1
|
Abdolmaleky HM, Nohesara S, Zhou JR, Thiagalingam S. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Epigenomics 2025; 17:317-333. [PMID: 39948759 PMCID: PMC11970782 DOI: 10.1080/17501911.2025.2464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Tosserams A, Fasano A, Gilat M, Factor SA, Giladi N, Lewis SJG, Moreau C, Bloem BR, Nieuwboer A, Nonnekes J. Management of freezing of gait - mechanism-based practical recommendations. Nat Rev Neurol 2025:10.1038/s41582-025-01079-6. [PMID: 40169855 DOI: 10.1038/s41582-025-01079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Freezing of gait (FOG) is a debilitating motor symptom that commonly occurs in Parkinson disease, atypical parkinsonism and other neurodegenerative conditions. Management of FOG is complex and requires a multifaceted approach that includes pharmacological, surgical and non-pharmacological interventions. In this Expert Recommendation, we provide state-of-the-art practical recommendations for the management of FOG, based on the latest insights into the pathophysiology of the condition. We propose two complementary treatment flows, both of which are linked to the pathophysiology and tailored to specific FOG phenotypes. The first workflow focuses on the reduction of excessive inhibitory outflow from the basal ganglia through use of dopaminergic medication or advanced therapies such as deep brain stimulation and infusion therapy. The second workflow focuses on facilitation of processing across cerebral compensatory networks by use of non-pharmacological interventions. We also highlight interventions that have potential for FOG but are not supported by sufficient evidence to recommend for clinical application. Our updated recommendations are intended to enable effective symptomatic relief once FOG has developed, but we also consider potential targets for preventive approaches. The recommendations are based on scientific evidence where available, supplemented with practice-based evidence informed by our clinical experience.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Moran Gilat
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's disease and Movement Disorder Program, Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Brain Institute, Tel-Aviv Sourasky Medical Center, Faculty of Medicine and Health Sciences, Sagol School of Neurosciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Simon J G Lewis
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Caroline Moreau
- Expert Centre for Parkinson's Disease, Lille Neuroscience and Cognition, Lille University Hospital, Lille, France
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands.
| |
Collapse
|
3
|
Samara M, Alevizopoulos G, Bozikas VP, Chatzimanolis I, Dikeos D, Mougiakos T, Nikolaou A, Sakellariou D, Touloumis C, Tsopelas C, Agid O. Current perspectives on the recognition and management of treatment-resistant schizophrenia: challenges and opportunities. Expert Rev Neurother 2025:1-15. [PMID: 40162626 DOI: 10.1080/14737175.2025.2484434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Treatment-resistant schizophrenia (TRS) significantly impacts patients with schizophrenia, leading to a high disease burden, reduced quality of life, and functional impairment. Many patients fail to respond to standard antipsychotic treatments, requiring specialized therapeutic approaches. Clozapine remains the only approved treatment for patients with TRS, demonstrating effectiveness in reducing symptoms, hospitalizations, and risk of suicide. However, its use is often delayed due to concerns about adverse events, and the need for ongoing monitoring. AREAS COVERED This critical perspective incorporates insights from psychiatrists in Greece and a comprehensive literature analysis that includes clinical guidelines and systematic reviews. It highlights strategies for early diagnosis and timely initiation of clozapine, while emphasizing practical challenges in its use. Recommendations emphasize reducing treatment delays and overcoming barriers such as inadequate training and hesitancy among clinicians. A comprehensive literature search was conducted on PubMed, Google Scholar, and Cochrane Library without any date restrictions to ensure a thorough review of available evidence. The initial literature search was carried out in September 2024, with a subsequent search conducted in March 2025. EXPERT OPINION International guidelines consistently recommend clozapine as the first-line treatment for patients with TRS; nevertheless, the authors advocate enhanced awareness to optimize use. Most adverse events can be effectively managed with proper oversight, and early initiation is crucial to improving remission rates and the quality of life of patients with TRS. There is a need for systemic improvements in clinical practice, which requires evidence-based guidance to better address treatment efficacy in this challenging patient population.
Collapse
Affiliation(s)
- Myrto Samara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios Alevizopoulos
- Department of Psychiatry, Agioi Anargyroi Hospital, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis P Bozikas
- 2nd Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Chatzimanolis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Dimitris Dikeos
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | | | | | | | | | - Christos Tsopelas
- 2nd Department of Psychiatry, Psychiatric Hospital of Athens, Athens, Greece
| | - Ofer Agid
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| |
Collapse
|
4
|
Matteucci F, Pavletić P, Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Amantini C, Zeppa L, Sabato E, Vistoli G, Garland R, Yano H, Castagna M, Mammoli V, Cappellacci L, Piergentili A, Quaglia W. New Arylpiperazines as Potent and Selective Dopamine D4 Receptor Ligands Potentially Useful to Treat Glioblastoma. J Med Chem 2025. [PMID: 40156554 DOI: 10.1021/acs.jmedchem.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The dopamine D4 receptor (D4R) has recently been proposed as an emerging target for treating glioblastoma (GBM). In this article, new piperazine ligands, analogues of the potent and selective D4R lead compounds 9 and 10, were prepared and evaluated for their affinity at D2-like receptor subtypes. The most promising results were obtained by replacing the N4-phenyl terminal of 9 with a naphthyl group. Indeed, α-naphthyl derivative 15 proved to have four times higher affinity for D4R than lead 9, whereas β-naphthyl compound 16 was about tenfold more selective for D4R than 9. These compounds behaved as D4R antagonists in both Gi/Go activation and β-arrestin2 recruitment assays. Interestingly, both decreased cell viability dose-dependently and altered the cell cycle of U87 MG, T98G, and U251 MG human GBM cell lines after 48 h treatment, inducing an increase in ROS levels and time-dependent mitochondrial depolarization.
Collapse
Affiliation(s)
- Federica Matteucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Alessandro Bonifazi
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Laura Zeppa
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Emanuela Sabato
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Rian Garland
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Monica Castagna
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Valerio Mammoli
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessia Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
5
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven increase in IL-1β in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV. J Neuroinflammation 2025; 22:91. [PMID: 40122818 PMCID: PMC11931822 DOI: 10.1186/s12974-025-03403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Rachel Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Samyuktha Manikandan
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Oluwatofunmi Oteju
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Marzieh Daniali
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Joanna A Canagarajah
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Teresa LuPone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Krisna Mompho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Emily Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Benjamin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Keserű D, Hajnik T, Pethő M, Détári L, Van Den Bossche M, Tóth A. Simultaneous activation of different subtypes of dopamine receptors may lead to activation of homeostatic sleep regulatory mechanisms. Pharmacol Biochem Behav 2025; 248:173954. [PMID: 39798808 DOI: 10.1016/j.pbb.2025.173954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound. D2 agonist bromocriptine induced moderate and extended increase in wakefulness without a homeostatic sleep replacement but downregulated slow wave sleep need for 72 h. Selective D1 agonist SKF-38393 failed to induce enhanced waking sufficient for sleep replacement. High-dose D2 antagonism by sulpiride temporarily enhanced wakefulness. All drugs evoked extended (72 h) sleep changes after single application. Opposite sleep changes could be seen after the application of different doses in case of both bromocriptine and sulpiride. Theta, beta and gamma power reflected intensity differences in drug-induced wakefulness stages. Apomorphine- and high sulpiride dose-induced waking showed elevated power in all three frequency bands. Bromocriptine-induced wakefulness dominated by beta activity. Enhancement of more, than one type of electrocorticogram activities during wakefulness was a prerequisite for the activation of sleep homeostasis. According to present data, D1- or D2-like receptor agonism are not separately involved in the homeostatic regulation of slow wave sleep. Simultaneous and non-selective agonism on DA receptors is the most effective way to elicit intense W, which is followed by slow wave sleep rebound. REM sleep rebound could be evoked by D2 agonism. Rebound indicates the activation of homeostatic sleep regulation, but with unknown exact mechanisms.
Collapse
MESH Headings
- Animals
- Rats
- Homeostasis/drug effects
- Male
- Sleep/drug effects
- Sleep/physiology
- Bromocriptine/pharmacology
- Dopamine Agonists/pharmacology
- Wakefulness/drug effects
- Wakefulness/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Apomorphine/pharmacology
- Rats, Wistar
- Sulpiride/pharmacology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/drug effects
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Receptors, Dopamine D1/agonists
- Electrocorticography
- Sleep Deprivation/physiopathology
- Electroencephalography
Collapse
Affiliation(s)
- Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Maarten Van Den Bossche
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium; Neuropsychiatry, Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| |
Collapse
|
7
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
8
|
Wei A, Zhao A, Zheng C, Dong N, Cheng X, Duan X, Zhong S, Liu X, Jian J, Qin Y, Yang Y, Gu Y, Wang B, Gooya N, Huo J, Yao J, Li W, Huang K, Liu H, Mao F, Wang R, Shao M, Wang B, Zhang Y, Chen Y, Song Q, Huang R, Qu Q, Zhang C, Kang X, Xu H, Wang C. Sexually dimorphic dopaminergic circuits determine sex preference. Science 2025; 387:eadq7001. [PMID: 39787240 DOI: 10.1126/science.adq7001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTADA) neurons. In males, VTADA projections to the nucleus accumbens (NAc) mediate female preference, and those to the medial preoptic area mediate male preference. In females, firing-pattern (phasic-like versus tonic-like) alteration of the VTADA-NAc projection determines sociosexual preferences. These findings define VTADA neurons as a key node for social decision-making and reveal the sexually dimorphic DA circuit mechanisms underlying sociosexual preference.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueting Duan
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuaijie Zhong
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jie Jian
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhao Qin
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yuhao Gu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Niki Gooya
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingxiao Huo
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weiwei Li
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Acupuncture, Massage and Rehabilitation, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Kai Huang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haiyao Liu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenghan Mao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ruolin Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingjie Shao
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Botao Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yichi Zhang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Rong Huang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Huadong Xu
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Sanadgol E, Zendehdel M, Vazir B, Rassouli A, Haghbinnazarpak H. Central administration of galanin-like peptide (GALP) causes short-term orexigenic effects in broilers: Mediatory role of NPY1 and D1 receptors. Neurosci Lett 2025; 844:138042. [PMID: 39551101 DOI: 10.1016/j.neulet.2024.138042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Studies conducted on mammalian models have indicated the role of galanin-like peptide (GALP) in appetite regulation. For the first time, the present study examines the effects of this peptide on feed consumption and behavioral changes, as well as its interaction with dopaminergic and neuropeptide Y (NPY) systems in broilers. In experiment 1, broilers were injected with GALP (0.5, 1, and 2 μg) and saline. In experiment 2, saline, NPY1 receptor antagonist (BIBO-3304), GALP (2 μg), and BIBO-3304 + GALP were administrated. Experiments 3-6 were identical to experiment 2, except that NPY2 receptor antagonist (BIIE 0246), NPY5 receptor antagonist (CGP 71683A), D1 receptor antagonist (SCH39166), and D2 receptor antagonist (L-741,626) were injected instead of BIBO-3304. After that, cumulative meal consumption was recorded for 2 h. Also, behavioral changes in the broilers receiving GALP (0.5, 1, and 2 μg) were monitored for thirty minutes after infusion. Following the administration of GALP (1 and 2 μg), food intake and the number of feeding and exploratory pecks of chicks increased (P < 0.05), while other behaviors did not change significantly (P ≥ 0.05). Co-infusion of BIBO-3304 + GALP suppressed the orexigenic effect of GALP (P < 0.05). Infusion of BIIE 0246, CGP 71683A, and L-741,626 with GALP, had no significant effect on GALP-induced hyperphagia (P ≥ 0.05). However, the orexigenic effects of GALP were stimulated following the co-administration of SCH39166A + GALP (P < 0.05). These findings indicate that NPY1 and D1 receptors can mediate GALP-induced hyperphagia in broilers.
Collapse
Affiliation(s)
- Elham Sanadgol
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Bita Vazir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Rassouli
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadi Haghbinnazarpak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
11
|
Barbosa ED, Ma Y, Clift HE, Olson LJ, Zhu L, Liu W. Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. ACS Chem Neurosci 2024; 15:4123-4131. [PMID: 39485723 DOI: 10.1021/acschemneuro.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigated the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket. Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.
Collapse
MESH Headings
- Dopamine Agonists/pharmacology
- Dopamine Agonists/chemistry
- Humans
- Ligands
- Dopamine Antagonists/pharmacology
- Dopamine Antagonists/chemistry
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/chemistry
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/metabolism
- Thiophenes/pharmacology
- Thiophenes/chemistry
- Protein Binding/physiology
- Binding Sites
- Benzazepines/pharmacology
- Benzazepines/chemistry
- Models, Molecular
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
Collapse
Affiliation(s)
- Emmanuel D Barbosa
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Heather E Clift
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Linda J Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
12
|
Hiranita T, Soto PL, Katz JL. Dopamine D 1-Like Receptor-Mediated Insurmountable Blockade of the Reinforcing Effects of Cocaine in Rats. J Pharmacol Exp Ther 2024; 391:415-429. [PMID: 39443142 PMCID: PMC11585313 DOI: 10.1124/jpet.124.002362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Previous studies indicated differing effects of dopamine D1-like and D2-like receptor (D1R and D2R, respectively) agonists on cocaine self-administration. Leftward shifts by D2R agonists in the cocaine self-administration dose-effect function contrast with decreases by D1R agonists in maximal cocaine self-administration without rightward or leftward displacement. Whether the effects of the D1R agonists are due to actions at D1Rs has not been determined, possibly due to the difficulty in separating the blockade by a D1R antagonist of the effects of the D1R agonists and those of cocaine. In the present study, pretreatment with the D1R agonists R(+)-SKF-81297 (0.1-1.0 mg/kg) and (±)-SKF-82958 (0.032-0.32 mg/kg) dose-dependently decreased maximal cocaine self-administration at doses below those affecting food-reinforced responding. In contrast, pretreatment with the D2R agonists R(-)-NPA (0.001-0.01 mg/kg) and (-)-quinpirole (0.01-0.1 mg/kg) dose-dependently left-shifted the cocaine self-administration dose-effect function. The decreases by D1R agonists in maximal cocaine self-administration were dose-dependently antagonized by the D1R antagonist SCH-39166 at doses that alone had no effects on cocaine self-administration. Doses of SCH-39166 that blocked the effects of the D1R agonists on cocaine self-administration were like those that shifted self-administration of D1R agonists to the right but had no effects on self-administration of D2R agonists. Self-administration of the D2R agonists was dose-dependently shifted to the right by the preferential D2R antagonist L-741,626 but not by SCH-39166. These results demonstrate that the decreases by the D1R agonists in cocaine self-administration are selectively D1R-mediated and support findings suggesting fundamentally distinct roles of the D1Rs and D2Rs in cocaine reinforcement. SIGNIFICANCE STATEMENT: Dopamine D1-like (D1R) agonists decrease maximal cocaine self-administration, whereas D2-like (D2R) agonists shift the cocaine self-administration dose-effect function leftward, with mechanisms for those different effects unclear. The present study demonstrates blockade by the selective D1R antagonist SCH-39166 of D1R-mediated decreases in maximal cocaine self-administration at doses that blocked other D1R-mediated effects but not effects of cocaine, suggesting fundamentally distinct roles of the dopamine D1-like and D2-like receptors in cocaine reinforcement and development of D1R agonists as potential treatments for cocaine use disorder.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, Texas (T.H.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.); and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (J.L.K.)
| | - Paul L Soto
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, Texas (T.H.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.); and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (J.L.K.)
| | - Jonathan L Katz
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, Texas (T.H.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.); and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (J.L.K.)
| |
Collapse
|
13
|
Gilbert KF, Amontree M, Deasy S, Ma J, Conant K. Pramipexole, a D3 receptor agonist, increases cortical gamma power and biochemical correlates of cortical excitation; implications for mood disorders. Eur J Neurosci 2024; 60:6490-6508. [PMID: 39410873 DOI: 10.1111/ejn.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) has been associated with deficits in working memory as well as underlying gamma oscillation power. Consistent with this, overall reductions in cortical excitation have also been described with MDD. In previous work, we have demonstrated that the monoamine reuptake inhibitor venlafaxine increases gamma oscillation power in ex vivo hippocampal slices and that this is associated with concomitant increases in pyramidal arbour and reduced levels of plasticity-restricting perineuronal nets (PNNs). In the present study, we have examined the effects of chronic treatment with pramipexole (PPX), a D3 dopamine receptor agonist, for its effects on gamma oscillation power as measured by in vivo electroencephalography (EEG) recordings in female BALB/c and C57Bl6 mice. We observe a modest but significant increase in 20-50 Hz gamma power with PPX in both strains. Additionally, biochemical analysis of prefrontal cortex lysates from PPX-treated BALB/c mice shows a number of changes that could contribute to, or follow from, increased pyramidal excitability and/or gamma power. PPX-associated changes include reduced levels of specific PNN components as well as tissue inhibitor of matrix metalloproteases-1 (TIMP-1), which inhibits long-term potentiation of synaptic transmission. Consistent with its effects on gamma power, PNN proteins and TIMP-1, chronic PPX treatment also improves working memory and reduces anhedonia. Together these results add to an emerging literature linking extracellular matrix and/or gamma oscillation power to both mood and cognition.
Collapse
Affiliation(s)
- Karli F Gilbert
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | - Matthew Amontree
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | | | - Junfeng Ma
- Department of Oncology, GUMC, Washington, D.C., USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
- Department of Neuroscience, GUMC, Washington, D.C., USA
| |
Collapse
|
14
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
16
|
Bizup B, Tzounopoulos T. On the genesis and unique functions of zinc neuromodulation. J Neurophysiol 2024; 132:1241-1254. [PMID: 39196675 PMCID: PMC11495185 DOI: 10.1152/jn.00285.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
In addition to the essential structural and catalytic functions of zinc, evolution has adopted synaptic zinc as a neuromodulator. In the brain, synaptic zinc is released primarily from glutamatergic neurons, notably in the neocortex, hippocampus, amygdala, and auditory brainstem. In these brain areas, synaptic zinc is essential for neuronal and sensory processing fine-tuning. But what niche does zinc fill in neural signaling that other neuromodulators do not? Here, we discuss the evolutionary history of zinc as a signaling agent and its eventual adoption as an essential neuromodulator in the mammalian brain. We then attempt to describe the unique roles that zinc has carved out of the vast and diverse landscape of neuromodulators.
Collapse
Affiliation(s)
- Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
18
|
D'Aquila PS. Licking microstructure in response to novel rewards, reward devaluation and dopamine antagonists: Possible role of D1 and D2 medium spiny neurons in the nucleus accumbens. Neurosci Biobehav Rev 2024; 165:105861. [PMID: 39159734 DOI: 10.1016/j.neubiorev.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Evidence on the effect of dopamine D1 and D2-like antagonists and of manipulations of reward value on licking microstructure is reanalysed considering recent findings on the role of nucleus accumbens (NAc) medium spiny neurons (MSNs) in the control of sugar intake. The results of this analysis suggest that D1 MSN activation, which is involved in the emission of licking bursts, might play a crucial role in response to novel rewards. D2 MSN activation, which results in reduction of burst size and suppression of licking, might mediate the response to reward devaluation. Elucidating the neural mechanisms underlying the licking response might lead to a better definition of its microstructural measures in behaviourally and psychologically meaningful functional terms. This could further support its use as a behavioural substrate in the study of the neural mechanisms of ingestive behaviour and motivation, as well as in animal models of pathological conditions such as eating disorders and obesity.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|
19
|
Galindo-Charles L, Reyes-Legorreta C, Garduño J, Galarraga E, Tapia D, Hernández-López S. The activation of D2-like dopamine receptors increases NMDA currents in the dorsal raphe serotonergic neurons. Neurosci Lett 2024; 839:137933. [PMID: 39128818 DOI: 10.1016/j.neulet.2024.137933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The dorsal raphe nucleus (DRN) receives dopaminergic inputs from the ventral tegmental area (VTA). Also, the DRN contains a small population of cells that express dopamine (DRNDA neurons). However, the physiological role of dopamine (DA) in the DRN and its interaction with serotonergic (5-HT) neurons is poorly understood. Several works have reported moderate levels of D1, D2, and D3 DA receptors in the DRN. Furthermore, it was found that the activation of D2 receptors increased the firing of putative 5-HT neurons. Other studies have reported that D1 and D2 dopamine receptors can interact with glutamate NMDA receptors, modulating the excitability of different cell types. In the present work, we used immunocytochemical techniques to determine the kind of DA receptors in the DRN. Additionally, we performed electrophysiological experiments in brainstem slices to study the effect of DA agonists on NMDA-elicited currents recorded from identified 5-HT DRN neurons. We found that D2 and D3 but not D1 receptors are present in this nucleus. Also, we demonstrated that the activation of D2-like receptors increases NMDA-elicited currents in 5-HT neurons through a mechanism involving phospholipase C (PLC) and protein kinase C (PKC) enzymes. Possible physiological implications related to the sleep-wake cycle are discussed.
Collapse
Affiliation(s)
- L Galindo-Charles
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - C Reyes-Legorreta
- Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación-LGII, Ciudad de México 14389, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - D Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
20
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
21
|
Bagwell E, Larsen J. A review of MPTP-induced parkinsonism in adult zebrafish to explore pharmacological interventions for human Parkinson's disease. Front Neurosci 2024; 18:1451845. [PMID: 39170675 PMCID: PMC11335677 DOI: 10.3389/fnins.2024.1451845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Novel work in adult zebrafish, Danio rerio, to recapitulate human neurodegenerative disease has proven useful in both pharmaceutical development and research on genetic disease. Due to high genetic homology to humans, affordable husbandry, relatively quick life cycle breeding times, and robust embryo production, zebrafish offer a promising model to test pharmaceutical performance in a high throughput, in vivo setting. Currently, most research in zebrafish models of Parkinson's disease induces the disease in larval or embryonic stage organisms due to ease of administration, with advancement through developmental stages taking only a matter of days. The use of early-stage organisms limits the usability of zebrafish as models for adult disease and specifically age-related neurodegenerative conditions. Recently, researchers have sought to extend the usability of zebrafish into models for Parkinson's disease. Specifically, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has emerged as a prodrug that upon injection well-encompasses the biochemical mechanisms and symptomology associated with Parkinson's disease. By utilizing MPTP in an adult zebrafish model, advancements in Parkinson's disease research may be achieved. This paper highlights the recent research on this model, comparing it to the human form of Parkinson's disease.
Collapse
Affiliation(s)
- Emmeline Bagwell
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC, United States
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
22
|
Bergum N, Berezin CT, Vigh J. Dopamine enhances GABA A receptor-mediated current amplitude in a subset of intrinsically photosensitive retinal ganglion cells. J Neurophysiol 2024; 132:501-513. [PMID: 38958282 PMCID: PMC11427049 DOI: 10.1152/jn.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins,Colorado, United States
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins,Colorado, United States
| |
Collapse
|
23
|
Zell L, Hofer TS, Schubert M, Popoff A, Höll A, Marschhofer M, Huber-Cantonati P, Temml V, Schuster D. Impact of 2-hydroxypropyl-β-cyclodextrin inclusion complex formation on dopamine receptor-ligand interaction - A case study. Biochem Pharmacol 2024; 226:116340. [PMID: 38848779 DOI: 10.1016/j.bcp.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-β-CD (2-HP-β-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-β-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.
Collapse
Affiliation(s)
- Lukas Zell
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, Center for Biochemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Department of Chemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Alexander Popoff
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Anna Höll
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Moritz Marschhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Petra Huber-Cantonati
- Department of Pharmaceutical Biology, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria.
| |
Collapse
|
24
|
Guevara‐Salinas A, Netzahualcoyotzi C, Álvarez‐Luquín DD, Pérez‐Figueroa E, Sevilla‐Reyes EE, Castellanos‐Barba C, Vega‐Ángeles VT, Terán‐Dávila E, Estudillo E, Velasco I, Adalid‐Peralta L. Treating activated regulatory T cells with pramipexole protects human dopaminergic neurons from 6-OHDA-induced degeneration. CNS Neurosci Ther 2024; 30:e14883. [PMID: 39097919 PMCID: PMC11298200 DOI: 10.1111/cns.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed, a decrease in Treg number and function has been reported in PD. In this context, pramipexole, a dopaminergic receptor agonist used to treat PD symptoms, has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells. METHODS Treg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28-activated and non-activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co-cultured with in vitro-differentiated human dopaminergic neurons in a cytotoxicity assay with 6-hydroxydopamine (6-OHDA). The role of interleukin-10 (IL-10) was investigated by co-culturing activated IL-10-producing Treg cells with neurons. To further investigate the effect of treatment on Tregs, gene expression in pramipexole-treated, CD3/CD28-activated Treg cells was determined by Fluidigm analysis. RESULTS Pramipexole-treated CD3/CD28-activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6-OHDA. Pramipexole-treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL-10 release and the activation of genes associated with regulation and neuroprotection. CONCLUSION Anti-CD3/CD28-activated Treg cells protect dopaminergic neurons against 6-OHDA-induced damage. In addition, activated, IL-10-producing, pramipexole-treated Tregs also induced a neuroprotective effect, and the supernatants of these co-cultures promoted axonal growth. Pramipexole-treated, activated Tregs altered their gene expression in a concentration-dependent manner, and enhanced TGFβ-related dopamine receptor regulation and immune-related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD.
Collapse
Affiliation(s)
- Adrián Guevara‐Salinas
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Citlalli Netzahualcoyotzi
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
- Instituto de Fisiología Celular – NeurocienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Diana Denisse Álvarez‐Luquín
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Erandi Pérez‐Figueroa
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Edgar E. Sevilla‐Reyes
- Centro de Investigación en Enfermedades InfecciosasInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
- Laboratorio de Transcriptómica e Inmunología MolecularInstituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas"Mexico CityMexico
| | - Carlos Castellanos‐Barba
- Laboratorio Nacional de Citometría de FlujoInstituto de Investigaciones Biomédicas UNAMMexico CityMexico
| | - Vera Teresa Vega‐Ángeles
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Edgar Terán‐Dávila
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Iván Velasco
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
- Instituto de Fisiología Celular – NeurocienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Laura Adalid‐Peralta
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| |
Collapse
|
25
|
Hao Y, Li B, Huang D, Wu S, Wang T, Fu L, Liu X. Developing a Semi-Supervised Approach Using a PU-Learning-Based Data Augmentation Strategy for Multitarget Drug Discovery. Int J Mol Sci 2024; 25:8239. [PMID: 39125808 PMCID: PMC11312053 DOI: 10.3390/ijms25158239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multifactorial diseases demand therapeutics that can modulate multiple targets for enhanced safety and efficacy, yet the clinical approval of multitarget drugs remains rare. The integration of machine learning (ML) and deep learning (DL) in drug discovery has revolutionized virtual screening. This study investigates the synergy between ML/DL methodologies, molecular representations, and data augmentation strategies. Notably, we found that SVM can match or even surpass the performance of state-of-the-art DL methods. However, conventional data augmentation often involves a trade-off between the true positive rate and false positive rate. To address this, we introduce Negative-Augmented PU-bagging (NAPU-bagging) SVM, a novel semi-supervised learning framework. By leveraging ensemble SVM classifiers trained on resampled bags containing positive, negative, and unlabeled data, our approach is capable of managing false positive rates while maintaining high recall rates. We applied this method to the identification of multitarget-directed ligands (MTDLs), where high recall rates are critical for compiling a list of interaction candidate compounds. Case studies demonstrate that NAPU-bagging SVM can identify structurally novel MTDL hits for ALK-EGFR with favorable docking scores and binding modes, as well as pan-agonists for dopamine receptors. The NAPU-bagging SVM methodology should serve as a promising avenue to virtual screening, especially for the discovery of MTDLs.
Collapse
Affiliation(s)
- Yang Hao
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Bo Li
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Daiyun Huang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
- School of Life Sciences, Fudan University, Shanghai 200092, China
| | - Sijin Wu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
| | - Tianjun Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
| | - Xin Liu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (Y.H.); (B.L.); (S.W.); (T.W.); (L.F.)
| |
Collapse
|
26
|
Szabadi E. Three paradoxes related to the mode of action of pramipexole: The path from D2/D3 dopamine receptor stimulation to modification of dopamine-modulated functions. J Psychopharmacol 2024; 38:581-596. [PMID: 39041250 DOI: 10.1177/02698811241261022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Pramipexole, a D2/D3 dopamine receptor agonist, is used to treat the motor symptoms of Parkinson's disease, caused by degeneration of the dopaminergic nigrostriatal pathway. There are three paradoxes associated with its mode of action. Firstly, stimulation of D2/D3 receptors leads to neuronal inhibition, although pramipexole does not inhibit but promotes some dopamine-modulated functions, such as locomotion and reinforcement. Secondly, another dopamine-modulated function, arousal, is not promoted but inhibited by pramipexole, leading to sedation. Thirdly, pramipexole-evoked sedation is associated with an increase in pupil diameter, although sedation is expected to cause pupil constriction. To resolve these paradoxes, the path from stimulation of D2/D3 receptors to the modification of dopamine-modulated functions has been tracked. The functions considered are modulated by midbrain dopaminergic nuclei: locomotion - substantia nigra pars compacta (SNc), reinforcement/motivation - ventral tegmental area (VTA), sympathetic activity (as reflected in pupil function) - VTA; arousal - ventral periaqueductal grey (vPAG), with contributions from VTA and SNc. The application of genetics-based molecular techniques (optogenetics and chemogenetics) has enabled tracing the chains of neurones from the dopaminergic nuclei to their final targets executing the functions. The functional neuronal circuits linked to the D2/D3 receptors in the dorsal and ventral striata, stimulated by inputs from SNc and VTA, respectively, may explain how neuronal inhibition induced by pramipexole is translated into the promotion of locomotion, reinforcement/motivation and sympathetic activity. As the vPAG may increase arousal mainly by stimulating cortical D1 dopamine receptors, pramipexole would stimulate only presynaptic D2/D3 receptors on vPAG neurones, curtailing their activity and leading to sedation.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
28
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
29
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven Increase in IL-1β in Myeloid Cells is Mediated by Differential Dopamine Receptor Expression and Exacerbated by HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598137. [PMID: 38915663 PMCID: PMC11195146 DOI: 10.1101/2024.06.09.598137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
|
30
|
Ferrari M, Vecchio D, D’Alfonso S, Gemma A, Marino F, Comi C, Cosentino M. Polymorphisms in the Dopaminergic Receptor D3 Gene Correlate with Disease Progression Rate in Relapsing-Remitting Multiple Sclerosis Patients. Genes (Basel) 2024; 15:736. [PMID: 38927672 PMCID: PMC11203028 DOI: 10.3390/genes15060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a common chronic autoimmune disease of the central nervous system. In MS, disability progresses unpredictably. Dopamine (DA) is a modulator of immune functions, and compelling evidence supports its involvement in both pathogenesis and treatment of MS. Although single nucleotide polymorphisms (SNPs) in dopaminergic receptor (DR) genes have been extensively studied, their role in MS progression remains unexplored. Therefore, the aim of this explorative study is to investigate the potential association between functional SNPs in DR genes and MS progression. METHODS Caucasian patients with relapsing-remitting (RR) MS were enrolled, and disease progression assessed by the Multiple Sclerosis Severity Score (MSSS). RESULTS Out of the 59 RRMS patients enrolled, those with the G/G genotype for rs6280 and rs1800828 SNPs in DRD3 showed significantly higher MSSSs compared to those with ancestral and heterozygous genotypes. CONCLUSIONS If confirmed in a larger prospective study, the reported findings could contribute to a better understanding of MS pathophysiological mechanisms, opening the way for the identification of marker(s) for assessing MS progression as well as novel therapeutic strategies. A personalized approach to MS management has the potential to improve the overall well-being of MS patients and alleviate the burden on their caregivers.
Collapse
Affiliation(s)
- Marco Ferrari
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (A.G.); (F.M.); (M.C.)
| | - Domizia Vecchio
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (D.V.); (C.C.)
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy;
| | - Sandra D’Alfonso
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy;
- Genetic Laboratory, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Alessandra Gemma
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (A.G.); (F.M.); (M.C.)
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (A.G.); (F.M.); (M.C.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (D.V.); (C.C.)
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (A.G.); (F.M.); (M.C.)
| |
Collapse
|
31
|
Kvello P. Mapping lower secondary school students' conceptions of three aspects critical for understanding the nervous system. PLoS One 2024; 19:e0301090. [PMID: 38709767 PMCID: PMC11073672 DOI: 10.1371/journal.pone.0301090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/09/2024] [Indexed: 05/08/2024] Open
Abstract
Understanding the nervous system is an important but perhaps ambitious goal, particularly for students in lower secondary education. It is important because of its' direct role in both mental and physical health, and it is ambitious because instruction focuses on the human nervous system, which is extremely complex, and subject to numerous misconceptions. Despite its' complexity, the science curricula, both nationally and internationally, emphasize an understanding of the system, and not just knowledge of isolated facts. But what does it mean to understand this system, and what content knowledge is critical for understanding it? Unfortunately, the curricula are usually too general to answer these questions, therefore other sources of information are needed. Using the science literature, the present study defines the system level of the nervous system and proposes three basic aspects necessary to understand it: 1) neural circuit architecture, 2) synaptic action, and 3) nerve signal origin. With this background, the aim of the present study is to identify lower secondary school students' conceptions of these three aspects, and to determine how they impact students' understanding of the system. To reach this aim, the study used a questionary which allowed for a mixed method design, and the results show that many students have an immediate conception of the brain as the origin of nerve signals. In addition, many students hold the alternative conceptions that 1) synaptic action is exclusively excitatory, and that 2) neural circuits consists of neurons connected in a chain, one single neuron after another. These alternative conceptions prevent students from understanding the system. Implications for instruction are discussed in the context of conceptual learning theories, and teaching strategies are proposed. Since similar curricula goals and textbook content exist in several countries, the present results may be representative across nations.
Collapse
Affiliation(s)
- Pål Kvello
- Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
32
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
33
|
Tanaka K, Choudhury ME, Kikuchi S, Takeda I, Umakoshi K, Miyaue N, Mikami K, Takenaga A, Yagi H, Shinabe R, Matsumoto H, Yano H, Nagai M, Takeba J, Tanaka J. A dopamine D1-like receptor-specific agonist improves the survival of septic mice. iScience 2024; 27:109587. [PMID: 38623339 PMCID: PMC11016908 DOI: 10.1016/j.isci.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, a murine sepsis model was developed using the cecum ligation and puncture (CLP) technique. The expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in the brain increased 6 h after CLP but decreased 24 h later when elevated endogenous dopamine levels in the brain were sustained. Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride reduced dopamine levels in the striatum and increased mortality in septic mice. Dopamine D1-like receptors were significantly expressed in the brain, but not in the lungs. Intraperitoneally administered SKF-81297 (SKF), a blood-brain barrier-permeable D1-like receptor agonist, prevented CLP-induced death of septic mice with ameliorated acute lung injury and cognitive dysfunction and suppressed TNF-α and IL-1β expression. The D1-like receptor antagonist SCH-23390 abolished the anti-inflammatory effects of SKF. These data suggest that D1-like receptor-mediated signals in the brain prevent CLP-induced inflammation in both the brain and the periphery.
Collapse
Affiliation(s)
- Koichi Tanaka
- Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Kasugamachi, Matsuyama, Ehime 790-0024, Japan
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Mohammed E. Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Satoshi Kikuchi
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kensuke Umakoshi
- Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Kasugamachi, Matsuyama, Ehime 790-0024, Japan
| | - Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ayane Takenaga
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Harumichi Yagi
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Rintaro Shinabe
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hironori Matsumoto
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Jun Takeba
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
34
|
Dias BB, Carreño F, Helfer VE, Olivo LB, Staudt KJ, Paese K, Barreto F, Meyer FS, Herrmann AP, Guterres SS, Rates SMK, de Araújo BV, Trocóniz IF, Dalla Costa T. Pharmacokinetic/pharmacodynamic modeling of cortical dopamine concentrations after quetiapine lipid core nanocapsules administration to schizophrenia phenotyped rats. CPT Pharmacometrics Syst Pharmacol 2024; 13:638-648. [PMID: 38282365 PMCID: PMC11015084 DOI: 10.1002/psp4.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.
Collapse
Affiliation(s)
- Bruna Bernar Dias
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Fernando Carreño
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Victória Etges Helfer
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Laura Ben Olivo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Keli Jaqueline Staudt
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Karina Paese
- Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Fabiano Barreto
- Federal Laboratory of Animal and Plant Health and Inspection – LFDA/RSPorto AlegreBrazil
| | - Fabíola Schons Meyer
- Laboratory Animal Reproduction and Experimentation CenterInstitute of Basic Health Sciences, Federal University of Rio Grande do SulPorto AlegreBrazil
| | - Ana Paula Herrmann
- Pharmacology and Therapeutics Graduate Program, Institute of Basic Health SciencesFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Stela Maris Kuze Rates
- Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Bibiana Verlindo de Araújo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Iñaki F. Trocóniz
- Pharmacometrics & Systems Pharmacology Research UnitDepartment of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of PharmacyFederal University of Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
35
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
36
|
Mindru FM, Radu AF, Bumbu AG, Radu A, Bungau SG. Insights into the Medical Evaluation of Ekbom Syndrome: An Overview. Int J Mol Sci 2024; 25:2151. [PMID: 38396826 PMCID: PMC10889746 DOI: 10.3390/ijms25042151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Ekbom syndrome, also known as delusional parasitosis (DP) or delusional infestation, is an uncommon psychiatric disorder distinguished by an enduring conviction of parasitic infestation, persisting notwithstanding the presence of medical evidence to the contrary. Primarily affecting middle-aged women, DP can manifest either as isolated psychological distress or as a component within a more intricate psychiatric framework, substantially influencing the quality of life for affected individuals. Its pathophysiological mechanism involves uncertain dopaminergic imbalances and dysfunction in the dopamine transporter system. Dermatologists often play a pivotal role in diagnosis, as patients first seek dermatological assessments of their signs and symptoms. However, DP frequently originates from underlying psychiatric disorders or medical variables, manifesting with neurological and infectious causative factors. The diagnostic complexity is attributed to patients' resolute convictions, leading to delayed psychiatric intervention. First-line DP treatment involves antipsychotics, with newer agents demonstrating promising prospects, but the lack of standardized protocols poses a significant therapeutic challenge. In this narrative review, both a comprehensive approach to this uncommon pathology and an update on the state of knowledge in this medical subfield focused on optimizing the management of DP are provided. The complexity of DP underlying its uncommon nature and the incomplete understanding of its pathophysiology highlight the need for further research through multicenter studies and multidisciplinary teams to enhance therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Florina Madalina Mindru
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adrian Gheorghe Bumbu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ada Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
37
|
Everett T, Ten Eyck TW, Wu CH, Shelowitz AL, Stansbury SM, Firek A, Setlow B, McIntyre JC. Cilia loss on distinct neuron populations differentially alters cocaine-induced locomotion and reward. J Psychopharmacol 2024; 38:200-212. [PMID: 38151883 PMCID: PMC11078551 DOI: 10.1177/02698811231219058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.
Collapse
Affiliation(s)
- Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tyler W. Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Chang-Hung Wu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | | | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Alexandra Firek
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| |
Collapse
|
38
|
Tan H, Wang Z, Zhang J, Huang M, Chen J, Li F, Tang L. Analysis of Dopamine Receptor D2 Gene Polymorphism and Correlation with Dyslipidemia in the Chinese Population. Mol Syndromol 2024; 15:37-42. [PMID: 38357252 PMCID: PMC10862327 DOI: 10.1159/000533637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/09/2023] [Indexed: 02/16/2024] Open
Abstract
Objective The study aimed to explore the genotype and allele distributions of dopamine D2-like receptor (DRD2) gene -141C and C957T polymorphisms in the Chinese Han population with dyslipidemia, as well as their association with serum lipid levels. Methods One hundred fifty patients with dyslipidemia and 150 healthy people were recruited as the case and the control groups, respectively. Serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol levels were detected. The target sequence of DRD2 polymorphisms was amplified by polymerase chain reaction and genotyped via Sanger sequencing. Results In DRD2 gene C957T (rs6277), three genotypes of CC, CT, and TT were detected with the frequencies of 92.67%, 6.67%, 0.67% in dyslipidemia cases, and 83.33%, 14.67%, 2.00% in the controls, respectively. The CT genotype and T allele frequencies were significantly low in the case group relative to the control group. After adjusting to other clinical indicators, the CT genotype of C957T polymorphism (hazard ratio = 0.401, 95% confidence interval = 0.181-0.890, p < 0.05) was still related to a significantly reduced risk of dyslipidemia. The C957T CT genotype carriers had the lowest values of serum TC, TG, LDL, and the highest values of serum HDL-C. Conclusion DRD2 gene C957T polymorphism was an independent influencing factor associated with the susceptibility to dyslipidemia, and the CT genotype was associated with decreased odds of susceptibility to dyslipidemia.
Collapse
Affiliation(s)
- Haibo Tan
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixue Wang
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxuan Zhang
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Maohua Huang
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jide Chen
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fengqi Li
- Department of Medical Laboratory, Zhongxian People’s Hospital of Chongqing, Chongqing, China
| | - Liangjun Tang
- Department of Medical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
van der Pluijm M, Alting M, Schrantee A, Edden RAE, Booij J, de Haan L, van de Giessen E. Glutamate and GABA levels in the anterior cingulate cortex in treatment resistant first episode psychosis patients. Schizophr Res 2024; 264:471-478. [PMID: 38277736 DOI: 10.1016/j.schres.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Around 30 % of schizophrenia patients do not respond sufficiently to conventional antipsychotic treatment. Glutamate and γ-aminobutyric acid (GABA) may be implicated in treatment resistant (TR) patients. Some data indicate that TR patients show increased glutamate levels compared to responders, but findings are inconclusive and limited in the early disease stage. Furthermore, the two neurotransmitters have rarely been assessed in conjunction. We therefore aimed to investigate the role of GABA+ and glutamate in first episode TR patients and explore whether these neurometabolites could be potential predictive markers for TR schizophrenia. STUDY DESIGN We used proton magnetic resonance spectroscopy (MRS) to assess glutamate + glutamine (Glx) and GABA including macromolecules (GABA+) in the anterior cingulate cortex (ACC) of 58 first episode psychosis patients. At six months follow-up treatment response was determined and in a subgroup of 33 patients a follow-up MRS scan was acquired. STUDY RESULTS Glx and GABA+ levels were not significantly different between TR patients and responders at baseline and the levels did not change at six months follow-up. The groups differed in voxel fractions, which could have influenced our results even though we corrected for these differences. CONCLUSIONS Our findings do not provide evidence that ACC Glx or GABA+ levels are potential biomarkers for TR in first episode psychosis. Future research needs to take in to account voxel fractions and report potential differences. Comparison with previous literature suggests that illness duration, clozapine responsiveness and medication effects may partly explain the heterogeneous results on Glx and GABA+ levels in TR.
Collapse
Affiliation(s)
- Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Maartje Alting
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
40
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
41
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
42
|
Amerio A, Magnani L, Arduino G, Fesce F, de Filippis R, Parise A, Costanza A, Nguyen KD, Saverino D, De Berardis D, Aguglia A, Escelsior A, Serafini G, De Fazio P, Amore M. Immunomodulatory Effects of Clozapine: More Than Just a Side Effect in Schizophrenia. Curr Neuropharmacol 2024; 22:1233-1247. [PMID: 38031778 PMCID: PMC10964093 DOI: 10.2174/1570159x22666231128101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 12/01/2023] Open
Abstract
Recent evidence suggests a possible relationship between the immune system and schizophrenia spectrum disorders (SSDs), as neuroinflammation appears to play a role in major psychiatric conditions. Neuroinflammation is as a broad concept representing a physiological protective response to infection or injury, but in some cases, especially if chronic, it may represent an expression of maladaptive processes, potentially driving to clinical dysfunction and neurodegeneration. Several studies are concurrently highlighting the importance of microglia, the resident immune cells of the central nervous system, in a huge number of neurodegenerative diseases, including multiple sclerosis, Alzheimer's and Parkinson's diseases, as well as SSDs. A more fundamental phenomenon of maladaptive coupling of microglia may contribute to the genesis of dysfunctional brain inflammation involved in SSDs, from the onset of their neurophenomenological evolution. Clozapine and other antipsychotic drugs seem to express a provable immunomodulant effect and a more specific action on microglia, while neuroactive steroids and nonsteroidal anti-inflammatory drugs may reduce some SSDs symptoms in add-on therapy. Given these theoretical premises, this article aims to summarize and interpret the available scientific evidence about psychotropic and anti-inflammatory drugs that could express an immunomodulant activity on microglia.
Collapse
Affiliation(s)
- Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Magnani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Gabriele Arduino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Fabio Fesce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alberto Parise
- Department of Geriatric-Rehabilitation,, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI) Lugano, Switzerland
| | - Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
- Tranquis Therapeutics, Palo Alto, CA, USA
| | - Daniele Saverino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DiMeS), Section of Human Anatomy, University of Genoa, Genoa, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital “G. Mazzini”, Teramo, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
43
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
44
|
Sahay S, Henkel ND, Vargas CFA, McCullumsmith RE, O’Donovan SM. Activity of Protein Kinase A in the Frontal Cortex in Schizophrenia. Brain Sci 2023; 14:13. [PMID: 38248228 PMCID: PMC10813263 DOI: 10.3390/brainsci14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Nicholas Daniel Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Christina Flora-Anabelle Vargas
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Robert Erne McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
- Neuroscience Institute, Promedica, Toledo, OH 43606, USA
| | - Sinead Marie O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| |
Collapse
|
45
|
Qi-Lytle X, Sayers S, Wagner EJ. Current Review of the Function and Regulation of Tuberoinfundibular Dopamine Neurons. Int J Mol Sci 2023; 25:110. [PMID: 38203281 PMCID: PMC10778701 DOI: 10.3390/ijms25010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Tuberoinfundibular dopamine (TIDA) neurons have cell bodies located in the arcuate nucleus of the mediobasal hypothalamus. They project to the external zone of the median eminence, and the dopamine (DA) released there is carried by the hypophysial portal vasculature to the anterior pituitary. The DA then activates D2 receptors to inhibit prolactin (PRL) secretion from lactotrophs. The TIDA neuronal population is the principal regulatory factor controlling PRL secretion. The neuroendocrine role subserved by TIDA neurons sets them apart from other dopaminergic populations like the nigrostriatal and mesolimbic DA neurons. TIDA neurons exhibit intrinsic oscillatory fluctuations in their membrane potential that give rise to phasic firing and bursting activity. TIDA neuronal activity is sexually differentiated and modulated by gonadal hormones and PRL, as well as an array of small molecule and peptide neurotransmitters. This review covers these characteristics.
Collapse
Affiliation(s)
- Xiaojun Qi-Lytle
- Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine St., Scranton, PA 18509, USA;
| | - Sarah Sayers
- Department of Basic Medical Science, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA;
| | - Edward J. Wagner
- Department of Basic Medical Science, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA;
| |
Collapse
|
46
|
Quispe Escudero D. It's all about making new contacts: How being metabotropic and phasicity help D1-like receptors promote LTP in the PFC. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110784. [PMID: 37169273 DOI: 10.1016/j.pnpbp.2023.110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
D1-like receptors have two important qualities, they are all metabotropic and they activate with phasic dopamine. After analyzing the molecular implications of each of these qualities separately and then combining them for the specific case of the prefrontal cortex, we propose a model that explains why long term potentiation in this cortical area depends on the amount of contact between D1-like receptors and dopamine. This simple model also explains why in order to promote long term potentiation, dopamine transporters should be scarce in the prefrontal cortex. Additionally, it explains why stimulants like methamphetamine could have such detrimental cognitive effects on regular substance consumers.
Collapse
Affiliation(s)
- David Quispe Escudero
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid E-28040, Spain.
| |
Collapse
|
47
|
Bergum N, Berezin CT, Vigh J. Dopamine enhances GABA A receptor-mediated current amplitude in a subset of intrinsically photosensitive retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571141. [PMID: 38168350 PMCID: PMC10760026 DOI: 10.1101/2023.12.11.571141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive non-image forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although μ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine (via the D1R) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both non-image forming as well as image forming visual functions.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
49
|
Namballa HK, Decker AM, Dorogan M, Gudipally A, Goclon J, Harding WW. Fluoroalkoxylated C-3 and C-9 (S)-12-bromostepholidine analogues with D1R antagonist activity. Bioorg Chem 2023; 141:106862. [PMID: 37722267 PMCID: PMC10872833 DOI: 10.1016/j.bioorg.2023.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
To illuminate the tolerance of fluoroalkoxylated groups at the C-3 and C-9 positions of tetrahydroprotoberberines (THPBs) on D1R activity, C-3 and C-9 fluoroalkoxylated analogues of (S)-12-bromostepholidine were prepared and evaluated. All compounds examined were D1R antagonists as measured by a cAMP assay. Our structure-activity studies herein indicate that the C-3 position tolerates a 1,1-difluoroethoxy substituent for D1R antagonist activity. Compound 13a was the most potent cAMP-based D1R antagonist identified and was also found to antagonize β-arrestin translocation in a TANGO assay. Affinity assessments at other dopamine receptors revealed that 13a is selective for D1R and unlike other naturally-occurring THPBs such as (S)-stepholidine, lacks D2R affinity. In preliminary biopharmaceutical assays, excellent BBB permeation was observed for 13a. Further pharmacological studies are warranted on (S)-stepholidine congeners to harvest their potential as a source of novel, druggable D1R-targeted agents.
Collapse
Affiliation(s)
- Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Michael Dorogan
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Ashok Gudipally
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Chemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States
| | - Jakub Goclon
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Chemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States; Program in Biochemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States.
| |
Collapse
|
50
|
Rudibaugh TT, Stuppy SR, Keung AJ. Reactive Oxygen Species Mediate Transcriptional Responses to Dopamine and Cocaine in Human Cerebral Organoids. Int J Mol Sci 2023; 24:16474. [PMID: 38003664 PMCID: PMC10671319 DOI: 10.3390/ijms242216474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine signaling in the adult ventral forebrain regulates behavior, stress response, and memory formation and in neurodevelopment regulates neural differentiation and cell migration. Excessive dopamine levels, including those due to cocaine use in utero and in adults, could lead to long-term adverse consequences. The mechanisms underlying both homeostatic and pathological changes remain unclear, in part due to the diverse cellular responses elicited by dopamine and the reliance on animal models that exhibit species-specific differences in dopamine signaling. In this study, we use the human-derived ventral forebrain organoid model of Xiang-Tanaka and characterize their response to cocaine or dopamine. We explore dosing regimens of dopamine or cocaine to simulate acute or chronic exposure. We then use calcium imaging, cAMP imaging, and bulk RNA-sequencing to measure responses to cocaine or dopamine exposure. We observe an upregulation of inflammatory pathways in addition to indicators of oxidative stress following exposure. Using inhibitors of reactive oxygen species (ROS), we then show ROS to be necessary for multiple transcriptional responses of cocaine exposure. These results highlight novel response pathways and validate the potential of cerebral organoids as in vitro human models for studying complex biological processes in the brain.
Collapse
Affiliation(s)
| | | | - Albert J. Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; (T.T.R.); (S.R.S.)
| |
Collapse
|