstructure associated with preterm birth persist into young adulthood and likely represent disordered myelination and accompanying axonal pathology. These disturbances are associated with a higher likelihood of developing a psychiatric disorder by young adulthood. Brain tissue disturbances were accentuated in those born at younger gestational ages and in those with a history of perinatal complications associated with infection and inflammation.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Sahar Delavari
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Jonathan Sadik
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Irene B Elgen
- Division of Psychiatry, Department of Child and Adolescent Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Stein Magnus Aukland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Ye Z, Pan Y, McCoy RG, Bi C, Mo C, Feng L, Yu J, Lu T, Liu S, Carson Smith J, Duan M, Gao S, Ma Y, Chen C, Mitchell BD, Thompson PM, Elliot Hong L, Kochunov P, Ma T, Chen S. Contrasting association pattern of plasma low-density lipoprotein with white matter integrity in APOE4 carriers versus non-carriers. Neurobiol Aging 2024; 143:41-52. [PMID: 39213809 PMCID: PMC11514318 DOI: 10.1016/j.neurobiolaging.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Apolipoprotein E ε4 (APOE4) is a strong genetic risk factor of Alzheimer's disease and metabolic dysfunction. However, whether APOE4 and markers of metabolic dysfunction synergistically impact the deterioration of white matter (WM) integrity in older adults remains unknown. In the UK Biobank data, we conducted a multivariate analysis to investigate the interactions between APOE4 and 249 plasma metabolites (measured using nuclear magnetic resonance spectroscopy) with whole-brain WM integrity (measured by diffusion-weighted magnetic resonance imaging) in a cohort of 1917 older adults (aged 65.0-81.0 years; 52.4 % female). Although no main association was observed between either APOE4 or metabolites with WM integrity (adjusted P > 0.05), significant interactions between APOE4 and metabolites with WM integrity were identified. Among the examined metabolites, higher concentrations of low-density lipoprotein and very low-density lipoprotein were associated with a lower level of WM integrity (b=-0.12, CI=-0.14,-0.10) among APOE4 carriers. Conversely, among non-carriers, they were associated with a higher level of WM integrity (b=0.05, CI=0.04,0.07), demonstrating a significant moderation role of APOE4 (b =-0.18, CI=-0.20,-0.15, P<0.00001).
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Rozalina G McCoy
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| | - Chuan Bi
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Chen Mo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742, United States
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD 20742, United States
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD 20742, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD 20742, United States
| | - Minxi Duan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Si Gao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Yizhou Ma
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90033, United States
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Tianzhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD 20742, United States.
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States.
| |
Collapse
|
16
|
Janowska J, Gargas J, Zajdel K, Wieteska M, Lipinski K, Ziemka‐Nalecz M, Frontczak‐Baniewicz M, Sypecka J. Oligodendrocyte progenitor cells' fate after neonatal asphyxia-Puzzling implications for the development of hypoxic-ischemic encephalopathy. Brain Pathol 2024; 34:e13255. [PMID: 38504469 PMCID: PMC11483519 DOI: 10.1111/bpa.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Premature birth or complications during labor can cause temporary disruption of cerebral blood flow, often followed by long-term disturbances in brain development called hypoxic-ischemic (HI) encephalopathy. Diffuse damage to the white matter is the most frequently detected pathology in this condition. We hypothesized that oligodendrocyte progenitor cell (OPC) differentiation disturbed by mild neonatal asphyxia may affect the viability, maturation, and physiological functioning of oligodendrocytes. To address this issue, we studied the effect of temporal HI in the in vivo model in P7 rats with magnetic resonance imaging (MRI), microscopy techniques and biochemical analyses. Moreover, we recreated the injury in vitro performing the procedure of oxygen-glucose deprivation on rat neonatal OPCs to determine its effect on cell viability, proliferation, and differentiation. In the in vivo model, MRI evaluation revealed changes in the volume of different brain regions, as well as changes in the directional diffusivity of water in brain tissue that may suggest pathological changes to myelinated neuronal fibers. Hypomyelination was observed in the cortex, striatum, and CA3 region of the hippocampus. Severe changes to myelin ultrastructure were observed, including delamination of myelin sheets. Interestingly, shortly after the injury, an increase in oligodendrocyte proliferation was observed, followed by an overproduction of myelin proteins 4 weeks after HI. Results verified with the in vitro model indicate, that in the first days after damage, OPCs do not show reduced viability, intensively proliferate, and overexpress myelin proteins and oligodendrocyte-specific transcription factors. In conclusion, despite the increase in oligodendrocyte proliferation and myelin protein expression after HI, the production of functional myelin sheaths in brain tissue is impaired. Presented study provides a detailed description of oligodendrocyte pathophysiology developed in an effect of HI injury, resulting in an altered CNS myelination. The described models may serve as useful tools for searching and testing effective of effective myelination-supporting therapies for HI injuries.
Collapse
Affiliation(s)
- Justyna Janowska
- Department of NeuroRepairMossakowski Medical Research Institute PASWarsawPoland
| | - Justyna Gargas
- Department of NeuroRepairMossakowski Medical Research Institute PASWarsawPoland
| | - Karolina Zajdel
- NOMATEN Center of Excellence, National Center for Nuclear ResearchOtwockPoland
- Electron Microscopy Research UnitMossakowski Medical Research Institute PASWarsawPoland
| | - Michal Wieteska
- Small Animal Magnetic Resonance Imaging LaboratoryMossakowski Medical Research Institute PASWarsawPoland
| | - Kamil Lipinski
- Division of Nuclear and Medical ElectronicsWarsaw University of TechnologyWarsawPoland
| | | | | | - Joanna Sypecka
- Department of NeuroRepairMossakowski Medical Research Institute PASWarsawPoland
| |
Collapse
|
17
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Caldú X, Reid LB, Pannek K, Fripp J, Ballester‐Plané J, Leiva D, Boyd RN, Pueyo R, Laporta‐Hoyos O. Tractography of sensorimotor pathways in dyskinetic cerebral palsy: Association with motor function. Ann Clin Transl Neurol 2024; 11:2609-2622. [PMID: 39257055 PMCID: PMC11514975 DOI: 10.1002/acn3.52174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVES Neuroimaging studies of dyskinetic cerebral palsy (CP) are scarce and the neuropathological underpinnings are not fully understood. We delineated the corticospinal tract (CST) and cortico-striatal-thalamocortical (CSTC) pathways with probabilistic tractography to assess their (1) integrity and (2) association with motor functioning in people with dyskinetic CP. METHODS Diffusion weighted magnetic resonance images were obtained for 33 individuals with dyskinetic CP and 33 controls. Fractional anisotropy (FA) and mean diffusivity (MD) for the CST and the CSTC pathways were compared between groups. Correlation analyses were performed between tensor metric values and motor function scores of participants with dyskinetic CP as assessed by the Gross Motor Function Classification System (GMFCS), the Bimanual Fine Motor Function (BFMF), and the Manual Ability Classification System (MACS). RESULTS White matter integrity in both the CST and the CSTC pathways was reduced in people with dyskinetic CP. The GMFCS, MACS and, less commonly, the BFMF were associated with FA and, particularly, MD in most portions of these pathways. INTERPRETATION The present study advances our understanding of the involvement of white matter microstructure in sensorimotor pathways and its relationship with motor impairment in people with dyskinetic CP. Our results are consistent with well-described relationships between upper limb function and white matter integrity in the CST and CSTC pathways in other forms of CP. This knowledge may ultimately help prognosis and therapeutic programmes.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i PsicobiologiaUniversitat de BarcelonaPg. Vall d'Hebron, 171Barcelona08035Spain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
| | - Lee B. Reid
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kerstin Pannek
- Australian E‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Jurgen Fripp
- Australian E‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Júlia Ballester‐Plané
- Departament de Psicologia Clínica i PsicobiologiaUniversitat de BarcelonaPg. Vall d'Hebron, 171Barcelona08035Spain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
| | - David Leiva
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Departament de Psicologia Social i Psicologia QuantitativaUniversitat de BarcelonaBarcelonaSpain
| | - Roslyn N. Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Roser Pueyo
- Departament de Psicologia Clínica i PsicobiologiaUniversitat de BarcelonaPg. Vall d'Hebron, 171Barcelona08035Spain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
| | - Olga Laporta‐Hoyos
- Departament de Psicologia Clínica i PsicobiologiaUniversitat de BarcelonaPg. Vall d'Hebron, 171Barcelona08035Spain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
| |
Collapse
|
19
|
Genç B, Aslan K, Özçağlayan A, İncesu L. Microstructural Abnormalities in the Contralateral Normal-appearing White Matter of Glioblastoma Patients Evaluated with Advanced Diffusion Imaging. Magn Reson Med Sci 2024; 23:479-486. [PMID: 37532585 PMCID: PMC11447469 DOI: 10.2463/mrms.mp.2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE Glioblastoma patients develop recurrence in the opposite hemisphere far from the primary tumor site even after complete resection. This is one of the main reasons for short disease survival. Our aim in this study is to detect microstructural changes in the contralateral hemisphere of glioblastoma patients using different diffusion models with the fully automated tract-based spatial statistics (TBSS) method. METHODS Fourteen right-sided and eleven left-sided glioblastoma patients without any treatment and eighteen age- and gender-matched controls were included in the study. Multi-shell diffusion weighted images were created with a 3T MRI device. After various preprocessing steps, images of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic water fraction (ISO) were obtained. TBSS was used to compare diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging parameters of right- and left-sided glioblastoma patients with the control group for the contralateral hemisphere. RESULTS Both right-sided and left-sided glioblastoma patients have shown an increase in MD and ODI in the contralateral hemisphere. While right-sided glioblastoma patients showed an increase in RD, AD, and ISO in a more limited area in the contralateral hemisphere, left-sided glioblastoma patients showed an increase in MK and AK. FA, ICVF, and RK did not show any difference in both groups. CONCLUSION There are microstructural changes in the contralateral hemisphere in glioblastoma patients, and these changes differ between right-sided and left-sided glioblastoma patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, İlkadım, Samsun, Turkey
| | - Kerim Aslan
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, İlkadım, Samsun, Turkey
| | - Ali Özçağlayan
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, İlkadım, Samsun, Turkey
| | - Lütfi İncesu
- Department of Radiology, Ondokuz Mayis University, Faculty of Medicine, İlkadım, Samsun, Turkey
| |
Collapse
|
20
|
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field. Mol Psychiatry 2024; 29:3223-3244. [PMID: 38632413 PMCID: PMC11449801 DOI: 10.1038/s41380-024-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Almost three decades have passed since the first posttraumatic stress disorder (PTSD) neuroimaging study was published. Since then, the field of clinical neuroscience has made advancements in understanding the neural correlates of PTSD to create more efficacious treatment strategies. While gold-standard psychotherapy options are available, many patients do not respond to them, prematurely drop out, or never initiate treatment. Therefore, elucidating the neurobiological mechanisms that define the disorder can help guide clinician decision-making and develop individualized mechanisms-based treatment options. To this end, this narrative review highlights progress made in the last decade in adult and youth samples on three outstanding questions in PTSD research: (1) Which neural alterations serve as predisposing (pre-exposure) risk factors for PTSD development, and which are acquired (post-exposure) alterations? (2) Which neural alterations can predict treatment outcomes and define clinical improvement? and (3) Can neuroimaging measures be used to define brain-based biotypes of PTSD? While the studies highlighted in this review have made progress in answering the three questions, the field still has much to do before implementing these findings into clinical practice. Overall, to better answer these questions, we suggest that future neuroimaging studies of PTSD should (A) utilize prospective longitudinal designs, collecting brain measures before experiencing trauma and at multiple follow-up time points post-trauma, taking advantage of multi-site collaborations/consortiums; (B) collect two scans to explore changes in brain alterations from pre-to-post treatment and compare changes in neural activation between treatment groups, including longitudinal follow up assessments; and (C) replicate brain-based biotypes of PTSD. By synthesizing recent findings, this narrative review will pave the way for personalized treatment approaches grounded in neurobiological evidence.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Grace C George
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Ziv Ben-Zion
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
21
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
22
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
23
|
Lien R, Furlano JA, Witt ST, Xian C, Nagamatsu LS. The effects of a six-month exercise intervention on white matter microstructure in older adults at risk for diabetes. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100369. [PMID: 39345304 PMCID: PMC11437870 DOI: 10.1016/j.cccb.2024.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Older adults with prediabetes or obesity (i.e., those at risk for diabetes) exhibit impaired structural brain networks. Given findings that resistance training (RT) can combat brain impairments in many populations, this study aimed to test the effects of this type of exercise on white matter microstructure in older adults at risk for diabetes. Seventeen community-dwelling older adults (mean age 67.8 ± 5.7, 52.9 % female) with prediabetes or obesity were randomly allocated to thrice weekly RT or balance and tone training (BAT; control group) for six months. Diffusion weighted imaging via a 3T scanner was used to assess changes in white matter parameters -fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) - over time. Participants in the RT group showed no significant changes in FA but had increased MD and RD in various regions related to cognitive function including the cingulate gyrus. Participants in the control group had both increased and decreased FA depending on the specific white matter tracts; increased FA was seen in areas related to motor coordination such as the middle cerebellar peduncle. The control group also exhibited decreased MD and RD in areas responsible for motor function (e.g., left anterior limb of the internal capsule). We conclude that both resistance and balance exercises result in changes in white matter microstructure albeit in divergent tracts that may be linked to the specific exercises performed.
Collapse
Affiliation(s)
- Ryu Lien
- School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Joyla A Furlano
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Suzanne T Witt
- BrainsCAN, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Chengqian Xian
- Department of Statistical and Actuarial Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Lindsay S Nagamatsu
- School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
24
|
Thomas PA, Bolton SH, Ontiveros F, Mattson WI, Vannatta K, Lo W, Wilde EA, Cunningham WA, Yeates KO, Hoskinson KR. Exploring the link among injury severity, white matter connectivity and psychosocial outcomes in pediatric TBI: a probabilistic tractography approach. Int J Neurosci 2024:1-13. [PMID: 39235059 DOI: 10.1080/00207454.2024.2394777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
AIM We examined associations among injury severity, white matter structural connectivity within functionally defined brain networks and psychosocial/adaptive outcomes in children with traumatic brain injury (TBI). METHOD Participants included 58 youths (39 male) with complicated-mild TBI (cmTBI; n = 12, age = 12.6 ± 2.0), moderate/severe TBI (msTBI; n = 16, age = 11.4 ± 2.9) and a comparison group with orthopedic injury (OI; n = 24, age = 11.7 ± 2.1), at least 1 year post-injury. Participants underwent diffusion tensor imaging and parents rated children's behavioral and adaptive function on the CBCL and ABAS-3, respectively. Probabilistic tractography quantified streamline density. Group differences were analyzed for structural connectivity and behavioral outcomes. RESULTS Groups differed in structural connectivity within regions of the default mode and central executive networks (ps < .05, FDR corrected). The msTBI group displayed decreased connectivity relative to cmTBI and OI, whereas the cmTBI group displayed increased connectivity relative to msTBI and OI. Similar patterns emerged in several behavioral domains. Ordinary least squares path analyses showed that structural connectivity mediated the relationship between injury severity and multiple parent-reported outcomes for msTBI. INTERPRETATION White matter structural connectivity may explain unique variance in long-term psychosocial and adaptive outcome in children with TBI, particularly in cases of moderate-to-severe injury.
Collapse
Affiliation(s)
- Peyton A Thomas
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Scout H Bolton
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Florencia Ontiveros
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathryn Vannatta
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Warren Lo
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Keith Owen Yeates
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Child Brain and Mental Health Program, Alberta Children's Hospital Research Institute, Alberta Children's Hospital, Alberta, Canada
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Section of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
25
|
Baron Nelson M, O'Neil SH, Cho SJ, Dhanani S, Tanedo J, Shin BJ, Rodman J, Olch A, Wong K, Nelson MD, Finlay J, Lepore N. Dose-dependent cranial irradiation associations with brain structures and neuropsychological outcomes in children with posterior fossa brain tumors. Brain Behav 2024; 14:e70019. [PMID: 39295085 PMCID: PMC11410875 DOI: 10.1002/brb3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Posterior fossa irradiation with or without whole brain irradiation results in high doses of radiation to the thalamus, hippocampus, and putamen, structures critical to cognitive functioning. As a result, children with brain tumors treated with cranial irradiation (CRT) may experience significant cognitive late effects. We sought to determine the effect of radiation to those structures on neuropsychological outcome. METHODS Forty-seven children with a history of posterior fossa tumor (17 treated with surgery; 11 with surgery and chemotherapy; and 19 with surgery, chemotherapy, and CRT) underwent neuroimaging and neuropsychological assessment at a mean of 4.8 years after treatment, along with 17 healthy sibling controls. The putamen, thalamus, and hippocampus were segmented on each participant's magnetic resonance imaging for diffusion indices and volumes, and in the radiation treatment group, radiation dose to each structure was calculated. RESULTS Performance on visuoconstruction and spatial learning and memory was lower in patient groups than controls. Volume of the thalamus, when controlling for age, was smaller in the patient group treated with CRT than other groups. Higher radiation doses to the putamen correlated with higher fractional anisotropy in that structure. Higher radiation dose to the hippocampus correlated with lower spatial learning, and higher dose to thalami and putamina to lower verbal and nonverbal reasoning. CONCLUSIONS All children with posterior fossa tumors, regardless of treatment modality, had cognitive deficits compared to their sibling controls. Posterior fossa irradiation may affect thalamic volume and aspects of verbal and nonverbal cognitive functioning.
Collapse
Affiliation(s)
- Mary Baron Nelson
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sharon H O'Neil
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, California, USA
- Neuropsychology Core, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Scarlet J Cho
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Psychological Science, School of Social Ecology, University of California Irvine, Irvine, California, USA
| | - Sofia Dhanani
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Division of Child Neurology, Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey Tanedo
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brandon J Shin
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Kansas City University, College of Osteopathic Medicine, Joplin, Missouri, USA
| | - Jack Rodman
- Biostatistics, Epidemiology, and Research Design (BERD), Southern California Translational Science Institute, Los Angeles, California, USA
| | - Arthur Olch
- Department of Radiation Oncology, Keck School of Medicine of USC and Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kenneth Wong
- Department of Radiation Oncology, Keck School of Medicine of USC and Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marvin D Nelson
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Natasha Lepore
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Pozeg P, Jöhr J, Prior JO, Diserens K, Dunet V. Explaining recovery from coma with multimodal neuroimaging. J Neurol 2024; 271:6274-6288. [PMID: 39090230 PMCID: PMC11377522 DOI: 10.1007/s00415-024-12591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The aim of this prospective, observational cohort study was to investigate and assess diverse neuroimaging biomarkers to predict patients' neurological recovery after coma. 32 patients (18-76 years, M = 44.8, SD = 17.7) with disorders of consciousness participated in the study. Multimodal neuroimaging data acquired during the patient's hospitalization were used to derive cortical glucose metabolism (18F-fluorodeoxyglucose positron emission tomography/computed tomography), and structural (diffusion-weighted imaging) and functional connectivity (resting-state functional MRI) indices. The recovery outcome was defined as a continuous composite score constructed from a multivariate neurobehavioral recovery assessment administered upon the discharge from the hospital. Fractional anisotropy-based white matter integrity in the anterior forebrain mesocircuit (r = 0.72, p < .001, 95% CI: 0.87, 0.45), and the functional connectivity between the antagonistic default mode and dorsal attention resting-state networks (r = - 0.74, p < 0.001, 95% CI: - 0.46, - 0.88) strongly correlated with the recovery outcome. The association between the posterior glucose metabolism and the recovery outcome was moderate (r = 0.38, p = 0.040, 95% CI: 0.66, 0.02). Structural (adjusted R2 = 0.84, p = 0.003) or functional connectivity biomarker (adjusted R2 = 0.85, p = 0.001), but not their combination, significantly improved the model fit to predict the recovery compared solely to bedside neurobehavioral evaluation (adjusted R2 = 0.75). The present study elucidates an important role of specific MRI-derived structural and functional connectivity biomarkers in diagnosis and prognosis of recovery after coma and has implications for clinical care of patients with severe brain injury.
Collapse
Affiliation(s)
- Polona Pozeg
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Vincent Dunet
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
27
|
de Groot ER, Wang X, Wojtal K, Janson E, Alderliesten T, Tataranno ML, Benders MJNL, Dudink J. Association between sleep stages and brain microstructure in preterm infants: Insights from DTI analysis. Sleep Med 2024; 121:336-342. [PMID: 39053129 DOI: 10.1016/j.sleep.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
STUDY OBJECTIVES The aim of this study was to investigate the relationship between sleep stages and neural microstructure - measured using diffusion tensor imaging - of the posterior limb of the internal capsule and corticospinal tract in preterm infants. METHODS A retrospective cohort of 50 preterm infants born between 24 + 4 and 29 + 3 weeks gestational age was included in the study. Sleep stages were continuously measured for 5-7 consecutive days between 29 + 0 and 31 + 6 weeks postmenstrual age using an in-house-developed, and recently published, automated sleep staging algorithm based on routinely measured heart rate and respiratory rate. Additionally, a diffusion tensor imaging scan was conducted at term equivalent age as part of standard care. Region of interest analysis of the posterior limb of the internal capsule was performed, and tractography was used to analyze the corticospinal tract. The association between sleep and white matter microstructure of the posterior limb of the internal capsule and corticospinal tract was examined using a multiple linear regression model, adjusted for potential confounders. RESULTS The results of the analyses revealed an interaction effect between sleep stage and days of invasive ventilation on the fractional anisotropy of the left and right posterior limb of the internal capsule (β = 0.04, FDR-adjusted p = 0.001 and β = 0.04, FDR-adjusted p = 0.02, respectively). Furthermore, an interaction effect between sleep stage and days of invasive ventilation was observed for the radial diffusivity of the mean of the left and right PLIC (β = -4.1e-05, FDR-adjusted p = 0.04). CONCLUSIONS Previous research has shown that, in very preterm infants, invasive ventilation has a negative effect on white matter tract maturation throughout the brain. A positive association between active sleep and white matter microstructure of the posterior limb of the internal capsule, may indicate a protective role of sleep in this vulnerable population.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Xiaowan Wang
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Klaudia Wojtal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Els Janson
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
28
|
Charisis S, Short MI, Bernal R, Kautz TF, Treviño HA, Mathews J, Dediós AGV, Muhammad JAS, Luckey AM, Aslam A, Himali JJ, Shipp EL, Habes M, Beiser AS, DeCarli C, Scarmeas N, Ramachandran VS, Seshadri S, Maillard P, Satizabal CL. Leptin bioavailability and markers of brain atrophy and vascular injury in the middle age. Alzheimers Dement 2024; 20:5849-5860. [PMID: 39132759 PMCID: PMC11497668 DOI: 10.1002/alz.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS Higher sOB-R was associated with lower fractional anisotropy (FA, β = -0.114 ± 0.02, p < 0.001), and higher free water (FW, β = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, β = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (β = 0.115 ± 0.027, p < 0.001) and lower FW (β = -0.096 ± 0.029, p = 0.001) and PSMD (β = -0.085 ± 0.028, p = 0.002). DISCUSSION Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.
Collapse
Affiliation(s)
- Sokratis Charisis
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Meghan I. Short
- Institute for Clinical Research and Health Policy StudiesTufts Medical CenterBostonMassachusettsUSA
| | - Rebecca Bernal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Hector A. Treviño
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | | | - Jazmyn A. S. Muhammad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alison M. Luckey
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Asra Aslam
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Eric L. Shipp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Nikolaos Scarmeas
- 1st Department of NeurologyNational and Kapodistrian University of AthensAthensGreece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brainthe Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Vasan S. Ramachandran
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
29
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
30
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
31
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
32
|
Dzięgiel-Fivet G, Jednoróg K. Reduced lateralization of the language network in the blind and its relationship with white matter tract neuroanatomy. Front Hum Neurosci 2024; 18:1407557. [PMID: 39188408 PMCID: PMC11345183 DOI: 10.3389/fnhum.2024.1407557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Several previous studies reported reduced leftward lateralization in blind participants' samples compared to the sighted population. The origins of this difference remain unknown. Here, we tested whether functional lateralization is connected with the structural characteristics of white matter tracts [corpus callosum (CC), uncinate fasciculus (UF), and superior longitudinal fasciculus (SLF)], as suggested by previous studies conducted in the typical sighted population. Twenty-three blind and 21 sighted adult participants were tested during fMRI with a semantic decision paradigm presented both auditorily and in the modality appropriate for reading (tactually for the blind and visually for the sighted). Lateralization indices (LI) were calculated based on the activations. The fractional anisotropy (FA) measure was extracted from the white matter tracts of interest. Correlation analyses testing the relationship between FA and LI were conducted. The reduced leftward lateralization of both speech processing and reading-related activations was replicated. Nevertheless, the relationship between the structural integrity of the CC and LI and between the asymmetry of the intrahemispheric tracts and LI was not confirmed, possibly due to the lack of power. The sources of the reduced lateralization of the language network in the sensory-deprived population remain unknown. Further studies should account for environmental variables (e.g., the frequency of contact with written language) and the complexity of the factors that may influence the functional lateralization of the human brain.
Collapse
Affiliation(s)
- Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszaw, Poland
| | | |
Collapse
|
33
|
Yang CC, Yap PT, Wu Y, Zidan N, Fefer G, Nelson NC, Gruen ME, Olby NJ. Voxelwise analysis of the central hearing pathway in senior dogs reveals changes associated with fractional lifespan. Sci Rep 2024; 14:18121. [PMID: 39103441 PMCID: PMC11300839 DOI: 10.1038/s41598-024-68828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Presbycusis, or age-related hearing loss, affects both elderly humans and dogs, significantly impairing their social interactions and cognition. In humans, presbycusis involves changes in peripheral and central auditory systems, with central changes potentially occurring independently. While peripheral presbycusis in dogs is well-documented, research on central changes remains limited. Diffusion tensor imaging (DTI) is a useful tool for detecting and quantifying cerebral white matter abnormalities. This study used DTI to explore the central auditory pathway of senior dogs, aiming to enhance our understanding of canine presbycusis. Dogs beyond 75% of their expected lifespan were recruited and screened with brainstem auditory evoked response testing to select dogs without severe peripheral hearing loss. Sixteen dogs meeting the criteria were scanned using a 3 T magnetic resonance scanner. Tract-based spatial statistics was used to analyze the central auditory pathways. A significant negative correlation between fractional lifespan and fractional anisotropy was found in the acoustic radiation, suggesting age-related white matter changes in the central auditory system. These changes, observed in dogs without severe peripheral hearing loss, may contribute to central presbycusis development.
Collapse
Affiliation(s)
- Chin-Chieh Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Natalia Zidan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Gilad Fefer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Nathan C Nelson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
34
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
35
|
Freire IS, Lopes TS, Afonso SG, Pereira DJ. From images to insights: a neuroradiologist's practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning. Neuroradiology 2024; 66:1251-1265. [PMID: 38635028 DOI: 10.1007/s00234-024-03362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Diffusion tensor imaging (DTI) is a valuable non-invasive imaging modality for mapping white matter tracts and assessing microstructural integrity, and can be used as a "biomarker" in diagnosis, differentiation, and therapeutic monitoring. Although it has gained clinical importance as a marker of neuropathology, limitations in its interpretation underscore the need for caution. METHODS This review provides an overview of the principles and clinical applicability of DTI. We focus on major white matter fiber bundles, detailing their normal anatomy and pathological DTI patterns, with emphasis on tracts routinely requested in our neurosurgical department in the preoperative context (uncinate fasciculus, arcuate fasciculus, pyramidal pathway, optic radiation, and dentatorubrothalamic tract). RESULTS We guide neuroradiologists and neurosurgeons in defining volumes of interest for mapping individual tracts and demonstrating their 3D reconstructions. The intricate trajectories of white matter tracts pose a challenge for accurate fiber orientation recording, with each bundle exhibiting specific characteristics. Tracts adjacent to brain lesions are categorized as displaced, edematous, infiltrated, or disrupted, illustrated with clinical cases of brain neoplasms. To improve structured reporting, we propose a checklist of topics for inclusion in imaging evaluations and MRI reports. CONCLUSION DTI is emerging as a powerful tool for assessing microstructural changes in brain disorders, despite some challenges in standardization and interpretation. This review serves an educational purpose by providing guidance for fiber monitoring and interpretation of pathological patterns observed in clinical cases, highlighting the importance and potential pitfalls of DTI in neuroradiology and surgical planning.
Collapse
Affiliation(s)
- Inês S Freire
- Department of Neuroradiology - Centro Hospitalar Universitário de Lisboa Central (CHULC), Rua José António Serrano, 1150-199, Lisbon, Portugal.
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Tânia S Lopes
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Sónia G Afonso
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Daniela J Pereira
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- Functional Unit of Neuroradiology - Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| |
Collapse
|
36
|
Litwin T, Rędzia-Ogrodnik B, Antos A, Przybyłkowski A, Członkowska A, Bembenek JP. Brain Magnetic Resonance Imaging in Wilson's Disease-Significance and Practical Aspects-A Narrative Review. Brain Sci 2024; 14:727. [PMID: 39061467 PMCID: PMC11274939 DOI: 10.3390/brainsci14070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in many organs, resulting in clinical symptoms, mostly hepatic and neuropsychiatric. As copper accumulates in the brain during WD, and almost 50% of WD patients at diagnosis present with neurological symptoms, neuroimaging studies (especially brain magnetic resonance imaging (MRI)) are part of WD diagnosis. The classical sequences (T1, T2, and fluid-attenuated inversion recovery) were used to describe brain MRI; however, with the development of neuroradiology, several papers proposed the use of new MRI sequences and techniques like susceptibility-weighted images, T2*, diffusion MRI, tractography, volumetric assessment and post-processing brain MRI analysis of paramagnetic accumulation-quantitative susceptibility mapping. Based on these neuroradiological data in WD, currently, brain MRI semiquantitative scale and the pathognomonic neuroradiological brain MRI signs in WD were proposed. Further, the volumetric studies and brain iron accumulation MRI analysis suggested brain atrophy and iron accumulation as biomarkers of neurological WD disease severity. All these results highlight the significance of brain MRI examinations in WD. Due to the extreme progress of these studies, based on the available literature, the authors present the current state of knowledge about the significance, practical aspects, and future directions of brain MRI in WD.
Collapse
Affiliation(s)
- Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Barbara Rędzia-Ogrodnik
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Adam Przybyłkowski
- Department of Gastroenterology, Medical University, Warsaw 02-097, Poland;
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland; (B.R.-O.); (A.A.); (A.C.)
| | - Jan Paweł Bembenek
- Department of Neurophysiology, Institute Psychiatry and Neurology, 02-957 Warsaw, Poland;
| |
Collapse
|
37
|
Thanaraju A, Marzuki AA, Chan JK, Wong KY, Phon-Amnuaisuk P, Vafa S, Chew J, Chia YC, Jenkins M. Structural and functional brain correlates of socioeconomic status across the life span: A systematic review. Neurosci Biobehav Rev 2024; 162:105716. [PMID: 38729281 DOI: 10.1016/j.neubiorev.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
It is well-established that higher socioeconomic status (SES) is associated with improved brain health. However, the effects of SES across different life stages on brain structure and function is still equivocal. In this systematic review, we aimed to synthesise findings from life course neuroimaging studies that investigated the structural and functional brain correlates of SES across the life span. The results indicated that higher SES across different life stages were independently and cumulatively related to neural outcomes typically reflective of greater brain health (e.g., increased cortical thickness, grey matter volume, fractional anisotropy, and network segregation) in adult individuals. The results also demonstrated that the corticolimbic system was most commonly impacted by socioeconomic disadvantages across the life span. This review highlights the importance of taking into account SES across the life span when studying its effects on brain health. It also provides directions for future research including the need for longitudinal and multimodal research that can inform effective policy interventions tailored to specific life stages.
Collapse
Affiliation(s)
- Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia.
| | - Aleya A Marzuki
- Department for Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Germany
| | - Jee Kei Chan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, New Zealand
| | - Paveen Phon-Amnuaisuk
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| |
Collapse
|
38
|
Groeschel S, Beerepoot S, Amedick LB, Krӓgeloh-Mann I, Li J, Whiteman DAH, Wolf NI, Port JD. The effect of intrathecal recombinant arylsulfatase A therapy on structural brain magnetic resonance imaging in children with metachromatic leukodystrophy. J Inherit Metab Dis 2024; 47:778-791. [PMID: 38321717 DOI: 10.1002/jimd.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule. Time courses for demyelination load and FA in the centrum semiovale were visualized using locally estimated scatterplot smoothing regression curves. All assessed imaging parameters demonstrated structural evidence of neurological deterioration in children with MLD. GM volume was significantly lower at follow-up (median duration, 104 weeks) in IV rhASA-treated versus IT rhASA-treated children. GM volume decline over time was steeper in children receiving low-dose (10 or 30 mg) versus high-dose (100 mg) IT rhASA. Similar effects were observed for demyelination. FA in the posterior limb of the internal capsule showed a higher trend over time in IT rhASA-treated versus children with untreated MLD, but FA parameters were not different between children receiving the low doses versus those receiving the high dose. GM volume in IT rhASA-treated children showed a strong positive correlation with 88-item Gross Motor Function Measure score over time. In some children with MLD, IT administration of high-dose rhASA may delay neurological deterioration (assessed using MRI), offering potential therapeutic benefit.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lucas Bastian Amedick
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ingeborg Krӓgeloh-Mann
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jing Li
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
D'Antonio F, Teghil A, Boccia M, Bechi Gabrielli G, Giulietti G, Conti D, Suppa A, Fabbrini A, Fiorelli M, Caramia F, Bruno G, Guariglia C, Aarsland D, Ffytche D. Distinct grey and white matter changes are associated with the phenomenology of visual hallucinations in Lewy Body Disease. Sci Rep 2024; 14:14748. [PMID: 38926597 PMCID: PMC11208453 DOI: 10.1038/s41598-024-65536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Visual hallucinations in Lewy body disease (LBD) can be differentiated based on phenomenology into minor phenomena (MVH) and complex hallucinations (CVH). MVH include a variety of phenomena, such as illusions, presence and passage hallucinations occurring at early stages of LBD. The neural mechanisms of visual hallucinations are largely unknown. The hodotopic model posits that the hallucination state is due to abnormal activity in specialized visual areas, that occurs in the context of wider network connectivity alterations and that phenomenology of VH, including content and temporal characteristics, may help identify brain regions underpinning these phenomena. Here we investigated both the topological and hodological neural basis of visual hallucinations integrating grey and white matter imaging analyses. We studied LBD patients with VH and age matched healthy controls (HC). VH were assessed using a North-East-Visual-Hallucinations-Interview that captures phenomenological detail. Then we applied voxel-based morphometry and tract based spatial statistics approaches to identify grey and white matter changes. First, we compared LBD patients and HC. We found a reduced grey matter volume and a widespread damage of white tracts in LBD compared to HC. Then we tested the association between CVH and MVH and grey and white matter indices. We found that CVH duration was associated with decreased grey matter volume in the fusiform gyrus suggesting that LBD neurodegeneration-related abnormal activity in this area is responsible for CVH. An unexpected finding was that MVH severity was associated with a greater integrity of white matter tracts, specifically those connecting dorsal, ventral attention networks and visual areas. Our results suggest that networks underlying MVH need to be partly intact and functional for MVH experiences to occur, while CVH occur when cortical areas are damaged. The findings support the hodotopic view and the hypothesis that MVH and CVH relate to different neural mechanisms, with wider implications for the treatment of these symptoms in a clinical context.
Collapse
Affiliation(s)
- Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Giulia Bechi Gabrielli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | | | - Desirée Conti
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, IS, Italy
| | - Andrea Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Francesca Caramia
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cecilia Guariglia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| |
Collapse
|
40
|
Gupta G, Arrington CN, Morris R. Sex Differences in White Matter Diffusivity in Children with Developmental Dyslexia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:721. [PMID: 38929300 PMCID: PMC11201584 DOI: 10.3390/children11060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Despite the high prevalence of developmental dyslexia in the U.S. population, research remains limited and possibly biased due to the overrepresentation of males in most dyslexic samples. Studying biological sex differences in the context of developmental dyslexia can help provide a more complete understanding of the neurological markers that underly this disorder. The current study aimed to explore sex differences in white matter diffusivity in typical and dyslexic samples in third and fourth graders. Participants were asked to complete behavioral/cognitive assessments at baseline followed by MRI scanning and diffusion-weighted imaging sequences. A series of ANOVAs were conducted for comparing group membership (developmental dyslexia or typically developing), gender status (F/M), and white matter diffusivity in the tracts of interest. The Results indicated significant differences in fractional anisotropy in the left hemisphere components of the inferior and superior (parietal and temporal) longitudinal fasciculi. While males with dyslexia had lower fractional anisotropy in these tracts compared to control males, no such differences were found in females. The results of the current study may suggest that females may use a more bilateral/alternative reading network.
Collapse
Affiliation(s)
- Gehna Gupta
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
| | - C. Nikki Arrington
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| | - Robin Morris
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| |
Collapse
|
41
|
Wang J, Huang J, Cui B, Yang H, Tian D, Ma J, Duan W, Dong H, Chen Z, Lu J. Diffusion Tensor Imaging Identifies Cervical Spondylosis, Myelitis, and Spinal Cord Tumors. Diagnostics (Basel) 2024; 14:1225. [PMID: 38928642 PMCID: PMC11202471 DOI: 10.3390/diagnostics14121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) has been increasingly recognized for its capability to study microstructural changes in the neuropathology of brain diseases. However, the optimal DTI metric and its diagnostic utility for a variety of spinal cord diseases are still under investigation. PURPOSE To evaluate the diagnostic efficacy of DTI metrics for differentiating between cervical spondylosis, myelitis, and spinal tumors. METHODS This retrospective study analyzed DTI scans from 68 patients (22 with cervical spondylosis, 23 with myelitis, and 23 with spinal tumors). DTI indicators, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), were calculated. The Kruskal-Wallis test was used to compare these indicators, followed by Receiver Operating Characteristic (ROC) curve analysis, to evaluate the diagnostic efficacy of each indicator across disease pairs. Additionally, we explored the correlations of DTI indicators with specific clinical measurements. RESULTS FA values were significantly lower in tumor patients compared to those with cervical spondylosis (p < 0.0001) and myelitis (p < 0.05). Additionally, tumor patients exhibited significantly elevated MD and RD values relative to the spondylosis and myelitis groups. ROC curve analysis underscored FA's superior discriminative performance, with an area under the curve (AUC) of 0.902 for differentiating tumors from cervical spondylosis, and an AUC of 0.748 for distinguishing cervical myelitis from spondylosis. Furthermore, a significant negative correlation was observed between FA values and Expanded Disability Status Scores (EDSSs) in myelitis patients (r = -0.62, p = 0.002), as well as between FA values and Ki-67 scores in tumor patients (r = -0.71, p = 0.0002). CONCLUSION DTI indicators, especially FA, have the potential in distinguishing spondylosis, myelitis, and spinal cord tumors. The significant correlation between FA values and clinical indicators highlights the value of FA in the clinical assessment and prognosis of spinal diseases and may be applied in diagnostic protocols in the future.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Defeng Tian
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (W.D.); (Z.C.)
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (W.D.); (Z.C.)
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (J.W.); (J.H.); (B.C.); (H.Y.); (D.T.); (J.M.)
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| |
Collapse
|
42
|
Nostadt A, Schlaffke L, Merz CJ, Wolf OT, Nitsche MA, Tegenthoff M, Lissek S. Microstructural differences in the cingulum and the inferior longitudinal fasciculus are associated with (extinction) learning. BMC Psychol 2024; 12:324. [PMID: 38831468 PMCID: PMC11149371 DOI: 10.1186/s40359-024-01800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.
Collapse
Affiliation(s)
- Alina Nostadt
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany.
- Ruhr University Bochum, Bochum, Germany.
| | - Lara Schlaffke
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, 44139, Germany
- German Centre for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, 33617, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| |
Collapse
|
43
|
Marchi NA, Daneault V, André C, Martineau‐Dussault M, Baril A, Thompson C, Montplaisir JY, Gilbert D, Lorrain D, Boré A, Descoteaux M, Carrier J, Gosselin N. Altered fornix integrity is associated with sleep apnea-related hypoxemia in mild cognitive impairment. Alzheimers Dement 2024; 20:4092-4105. [PMID: 38716833 PMCID: PMC11180866 DOI: 10.1002/alz.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION The limbic system is critical for memory function and degenerates early in the Alzheimer's disease continuum. Whether obstructive sleep apnea (OSA) is associated with alterations in the limbic white matter tracts remains understudied. METHODS Polysomnography, neurocognitive assessment, and brain magnetic resonance imaging (MRI) were performed in 126 individuals aged 55-86 years, including 70 cognitively unimpaired participants and 56 participants with mild cognitive impairment (MCI). OSA measures of interest were the apnea-hypopnea index and composite variables of sleep fragmentation and hypoxemia. Microstructural properties of the cingulum, fornix, and uncinate fasciculus were estimated using free water-corrected diffusion tensor imaging. RESULTS Higher levels of OSA-related hypoxemia were associated with higher left fornix diffusivities only in participants with MCI. Microstructure of the other white matter tracts was not associated with OSA measures. Higher left fornix diffusivities correlated with poorer episodic verbal memory. DISCUSSION OSA may contribute to fornix damage and memory dysfunction in MCI. HIGHLIGHTS Sleep apnea-related hypoxemia was associated with altered fornix integrity in MCI. Altered fornix integrity correlated with poorer memory function. Sleep apnea may contribute to fornix damage and memory dysfunction in MCI.
Collapse
Affiliation(s)
- Nicola Andrea Marchi
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
- Center for Investigation and Research in SleepDepartment of MedicineLausanne University Hospital and University of LausanneLausanneVaudSwitzerland
- Laboratory for Research in NeuroimagingDepartment of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneVaudSwitzerland
| | - Véronique Daneault
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre‐Sud‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Claire André
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Marie‐Ève Martineau‐Dussault
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Andrée‐Ann Baril
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of MedicineFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Jacques Yves Montplaisir
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychiatryUniversité de MontréalMontrealQuebecCanada
| | - Danielle Gilbert
- Department of RadiologyRadio‐oncology and Nuclear Medicine, Université de MontréalMontrealQuebecCanada
- Department of RadiologyHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Dominique Lorrain
- Research Center on AgingInstitut Universitaire de Gériatrie de Sherbrooke, CIUSSS de l'EstrieSherbrookeQuebecCanada
- Department of PsychologyUniversité de SherbrookeSherbrookeQuebecCanada
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeQuebecCanada
| | - Julie Carrier
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
44
|
Hosoki M, Eidsness MA, Bruckert L, Travis KE, Feldman HM. Associations of behavioral problems with white matter circuits connecting to the frontal lobes in school-aged children born at term and preterm. NEUROIMAGE. REPORTS 2024; 4:100201. [PMID: 39301247 PMCID: PMC11412113 DOI: 10.1016/j.ynirp.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Introduction This study investigated whether internalizing and externalizing behavioral problems in children were associated with fractional anisotropy of white matter tracts connecting other brain regions to the frontal lobes. We contrasted patterns of association between children born at term (FT) and very preterm (PT: gestational age at birth =< 32 weeks). Methods Parents completed the Child Behavior Checklist/6-18 questionnaire to quantify behavioral problems when their children were age 8 years (N = 36 FT and 37 PT). Diffusion magnetic resonance scans were collected at the same age and analyzed using probabilistic tractography. Multiple linear regressions investigated the strength of association between age-adjusted T-scores of internalizing and externalizing problems and mean fractional anisotropy (mean-FA) of right and left uncinate, arcuate, anterior thalamic radiations, and dorsal cingulate bundle, controlling for birth group and sex. Results Models predicting internalizing T-scores found significant group-by-tract interactions for left and right arcuate and right uncinate. Internalizing scores were negatively associated with mean-FA of left and right arcuate only in FT children (p left AF = 0.01, p right AF = 0.01). Models predicting externalizing T-scores found significant group-by-tract interactions for the left arcuate and right uncinate. Externalizing scores were negatively associated with mean-FA of right uncinate in FT (p right UF = 0.01) and positively associated in PT children (p right UF preterm = 0.01). Other models were not significant. Conclusions In children with a full range of scores on behavioral problems from normal to significantly elevated, internalizing and externalizing behavioral problems were negatively associated with mean-FA of white matter tracts connecting to frontal lobes in FT children; externalizing behavioral problems were positively associated with mean-FA of the right uncinate in PT children. The different associations by birth group suggest that the neurobiology of behavioral problems differs in the two birth groups.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Margarita Alethea Eidsness
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
45
|
Akif A, Staib L, Herman P, Rothman DL, Yu Y, Hyder F. In vivo neuropil density from anatomical MRI and machine learning. Cereb Cortex 2024; 34:bhae200. [PMID: 38771239 PMCID: PMC11107380 DOI: 10.1093/cercor/bhae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
Collapse
Affiliation(s)
- Adil Akif
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
| | - Lawrence Staib
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Department of Electrical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, United States
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| | - Yuguo Yu
- Research Institute of Intelligent and Complex Systems, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, 220 Handen Road, Shanghai, 200032, China
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States
- Magnetic Resonance Research Center, Yale University, 300 Cedar St, New Haven, CT 06520, United States
| |
Collapse
|
46
|
Kraft JN, Matijevic S, Hoagey DA, Kennedy KM, Rodrigue KM. Differential Effects of Aging on Regional Corpus Callosum Microstructure and the Modifying Influence of Pulse Pressure. eNeuro 2024; 11:ENEURO.0449-23.2024. [PMID: 38719452 PMCID: PMC11106647 DOI: 10.1523/eneuro.0449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus callosum is composed of several subregions, distinct in cellular and functional organization. This organization scheme may render these subregions differentially vulnerable to the aging process. Callosal integrity may be further compromised by cardiovascular risk factors, which negatively influence white matter health. Here, we test for heterochronicity of aging, hypothesizing an anteroposterior gradient of vulnerability to aging that may be altered by the effects of cardiovascular health. In 174 healthy adults across the adult lifespan (mean age = 53.56 ± 18.90; range, 20-94 years old, 58.62% women), pulse pressure (calculated as participant's systolic minus diastolic blood pressure) was assessed to determine cardiovascular risk. A deterministic tractography approach via diffusion-weighted imaging was utilized to extract fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) from each of five callosal subregions, serving as estimates of microstructural health. General linear models tested the effects of age, hypertension, and pulse pressure on these cross-sectional metrics. We observed no significant effect of hypertensive diagnosis on callosal microstructure. We found a significant main effect of age and an age-pulse pressure interaction whereby older age and elevated pulse pressure were associated with poorer FA, AD, and RD. Age effects revealed nonlinear components and occurred along an anteroposterior gradient of severity in the callosum. This gradient disappeared when pulse pressure was considered. These results indicate that age-related deterioration across the callosum is regionally variable and that pulse pressure, a proxy of arterial stiffness, exacerbates this aging pattern in a large lifespan cohort.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Stephanie Matijevic
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
| | - David A Hoagey
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Kristen M Kennedy
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Karen M Rodrigue
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| |
Collapse
|
47
|
Feng Y, Chandio BQ, Villalon-Reina JE, Thomopoulos SI, Nir TM, Benavidez S, Laltoo E, Chattopadhyay T, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Reid RI, Jack CR, Weiner MW, Thompson PM. Microstructural Mapping of Neural Pathways in Alzheimer's Disease using Macrostructure-Informed Normative Tractometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591183. [PMID: 38712293 PMCID: PMC11071453 DOI: 10.1101/2024.04.25.591183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Bramsh Q. Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Julio E. Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sebastian Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Tamoghna Chattopadhyay
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - John P. John
- Multimodal Brain Image Analysis Laboratory National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Robert I. Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, MN, United States
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Michael W. Weiner
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | | |
Collapse
|
48
|
Schrempft S, Trofimova O, Künzi M, Ramponi C, Lutti A, Kherif F, Latypova A, Vollenweider P, Marques-Vidal P, Preisig M, Kliegel M, Stringhini S, Draganski B. The Neurobiology of Life Course Socioeconomic Conditions and Associated Cognitive Performance in Middle to Late Adulthood. J Neurosci 2024; 44:e1231232024. [PMID: 38499361 PMCID: PMC11044112 DOI: 10.1523/jneurosci.1231-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024] Open
Abstract
Despite major advances, our understanding of the neurobiology of life course socioeconomic conditions is still scarce. This study aimed to provide insight into the pathways linking socioeconomic exposures-household income, last known occupational position, and life course socioeconomic trajectories-with brain microstructure and cognitive performance in middle to late adulthood. We assessed socioeconomic conditions alongside quantitative relaxometry and diffusion-weighted magnetic resonance imaging indicators of brain tissue microstructure and cognitive performance in a sample of community-dwelling men and women (N = 751, aged 50-91 years). We adjusted the applied regression analyses and structural equation models for the linear and nonlinear effects of age, sex, education, cardiovascular risk factors, and the presence of depression, anxiety, and substance use disorders. Individuals from lower-income households showed signs of advanced brain white matter (WM) aging with greater mean diffusivity (MD), lower neurite density, lower myelination, and lower iron content. The association between household income and MD was mediated by neurite density (B = 0.084, p = 0.003) and myelination (B = 0.019, p = 0.009); MD partially mediated the association between household income and cognitive performance (B = 0.017, p < 0.05). Household income moderated the relation between WM microstructure and cognitive performance, such that greater MD, lower myelination, or lower neurite density was only associated with poorer cognitive performance among individuals from lower-income households. Individuals from higher-income households showed preserved cognitive performance even with greater MD, lower myelination, or lower neurite density. These findings provide novel mechanistic insights into the associations between socioeconomic conditions, brain anatomy, and cognitive performance in middle to late adulthood.
Collapse
Affiliation(s)
- Stephanie Schrempft
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva CH-1205, Switzerland
| | - Olga Trofimova
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Morgane Künzi
- Swiss National Centre of Competences in Research, "LIVES - Overcoming Vulnerability: Life Course Perspectives," University of Lausanne and University of Geneva, Lausanne CH-1015 and Carouge CH-1227, Switzerland
- Department of Psychology, University of Geneva, Geneva CH-1205, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Carouge CH-1227, Switzerland
| | - Cristina Ramponi
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne CH-1008, Switzerland
| | - Matthias Kliegel
- Swiss National Centre of Competences in Research, "LIVES - Overcoming Vulnerability: Life Course Perspectives," University of Lausanne and University of Geneva, Lausanne CH-1015 and Carouge CH-1227, Switzerland
- Department of Psychology, University of Geneva, Geneva CH-1205, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Carouge CH-1227, Switzerland
| | - Silvia Stringhini
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva CH-1205, Switzerland
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
- University Centre for General Medicine and Public Health, University of Lausanne, Lausanne CH-1005, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
| |
Collapse
|
49
|
Lim L, Talozzi L, Howells H. Atypical brain structural connectivity and social cognition in childhood maltreatment and peer victimisation. BMC Psychiatry 2024; 24:287. [PMID: 38627646 PMCID: PMC11022413 DOI: 10.1186/s12888-024-05759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Childhood maltreatment (CM) is associated with neurobiological aberrations and atypical social cognition. Few studies have examined the neural effects of another common early-life interpersonal stressor, namely peer victimisation (PV). This study examines the associations between tract aberrations and childhood interpersonal stress from caregivers (CM) and peers (PV), and explores how the observed tract alterations are in turn related to affective theory of mind (ToM). METHODS Data from 107 age-and gender-matched youths (34 CM [age = 19.9 ± 1.68; 36%male], 35 PV [age = 19.9 ± 1.65; 43%male], 38 comparison subjects [age = 20.0 ± 1.66; 42%male] were analysed using tractography and whole-brain tract-based spatial statistics (TBSS). RESULTS At the whole-brain level using TBSS, the CM group had higher fractional anisotropy (FA) than the PV and comparison groups in a cluster of predominantly limbic and corpus callosal pathways. Segmented tractography indicated the CM group had higher FA in right uncinate fasciculus compared to both groups. They also had smaller right anterior thalamic radiation (ATR) tract volume than the comparison group and higher left ATR FA than the PV group, with these metrics associated with higher emotional abuse and enhanced affective ToM within the CM group, respectively. The PV group had lower inferior fronto-occipital fasciculus FA than the other two groups, which was related to lower affective ToM within the PV group. CONCLUSION Findings suggest that exposure to early-life stress from caregivers and peers are differentially associated with alterations of neural pathways connecting the frontal, temporal and occipital cortices involved in cognitive and affective control, with possible links to their atypical social cognition.
Collapse
Affiliation(s)
- Lena Lim
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK.
| | - Lia Talozzi
- Neurology and Neurological Sciences, Stanford University, California, USA
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine, University of Milan and Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
50
|
Vriend C, de Joode NT, Pouwels PJW, Liu F, Otaduy MCG, Pastorello B, Robertson FC, Ipser J, Lee S, Hezel DM, van Meter PE, Batistuzzo MC, Hoexter MQ, Sheshachala K, Narayanaswamy JC, Venkatasubramanian G, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, Stein DJ, Wall M, Simpson HB, van den Heuvel OA. Age of onset of obsessive-compulsive disorder differentially affects white matter microstructure. Mol Psychiatry 2024; 29:1033-1045. [PMID: 38228890 PMCID: PMC11176057 DOI: 10.1038/s41380-023-02390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Previous diffusion MRI studies have reported mixed findings on white matter microstructure alterations in obsessive-compulsive disorder (OCD), likely due to variation in demographic and clinical characteristics, scanning methods, and underpowered samples. The OCD global study was created across five international sites to overcome these challenges by harmonizing data collection to identify consistent brain signatures of OCD that are reproducible and generalizable. Single-shell diffusion measures (e.g., fractional anisotropy), multi-shell Neurite Orientation Dispersion and Density Imaging (NODDI) and fixel-based measures, were extracted from skeletonized white matter tracts in 260 medication-free adults with OCD and 252 healthy controls. We additionally performed structural connectome analysis. We compared cases with controls and cases with early (<18) versus late (18+) OCD onset using mixed-model and Bayesian multilevel analysis. Compared with healthy controls, adult OCD individuals showed higher fiber density in the sagittal stratum (B[SE] = 0.10[0.05], P = 0.04) and credible evidence for higher fiber density in several other tracts. When comparing early (n = 145) and late-onset (n = 114) cases, converging evidence showed lower integrity of the posterior thalamic radiation -particularly radial diffusivity (B[SE] = 0.28[0.12], P = 0.03)-and lower global efficiency of the structural connectome (B[SE] = 15.3[6.6], P = 0.03) in late-onset cases. Post-hoc analyses indicated divergent direction of effects of the two OCD groups compared to healthy controls. Age of OCD onset differentially affects the integrity of thalamo-parietal/occipital tracts and the efficiency of the structural brain network. These results lend further support for the role of the thalamus and its afferent fibers and visual attentional processes in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands.
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands.
| | - Niels T de Joode
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Brain Imaging, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Feng Liu
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Maria C G Otaduy
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno Pastorello
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Frances C Robertson
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Seonjoo Lee
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Dianne M Hezel
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Page E van Meter
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Marcelo C Batistuzzo
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, SP, Brazil
| | - Marcelo Q Hoexter
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karthik Sheshachala
- National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | | | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Euripedes C Miguel
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Y C Janardhan Reddy
- National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Roseli G Shavitt
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Melanie Wall
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Helen Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|