1
|
Heidari B, Barjoyifard D, Mazal-Mazraei T, Govindan V. Assessment of genetic biodiversity and association of micronutrients and agronomic traits using microsatellites and staining methods which accelerates high-micronutrients variety selections within different wheat groups. Sci Rep 2024; 14:27419. [PMID: 39521909 PMCID: PMC11550475 DOI: 10.1038/s41598-024-78964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Evaluation of genetic biodiversity for micronutrients is crucial for breeding high-quality crops and addressing the negative impacts of mineral deficiencies. The objectives of this research were to assess genetic variation and the relationship between grain Fe and Zn levels and agronomic traits in a diverse collection of wheat varieties. Additionally, the study aimed to determine the correlation between microsatellite markers (SSR) and micronutrient quantities. A total of 42 genotypes (Iranian commercial cultivars, landraces, and Afghan and Swiss varieties) were evaluated over a two-year period. Fe and Zn levels were measured using two semi quantitative staining assays and atomic absorption spectrophotometry (AAS) facility. Semi-quantitative staining methods and AAS showed high correlations for micronutrient contents. Landraces exhibited higher Fe (63.79 mg/kg) and Zn (44.76 mg/kg) but lower grain yield compared with commercial cultivars. Heritability estimates ranged 53%-79.43%, suggesting that genetic variance played a higher contribution in the phenotypic variation of traits than environmental factors. Notably, Fe content displayed significant correlations with days to maturity. Canonical correlation analysis (CCA) revealed that Zn content was correlated with four agronomic traits. Evaluation of genetic diversity using SSR markers demonstrated high genetic variation among the genotypes tested. The analysis of polymorphism information content (PIC) indicated that SSR primers had an average PIC of 0.75, with the Xgwm192 primer exhibiting higher PIC than others. Several SSR markers revealed association with micronutrient content that can be used in marker-assisted selection (MAS) programs aimed at selection of high micronutrient genotypes. In conclusion, the findings underscored the substantial genetic diversity present in micronutrient levels among global wheat genotypes, the potential of landraces for micronutrients biofortification of wheat cultivars through cross hybridization, the utility of staining methods for screening high/low micronutrient genotypes, and use of microsatellite markers for marker-assisted breeding aiming to micronutrient improvement in breeding programs.
Collapse
Affiliation(s)
- Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Davood Barjoyifard
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Tofigh Mazal-Mazraei
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo postal 6-641, 06600, Mexico, Mexico
| |
Collapse
|
2
|
Wang X, Sun Q. Ultra-Processed Foods and the Impact on Cardiometabolic Health: The Role of Diet Quality. Diabetes Metab J 2024; 48:1047-1055. [PMID: 39610133 PMCID: PMC11621665 DOI: 10.4093/dmj.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The consumption of ultra-processed foods (UPFs) has surged globally, raising significant public health concerns due to their associations with a range of adverse health outcomes. This review aims to elucidate potential health impacts of UPF intake and underscore the importance of considering diet quality when interpreting study findings. UPF group, as classified by the Nova system based on the extent of industrial processing, contains numerous individual food items with a wide spectrum of nutrient profiles, as well as differential quality as reflected by their potential health effects. The quality of a given food may well misalign with the processing levels so that a UPF food can be nutritious and healthful whereas a non-UPF food can be of low quality and excess intake of which may lead to adverse health consequences. The current review argues that it is critical to focus on the nutritional content and quality of foods and their role within the overall dietary pattern rather than only the level of processing. Further research should dissect health effects of diet quality and food processing, investigate the health impacts of ingredients that render the UPF categorization, understand roles of metabolomics and the gut microbiome in mediating and modulating the health effects of food processing, and consider environmental sustainability in UPF studies. Emphasizing nutrient-dense healthful foods and dietary patterns shall remain the pivotal strategy for promoting overall health and preventing chronic diseases.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2024:1-33. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Khursheed MHUR, Shahbaz M, Ramzan T, Haider A, Maqsood MF, Khan A, Zulfiqar U, Jamil M, Hussain S, Al-Ghamdi AA, Rizwana H. Enhancing Wheat Tolerance to Cadmium Stress through Moringa Leaf Extract Foliar Application. SCIENTIFICA 2024; 2024:2919557. [PMID: 39376252 PMCID: PMC11458294 DOI: 10.1155/2024/2919557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Cadmium, a hazardous heavy metal prevalent in plants and soil, poses a significant threat to human health, particularly as approximately 60% of the global population consumes wheat, which can accumulate high levels of Cd through its roots. This uptake leads to the translocation of Cd to the shoots and grains, exacerbating the potential health risks. However, promising results have been observed with the use of moringa leaf extract (MLE) foliar spray in mitigating the adverse effects of Cd stress. The current experiment was conducted to find out the Cd stress tolerance of wheat varieties V1 = Akbar-19 and V2 = Dilkash-2020 under exogenous spray of MLE. The treatments of this study were T0 = 0% MLE + 0 µM Cd, T1 = 3% MLE + 0 µM Cd, T2 = 0% MLE + 400 µM Cd, and T3 = 3% MLE + 400 µM Cd. Cd stress demonstrated a significant reduction in morphological attributes as shoot and root fresh weight (22%), shoot and root dry weight (24.5%), shoot and root length (22.5%), area of leaf and number of leaves 30.5%, and photosynthetic attributes (69.8%) in comparison with control. Exposure of wheat plants to Cd toxicity cause oxidative stress, increased H2O2, and MDA up to 75% while foliar application of MLE reduced the activities of reactive oxygen species (ROS). The activity of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbic acid (AsA) increased up to 81.5% as well as organic osmolytes such as phenolics, total soluble proteins, and total soluble sugars were improved up to 77% by MLE applications under Cd stress. Higher accumulation of ionic contents root Na+ (22%) and Cd (44%) was documented in plants under Cd stress as compared to control, while uptake of root mineral ions Ca2+ and K+ was 35% more in MLE-treated plants. In crux, Cd toxicity significantly declined the growth, photosynthetic, and biochemical parameters while 3% MLE application was found effective in alleviating the Cd toxicity by improving growth and physiological parameters while declining reactive oxygen species and root Na+ as well as Cd uptake in wheat.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Tahrim Ramzan
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Arslan Haider
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | | | - Arbaz Khan
- Department of BotanyUniversity of Agriculture, Faisalabad 38040, Pakistan
| | - Usman Zulfiqar
- Department of AgronomyFaculty of Agriculture and EnvironmentThe Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Jamil
- Department of BotanyThe Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sadam Hussain
- College of AgronomyNorthwest A&F University, Yangling, Xianyang 712100, China
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and MicrobiologyCollege of ScienceKing Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Altaf MT, Liaqat W, Jamil A, Jan MF, Baloch FS, Barutçular C, Nadeem MA, Mohamed HI. Strategies and bibliometric analysis of legumes biofortification to address malnutrition. PLANTA 2024; 260:85. [PMID: 39227398 DOI: 10.1007/s00425-024-04504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
MAIN CONCLUSION Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Azhar Nadeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
6
|
Jenkins M, Jefferds MED, Aburto NJ, Ramakrishnan U, Hartman TJ, Martorell R, Addo OY. Development of a Population-Level Dichotomous Indicator of Minimum Dietary Diversity as a Proxy for Micronutrient Adequacy in Adolescents Aged 10-19 Y in the United States. J Nutr 2024; 154:2795-2806. [PMID: 38917947 DOI: 10.1016/j.tjnut.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Diversity is a key component of diet quality and health, but no indicator exists for adolescents under the age of 15 y. OBJECTIVES To establish a dichotomous indicator for population-level assessment of adolescent dietary diversity as a proxy for micronutrient adequacy. METHODS We used the probability approach to construct mean probability of adequacy (MPA) of 11 micronutrients from 2 d of 24-h dietary recall data from NHANES, 2007-2018. For each micronutrient, probability of adequacy (PA) was calculated using the best linear unbiased predictor of usual intake. Adolescent dietary diversity score (ADDS) was derived with a maximum score of 10 food groups. Generalized linear mixed models were used to examine associations between ADDS and MPA. Receiver operating characteristic analysis was used to establish a cutoff for minimum dietary diversity for adolescents (MDD-A) using an energy-adjusted logistic model with ADDS predicting MPA > 0.6. RESULTS PA was >80% for all nutrients except vitamin C (42.1%), folate (65.7%), and calcium (23.8%). Population MPA was 79.4%, and nearly 92% of adolescents had an MPA > 0.6. ADDS was positively associated with MPA, and energy was a significant confounder. The area under the curve was >0.8 on both days with sensitivity and specificity ranging from 0.71 to 0.80. The MDD-A cutoff was calculated as 5.12 and 5.10 food groups on days 1 and 2, respectively. CONCLUSIONS In U.S. adolescents, the best cutoff for a dichotomous indicator of dietary diversity as a proxy for micronutrient adequacy is 6 food groups in a given day. Future research could validate MDD-A and its associated cutoff for use across country contexts.
Collapse
Affiliation(s)
- Mica Jenkins
- International Micronutrient Malnutrition Prevention and Control (IMMPaCt) Program, Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States.
| | - Maria Elena D Jefferds
- International Micronutrient Malnutrition Prevention and Control (IMMPaCt) Program, Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Nancy J Aburto
- Food and Nutrition Division, Food and Agriculture Organization, Rome, Italy
| | - Usha Ramakrishnan
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Terryl J Hartman
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Reynaldo Martorell
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - O Yaw Addo
- International Micronutrient Malnutrition Prevention and Control (IMMPaCt) Program, Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
8
|
Mandrioli M, Poggi GM, Cai G, Faleri C, Maccaferri M, Tuberosa R, Aloisi I, Toschi TG, Corneti S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:1817. [PMID: 38999657 PMCID: PMC11244281 DOI: 10.3390/plants13131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) landraces, traditional local varieties representing an intermediate stage in domestication, are gaining attention due to their high genetic variability and performance in challenging environments. While major kernel metabolites have been examined, limited research has been conducted on minor bioactive components like lipids, despite their nutritional benefits. To address this, we analyzed twenty-two tetraploid accessions, comprising modern elite cultivars and landraces, to (i) verify if the selection process for yield-related traits carried out during the Green Revolution has influenced lipid amount and composition; (ii) uncover the extent of lipid compositional variability, giving evidence that lipid fingerprinting effectively identifies evolutionary signatures; and (iii) identify genotypes interesting for breeding programs to improve yield and nutrition. Interestingly, total fat did not correlate with kernel weight, indicating lipid composition as a promising trait for selection. Tri- and di-acylglycerol were the major lipid components along with free fatty acids, and their relative content varied significantly among genotypes. In particular, landraces belonging to T. turanicum and carthlicum ecotypes differed significantly in total lipid and fatty acid profiles. Our findings provide evidence that landraces can be a genetically relevant source of lipid variability, with potential to be exploited for improving wheat nutritional quality.
Collapse
Affiliation(s)
- Mara Mandrioli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Giovanni Maria Poggi
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, 40128 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Moisa C, Brata AM, Muresan IC, Dragan F, Ratiu I, Cadar O, Becze A, Carbunar M, Brata VD, Teusdea AC. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:1037. [PMID: 38611566 PMCID: PMC11013170 DOI: 10.3390/plants13071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Cereals, as the world's most consumed food, face challenges related to nutrient quality due to climate change and increased production impacting soil health. In this study, we investigated the vitamin and mineral content, polyphenols, and antioxidant activity in cereals from Western Romania, analyzing whole and hulled wheat, rye, oat, and soybeans before and after heat treatment. Samples from 2022 crops were processed into dough and subjected to 220 °C for 30 min. The results reveal that, despite efforts to optimize nutrient content, cereals, particularly after heat processing, exhibited lower vitamin and mineral levels than the recommended daily intake. The decrease in polyphenols and antioxidant capacity was notable, with rye flour experiencing the largest decline (15%). Mineral analysis showed copper levels in decorticated wheat decreased by 82.5%, while iron in rye decreased by 5.63%. Soy flour consistently displayed the highest calcium, magnesium, and potassium levels, whereas oat flour had the highest zinc and copper levels before and after heat processing. The study highlights the concerningly low vitamins and minerals contents in cereals, as well as in the final products reaching consumers in the Western part of Romania, and contributes to the assessment of measures that are meant to improve the contents of these minerals.
Collapse
Affiliation(s)
- Corina Moisa
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Anca Monica Brata
- Department of Engineering of Food Products, Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania
| | - Iulia C. Muresan
- Department of Economic Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Felicia Dragan
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Ioana Ratiu
- Department of Medicine, Medicine and Pharmacy Faculty, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Anca Becze
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Mihai Carbunar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Alin Cristian Teusdea
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| |
Collapse
|
10
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. A decade of improving nutritional quality of horticultural crops agronomically (2012-2022): A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168665. [PMID: 37992822 DOI: 10.1016/j.scitotenv.2023.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The ultimate goal of world crop production is to produce more with less to meet the growing population demands. However, concentrating solely on increased quantity of production often impacts the quality of produce. Consumption of crops or foods that do not meet nutritional or dietary needs can lead to malnutrition. Malnutrition and undernutrition are prevalent in a significant portion of the population. Agronomic biofortification of minerals and vitamins in horticultural crops has emerged as a promising approach to address nutrient deficiencies and enhance the nutritional quality of food. Despite numerous research papers on plant nutrient biofortification, there remains a lack of systematic reviews that comprehensively summarize the latest knowledge on this topic. Herein we discuss different agronomic ways to biofortify several horticultural crops over the past decade. This systematic review aims to fill this gap by presenting various methodologies and comparing the outcomes of these methods in respect to nutrient content in plant parts. The review focuses on original research papers collected from various scientific databases including Scopus and Web of Knowledge, covering the most recent literature from the last ten years (2012-2022) for specific studies on the agronomic biofortification macronutrients, micronutrients, and vitamins in horticultural plants with exclusion of certain criteria such as 'genetic,' 'breeding,' and 'agronomic crops.' This review critically analyzes the current state of research and explores prospects for the future in this field. The biofortification of various minerals and vitamins, including calcium, selenium, iodine, B vitamins, vitamin A, and vitamin C, are examined, highlighting the achievements and limitations of existing studies. In conclusion, agronomic biofortification of minerals and vitamins in horticultural crops with further research offers a promising approach to address nutrient deficiencies and improve the nutritional quality of food.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
11
|
Gunjal M, Kaur J, Rasane P, Singh J, Kaur S, Bakshi M, Choudhary R, Marc RA, Ercisli S. Nutritional Significance of Wheatgrass: Cultivation Practices and Opportunities for its Processing and Preservation. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:163-177. [PMID: 38305314 DOI: 10.2174/012772574x275920231214053122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND This paper aims to provide a comprehensive review of the nutritional composition and bioactive compounds found in wheatgrass, including chlorophyll, vitamins, minerals, flavonoids, and phenolic compounds, as well as their associated health benefits. The review focuses on various cultivation practices, preservation techniques, and the current utilization of wheatgrass as a whole. Additionally, the potential toxicity of wheatgrass has been discussed. Wheatgrass, a nutrient-rich grass, possesses significant pharmacological and therapeutic qualities. In the present scenario, wheatgrass is available in the form of juice, powder, and tablets, and is incorporated into various food products through different processing treatments. METHOD Information and data regarding wheatgrass cultivation practices, processing, and preservation methods were collected from scientific sources, including Google Scholar, ResearchGate, ScienceDirect, fig, Web of Science, and Scopus databases. RESULT Wheatgrass is a highly valuable source of diverse nutrient compounds. Various cultivation methods, such as indoor and outdoor techniques using different growing mediums, have been employed for wheatgrass production. Recent methods for wheatgrass preservation have been suggested to enhance the bioactive compounds present in wheatgrass. CONCLUSION Numerous studies have demonstrated that the consumption of wheatgrass and wheatgrass- based products can help control diabetes, atherosclerosis, kidney and colon diseases, anemia, and certain types of cancer. The smaller size of wheatgrass allows for easier assimilation of its beneficial compounds. Creating awareness among consumers about the nutritional profile and therapeutic properties of wheatgrass is crucial in order to maximize its market potential.
Collapse
Affiliation(s)
- Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Bakshi
- Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ravish Choudhary
- ICAR-Division of Seed Science and Technology, New Delhi-110 012, India
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Sezai Ercisli
- Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
12
|
Shi B, Wang H, Nawaz A, Khan IA, Wang Q, Zhao D, Cheng KW. Dual functional roles of nutritional additives in nutritional fortification and safety of thermally processed food: Potential, limitations, and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13268. [PMID: 38284588 DOI: 10.1111/1541-4337.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/30/2024]
Abstract
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Collapse
Affiliation(s)
- Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Iftikhar Ali Khan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Simonit R, Maudet S, Giuffra V, Riccomi G. Infantile scurvy as a consequence of agricultural intensification in the 1st millennium BCE Etruria Campana. Sci Rep 2023; 13:21396. [PMID: 38049537 PMCID: PMC10696072 DOI: 10.1038/s41598-023-48455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The 1st millennium BCE in Italy was a time of agricultural intensification of staple cereal production which shaped sociocultural, political, and economic spheres of pre-Roman groups. The lifeways and foodways of the Etruscans, the greatest civilization in western Europe before Roman hegemony, are traditionally inferred from secondary written sources, funerary archaeology, archaeobotany, and zooarchaeology. However, no direct data extrapolated from the study of human skeletal remains are available to evaluate the extent to which agricultural intensification and decreased dietary diversity impacted health and the expression of skeletal indicators of metabolic disease. Macroscopic and radiological analyses were conducted on an archaeological skeletal sample of non-adults (n = 29) recovered from Pontecagnano (southern Italy) dating to the Orientalizing period (730-580 BCE). This allowed us to identify five cases of scorbutic non-adults and to assign diagnostic values to skeletal lesions of scurvy that have not been previously described in the literature. The onset of scurvy in the examined sample is related to the increased reliance of Etruscans on crops lacking vitamin C in this period of agricultural intensification. The skeletal expression of scurvy varied among the non-adults, with differences in location and disease severity; these were interpreted considering the age-at-death of the individuals coupled with feeding behaviors and interindividual variability.
Collapse
Affiliation(s)
- Rachele Simonit
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giulia Riccomi
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Ciaccheri L, De Girolamo A, Cervellieri S, Lippolis V, Mencaglia AA, Pascale M, Mignani AG. Low-Cost Pocket Fluorometer and Chemometric Tools for Green and Rapid Screening of Deoxynivalenol in Durum Wheat Bran. Molecules 2023; 28:7808. [PMID: 38067538 PMCID: PMC10708224 DOI: 10.3390/molecules28237808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contamination is crucial for ensuring safety and quality of food and feed products, for preventing health risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two samples with DON contamination in the 40-1650 µg/kg range were considered. A chemometric processing of spectroscopic data allowed distinguishing of samples based on their DON content using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying further inspection by means of more accurate but also more expensive standard analytical techniques. Chemometric data processing using Principal Component Analysis and Quadratic Discriminant Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge, this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.
Collapse
Affiliation(s)
- Leonardo Ciaccheri
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Annalisa De Girolamo
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Salvatore Cervellieri
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Vincenzo Lippolis
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Andrea Azelio Mencaglia
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Michelangelo Pascale
- CNR—Istituto di Scienze dell’Alimentazione (ISA), Via Roma, 64, 83100 Avellino, Italy;
| | - Anna Grazia Mignani
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| |
Collapse
|
15
|
Huey SL, Konieczynski EM, Mehta NH, Krisher JT, Bhargava A, Friesen VM, Mbuya MNN, Monterrosa EC, Nyangaresi AM, Mehta S. A systematic review of the impacts of post-harvest handling on provitamin A, iron and zinc retention in seven biofortified crops. NATURE FOOD 2023; 4:978-985. [PMID: 37945785 PMCID: PMC10661739 DOI: 10.1038/s43016-023-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Post-harvest handling can affect micronutrient retention in biofortified crops through to the point of consumption. Here we conduct a systematic review identifying 67 articles examining the retention of micronutrients in conventionally bred biofortified maize, orange sweet potato, cassava, pearl millet, rice, beans and wheat. Provitamin A crops maintain high amounts compared with non-biofortified counterparts. Iron and zinc crops have more variability in micronutrient retention dependent on processing method; for maximum iron and zinc content, whole grain product consumption such as whole wheat flour or only slightly milled brown rice is beneficial. We offer preliminary suggestions for households, regulatory bodies and programme implementers to increase consumer awareness on best practices for preparing crops to maximize micronutrient content, while highlighting gaps in the literature. Our online, interactive Micronutrient Retention Dashboard ( https://www.cpnh.cornell.edu/mn-retention-db ) offers an at-a-glance view of the compiled minimum and maximum retention found, organized by processing method.
Collapse
Affiliation(s)
- Samantha L Huey
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
- Program in International Nutrition, Cornell University, Ithaca, NY, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elsa M Konieczynski
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Neel H Mehta
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Jesse T Krisher
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | - Arini Bhargava
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA
| | | | | | | | | | - Saurabh Mehta
- Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA.
- Program in International Nutrition, Cornell University, Ithaca, NY, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Majzoobi M, Wang Z, Teimouri S, Pematilleke N, Brennan CS, Farahnaky A. Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods 2023; 12:3901. [PMID: 37959020 PMCID: PMC10649608 DOI: 10.3390/foods12213901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Due to the global rise in food insecurity, micronutrient deficiency, and diet-related health issues, the United Nations (UN) has called for action to eradicate hunger and malnutrition. Grains are the staple food worldwide; hence, improving their nutritional quality can certainly be an appropriate approach to mitigate malnutrition. This review article aims to collect recent information on developing nutrient-dense grains using a sustainable and natural process known as "sprouting or germination" and to discuss novel applications of sprouted grains to tackle malnutrition (specifically undernutrition). This article discusses applicable interventions and strategies to encourage biochemical changes in sprouting grains further to boost their nutritional value and health benefits. It also explains opportunities to use spouted grains at home and in industrial food applications, especially focusing on domestic grains in regions with prevalent malnutrition. The common challenges for producing sprouted grains, their future trends, and research opportunities have been covered. This review article will benefit scientists and researchers in food, nutrition, and agriculture, as well as agrifood businesses and policymakers who aim to develop nutrient-enriched foods to enhance public health.
Collapse
Affiliation(s)
- Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (Z.W.); (S.T.); (N.P.); (C.S.B.); (A.F.)
| | | | | | | | | | | |
Collapse
|
17
|
Padonou SW, Houngbédji M, Hounhouigan MH, Chadare FJ, Hounhouigan DJ. B-vitamins and heat processed fermented starchy and vegetable foods in sub-Saharan Africa: A review. J Food Sci 2023; 88:3155-3188. [PMID: 37458298 DOI: 10.1111/1750-3841.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Micronutrient deficiency still occurs in sub-Saharan Africa (SSA) despite the availability of several food resources, particularly fermented foods and vegetables, with high nutritional potential. Fermentation enhances the quality of food in several aspects. Organoleptically, certain taste, aroma, and textures are developed. Health and safety are improved by inhibiting the growth of several foodborne pathogens and removing harmful toxic compounds. Furthermore, nutrition is enhanced by improving micronutrient contents and bioavailability from the food, especially vitamin B content. However, during processing and before final consumption, many fermented foods are heat treated (drying, pasteurization, cooking, etc.) to make the food digestible and safe for consumption. Heat treatment improves the bioavailability of B-vitamins in some foods. In other foods, heating decreases the nutritional value because some B-vitamins are degraded. In SSA, cooked starchy foods are often associated with vegetables in household meals. This paper reviews studies that have focused fermented starchy foods and vegetable foods in SSA with the potential to provide B-vitamins to consumers. The review also describes the process of the preparation of these foods for final consumption, and techniques that can prevent or lessen B-vitamin loss, or enrich B-vitamins prior to consumption.
Collapse
Affiliation(s)
- Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Marcel Houngbédji
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Mênouwesso Harold Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Flora Josiane Chadare
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Djidjoho Joseph Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| |
Collapse
|
18
|
Acosta-Estrada BA, Serna-Saldívar SO, Chuck-Hernández C. Nutritional assessment of nixtamalized maize tortillas produced from dry masa flour, landraces, and high yield hybrids and varieties. Front Nutr 2023; 10:1183935. [PMID: 37485394 PMCID: PMC10358733 DOI: 10.3389/fnut.2023.1183935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
In the scientific literature there are different analyses of the nutritional profiles of maize tortillas, whether they are landraces or hybrid maize versus those made with dry masa flour (DMF). In general terms, there is agreement in the reported content of moisture. However, for the other nutrients, a great disparity is reported for each type of tortilla which may be due to various factors such as the type of maize or processing methods. In this study, the nutritional aspects of maize tortillas made with different genotypes (five hybrids, two varieties, five landraces, six hybrid mixtures and six dry masa flours) under controlled conditions, were compared. More than 30 characteristics were analyzed. High performance hybrids and varieties (HPHV) and landraces had the highest (p < 0.05) antioxidant capacity (58.8% free, 150.2% bound). In terms of vitamins contents, the tortillas produced from DMF contained 11.2 and 3.5 times more B1, 18.6 and 7.8 times more B2, and 2.7 and 5.3 times more B3 than HPHV and landraces respectively; and only in these samples was detected folic acid. DMF tortilla samples contained 1.75 times more sodium and 2.75 times more iron than the other groups, and 0.75 times less calcium than HPHV. Zinc was present in higher concentration (p < 0.05) in DMF tortilla samples. The landraces had the highest protein content (average 10.28%), but the tortillas produced from DMF presented the highest protein quality evaluated by protein digestibility-corrected amino acid score (PDCAAS) (p < 0.05) that represents 27, 25 and 19% more than hybrids mixture, HPHV and landraces, respectively. This work gives valuable information on how different types of grains differ in the nutritional quality affecting the final product to provide more elements in the decision-making of processors. There is no a perfect maize, but there are genotypes that can be combined as mixtures and the processing method to design superior nutritional tortillas and related products for populations that highly consume them and improve their human health.
Collapse
|
19
|
Fox GP, Bettenhausen HM. Variation in quality of grains used in malting and brewing. FRONTIERS IN PLANT SCIENCE 2023; 14:1172028. [PMID: 37377804 PMCID: PMC10291334 DOI: 10.3389/fpls.2023.1172028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.
Collapse
Affiliation(s)
- Glen P. Fox
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Harmonie M. Bettenhausen
- Center for Craft Food and Beverage, Hartwick College Center for Craft Food and Beverage, Oneonta, NY, United States
| |
Collapse
|
20
|
Yisak H, Belete A, Chandravanshi BS, Redi-Abshiro M, Yaya EE. Ascorbic Acid Content and Antioxidant Activities of White and Brown Teff [Eragrostic tef (Zucc.)Trotter] Grains and Injera. Int J Anal Chem 2023; 2023:4751207. [PMID: 37020923 PMCID: PMC10070015 DOI: 10.1155/2023/4751207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Teff [Eragrostis tef (Zuccagni) Trotter] is a cereal grain originating in Ethiopia as a staple food for millions of people. Its grain is a gluten-free superfood and got acceptance as a medicinal ingredient. Therefore, it is worthwhile to determine the antioxidative activities and L-ascorbic acid contents of teff grain and its baked food (injera). This study aimed to determine the ascorbic acid contents and antioxidant activities in the aqueous extract of the white and brown teff grains and their injera samples using iodimetric titration and UV-Vis spectrophotometric methods, respectively. The ascorbic acid contents in the white and brown teff ranged from 67.9–112.6 mg/100 g and 69.2–117.2 mg/100 g, respectively, and those in injera of the selected teff samples ranged from 30.5–32.9 mg/100 g and 37.3–43.0 mg/100 g, respectively. The antioxidant activities ranged from 1.26–7.04 μmol AAE/g for the white teff grains, 1.44–6.29 μmol AAE/g for the brown teff grains, 1.81–2.47 μmol AAE/g for white teff injera, and 3.89–4.86 μmol AAE/g for the brown teff injera samples. Findings of the present study have revealed that white teff and brown teff grains and their injera were found to have a higher content of ascorbic acid than commonly consumed grains and vegetables. No significant difference (α = 0.05) has been observed between the two varieties of teff grains with respect to the ascorbic acid content and antioxidant activities. However, there was a statistically significant difference (α = 0.05) in the ascorbic acid content and antioxidant activities between the teff grains and their injera samples. Therefore, this study indicated that teff grains and injera are rich in ascorbic acid content and antioxidant activities as compared to other cereal grains and are very crucial for human nutrition and health.
Collapse
|
21
|
Fagbohun OF, Gillies CR, Murphy KPJ, Rupasinghe HPV. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int J Mol Sci 2023; 24:ijms24076092. [PMID: 37047063 PMCID: PMC10093825 DOI: 10.3390/ijms24076092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of β-catenin (WNT/β-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Caroline R Gillies
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
| | - Kieran P J Murphy
- Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - H P Vasantha Rupasinghe
- Department Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 2R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Gribkova IN, Eliseev MN, Lazareva IV, Zakharova VA, Sviridov DA, Egorova OS, Kozlov VI. The Phenolic Compounds' Role in Beer from Various Adjuncts. Molecules 2023; 28:molecules28052295. [PMID: 36903541 PMCID: PMC10004787 DOI: 10.3390/molecules28052295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The present article considers the influence of malt with various adjuncts on beer organic compounds and taste profile composition, with more attention paid to the phenol complex change. The topic under consideration is relevant since it studies the interactions of phenolic compounds with other biomolecules, and expands the understanding of the adjuncts organic compounds contribution and their joint effect on beer quality. METHODS Samples of beer were analyzed at a pilot brewery using barley and wheat malts, barley, rice, corn and wheat, and then fermented. The beer samples were assessed by industry-accepted methods and using instrumental analysis methods (high-performance liquid chromatography methods-HPLC). The obtained statistical data were processed by the Statistics program (Microsoft Corporation, Redmond, WA, USA, 2006). RESULTS The study showed that at the stage of hopped wort organic compounds structure formation, there is a clear correlation between the content of organic compounds and dry substances, including phenolic compounds (quercetin, catechins), as well as isomerized hop bitter resines. It is shown that the riboflavin content increases in all adjunct wort samples, and mostly with the use of rice-up to 4.33 mg/L, which is 9.4 times higher than the vitamin levels in malt wort. The melanoidin content in the samples was in the range of 125-225 mg/L and its levels in the wort with additives exceeded the malt wort. Changes in β-glucan and nitrogen with thiol groups during fermentation occurred with different dynamics and depending on the adjunct's proteome. The greatest decrease in non-starch polysaccharide content was observed in wheat beer and nitrogen with thiol groups content-in all other beer samples. The change in iso-α-humulone in all samples at the beginning of fermentation correlated with a decrease in original extract, and in the finished beer there was no correlation. The behavior of catechins, quercetin, and iso-α-humulone has been shown to correlate with nitrogen with thiol groups during fermentation. A strong correlation was shown between the change in iso-α-humulone and catechins, as well as riboflavin and quercetin. It was established that various phenolic compounds were involved in the formation of taste, structure, and antioxidant properties of beer in accordance with the structure of various grains, depending on the structure of its proteome. CONCLUSIONS The obtained experimental and mathematical dependences make it possible to expand the understanding of intermolecular interactions of beer organic compounds and take a step toward predicting the quality of beer at the stage of using adjuncts.
Collapse
Affiliation(s)
- Irina N. Gribkova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
- Correspondence: ; Tel.: +7(926)-249-16-20
| | - Mikhail N. Eliseev
- Academic Department of Commodity Science and Commodity Expertise, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Irina V. Lazareva
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Varvara A. Zakharova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Dmitrii A. Sviridov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Olesya S. Egorova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Valery I. Kozlov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| |
Collapse
|
23
|
Khalid A, Hameed A, Tahir MF. Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front Nutr 2023; 10:1053196. [PMID: 36908903 PMCID: PMC9998918 DOI: 10.3389/fnut.2023.1053196] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
Wheat (Triticum aestivum L.) belonging to one of the most diverse and substantial families, Poaceae, is the principal cereal crop for the majority of the world's population. This cereal is polyploidy in nature and domestically grown worldwide. Wheat is the source of approximately half of the food calories consumed worldwide and is rich in proteins (gluten), minerals (Cu, Mg, Zn, P, and Fe), vitamins (B-group and E), riboflavin, niacin, thiamine, and dietary fiber. Wheat seed-storage proteins represent an important source of food and energy and play a major role in the determination of bread-making quality. The two groups of wheat grain proteins, i.e., gliadins and glutenins, have been widely studied using SDS-PAGE and other techniques. Sustainable production with little input of chemicals along with high nutritional quality for its precise ultimate uses in the human diet are major focus areas for wheat improvement. An expansion in the hereditary base of wheat varieties must be considered in the wheat breeding program. It may be accomplished in several ways, such as the use of plant genetic resources, comprising wild relatives and landraces, germplasm-assisted breeding through advanced genomic tools, and the application of modern methods, such as genome editing. In this review, we critically focus on phytochemical composition, reproduction growth, types, quality, seed storage protein, and recent challenges in wheat breeding and discuss possible ways forward to combat those issues.
Collapse
Affiliation(s)
- Anam Khalid
- Department of Biochemistry, University of Jhang, Jhang, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | |
Collapse
|
24
|
Rezvi HUA, Tahjib‐Ul‐Arif M, Azim MA, Tumpa TA, Tipu MMH, Najnine F, Dawood MFA, Skalicky M, Brestič M. Rice and food security: Climate change implications and the future prospects for nutritional security. Food Energy Secur 2022. [DOI: 10.1002/fes3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Md. Tahjib‐Ul‐Arif
- Department of Biochemistry and Molecular Biology Bangladesh Agricultural University Mymensingh Bangladesh
| | - Md. Abdul Azim
- Biotechnology Division Bangladesh Sugarcrop Research Institute Pabna Bangladesh
| | - Toufica Ahmed Tumpa
- Department of Entomology Bangladesh Agricultural University Mymensingh Bangladesh
| | | | - Farhana Najnine
- Food Science and Engineering South China University of Technology Guangdong Guangzhou China
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science Assiut University Assiut Egypt
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
- Institute of Plant and Environmental Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture Nitra Slovakia
| |
Collapse
|
25
|
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238210. [PMID: 36500303 PMCID: PMC9737474 DOI: 10.3390/molecules27238210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient's condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria.
Collapse
|
26
|
Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Sharma A, Yadav M, Sharma N, Kumari A, Kaur S, Meenu M, Garg M. Comparison of wheatgrass juices from colored wheat (white, black, blue, and purple) for health promoting phytochemicals. Food Res Int 2022; 161:111833. [DOI: 10.1016/j.foodres.2022.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
28
|
Safiul Azam FM, Lian T, Liang Q, Wang W, Zhang C, Jiang L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front Nutr 2022; 9:1029119. [PMID: 36337650 PMCID: PMC9634661 DOI: 10.3389/fnut.2022.1029119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B and its derivatives possess diverse physiological functions and are essential micronutrients for humans. Their variation in crops is important for the identification of genetic resources used to develop new varieties with enhanced vitamin B. In this research, remarkable variations were observed in kernels of 156 maize inbred lines, ranging from 107.61 to 2654.54 μg per 100 g for vitamin B1, 1.19-37.37 μg per 100 g for B2, 19.60-213.75 μg per 100 g for B3, 43.47-590.86 μg per 100 g for B5, and 138.59-1065.11 μg per 100 g for B6. Growing inbreeds in Hainan and Hebei provinces of China revealed environmental and genotype interactions among these vitamins and the correlations between them in maize grain. Several inbred lines were identified as good sources of vitamin B and promising germplasms for maize breeding, namely By855 and Si273 are overall rich in all the studied vitamins, and GY386B and CML118 are specially enriched with derivatives of vitamin B6. The present study can assist maize breeders with germplasm resources of vitamin B for biofortification to offer people nutritious foods.
Collapse
Affiliation(s)
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Lopes T, Zemlin AE, Hill J, Mchiza ZJ, Peer N, Erasmus RT, Kengne AP. Consumption of Plant Foods and Its Association with Cardiovascular Disease Risk Profile in South Africans at High-Risk of Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13264. [PMID: 36293842 PMCID: PMC9603168 DOI: 10.3390/ijerph192013264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We assessed the distribution and association of cardiovascular disease (CVD) risk factors by plant foods consumption in individuals at high-risk for type 2 diabetes mellitus. This cross-sectional study utilized baseline data of 693 participants in the South African Diabetes Prevention Programme. Participants underwent a physical examination, biochemical analysis, and dietary assessment using a single non-quantified 24-h recall. Group comparisons were conducted to explore the distribution and associations of common CVD risk factors by plant foods consumption. The mean age of the participants was 51 years, with 81% being females. Consumers of yellow-coloured vitamin A-rich vegetables and tubers and maize had significantly lower systolic blood pressure, fasting insulin, low-density lipoprotein cholesterol, triglycerides, and fibrinogen levels. Cereals consumption increased the likelihood of obesity (OR = 1.72 95% CI [1.09, 2.70] p = 0.019) while the consumption of white roots and tubers decreased the likelihood of obesity (AOR = 0.64 95% CI [0.41, 1.00] p = 0.048). This study reported the consumption of some healthy plant foods with lower levels of, and decreased risk for, some CVD risk factors. A further in-depth investigation is needed to understand these associations.
Collapse
Affiliation(s)
- Tatum Lopes
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
| | - Annalise E. Zemlin
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, Cape Town 7505, South Africa
| | - Jillian Hill
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
| | - Zandile J. Mchiza
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
| | - Nasheeta Peer
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rajiv T. Erasmus
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
| | - Andre P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
30
|
Yi C, Qiang N, Zhu H, Xiao Q, Li Z. Extrusion processing: A strategy for improving the functional components, physicochemical properties, and health benefits of whole grains. Food Res Int 2022; 160:111681. [DOI: 10.1016/j.foodres.2022.111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
|
31
|
FAYEMI OE, AKANNI GB, SOBOWALE SS, OELOFSE A, BUYS EM. Potential for increasing folate contents of traditional African fermented sorghum gruel (Motoho) using presumptive probiotic lactic acid bacteria. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Increasing vitamin C through agronomic biofortification of arugula microgreens. Sci Rep 2022; 12:13093. [PMID: 35908076 PMCID: PMC9338947 DOI: 10.1038/s41598-022-17030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Vitamin C (Vit C) is an essential micronutrient and antioxidant for human health. Unfortunately, Vit C cannot be produced in humans and is ingested through diet while severe deficiencies can lead to scurvy. However, consumption is often inconsistent, and foods vary in Vit C concentrations. Biofortification, the practice of increasing micronutrient or mineral concentrations, can improve the nutritional quality of crops and allow for more consistent dietary levels of these nutrients. Of the three leading biofortification practices (i.e., conventional, transgenic, and agronomical), the least explored approach to increase Vit C in microgreens is agronomically, especially through the supplemental application of ascorbic acid. In this study, biofortification of Vit C in microgreens through supplemental ascorbic acid was attempted and proven achievable. Arugula (Eruca sativa 'Astro') microgreens were irrigated with four concentrations of ascorbic acid and a control. Total Vit C (T-AsA) and ascorbic acid increased in microgreens as supplementary concentrations increased. In conclusion, biofortification of Vit C in microgreens through supplemental ascorbic acid is achievable, and consumption of these bio-fortified microgreens could help fulfill the daily Vit C requirements for humans, thereby reducing the need for supplemental vitamins.
Collapse
|
33
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
34
|
Zaremba A, Waszkowiak K, Kmiecik D, Jędrusek-Golińska A, Jarzębski M, Szymandera-Buszka K. The Selection of the Optimal Impregnation Conditions of Vegetable Matrices with Iodine. Molecules 2022; 27:3351. [PMID: 35630828 PMCID: PMC9144381 DOI: 10.3390/molecules27103351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to determine the use of selected vegetables (pumpkin, cauliflower, broccoli, carrot) as carriers of potassium iodide (KI) and potassium iodate (KIO3) by determining changes in iodine content under various conditions of impregnation as the degree of hydration, impregnated sample temperature, and impregnation time. The influence of these conditions on iodine contents in vegetables after their fortification and storage (21 °C/230 days) was analyzed. The results showed that all selected vegetables could be efficient iodine carriers. However, the conditions of the impregnation process are crucial for fortification efficiency, particularly the degree of hydration and the temperature of the impregnated samples before drying. The results showed that the lowest iodine content was in samples fortified at 4 °C and 1:4 hydration. On the other hand, the highest reproducibility of iodine was for the following fortification conditions: temperature of -76 °C and hydration of 1:1. The studies confirmed the higher stability of iodine in KIO3 form compared to KI. To increase recovery of the introduced iodine in the product after drying, using the conditioning step at 4 °C is not recommended. We recommend freezing vegetables immediately after the impregnation process.
Collapse
Affiliation(s)
- Agata Zaremba
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland;
| | - Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 61-624 Poznań, Poland; (A.Z.); (K.W.); (A.J.-G.)
| |
Collapse
|
35
|
Medina-Lozano I, Díaz A. Applications of Genomic Tools in Plant Breeding: Crop Biofortification. Int J Mol Sci 2022; 23:3086. [PMID: 35328507 PMCID: PMC8950180 DOI: 10.3390/ijms23063086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
36
|
Matthias D, McDonald CM, Archer N, Engle-Stone R. The Role of Multiply-Fortified Table Salt and Bouillon in Food Systems Transformation. Nutrients 2022; 14:nu14050989. [PMID: 35267964 PMCID: PMC8912775 DOI: 10.3390/nu14050989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/09/2023] Open
Abstract
Our global food system lacks the critically needed micronutrients to meet the daily requirements of the most at-risk populations. Diets also continue to shift toward unhealthy foods, including the increased intake of salt. While most countries exceed the WHO’s recommended levels, sodium does play an essential physiological role. Table salt and other salt-containing condiments, such as bouillon, also have cultural importance, as they are used to enhance the flavor of foods cooked at home. Given their universal consumption across income classes and both urban and rural populations, these condiments are an integral part of the food system and should, therefore, be part of its transformation. Fortification of salt and salt-containing condiments can play a catalytic role in the delivery of population-wide nutritional and health benefits. With relatively consistent levels of intake across the population, these condiments hold high potential for delivering micronutrients beyond iodine while also reducing concerns related to high micronutrient intake, particularly so in countries where the industries are relatively consolidated. As a flexible and complementary strategy to an evolving food system, fortification levels can also be adjusted over time to ensure micronutrient delivery targets continue to be achieved as the system improves, whether through lower intakes of sodium in line with WHO recommendations, enhanced consumption of nutrient-dense foods, and/or broader adoption of biofortified crops. Future areas of innovation are required to realize this vision, including developing affordable salt substitutes to meet cost requirements of consumers in low-and middle-income countries, improving the stability and bioavailability of the micronutrients in condiments so that delivery targets can be reached without affecting sensory attributes, and the development of efficient systems for monitoring population intake and micronutrient status to inform fortification program design and management. Rather than being considered antithetical to the transformation, multiply-fortified salt and bouillon can strengthen our ability to meet the cultural, sensory, nutritional, and health needs of an evolving food system.
Collapse
Affiliation(s)
- Dipika Matthias
- Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
- Correspondence:
| | - Christine M. McDonald
- Departments of Pediatrics, and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA;
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, CA 95616, USA;
| | - Nicholas Archer
- CSIRO Health and Biosecurity, North Ryde, Sydney 2113, Australia;
| | - Reina Engle-Stone
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
37
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|
38
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
39
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives. Front Nutr 2021; 8:721728. [PMID: 34692743 PMCID: PMC8528959 DOI: 10.3389/fnut.2021.721728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e., cereals are deficient in iron, zinc, some essential amino acids, and quality proteins. Meanwhile, the pulses are rich in anti-nutrient compounds that restrict the bioavailability of micronutrients. As a result, the population is suffering from malnutrition and resultantly different diseases, i.e., anemia, beriberi, pellagra, night blindness, rickets, and scurvy are common in the society. These facts highlight the need for the biofortification of cereals and pulses for the provision of balanced diets to masses and reduction of malnutrition. Biofortification of crops may be achieved through conventional approaches or new breeding techniques (NBTs). Conventional approaches for biofortification cover mineral fertilization through foliar or soil application, microbe-mediated enhanced uptake of nutrients, and conventional crossing of plants to obtain the desired combination of genes for balanced nutrient uptake and bioavailability. Whereas, NBTs rely on gene silencing, gene editing, overexpression, and gene transfer from other species for the acquisition of balanced nutritional profiles in mutant plants. Thus, we have highlighted the significance of conventional and NBTs for the biofortification of cereals and pulses. Current and future perspectives and opportunities are also discussed. Further, the regulatory aspects of newly developed biofortified transgenic and/or non-transgenic crop varieties via NBTs are also presented.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Zarmaha Amina
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Key Laboratory of Spectroscopy Sensing, The Ministry of Agriculture and Rural Affairs, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|