1
|
Reid DM, Choe JY, Bruce MA, Thorpe RJ, Jones HP, Phillips NR. Mitochondrial Functioning: Front and Center in Defining Psychosomatic Mechanisms of Allostasis in Health and Disease. Methods Mol Biol 2025; 2868:91-110. [PMID: 39546227 DOI: 10.1007/978-1-0716-4200-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
There is increased awareness among basic and clinical scientists that psychological and social stress can have detrimental effects on physical, cognitive, and mental health. Data have been published indicating that social, economic, psychological, and physical environmental stress can influence behavior that has biological and physiological consequences-yet there are major gaps in understanding the physiological and cellular processes that drive increased morbidity and mortality. The potential role of mitochondria has been highlighted in psychosomatic medicine, as their functionality in various biological and physiological processes has earned recognition. This review outlines the essential role of mitochondria by considering the numerous intracellular, extracellular, and physiological functions it regulates that position the organelle as a central mediator in responses to psychological stress. We then connect these functions to mitochondrial allostasis and allostatic load for further examination of the limitations of mitochondria to an adaptive psychological stress response where mitochondrial allostatic load may eventually lead to systemic pathophysiology. This review emphasizes how chronic social, economic, and psychological stress can contribute to mitochondrial dysfunction and predispose individuals to poorer health outcomes and death. Mitochondrial capacity, function, and activity may therefore serve as biomarkers for identifying individuals at high risk for developing comorbid conditions related to their psychosocial environment.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Department of Neurology and Neurogenomics Informatics Center, Washington University in St. Louis, St. Louis, USA
| | - Jamie Y Choe
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Marino A Bruce
- Department of Behavioral and Social Sciences, University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- UHPH Collaboratories, UH Population Health, University of Houston, Houston, USA
| | - Roland J Thorpe
- Program for Research on Men's Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Health Disparities, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
2
|
Domitin S, Puff N, Pilot-Storck F, Tiret L, Joubert F. Role of cardiolipin in proton transmembrane flux and localization. Biophys J 2024:S0006-3495(24)04076-1. [PMID: 39674891 DOI: 10.1016/j.bpj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (pH) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
Collapse
Affiliation(s)
- Sylvain Domitin
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France
| | - Fanny Pilot-Storck
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Laurent Tiret
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
| |
Collapse
|
3
|
Kumar S, Acharya TK, Kumar S, Mahapatra P, Chang YT, Goswami C. TRPV4 modulation affects mitochondrial parameters in adipocytes and its inhibition upregulates lipid accumulation. Life Sci 2024; 358:123130. [PMID: 39413904 DOI: 10.1016/j.lfs.2024.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Enhanced lipid-droplet formation by adipocytes is a complex process and relevant for obesity. Using knock-out animals, involvement of TRPV4, a thermosensitive ion channel in the obesity has been proposed. However, exact role/s of TRPV4 in adipogenesis and obesity remain unclear and contradictory. Here we used in vitro culture of 3T3L-1 preadipocytes and primary murine-mesenchymal stem cells as model systems, and a series of live-cell-imaging to analyse the direct involvement of TRPV4 exclusively at the adipocytes that are free from other complex signalling as expected in in-vivo condition. Functional TRPV4 is endogenously expressed in pre- and in mature-adipocytes. Pharmacological inhibition of TRPV4 enhances differentiation of preadipocytes to mature adipocytes, increases expression of adipogenic and lipogenic genes, enhances cholesterol, promotes bigger lipid-droplet formation and reduces the lipid droplet temperature. On the other hand, TRPV4 activation enhanced the browning of adipocytes with increased UCP-1 levels. TRPV4 regulates mitochondrial-temperature, Ca2+-load, ATP, superoxides, cardiolipin, membrane potential (ΔΨm), and lipid-mitochondrial contact sites. TRPV4 also regulates the extent of actin fibres, affecting the cells mechanosensing ability. These findings link TRPV4-mediated mitochondrial changes in the context of lipid-droplet formation involved in adipogenesis and confirm the direct involvement of TRPV4 in adipogenesis. These findings may have broad implication in treating adipogenesis and obesity in future.
Collapse
Affiliation(s)
- Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satish Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Pesta M, Mrazova B, Kapalla M, Kulda V, Gkika E, Golubnitschaja O. Mitochondria-based holistic 3PM approach as the 'game-changer' for individualised rehabilitation-the proof-of-principle model by treated breast cancer survivors. EPMA J 2024; 15:559-571. [PMID: 39635015 PMCID: PMC11612048 DOI: 10.1007/s13167-024-00386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer belongs to the most commonly diagnosed malignancies worldwide, with its increasing incidence paralleled by advances in early diagnostics and effective treatments resulting in significantly improved survival rates. However, breast cancer survivors often experience significantly reduced quality of life linked to the long-term health burden as a consequence of aggressive oncological treatments applied. Their most frequently recorded complains include chronic fatigue, reduced physical activity, disordered sleep, chronification of pain, and severe mental health impairments-all per evidence are associated with compromised mitochondrial health and impaired homeostasis. Self-report of a breast cancer survivor is included in this article to illustrate currently uncovered patient needs. This article highlights mechanisms behind the suboptimal health of breast cancer survivors associated with mitochondrial damage, and introduces a novel, mitochondria-based holistic approach addressing rehabilitation concepts for breast cancer survivors following advanced principles of predictive, preventive and personalised medicine (3PM). By operating via mitochondrial function, the proposed holistic approach triggers systemic effects at molecular, sub/cellular and organismal levels positively affecting energy metabolism, repair mechanisms as well as physical and mental health creating, therefore, highly effective rehabilitation algorithms tailored to an individualised patient profile. The proposed methodology integrates mitochondrial health assessments utilising mitochondrial homeostasis biomarkers in tear fluid as a non-invasive diagnostic tool, tailored nutraceuticals and lifestyle adjustments. The introduced approach aligns with advanced principles of 3PM, offering a holistic and proactive framework for managing persistent post-treatment symptoms of suboptimal health in the cohort of cancer survivors. Furthermore, presented approach is also applicable to pre-habilitation programmes considering needs of other patient cohorts affected by chronic diseases such as CVD and orthopaedic disorders with planned major surgical incisions, who require individually adapted pre- and rehabilitation programmes. Implementing such innovative pre- and rehabilitation strategies may lead to a full recovery, sustainable health conditions and, therefore, facilitating patients' comeback to normal daily activities, family and professional life. Contextually, presented approach is considered a 'proof-of-principle' model for the 3PM-related paradigm shift from reactive medicine to a cost-effective holistic health management in both primary and secondary care benefiting a large spectrum of affected patient cohorts, individuals in suboptimal health conditions as well as society at large.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Barbara Mrazova
- F. D, Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Marko Kapalla
- F. D, Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2 S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621162. [PMID: 39553932 PMCID: PMC11565962 DOI: 10.1101/2024.10.30.621162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide. Significance Statement Hydrogen sulfide is a product of host as well as gut microbial metabolism and has the dual capacity for activating respiration as a substrate, and inhibiting it at the level of complex IV. In this study, we report that chronic albeit low-level sulfide exposure elicits profound changes in mitochondrial architecture in cultured human cells. Disruption of mitochondrial networks is reversed upon removal of sulfide from the growth chamber atmosphere. Sulfide-dependent depolarization of the inner mitochondrial membrane is associated with loss of cristae and respiratory supercomplexes. Our study reveals the potential for sulfide to be an endogenous regulator of mitochondrial ultrastructure and function via modulation of electron flux and for this process to be corrupted in sulfide dysregulated diseases.
Collapse
|
6
|
Lin J, Li X, Lu K, Song K, Wang L, Dai W, Mohamed M, Zhang C. Low Phosphorus Causes Hepatic Energy Metabolism Disorder Through Dynamin-Related Protein 1-Mediated Mitochondrial Fission in Fish. J Nutr 2024:S0022-3166(24)01121-0. [PMID: 39491675 DOI: 10.1016/j.tjnut.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Low phosphorus (LP) diets perturb hepatic energy metabolism homeostasis in fish. However, the specific mechanisms in LP-induced hepatic energy metabolism disorders remain to be fully elucidated. OBJECTIVES This study sought to elucidate the underlying mechanisms of mitochondria involved in LP-induced energy metabolism disorders. METHODS Spotted seabass were fed diets with 0.72% (S-AP, control) or 0.36% (S-LP) available phosphorus for 10 wk. Drp1 was knocked down or protein kinase (PK) A was activated using 8Br-cAMP (5 μM, a PKA activator) in spotted seabass hepatocytes under LP medium. Zebrafish were fed Z-LP diets (0.30% available phosphorus) containing Mdivi-1 (5 mg/kg, a Drp1 inhibitor) or 8Br-cAMP (0.5 mg/kg) for 6 wk. Biochemical and molecular parameters, along with transmission electron microscopy and immunofluorescence, were used to assess hepatic glycolipid metabolism, mitochondrial function, and morphology. RESULTS Spotted seabass fed S-LP diets showed reduced ATP (52%) and cAMP (52%) concentrations, along with reduced Drp1 (s582) (38%) and PKA (61%) phosphorylation concentrations in the liver compared with those fed S-AP diets (P < 0.05). Drp1 knockdown elevated ATP concentrations (1.99-fold), decreased mitochondrial DRP1 protein amounts (45%), and increased mitochondrial aspect ratio (1.82-fold) in LP-treated hepatocytes (P < 0.05). Furthermore, 8Br-cAMP-treated hepatocytes exhibited higher PKA phosphorylation (2.85-fold), ATP concentrations (1.60-fold), and mitochondrial aspect ratio (2.00-fold), along with decreased mitochondrial DRP1 protein concentrations (29%) under LP medium (P < 0.05). However, mutating s582 to alanine mimic Drp1 dephosphorylation decreased ATP concentrations (63%) and mitochondrial aspect ratio (53%) in 8Br-cAMP-treated hepatocytes (P < 0.05). In addition, zebrafish fed Z-LP diets containing Mdivi-1 or 8Br-cAMP had higher ATP concentrations (3.44-fold or 1.98-fold) than those fed Z-LP diets (P < 0.05). CONCLUSIONS These findings provide a potential mechanistic elucidation for LP-induced energy metabolism disorders through the cAMP/PKA/Drp1-mediated mitochondrial fission signaling pathway.
Collapse
Affiliation(s)
- Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Weiwei Dai
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Mohsen Mohamed
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China.
| |
Collapse
|
7
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
8
|
Alvarez S, Vanasco V, Adán Areán JS, Magnani N, Evelson P. Mitochondrial Mechanisms in Immunity and Inflammatory Conditions: Beyond Energy Management. Antioxid Redox Signal 2024; 41:845-864. [PMID: 38062738 DOI: 10.1089/ars.2023.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Significance: The growing importance of mitochondria in the immune response and inflammation is multifaceted. Unraveling the different mechanisms by which mitochondria have a relevant role in the inflammatory response beyond the energy management of the process is necessary for improving our understanding of the host immune defense and the pathogenesis of various inflammatory diseases and syndromes. Critical Issues: Mitochondria are relevant in the immune response at different levels, including releasing activation molecules, changing its structure and function to accompany the immune response, and serving as a structural base for activating intermediates as NLRP3 inflammasome. In this scientific journey of dissecting mitochondrial mechanisms, new questions and interesting aspects arise, such as the involvement of mitochondrial-derived vesicles in the immune response with the putative role of preventing uncontrolled situations. Recent Advances: Researchers are continuously rethinking the role of mitochondria in acute and chronic inflammation and related disorders. As such, mitochondria have important roles as centrally positioned signaling hubs in regulating inflammatory and immune responses. In this review, we present the current understanding of mitochondrial mechanisms involved, beyond the largely known mitochondrial dysfunction, in the onset and development of inflammatory situations. Future Directions: Mitochondria emerge as an interesting and multifaceted platform for studying and developing pharmaceutical and therapeutic approaches. There are many ongoing studies aimed to describe the effects of specific mitochondrial targeted molecules and treatments to ameliorate the consequences of exacerbated inflammatory components of pathologies and syndromes, resulting in an open area of increasing research interest.
Collapse
Affiliation(s)
- Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Juan Santiago Adán Areán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| |
Collapse
|
9
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart. Commun Biol 2024; 7:1422. [PMID: 39482367 PMCID: PMC11528069 DOI: 10.1038/s42003-024-07110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease.
Collapse
Affiliation(s)
- Chiemela Ohanele
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica N Peoples
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anja Karlstaedt
- Department of Cardiology; Smidt Heart Institute; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua T Geiger
- Division of Vascular Surgery; University of Rochester Medical Center, Rochester, NY, USA
| | - Ashley D Gayle
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fateemaa Sohani
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - George A Porter
- Department of Pediatrics; Division of Cardiology; University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Faundez
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Abou-Shanab AM, Gaser OA, Soliman MW, Oraby A, Salah RA, Gabr M, Edris AAF, Mohamed I, El-Badri N. Human amniotic membrane scaffold enhances adipose mesenchymal stromal cell mitochondrial bioenergetics promoting their regenerative capacities. Mol Cell Biochem 2024:10.1007/s11010-024-05094-x. [PMID: 39453499 DOI: 10.1007/s11010-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024]
Abstract
The human amniotic membrane (hAM) has been applied as a scaffold in tissue engineering to sustain stem cells and enhance their regenerative capacities. We investigated the molecular and biochemical regulations of mesenchymal stromal cells (MSCs) cultured on hAM scaffold in a three-dimensional (3D) setting. Culture of adipose-MSCs (AMSCs) on decellularized hAM showed significant improvement in their viability, proliferative capacity, resistance to apoptosis, and enhanced MSC markers expression. These cultured MSCs displayed altered expression of markers associated with pro-angiogenesis and inflammation and demonstrated increased potential for differentiation into adipogenic and osteogenic lineages. The hAM scaffold modulated cellular respiration by upregulating glycolysis in MSCs as evidenced by increased glucose consumption, cellular pyruvate and lactate production, and upregulation of glycolysis markers. These metabolic changes modulated mitochondrial oxidative phosphorylation (OXPHOS) and altered the production of reactive oxygen species (ROS), expression of OXPHOS markers, and total antioxidant capacity. They also significantly boosted the urea cycle and altered the mitochondrial ultrastructure. Similar findings were observed in bone marrow-derived MSCs (BMSCs). Live cell imaging of BMSCs cultured in the same 3D environment revealed dynamic changes in cellular activity and interactions with its niche. These findings provide evidence for the favorable properties of hAM as a biomimetic scaffold for enhancing the in vitro functionality of MSCs and supporting their potential usefulness in clinical applications.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Alaa Oraby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
11
|
Hickey AJR, Harford AR, Blier PU, Devaux JB. What causes cardiac mitochondrial failure at high environmental temperatures? J Exp Biol 2024; 227:jeb247432. [PMID: 39412006 DOI: 10.1242/jeb.247432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Although a mechanism accounting for hyperthermic death at critical temperatures remains elusive, the mitochondria of crucial active excitable tissues (i.e. heart and brain) may well be key to this process. Mitochondria produce ∼90% of the ATP required by cells to maintain cellular integrity and function. They also integrate into biosynthetic pathways that support metabolism as a whole, allow communication within the cell, and regulate cellular health and death pathways. We have previously shown that cardiac and brain mitochondria demonstrate decreases in the efficiency of, and absolute capacity for ATP synthesis as temperatures rise, until ultimately there is too little ATP to support cellular demands, and organ failure follows. Importantly, substantial decreases in ATP synthesis occur at temperatures immediately below the temperature of heart failure, and this suggests a causal role of mitochondria in hyperthermic death. However, what causes mitochondria to fail? Here, we consider the answers to this question. Mitochondrial dysfunction at high temperature has classically been attributed to elevated leak respiration suspected to result from increased movement of protons (H+) through the inner mitochondrial membrane (IMM), thereby bypassing the ATP synthases. In this Commentary, we introduce some alternative explanations for elevated leak respiration. We first consider respiratory complex I and then propose that a loss of IMM structure occurs as temperatures rise. The loss of the cristae folds of the IMM may affect the efficiency of H+ transport, increasing H+ conductance either through the IMM or into the bulk water phases of mitochondria. In either case, O2 consumption increases while ATP synthesis decreases.
Collapse
Affiliation(s)
- Anthony J R Hickey
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Alice R Harford
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Pierre U Blier
- Department of Biology, Chemistry and Geography, University of Quebec at Rimouski, 300 Allée des Ursulines, QC, Canada, G5L 3A1
| | - Jules B Devaux
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Conti Nibali S, Battiato G, Pappalardo XG, De Pinto V. Voltage-Dependent Anion Channels in Male Reproductive Cells: Players in Healthy Fertility? Biomolecules 2024; 14:1290. [PMID: 39456223 PMCID: PMC11506323 DOI: 10.3390/biom14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Male infertility affects nearly 50% of infertile couples, with various underlying causes, including endocrine disorders, testicular defects, and environmental factors. Spermatozoa rely on mitochondrial oxidative metabolism for motility and fertilization, with mitochondria playing a crucial role in sperm energy production, calcium regulation, and redox balance. Voltage-dependent anion channels (VDACs), located on the outer mitochondrial membrane, regulate energy and metabolite exchange, which are essential for sperm function. This review offers an updated analysis of VDACs in the male reproductive system, summarizing recent advances in understanding their expression patterns, molecular functions, and regulatory mechanisms. Although VDACs have been widely studied in other tissues, their specific roles in male reproductive physiology still remain underexplored. Special attention is given to the involvement of VDAC2/3 isoforms, which may influence mitochondrial function in sperm cells and could be implicated in male fertility disorders. This update provides a comprehensive framework for future research in reproductive biology, underscoring the significance of VDACs as a molecular link between mitochondrial function and male fertility.
Collapse
Affiliation(s)
| | | | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (S.C.N.); (G.B.); (X.G.P.)
| |
Collapse
|
13
|
Chang EES, Liu H, Choi ZYK, Malki Y, Zhang SXY, Pang SYY, Kung MHW, Ramsden DB, Ho SL, Ho PWL. Loss of mitochondrial Ca 2+ response and CaMKII/ERK activation by LRRK2 R1441G mutation correlate with impaired depolarization-induced mitophagy. Cell Commun Signal 2024; 22:485. [PMID: 39390438 PMCID: PMC11465656 DOI: 10.1186/s12964-024-01844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Stress-induced activation of ERK/Drp1 serves as a checkpoint in the segregation of damaged mitochondria for autophagic clearance (mitophagy). Elevated cytosolic calcium (Ca2+) activates ERK, which is pivotal to mitophagy initiation. This process is altered in Parkinson's disease (PD) with mutations in leucine-rich repeat kinase 2 (LRRK2), potentially contributing to mitochondrial dysfunction. Pathogenic LRRK2 mutation is linked to dysregulated cellular Ca2+ signaling but the mechanism involved remains unclear. METHODS Mitochondrial damages lead to membrane depolarization. To investigate how LRRK2 mutation impairs cellular response to mitochondrial damages, mitochondrial depolarization was induced by artificial uncoupler (FCCP) in wild-type (WT) and LRRK2R1441G mutant knockin (KI) mouse embryonic fibroblasts (MEFs). The resultant cytosolic Ca2+ flux was assessed using live-cell Ca2+ imaging. The role of mitochondria in FCCP-induced cytosolic Ca2+ surge was confirmed by co-treatment with the mitochondrial sodium-calcium exchanger (NCLX) inhibitor. Cellular mitochondrial quality and function were evaluated by Seahorse™ real-time cell metabolic analysis, flow cytometry, and confocal imaging. Mitochondrial morphology was visualized using transmission electron microscopy (TEM). Activation (phosphorylation) of stress response pathways were assessed by immunoblotting. RESULTS Acute mitochondrial depolarization induced by FCCP resulted in an immediate cytosolic Ca2+ surge in WT MEFs, mediated predominantly via mitochondrial NCLX. However, such cytosolic Ca2+ response was abolished in LRRK2 KI MEFs. This loss of response in KI was associated with impaired activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and MEK, the two upstream kinases of ERK. Treatment of LRRK2 inhibitor did not rescue this phenotype indicating that it was not caused by mutant LRRK2 kinase hyperactivity. KI MEFs exhibited swollen mitochondria with distorted cristae, depolarized mitochondrial membrane potential, and reduced mitochondrial Ca2+ store and mitochondrial calcium uniporter (MCU) expression. These mutant cells also exhibited lower cellular ATP: ADP ratio albeit higher basal respiration than WT, indicating compensation for mitochondrial dysfunction. These defects may hinder cellular stress response and signals to Drp1-mediated mitophagy, as evident by impaired mitochondrial clearance in the mutant. CONCLUSIONS Pathogenic LRRK2R1441G mutation abolished mitochondrial depolarization-induced Ca2+ response and impaired the basal mitochondrial clearance. Inherent defects from LRRK2 mutation have weakened the cellular ability to scavenge damaged mitochondria, which may further aggravate mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Eunice Eun-Seo Chang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huifang Liu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zoe Yuen-Kiu Choi
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Steffi Xi-Yue Zhang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David B Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Philip Wing-Lok Ho
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Mental Health Research Centre, PolyU Academy for Interdisciplinary Research, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Hinton AO, Vue Z, Scudese E, Neikirk K, Kirabo A, Montano M. Mitochondrial heterogeneity and crosstalk in aging: Time for a paradigm shift? Aging Cell 2024; 23:e14296. [PMID: 39188058 PMCID: PMC11464123 DOI: 10.1111/acel.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
The hallmarks of aging have been influential in guiding the biology of aging research, with more recent and growing recognition of the interdependence of these hallmarks on age-related health outcomes. However, a current challenge is personalizing aging trajectories to promote healthy aging, given the diversity of genotypes and lived experience. We suggest that incorporating heterogeneity-including intrinsic (e.g., genetic and structural) and extrinsic (e.g., environmental and exposome) factors and their interdependence of hallmarks-may move the dial. This editorial perspective will focus on one hallmark, namely mitochondrial dysfunction, to exemplify how consideration of heterogeneity and interdependence or crosstalk may reveal new perspectives and opportunities for personalizing aging research. To this end, we highlight heterogeneity within mitochondria as a model.
Collapse
Affiliation(s)
- Antentor O. Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Estevão Scudese
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Immunology and InflammationVanderbilt Institute for InfectionNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Monty Montano
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
16
|
Bourebaba L, Bourebaba N, Galuppo L, Marycz K. Artificial mitochondrial transplantation (AMT) reverses aging of mesenchymal stromal cells and improves their immunomodulatory properties in LPS-induced synoviocytes inflammation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119806. [PMID: 39098401 DOI: 10.1016/j.bbamcr.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Nowadays, regenerative medicine techniques are usually based on the application of mesenchymal stromal cells (MSCs) for the repair or restoration of injured damaged tissues. However, the effectiveness of autologous therapy is limited as therapeutic potential of MSCs declines due to patient's age, health condition and prolonged in vitro cultivation as a result of decreased growth rate. For that reason, there is an urgent need to develop strategies enabling the in vitro rejuvenation of MSCs prior transplantation in order to enhance their in vivo therapeutic efficiency. In presented study, we attempted to mimic the naturally occurring mitochondrial transfer (MT) between neighbouring cells and verify whether artificial MT (AMT) could reverse MSCs aging and improve their biological properties. For that reason, mitochondria were isolated from healthy donor equine adipose-derived stromal cells (ASCs) and transferred into metabolically impaired recipient ASCs derived from equine metabolic syndrome (EMS) affected horses, which were subsequently subjected to various analytical methods in order to verify the cellular and molecular outcomes of the applied AMT. Mitochondria recipient cells were characterized by decreased apoptosis, senescence and endoplasmic reticulum stress while insulin sensitivity was enhanced. Furthermore, we observed increased mitochondrial fragmentation and associated PARKIN protein accumulation, which indicates on the elimination of dysfunctional organelles via mitophagy. AMT further promoted physioxia and regulated autophagy fluxes. Additionally, rejuvenated ASCs displayed an improved anti-inflammatory activity toward LPS-stimulated synoviocytes. The presented findings highlight AMT as a promising alternative and effective method for MSCs rejuvenation, for potential application in autologous therapies in which MSCs properties are being strongly deteriorated due to patients' condition.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Nabila Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95516, United States
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, United States.
| |
Collapse
|
17
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. GeroScience 2024; 46:4443-4459. [PMID: 38607532 PMCID: PMC11335705 DOI: 10.1007/s11357-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
18
|
Glausier JR, Bouchet-Marquis C, Maier M, Banks-Tibbs T, Wu K, Ning J, Melchitzky D, Lewis DA, Freyberg Z. Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582174. [PMID: 38463986 PMCID: PMC10925168 DOI: 10.1101/2024.02.26.582174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Synaptic function is directly reflected in quantifiable ultrastructural features using electron microscopy (EM) approaches. This coupling of synaptic function and ultrastructure suggests that in vivo synaptic function can be inferred from EM analysis of ex vivo human brain tissue. To investigate this, we employed focused ion beam-scanning electron microscopy (FIB-SEM), a volume EM (VEM) approach, to generate ultrafine-resolution, three-dimensional (3D) micrographic datasets of postmortem human dorsolateral prefrontal cortex (DLPFC), a region with cytoarchitectonic characteristics distinct to human brain. Synaptic, sub-synaptic, and organelle measures were highly consistent with findings from experimental models that are free from antemortem or postmortem effects. Further, 3D neuropil reconstruction revealed a unique, ultrastructurally-complex, spiny dendritic shaft that exhibited features characteristic of heightened synaptic communication, integration, and plasticity. Altogether, our findings provide critical proof-of-concept data demonstrating that ex vivo VEM analysis is an effective approach to infer in vivo synaptic functioning in human brain.
Collapse
Affiliation(s)
- Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Matthew Maier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
- College of Medicine, The Ohio State University, Columbus, OH
| | - Ken Wu
- Materials and Structural Analysis, Thermo Fisher Scientific, Hillsboro, OR
| | - Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Berner MJ, Beasley HK, Vue Z, Lane A, Vang L, Baek ML, Marshall AG, Killion M, Zeleke F, Shao B, Parker D, Peterson A, Rhoades JS, Scudese E, Dobrolecki LE, Lewis MT, Hinton A, Echeverria GV. Three-dimensional analysis of mitochondria in a patient-derived xenograft model of triple negative breast cancer reveals mitochondrial network remodeling following chemotherapy treatments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611245. [PMID: 39314272 PMCID: PMC11419075 DOI: 10.1101/2024.09.09.611245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mitochondria are hubs of metabolism and signaling and play an important role in tumorigenesis, therapeutic resistance, and metastasis in many cancer types. Various laboratory models of cancer demonstrate the extraordinary dynamics of mitochondrial structure, but little is known about the role of mitochondrial structure in resistance to anticancer therapy. We previously demonstrated the importance of mitochondrial structure and oxidative phosphorylation in the survival of chemotherapy-refractory triple negative breast cancer (TNBC) cells. As TNBC is a highly aggressive breast cancer subtype with few targeted therapy options, conventional chemotherapies remain the backbone of early TNBC treatment. Unfortunately, approximately 45% of TNBC patients retain substantial residual tumor burden following chemotherapy, associated with abysmal prognoses. Using an orthotopic patient-derived xenograft mouse model of human TNBC, we compared mitochondrial structures between treatment-naïve tumors and residual tumors after conventional chemotherapeutics were administered singly or in combination. We reconstructed 1,750 mitochondria in three dimensions from serial block-face scanning electron micrographs, providing unprecedented insights into the complexity and intra-tumoral heterogeneity of mitochondria in TNBC. Following exposure to carboplatin or docetaxel given individually, residual tumor mitochondria exhibited significant increases in mitochondrial complexity index, area, volume, perimeter, width, and length relative to treatment-naïve tumor mitochondria. In contrast, residual tumors exposed to those chemotherapies given in combination exhibited diminished mitochondrial structure changes. Further, we document extensive intra-tumoral heterogeneity of mitochondrial structure, especially prior to chemotherapeutic exposure. These results highlight the potential for structure-based monitoring of chemotherapeutic responses and reveal potential molecular mechanisms that underlie chemotherapeutic resistance in TNBC.
Collapse
Affiliation(s)
- Mariah J. Berner
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Lane
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mokryun L. Baek
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominque Parker
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Autumn Peterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julie Sterling Rhoades
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Ling CM, Sheferaw TF, Denno DM, Chasweka D, Kamiza SB, Ordi J, Moxon CA, Kats K, Khoswe S, Mbale E, Ziwoya F, Tembo A, Attipa C, Potani I, Kim PK, Berkley JA, Walson JL, Voskuijl WP, Bandsma RHJ. Hepatic mitochondrial and peroxisomal alterations in acutely ill malnourished Malawian children: A postmortem cohort study. GLOBAL PEDIATRICS 2024; 9:None. [PMID: 39267884 PMCID: PMC11387285 DOI: 10.1016/j.gpeds.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 09/15/2024]
Abstract
Objectives To describe and compare liver mitochondrial and peroxisomal histopathology by nutritional status in children who died following hospitalization for acute illness in Malawi. Methods Liver tissue was collected using Minimally Invasive Tissue Sampling from eleven children under-five years old who died during hospitalization and were either non-wasted (n = 4), severely wasted (n = 4) or had edematous malnutrition (n = 3). Histology was assessed on hematoxylin and eosin stained slides. Mitochondrial and peroxisomal ultrastructural features were characterized using electron microscopy (EM) and immunofluorescence (IF). Results Hepatic steatosis was present in 50 % of non-wasted and severely wasted children and all children with edematous malnutrition. Edematous malnutrition was associated with 56 % and 45 % fewer mitochondria than severe wasting (p < 0.001) and no wasting (p = 0.006), respectively, and abnormal mitochondrial morphology compared to severe wasting (p = 0.002) and no wasting (p = 0.035). Peroxisomal abundance was reduced in edematous malnutrition compared to severe wasting (p = 0.005), but did not differ from no-wasting. Conclusion Edematous malnutrition is associated with reduced abundance and altered morphology of hepatic mitochondria and peroxisomes. Interventions targeting improvements in hepatic metabolic function may be beneficial in improving metabolism and reducing mortality in children with severe malnutrition, particularly in those with nutritional edema.
Collapse
Affiliation(s)
- Catriona M Ling
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Tewabu F Sheferaw
- Amsterdam UMC location University of Amsterdam, Amsterdam Centre for Global Child Health, Emma Children's hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Donna M Denno
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Dennis Chasweka
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steve B Kamiza
- Department of Pathology, Kumuzu University of Health Sciences, Blantyre, Malawi
| | - Jaume Ordi
- Department of Pathology, Hospital Clinic, Universitat de Barcelona, Spain
| | - Christopher A Moxon
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kim Kats
- Department of Biomedical Science of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stanley Khoswe
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Emmie Mbale
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Frank Ziwoya
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Abel Tembo
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Charalampos Attipa
- Department of Pathology, Kumuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Isabel Potani
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Peter K Kim
- Department of Biochemsitry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Judd L Walson
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Wieger P Voskuijl
- Amsterdam UMC location University of Amsterdam, Amsterdam Centre for Global Child Health, Emma Children's hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Robert H J Bandsma
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
| |
Collapse
|
21
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Crabtree A, Neikirk K, Pinette JA, Whiteside A, Shao B, Bedenbaugh J, Vue Z, Vang L, Le H, Demirci M, Ahmad T, Owens TC, Oliver A, Zeleke F, Beasley HK, Lopez EG, Scudese E, Rodman T, Kabugi K, Koh A, Navarro S, Lam J, Kirk B, Mungai M, Sweetwyne M, Koh HJ, Zaganjor E, Damo SM, Gaddy JA, Kirabo A, Murray SA, Cooper A, Williams C, McReynolds MR, Marshall AG, Hinton A. Quantitative assessment of morphological changes in lipid droplets and lipid-mito interactions with aging in brown adipose. J Cell Physiol 2024; 239:e31340. [PMID: 39138923 DOI: 10.1002/jcp.31340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024]
Abstract
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mert Demirci
- Department of Medicine, Division Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Suzanne Navarro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ben Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mariya Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Paranjape N, Strack S, Lehmler HJ, Doorn JA. Astrocyte Mitochondria Are a Sensitive Target of PCB52 and its Human-Relevant Metabolites. ACS Chem Neurosci 2024; 15:2729-2740. [PMID: 38953493 PMCID: PMC11311133 DOI: 10.1021/acschemneuro.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.
Collapse
Affiliation(s)
- Neha Paranjape
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stefan Strack
- Department
of Neuroscience and Pharmacology, University
of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
26
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
28
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Hinton A, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, Williams CR. Mitochondrial Structure and Function in Human Heart Failure. Circ Res 2024; 135:372-396. [PMID: 38963864 PMCID: PMC11225798 DOI: 10.1161/circresaha.124.323800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Steven M. Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Nanami Senoo
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH (C.R.W.)
| |
Collapse
|
30
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
31
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
32
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
33
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
34
|
Scudese E, Vue Z, Katti P, Marshall AG, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Harris C, Shao J, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla C, Whiteside A, Dasari R, Williams C, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Exil V, Kirabo A, Mobley BC, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights into MFN-2 Mediated Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566502. [PMID: 38168206 PMCID: PMC10760012 DOI: 10.1101/2023.11.13.566502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prassana Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Duane D. Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, Iowa City, IA 52242, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Salma T. AshShareef
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Celestine Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor’s Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy – APB
- Doctor’s Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Annet Kirabo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
35
|
Rockfield SM, Turnis ME, Rodriguez-Enriquez R, Bathina M, Ng SK, Kurtz N, Becerra Mora N, Pelletier S, Robinson CG, Vogel P, Opferman JT. Genetic ablation of Immt induces a lethal disruption of the MICOS complex. Life Sci Alliance 2024; 7:e202302329. [PMID: 38467404 PMCID: PMC10927357 DOI: 10.26508/lsa.202302329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing Immt (the gene encoding MIC60) expression. Tamoxifen-inducible ROSA-CreERT2-mediated deletion of Immt in adult mice disrupted the MICOS complex, increased mitochondria size, altered cristae morphology, and was lethal within 12 d. Pathologically, these mice displayed defective intestinal muscle function (paralytic ileus) culminating in dehydration. We also identified bone marrow (BM) hypocellularity in Immt-deleted mice, although BM transplants from wild-type mice did not improve survival. Altogether, this inducible mouse model demonstrates the importance of MIC60 in vivo, in both hematopoietic and non-hematopoietic tissues, and provides a valuable resource for future mechanistic investigations into the MICOS complex.
Collapse
Affiliation(s)
- Stephanie M Rockfield
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Madhavi Bathina
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seng Kah Ng
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nathan Kurtz
- Electron Microscopy, Department of Cellular Imaging Shared Resources, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nathalie Becerra Mora
- Electron Microscopy, Department of Cellular Imaging Shared Resources, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephane Pelletier
- Transgenic Core Facility, Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camenzind G Robinson
- Electron Microscopy, Department of Cellular Imaging Shared Resources, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Comparative Pathology Core, Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
36
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
37
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. Mitochondrial citrate carrier SLC25A1 is a dosage-dependent regulator of metabolic reprogramming and morphogenesis in the developing heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.22.541833. [PMID: 37292906 PMCID: PMC10245819 DOI: 10.1101/2023.05.22.541833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 heterozygous embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.
Collapse
|
38
|
Graziani A, Rocca MS, Vinanzi C, Masi G, Grande G, De Toni L, Ferlin A. Genetic Causes of Qualitative Sperm Defects: A Narrative Review of Clinical Evidence. Genes (Basel) 2024; 15:600. [PMID: 38790229 PMCID: PMC11120687 DOI: 10.3390/genes15050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed.
Collapse
Affiliation(s)
- Andrea Graziani
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Giulia Masi
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| |
Collapse
|
39
|
Parry HA, Willingham TB, Giordano KA, Kim Y, Qazi S, Knutson JR, Combs CA, Glancy B. Impact of capillary and sarcolemmal proximity on mitochondrial structure and energetic function in skeletal muscle. J Physiol 2024; 602:1967-1986. [PMID: 38564214 PMCID: PMC11068488 DOI: 10.1113/jp286246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.
Collapse
Affiliation(s)
- Hailey A. Parry
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - T. Bradley Willingham
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- Shephard Center’s Virginia C. Crawford Research Institute, Atlanta, GA, USA
| | | | - Yuho Kim
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- University of Massachusetts, Lowell, MA,USA
| | - Shureed Qazi
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay R. Knutson
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Combs
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
41
|
Okolo CA, Maran JJ, Watts A, Maripillan J, Harkiolaki M, Martínez AD, Green CR, Mugisho OO. Correlative light and X-ray tomography jointly unveil the critical role of connexin43 channels on inflammation-induced cellular ultrastructural alterations. Heliyon 2024; 10:e27888. [PMID: 38560181 PMCID: PMC10979075 DOI: 10.1016/j.heliyon.2024.e27888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Non-junctional connexin43 (Cx43) plasma membrane hemichannels have been implicated in several inflammatory diseases, particularly playing a role in ATP release that triggers activation of the inflammasome. Therapies targeting the blocking of the hemichannels to prevent the pathological release or uptake of ions and signalling molecules through its pores are of therapeutic interest. To date, there is no close-to-native, high-definition documentation of the impact of Cx43 hemichannel-mediated inflammation on cellular ultrastructure, neither is there a robust account of the ultrastructural changes that occur following treatment with selective Cx43 hemichannel blockers such as Xentry-Gap19 (XG19). A combination of same-sample correlative high-resolution three-dimensional fluorescence microscopy and soft X-ray tomography at cryogenic temperatures, enabled in the identification of novel 3D molecular interactions within the cellular milieu when comparing behaviour in healthy states and during the early onset or late stages under inflammatory conditions. Notably, our findings suggest that XG19 blockage of connexin hemichannels under pro-inflammatory conditions may be crucial in preventing the direct degradation of connexosomes by lysosomes, without affecting connexin protein translation and trafficking. We also delineated fine and gross cellular phenotypes, characteristic of inflammatory insult or road-to-recovery from inflammation, where XG19 could indirectly prevent and reverse inflammatory cytokine-induced mitochondrial swelling and cellular hypertrophy through its action on Cx43 hemichannels. Our findings suggest that XG19 might have prophylactic and therapeutic effects on the inflammatory response, in line with functional studies.
Collapse
Affiliation(s)
- Chidinma Adanna Okolo
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Jack Jonathan Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Amy Watts
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Jaime Maripillan
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Maria Harkiolaki
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Colin R. Green
- Department of Ophthalmology, University of Auckland, New Zealand
| | - Odunayo Omolola Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
42
|
Zhou Z, Ma A, Moore TM, Wolf DM, Yang N, Tran P, Segawa M, Strumwasser AR, Ren W, Fu K, Wanagat J, van der Bliek AM, Crosbie-Watson R, Liesa M, Stiles L, Acin-Perez R, Mahata S, Shirihai O, Goodarzi MO, Handzlik M, Metallo CM, Walker DW, Hevener AL. Drp1 controls complex II assembly and skeletal muscle metabolism by Sdhaf2 action on mitochondria. SCIENCE ADVANCES 2024; 10:eadl0389. [PMID: 38569044 PMCID: PMC10990287 DOI: 10.1126/sciadv.adl0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice Ma
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy M. Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dane M. Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicole Yang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tran
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenjuan Ren
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kai Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | - Rachelle Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Acin-Perez
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sushil Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90095, USA
| | - Michal Handzlik
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M. Metallo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David W. Walker
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Iris Cantor UCLA Women’s Health Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine and VA Greater Los Angeles Healthcare System GRECC, Los Angeles, CA 90073, USA
| |
Collapse
|
43
|
Kumari R, Ponte ME, Franczak E, Prom JC, O'Neil MF, Sardiu ME, Lutkewitte AJ, Christenson LK, Shankar K, Morris EM, Thyfault JP. VCD-induced menopause mouse model reveals reprogramming of hepatic metabolism. Mol Metab 2024; 82:101908. [PMID: 38432400 PMCID: PMC10944007 DOI: 10.1016/j.molmet.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Menopause adversely impacts systemic energy metabolism and increases the risk of metabolic disease(s) including hepatic steatosis, but the mechanisms are largely unknown. Dosing female mice with vinyl cyclohexene dioxide (VCD) selectively causes follicular atresia in ovaries, leading to a murine menopause-like phenotype. METHODS In this study, we treated female C57BL6/J mice with VCD (160 mg/kg i.p. for 20 consecutive days followed by verification of the lack of estrous cycling) to investigate changes in body composition, energy expenditure (EE), hepatic mitochondrial function, and hepatic steatosis across different dietary conditions. RESULTS VCD treatment induced ovarian follicular loss and increased follicle-stimulating hormone (FSH) levels in female mice, mimicking a menopause-like phenotype. VCD treatment did not affect body composition, or EE in mice on a low-fat diet (LFD) or in response to a short-term (1-week) high-fat, high sucrose diet (HFHS). However, the transition to a HFHS lowered cage activity in VCD mice. A chronic HFHS diet (16 weeks) significantly increased weight gain, fat mass, and hepatic steatosis in VCD-treated mice compared to HFHS-fed controls. In the liver, VCD mice showed suppressed hepatic mitochondrial respiration on LFD, while chronic HFHS resulted in compensatory increases in hepatic mitochondrial respiration. Also, liver RNA sequencing revealed that VCD promoted global upregulation of hepatic lipid/cholesterol synthesis pathways. CONCLUSION Our findings suggest that the VCD-induced menopause model compromises hepatic mitochondrial function and lipid/cholesterol homeostasis that sets the stage for HFHS diet-induced steatosis while also increasing susceptibility to obesity.
Collapse
Affiliation(s)
- Roshan Kumari
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA; Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA
| | - Michael E Ponte
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edziu Franczak
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA
| | - John C Prom
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura F O'Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mihaela E Sardiu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew J Lutkewitte
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kartik Shankar
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - E Matthew Morris
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA; Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA; KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA; Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.
| |
Collapse
|
44
|
Neikirk K, Stephens DC, Beasley HK, Marshall AG, Gaddy JA, Damo SM, Hinton AO. Considerations for developing mitochondrial transplantation techniques for individualized medicine. Biotechniques 2024; 76:125-134. [PMID: 38420889 DOI: 10.2144/btn-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Tweetable abstract Mitochondrial transplantation has been used to treat various diseases associated with mitochondrial dysfunction. Here, we highlight the considerations in quality control mechanisms that should be considered in the context of mitochondrial transplantation.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Heather K Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven M Damo
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Antentor O Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
45
|
Jenkins BC, Neikirk K, Katti P, Claypool SM, Kirabo A, McReynolds MR, Hinton A. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci 2024; 49:346-360. [PMID: 38402097 PMCID: PMC10997448 DOI: 10.1016/j.tibs.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial structure often determines the function of these highly dynamic, multifunctional, eukaryotic organelles, which are essential for maintaining cellular health. The dynamic nature of mitochondria is apparent in descriptions of different mitochondrial shapes [e.g., donuts, megamitochondria (MGs), and nanotunnels] and crista dynamics. This review explores the significance of dynamic alterations in mitochondrial morphology and regulators of mitochondrial and cristae shape. We focus on studies across tissue types and also describe new microscopy techniques for detecting mitochondrial morphologies both in vivo and in vitro that can improve understanding of mitochondrial structure. We highlight the potential therapeutic benefits of regulating mitochondrial morphology and discuss prospective avenues to restore mitochondrial bioenergetics to manage diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA.
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
46
|
Smith HE, Mackenzie AM, Seddon C, Mould R, Kalampouka I, Malakar P, Needham SR, Beis K, Bell JD, Nunn A, Botchway SW. The use of NADH anisotropy to investigate mitochondrial cristae alignment. Sci Rep 2024; 14:5980. [PMID: 38472304 PMCID: PMC10933486 DOI: 10.1038/s41598-024-55780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Life may be expressed as the flow of electrons, protons, and other ions, resulting in large potential difference. It is also highly photo-sensitive, as a large proportion of the redox capable molecules it relies on are chromophoric. It is thus suggestive that a key organelle in eukaryotes, the mitochondrion, constantly adapt their morphology as part of the homeostatic process. Studying unstained in vivo nano-scale structure in live cells is technically very challenging. One option is to study a central electron carrier in metabolism, reduced nicotinamide adenine dinucleotide (NADH), which is fluorescent and mostly located within mitochondria. Using one and two-photon absorption (340-360 nm and 730 nm, respectively), fluorescence lifetime imaging and anisotropy spectroscopy of NADH in solution and in live cells, we show that mitochondria do indeed appear to be aligned and exhibit high anisotropy (asymmetric directionality). Aqueous solution of NADH showed an anisotropy of ~ 0.20 compared to fluorescein or coumarin of < 0.1 and 0.04 in water respectively and as expected for small organic molecules. The anisotropy of NADH also increased further to 0.30 in the presence of proteins and 0.42 in glycerol (restricted environment) following two-photon excitation, suggesting more ordered structures. Two-photon NADH fluorescence imaging of Michigan Cancer Foundation-7 (MCF7) also showed strong anisotropy of 0.25 to 0.45. NADH has a quantum yield of fluorescence of 2% compared to more than 40% for photoionisation (electron generation), when exposed to light at 360 nm and below. The consequence of such highly ordered and directional NADH patterns with respect to electron ejection upon ultra-violet (UV) excitation could be very informative-especially in relation to ascertaining the extent of quantum effects in biology, including electron and photonic cascade, communication and modulation of effects such as spin and tunnelling.
Collapse
Affiliation(s)
- Holly E Smith
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Alasdair M Mackenzie
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Chloe Seddon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Rhys Mould
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Ifi Kalampouka
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Partha Malakar
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Sarah R Needham
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jimmy D Bell
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Alistair Nunn
- School of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK.
| |
Collapse
|
47
|
Kim Y, Parry HA, Willingham TB, Alspaugh G, Lindberg E, Combs CA, Knutson JR, Bleck CKE, Glancy B. Reorganization of mitochondria-organelle interactions during postnatal development in skeletal muscle. J Physiol 2024; 602:891-912. [PMID: 38429930 PMCID: PMC10939894 DOI: 10.1113/jp285014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.
Collapse
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, MA 01854, USA
| | - Hailey A. Parry
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - T. Bradley Willingham
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Greg Alspaugh
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian A. Combs
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay R. Knutson
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Zhao K, Pu Y, Shi H, Guo Q, Su Y, Yang F, Liu C, Du Y. The potential mechanism of response to light intensity in energy metabolism mediated by miRNA in Isatis indigotica. Gene 2024; 897:148083. [PMID: 38101709 DOI: 10.1016/j.gene.2023.148083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Light is the main source of energy for plant growth. Studies have shown that I. indigotica is a light-demanding plant and its yield and various active components are positively correlated with light intensity, but no studies of light intensity affecting energy metabolism in I. indigotica have been reported. Mitochondria are the main site of energy metabolism, and miRNAs are important factors in regulating gene expression, this experiment attempts to study the effects of different light intensities on energy metabolism from the perspective of mitochondria and miRNAs. The results show that the biomass、mitochondrial structural integrity and energy metabolism in I. indigotica were found to be positively correlated with light intensity. Small RNA and transcriptome sequencing identified 241 miRNAs and 36,372 mRNAs, and degradomic technology identified 72 miRNAs targeting 106 mRNAs, among which 12 pairs of miRNA-mRNAs were annotated on mitochondria. Combined with RT-qPCR validation, it was concluded that miR167a-5p positively regulates LETM1 and affects mitochondrial structure, miR400-5p and mIR169m-p3_1ss15CT negatively regulate GRXS15 and CMC4, respectively, affecting SDH and CCO activities, and miR395a-APS4 may affect the utilization of ATP and sulfate assimilation. In summary, the results of this study complement and enrich knowledge of light effects on mitochondria from the perspective of miRNA, while providing guidance for the cultivation of I. indigotica.
Collapse
Affiliation(s)
- Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Yingyan Pu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Yong Su
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Chang Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Yu Du
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| |
Collapse
|
49
|
Onraet T, Zuryn S. C. elegans as a model to study mitochondrial biology and disease. Semin Cell Dev Biol 2024; 154:48-58. [PMID: 37149409 DOI: 10.1016/j.semcdb.2023.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Mitochondria perform a myriad of essential functions that ensure organismal homeostasis, including maintaining bioenergetic capacity, sensing and signalling the presence of pathogenic threats, and determining cell fate. Their function is highly dependent on mitochondrial quality control and the appropriate regulation of mitochondrial size, shape, and distribution during an entire lifetime, as well as their inheritance across generations. The roundworm Caenorhabditis elegans has emerged as an ideal model organism through which to study mitochondria. The remarkable conservation of mitochondrial biology has allowed C. elegans researchers to investigate complex processes that are challenging to study in higher organisms. In this review, we explore the key recent contributions of C. elegans to mitochondrial biology through the lens of mitochondrial dynamics, organellar removal, and mitochondrial inheritance, as well as their involvement in immune responses, various types of stress, and transgenerational signalling.
Collapse
Affiliation(s)
- Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
50
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579010. [PMID: 38370705 PMCID: PMC10871288 DOI: 10.1101/2024.02.06.579010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Biological resilience, broadly defined as ability to recover from acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3-17.8 years spanning across different tissues, tissue regions, and cell types including: (1) fibroblasts from skin and from heart separated into left ventricle (LV), right ventricle (RV), left atrium (LA) and right atrium (RA), (2) astrocytes from the prefrontal cortex and hippocampus and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50µM-H2O2), metabolic (1mM-glucose) and proteostasis (0.1µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor specific. For example, astrocytes were more energetic and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|