1
|
Chokshi T, Fickweiler W, Jangolla S, Park K, Wu IH, Shah H, Sun JK, Aiello LP, King GL. Reduced Aqueous Retinol-Binding Protein 3 Concentration Is Associated With Diabetic Macular Edema and Progression of Diabetic Retinopathy. Diabetes Care 2025; 48:136-142. [PMID: 39566017 DOI: 10.2337/dc24-1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE To evaluate the association of aqueous retinol-binding protein 3 (RBP3) with history of diabetic macular edema (DME) and diabetic retinopathy (DR) progression. RESEARCH DESIGN AND METHODS RBP3 concentration was measured by ELISA in aqueous from patients undergoing cataract surgery at Joslin Diabetes Center. DR progression was defined as two-step or more worsening on the Early Treatment Diabetic Retinopathy Study severity scale, and DME history was determined by clinical diagnosis. RESULTS In 153 eyes (31 with type 1 and 122 with type 2 diabetes; n = 149 patients), 37% had no signs of DR, 40% had mild nonproliferative DR (NPDR), and 23% had moderate NPDR. Aqueous RBP3 decreased from a median of 2.1 nmol/L (interquartile range 0.8-3.4) in eyes with no DR to 1.5 nmol/L (0.8-3.8) in eyes with mild-to-moderate NPDR (P = 0.047). The difference between aqueous RBP3 levels in those with type 1 or type 2 diabetes was not significant. Elevated RBP3 (β = -0.701, 95% CI -1.151 to 0.250, P = 0.002) was associated with no DME history. With a mean follow-up of 5.5 ± 3.6 years, elevated RBP3 at baseline was associated with less subsequent DR progression (odds ratio 0.51, 95% CI 0.28-0.93, P = 0.03). In multivariable analyses, RBP3 remained significantly associated with a DR progression and history of DME. A 5% improvement was seen in the area under the curve when RBP3 was added to clinical models for predicting DR progression (P < 0.05). CONCLUSIONS This study suggests that aqueous RBP3 may be an important protective factor, the first neuroretinal-specific biomarker of DME or DR progression, and a possible therapeutic target.
Collapse
Affiliation(s)
- Tanvi Chokshi
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
| | - Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Surya Jangolla
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
| | - Hetal Shah
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Lloyd Paul Aiello
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA
- Diane Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Li Y, Hong X, Xu W, Guo J, Su Y, Li H, Xie Y, Chen X, Zheng X, Qiu S. Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma. Transl Oncol 2024; 52:102243. [PMID: 39675252 DOI: 10.1016/j.tranon.2024.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes. METHODS We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity. RESULTS A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms. CONCLUSIONS This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Yi Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xinyi Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Wenqian Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | | | | | - Haolan Li
- Fujian Medical University, Fuzhou, China
| | | | - Xing Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xiong Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
3
|
Chen T, Liu Y, Wu S, Long S, Feng L, Lu W, Chen W, Hong G, Zhou L, Wang F, Luo Y, Zou H, Liu W. The association of RBP4 with chronic kidney diseases in southern Chinese population. Front Endocrinol (Lausanne) 2024; 15:1381060. [PMID: 39698033 PMCID: PMC11652128 DOI: 10.3389/fendo.2024.1381060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background Retinol binding protein 4 (RBP4), as a novel adipokine, has been proven to be highly related to insulin resistance, obesity, diabetes, hypertension, hyperuricemia and other metabolic diseases, which are all risk factors for chronic kidney disease (CKD). However, there is a lack of sufficient studies to explore the relationship between RBP4 and CKD, and no reports have described the predictive value of RBP4 for CKD. This study was designed to clarify the relationship between RBP4 and CKD and its potential predictive value. Methods Our team has conducted a large-scale cross-sectional survey that contained 2117 individuals on the southern coast of China. Correlation test, logistic regression analysis were used to evaluate the association between RBP4 and CKD. Receiver operating characteristic (ROC) were used to evaluate the optimal cut-off and predictive value of RBP4 for predicting CKD. Results By using the quartile grouping method, the population was divided into four groups according to the RBP4 level. As the RBP4 level increased, the prevalence of CKD also gradually increased among different groups. RBP4 was also correlated with various metabolic risk factors, such as blood glucose, blood lipids, blood pressure, waist circumference, uric acid, and with kidney function indicators such as creatinine, urine protein. Logistic regression analysis found that after adjusting for confounders, RBP4 remained significantly associated with CKD, independent of metabolic risk factors. ROC analysis showed that RBP4 as a single index, AUC (0.666) was superior to Scr, FBG, Log HOMA-IR, WC, TG, VLDL-C, UA, HDL-C, LDL-C, and that combining RBP4 indicator and other common risk factors of CKD can improve the accuracy for predicting CKD. Conclusion This study found that the RBP4 was strongly correlated with CKD, RBP4 may become a valuable marker and have strong power for predicting CKD.
Collapse
Affiliation(s)
- Tong Chen
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Shiquan Wu
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Siyu Long
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Ling Feng
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenqian Lu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenya Chen
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Guoai Hong
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Li Zhou
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Fang Wang
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yuechan Luo
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Weihua Liu
- Department Nephrology of Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian, China
| |
Collapse
|
4
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of Genetic Polymorphisms Associated with Interindividual Variability of Vitamin A Concentration in Adipose Tissue of Healthy Male Adults. J Nutr 2024; 154:3693-3703. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), that is, mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology, which includes fat mobilization and catabolism, energy balance, and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. OBJECTIVES This study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, that is, at fast and 8 h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 single nucleotide polymorphism (SNPs) in or near 27 candidate genes were included for univariate analysis. Partial least squares (PLS) regression was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r = -0.184, P = 0.28). Interindividual variability of adipose tissue RET concentration was high (coefficient of variation = 62%). Twenty-nine SNPs were significantly (P < 0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near peroxisome proliferator activated receptor gamma, retinoid X receptor alpha, signaling receptor and transporter of retinol, cluster of differentiation 36, free fatty acid receptor 4, aldehyde dehydrogenase 1 family member A1, monoglyceride lipase, diacylglycerol O-acyltransferase 2, and polycystic kidney disease 1-like 2. CONCLUSIONS A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology-Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Direction générale de la recherche et de l'innovation, Paris, France
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
6
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024:10.1007/s11684-024-1094-2. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
7
|
Lin Y, Cui X, Zhu N, Li Y, Wang P, Wang X, Yi Y, Li X. Association Between Retinol-Binding Protein 4 Levels and Hepatitis C Virus Infection: A Meta-Analysis. Diseases 2024; 12:291. [PMID: 39589965 PMCID: PMC11592848 DOI: 10.3390/diseases12110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Background and Objectives: The relationship between circulating retinol-binding protein 4 (RBP4) levels and hepatitis C virus (HCV) infection remains unclear. This study aims to systematically assess RBP4 expression in patients with HCV and its correlation with disease severity. Materials and Methods: We searched the Embase, PubMed, and Cochrane databases for relevant studies up to 1 January 2024. This study was registered on PROSPERO (CRD42023489051). Results: Our analysis included eight studies with 2612 participants (1152 controls and 1282 patients with HCV). Overall, RBP4 levels did not significantly differ between patients with HCV and controls (SMD: -0.36; 95% CI: -0.94, 0.23; p = 0.23). However, in a subgroup of Asian subjects, patients with HCV showed significantly lower RBP4 levels (SMD: -0.40; 95% CI: -0.49, -0.31; p = 0.10). Additionally, a negative correlation between RBP4 levels and disease severity was observed across all studied populations. Conclusions: RBP4 levels may vary due to HCV genotype, ethnicity, and environmental factors. In the context of HCV infection, RBP4 levels appear to reflect the severity of disease progression. Our findings indicate that RBP4 could serve as a biomarker for HCV disease progression. Further research is needed to elucidate the complex mechanisms of RBP4 in HCV infection.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (Y.L.); (X.W.)
| | - Xinyu Cui
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (X.C.); (N.Z.); (Y.L.); (P.W.); (Y.Y.)
| | - Na Zhu
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (X.C.); (N.Z.); (Y.L.); (P.W.); (Y.Y.)
| | - Yanyan Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (X.C.); (N.Z.); (Y.L.); (P.W.); (Y.Y.)
| | - Peng Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (X.C.); (N.Z.); (Y.L.); (P.W.); (Y.Y.)
| | - Xin Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (Y.L.); (X.W.)
| | - Yunyun Yi
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (X.C.); (N.Z.); (Y.L.); (P.W.); (Y.Y.)
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, No. 8, Jingshun East Street, Chaoyang District, Beijing 100015, China; (Y.L.); (X.W.)
| |
Collapse
|
8
|
Han Q, Zhao H, Chen M, Xue W, Li J, Sun L, Shang Y. Retinol binding protein 4 restricts PCV2 replication via selective autophagy degradation of viral ORF1 protein. Commun Biol 2024; 7:1438. [PMID: 39500783 PMCID: PMC11538477 DOI: 10.1038/s42003-024-07052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Autophagy is a highly conserved degradative process that has been linked to various functions, including defending host cells against pathogens. Although the involvement of autophagy in porcine circovirus 2 (PCV2) infection has become apparent, it remains unclear whether selective autophagy plays a critical role in PCV2 restriction. Here we show that retinol-binding protein 4 (RBP4), an adipokine for retinol carrier, initiates the autophagic degradation of PCV2 ORF1 protein. PCV2 infection increases RBP4 protein levels through MAPK-eIF4E axis in living cells. Ectopic expression of RBP4 or recombinant RBP4 treatment promotes the degradation of ORF1 protein. Mechanistically, RBP4 activates TRAF6 to induce K63-linked ubiquitination of ORF1, leading to SQSTM1/p62-mediated selective autophagy for degradation. Consequently, RBP4 deficiency increases viral loads and exacerbates the pathogenicity of PCV2 in vivo. Collectively, these results identify RBP4 as a key host restriction factor of PCV2 and reveal a previously undescribed antiviral mechanism against PCV2 in infected cells.
Collapse
Affiliation(s)
- Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Hejiao Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Wenshuo Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China.
- Institute of Immunology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
9
|
Wu A, Wu NN, Xu PH, Jin Y, Yang ZK, Teng JW. Association of blood vitamin A with osteoarthritis: a nationally representative cross-sectional study. Front Nutr 2024; 11:1459332. [PMID: 39564209 PMCID: PMC11573514 DOI: 10.3389/fnut.2024.1459332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Objectives Vitamin A plays an important role in health, especially regarding its impact on bone tissue. Vitamin A can lead to bone damage and deformity, thus becoming an important causative factor in osteoarthritis. In this study, we aimed to evaluate the association of serum vitamin A with osteoarthritis. Methods We included participants who self-reported whether they had OA in NHANES 2001-2006 and NHANES 2017-2018 to explore the association and dose-response relationship between vitamin A concentration and risk of osteoarthritis through weighted multivariate logistic models and restricted cubic splines. Sensitivity and stratification analyses were also used to assess the robustness of the results. Results A total of 18,034 participants were included in this study, and a linear association between serum vitamin A concentration and osteoarthritis risk was observed. The OR of osteoarthritis was 1.22 (95% CI: 0.98, 1.52), 1.40 (95% CI: 1.05,1.85), and 1.47 (95% CI: 1.14, 1.91) for participants in the second, third, and fourth quartiles, respectively, compared with the lowest vitamin A reference group. Similar results were obtained when sensitivity and stratification analyses were performed. Conclusion Serum vitamin A is positively associated with osteoarthritis risk. Within a certain range of vitamin A concentrations, vitamin A is a protective factor against osteoarthritis, beyond which it becomes a causative factor for osteoarthritis.
Collapse
Affiliation(s)
- Ao Wu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning-Ning Wu
- Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Peng-Hui Xu
- Shengli Oilfield Central Hospital, Dongying, China
| | - Yao Jin
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Kai Yang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Wen Teng
- Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| |
Collapse
|
10
|
Penkert RR, Jones BG, Tang L, Su Y, Jeha S, Yang J, Yang W, Ferrolino J, Strength R, Pui CH, Cross SJ, Hurwitz JL, Wolf J. Association of Vitamin A and D Deficiencies with Infectious Outcomes in Children Undergoing Intensive Induction Therapy for Acute Lymphoblastic Leukemia. J Pediatr 2024; 273:114148. [PMID: 38880379 DOI: 10.1016/j.jpeds.2024.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE To evaluate the association between deficiency of vitamin A or D at diagnosis of pediatric acute lymphoblastic leukemia (ALL) and subsequent infectious complications during induction therapy. STUDY DESIGN We conducted an institutional review board-approved, retrospective cohort study of children with newly diagnosed ALL from 2007 to 2017 at St. Jude Children's Research Hospital. We measured vitamin D, vitamin D binding protein, retinol binding protein as a surrogate for vitamin A, and immunoglobulin isotypes in serum obtained at ALL diagnosis, and we assessed the association between vitamin deficiencies or levels and infection-related complications during the 6-week induction phase using Cox regression models. RESULTS Among 378 evaluable participants, vitamin A and D deficiencies were common (43% and 17%, respectively). Vitamin D deficiency was associated with higher risks of febrile neutropenia (adjusted hazard ratio [aHR], 1.7; P = .0072), clinically documented infection (aHR, 1.73; P = .025), and likely bacterial infection (aHR, 1.86; P = .008). Conversely, vitamin A deficiency was associated solely with a lower risk of sepsis (aHR, 0.19; P = .027). CONCLUSIONS In this retrospective study, vitamin D deficiency was associated with an increased risk of common infection-related complications during induction therapy for ALL. Additional studies are warranted to evaluate whether vitamin D supplementation could mitigate this effect.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yin Su
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Jose Ferrolino
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Rachel Strength
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shane J Cross
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN.
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
11
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Fan J, Hu J. Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function. Endocrine 2024; 85:1020-1034. [PMID: 38520616 DOI: 10.1007/s12020-024-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic β-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic β-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS A narrative review. RESULTS Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic β-cell function, and T2DM. CONCLUSIONS More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic β-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic β-cell function.
Collapse
Affiliation(s)
- Jiahua Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Nutrition, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China.
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China
| |
Collapse
|
13
|
Helder M, Pandeya N, Seviiri M, Olsen CM, Whiteman DC, Law MH. No evidence that retinol is protective for skin cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312670. [PMID: 39252920 PMCID: PMC11383465 DOI: 10.1101/2024.08.27.24312670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
With over 1.5 million new cases annually, skin cancers are the most commonly diagnosed group of cancers worldwide. Among these, melanoma and keratinocyte cancers (KC), comprising squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), are predominant. Retinol, a vitamin A derivative, is essential in the regulation of growth and differentiation of epidermal cells. Moreover, retinol exhibits antioxidant properties, protecting the skin against ultra-violet (UV) radiation induced oxidative damage. Existing research on the impact of retinol on melanoma, SCC and BCC development shows mixed results. Several dietary intake studies have suggested that higher retinol levels reduce skin cancer risk, however, others have failed to find this association. We used two-sample Mendelian randomization (MR) to explore if there is a causal relationship between retinol and the risk of developing melanoma, SCC or BCC. Genetically predicted circulating retinol levels were obtained from a genome wide association study (GWAS) meta-analysis of the INTERVAL (N=11,132) and METSIM (N=6,136) cohorts. Melanoma (30,134 cases and 375,188 controls), SCC (10,557 cases and 537,850 controls) and BCC (36,479 cases and 540,185 controls) risks were derived from published GWAS meta-analyses. We conducted two MR approaches. In the first MR we used a single SNP (rs10882283) that is associated with the levels of Retinol Binding Protein 4 (RBP4) as an instrument variable (IV) for circulating retinol levels. In the second MR we used all independent genetic variants that were strongly associated (P < 5 × 10-8) with retinol levels as IVs. Odds ratios (OR) for skin cancer were calculated for a one standard deviation (SD) increase in genetically predicted retinol levels. The single IV approach revealed that retinol levels were not significantly associated with risk of melanoma (OR = 1.04 [95% confidence interval 0.83, 1.31], P = 0.72), SCC (OR = 1.15 [0.87, 1.51], P = 0.32) or BCC (OR = 1.06 [0.90, 1.23], P = 0.50). Similar null results were observed with the multiple IV approach for melanoma (OR = 1.03 [0.95, 1.11], P = 0.54), SCC (OR = 1.01 [0.91, 1.13], P = 0.83), and BCC (OR = 1.04 [0.96, 1.12], P = 0.38). In conclusion, we found no evidence that circulating retinol levels were causally associated with the development of melanoma, SCC and BCC.
Collapse
Affiliation(s)
- Marloes Helder
- Division of Human Nutrition and Health, Wageningen University, the Netherlands
- Statistical Genetics, QIMR Berghofer Medical Research Institute
| | - Nirmala Pandeya
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mathias Seviiri
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Catherine M. Olsen
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David C. Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Li X, Zhang X, Wang S, Li Y, Meng C, Wang J, Chang B, Yang J. Simultaneous detection of multiple urinary biomarkers in patients with early-stage diabetic kidney disease using Luminex liquid suspension chip technology. Front Endocrinol (Lausanne) 2024; 15:1443573. [PMID: 39229378 PMCID: PMC11369644 DOI: 10.3389/fendo.2024.1443573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Background Several urinary biomarkers have good diagnostic value for diabetic kidney disease (DKD); however, the predictive value is limited with the use of single biomarkers. We investigated the clinical value of Luminex liquid suspension chip detection of several urinary biomarkers simultaneously. Methods The study included 737 patients: 585 with diabetes mellitus (DM) and 152 with DKD. Propensity score matching (PSM) of demographic and medical characteristics identified a subset of 78 patients (DM = 39, DKD = 39). Two Luminex liquid suspension chips were used to detect 11 urinary biomarkers according to their molecular weight and concentration. The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), α1-microglobulin (α1-MG), β2-microglobulin (β2-MG), vitamin D binding protein (VDBP), tissue inhibitor of metalloproteinases-1 (TIMP-1), tumor necrosis factor receptor-1 (TNFR-1), and tumor necrosis factor receptor-2 (TNFR-2) were compared in the DM and DKD groups. The diagnostic values of single biomarkers and various biomarker combinations for early diagnosis of DKD were assessed using receiver operating characteristic (ROC) curve analysis. Results Urinary levels of VDBP, RBP4, and KIM-1 were markedly higher in the DKD group than in the DM group (p < 0.05), whereas the TIMP-1, TNFR-1, TNFR-2, α1-MG, β2-MG, CysC, nephrin, and EGF levels were not significantly different between the groups. RBP4, KIM-1, TNFR-2, and VDBP reached p < 0.01 in univariate analysis and were entered into the final analysis. VDBP had the highest AUC (0.780, p < 0.01), followed by RBP4 (0.711, p < 0.01), KIM-1 (0.640, p = 0.044), and TNFR-2 (0.615, p = 0.081). However, a combination of these four urinary biomarkers had the highest AUC (0.812), with a sensitivity of 0.742 and a specificity of 0.760. Conclusions The urinary levels of VDBP, RBP4, KIM-1, and TNFR-2 can be detected simultaneously using Luminex liquid suspension chip technology. The combination of these biomarkers, which reflect different mechanisms of kidney damage, had the highest diagnostic value for DKD. However, this finding should be explored further to understand the synergistic effects of these biomarkers.
Collapse
Affiliation(s)
- Xinran Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinxin Zhang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shenglan Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
15
|
Ghenciu LA, Hațegan OA, Stoicescu ER, Iacob R, Șișu AM. Emerging Therapeutic Approaches and Genetic Insights in Stargardt Disease: A Comprehensive Review. Int J Mol Sci 2024; 25:8859. [PMID: 39201545 PMCID: PMC11354485 DOI: 10.3390/ijms25168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Stargardt disease, one of the most common forms of inherited retinal diseases, affects individuals worldwide. The primary cause is mutations in the ABCA4 gene, leading to the accumulation of toxic byproducts in the retinal pigment epithelium (RPE) and subsequent photoreceptor cell degeneration. Over the past few years, research on Stargardt disease has advanced significantly, focusing on clinical and molecular genetics. Recent studies have explored various innovative therapeutic approaches, including gene therapy, stem cell therapy, and pharmacological interventions. Gene therapy has shown promise, particularly with adeno-associated viral (AAV) vectors capable of delivering the ABCA4 gene to retinal cells. However, challenges remain due to the gene's large size. Stem cell therapy aims to replace degenerated RPE and photoreceptor cells, with several clinical trials demonstrating safety and preliminary efficacy. Pharmacological approaches focus on reducing toxic byproduct accumulation and modulating the visual cycle. Precision medicine, targeting specific genetic mutations and pathways, is becoming increasingly important. Novel techniques such as clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 offer potential for directly correcting genetic defects. This review aims to synthesize recent advancements in understanding and treating Stargardt disease. By highlighting breakthroughs in genetic therapies, stem cell treatments, and novel pharmacological strategies, it provides a comprehensive overview of emerging therapeutic options.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, Vasile Goldis Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Radiology and Medical Imaging, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Roxana Iacob
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| |
Collapse
|
16
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
17
|
Kim CY, Kim J, Yoon S, Yi IJ, Lee H, Seo S, Kim DW, Ko S, Kim SA, Kwon C, Yi SS. Advancing the early detection of canine cognitive dysfunction syndrome with machine learning-enhanced blood-based biomarkers. Front Vet Sci 2024; 11:1390296. [PMID: 39170638 PMCID: PMC11335684 DOI: 10.3389/fvets.2024.1390296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Up to half of the senior dogs suffer from canine cognitive dysfunction syndrome (CCDS), the diagnosis method relies on subjective questionnaires such as canine cognitive dysfunction rating (CCDR) scores. Therefore, the necessity of objective diagnosis is emerging. Here, we developed blood-based biomarkers for CCDS early detection. Blood samples from dogs with CCDR scores above 25 were analyzed, and the biomarkers retinol-binding protein 4 (RBP4), C-X-C-motif chemokine ligand 10 (CXCL10), and NADPH oxidase 4 (NOX4) were validated against neurodegenerative models. Lower biomarker levels were correlated with higher CCDR scores, indicating cognitive decline. Machine-learning analysis revealed the highest predictive accuracy when analyzing the combination of RBP4 and NOX4 using the support vector machine algorithm and confirmed potential diagnostic biomarkers. These results suggest that blood-based biomarkers can notably improve CCDS early detection and treatment, with implications for neurodegenerative disease management in both animals and humans.
Collapse
Affiliation(s)
- Chae Young Kim
- BK21 Four program, Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jinhye Kim
- iCONNECTOME, Co., Ltd., Cheonan, Republic of Korea
| | - Sunmi Yoon
- iCONNECTOME, Co., Ltd., Cheonan, Republic of Korea
| | - Isaac Jinwon Yi
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Hyuna Lee
- iamdt, Co., Ltd., Seoul, Republic of Korea
| | - Sanghyuk Seo
- VIP Animal Medical Center, Seoul, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Soohyun Ko
- GenesisEgo, Co., Ltd., Seoul, Republic of Korea
| | - Sun-A Kim
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | - Sun Shin Yi
- BK21 Four program, Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
- iCONNECTOME, Co., Ltd., Cheonan, Republic of Korea
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
18
|
Pasenkiewicz-Gierula M, Hryc J, Markiewicz M. Dynamic and Energetic Aspects of Carotenoids In-and-Around Model Lipid Membranes Revealed in Molecular Modelling. Int J Mol Sci 2024; 25:8217. [PMID: 39125791 PMCID: PMC11312187 DOI: 10.3390/ijms25158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (J.H.); (M.M.)
| | | | | |
Collapse
|
19
|
Yu Y, Zhang C, Sun Q, Baral S, Ding J, Zhao F, Yao Q, Gao S, Liu B, Wang D. Retinol Binding Protein 4 Serves as a Potential Tumor Biomarker and Promotes Malignant Behavior in Gastric Cancer. Cancer Manag Res 2024; 16:891-908. [PMID: 39072342 PMCID: PMC11283833 DOI: 10.2147/cmar.s480337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Background Gastric cancer (GC) is a highly phenotypically heterogeneous disease and is caused by a combination of factors. Retinol binding protein 4 (RBP4) is a member of a family of lipid transport proteins that are involved in the transport of substances between cells and play a crucial role in a variety of cancers. However, the expression and role of RBP4 in GC remain unknown. Methods In this study, we explored the expression, prognostic significance, immune microenvironment, drug responsiveness and function of associated signaling pathways of RBP4 in GC using web-based bioinformatics tools. Immunohistochemistry and real-time quantitative PCR were utilized to analyze the tissue and cell expression levels of RBP4. CCK-8, colony formation, EDU incorporation, wound healing and transwell assays were applied to demonstrate the effect of RBP4 on GC cell function. Flow cytometric detection of apoptosis after RBP4 knockdown. Nude mice xenograft model elucidates the role of RBP4 for GC in vivo. Related proteins of the RAS signaling pathway were analyzed by employing Western blot assays. Results RBP4 is highly expressed in GC. RBP4 is closely associated with patient survival and sensitivity to a wide range of antitumor agents. Knockdown of RBP4 promoted apoptosis and inhibited cell proliferation, invasion and migration. RBP4 promotes GC tumorigenesis in vivo. Finally, RBP4 modulates the RAS/RAF/ERK axis. Conclusion RBP4 may promote gastric carcinogenesis and development through the RAS/RAF/ERK axis and is expected to be a novel target for GC treatment.
Collapse
Affiliation(s)
- Yantao Yu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Chenkai Zhang
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Qiannan Sun
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
- Northern Jiangsu People’s Hospital, Yangzhou, 225001, People’s Republic of China
| | - Shantanu Baral
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Jianyue Ding
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Fanyu Zhao
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Qing Yao
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Shuyang Gao
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
| | - Bin Liu
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
- Northern Jiangsu People’s Hospital, Yangzhou, 225001, People’s Republic of China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, People’s Republic of China
- Northern Jiangsu People’s Hospital, Yangzhou, 225001, People’s Republic of China
| |
Collapse
|
20
|
Marques E, Gallazzini M. Lipocalins. Curr Biol 2024; 34:R670-R672. [PMID: 39043135 DOI: 10.1016/j.cub.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Marques and Gallazzini introduce the lipocalin family of small extracellular proteins, discussing their structure, functions, and roles in disease.
Collapse
Affiliation(s)
- Eloïse Marques
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, Paris 75015, France.
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, Paris 75015, France.
| |
Collapse
|
21
|
Geryk M, Kucerova V, Velganova-Veghova M, Foltenova H, Bouchalova K, Karasek D, Radvansky M, Karaskova E. Association of selected adipokines with vitamin D deficiency in children with inflammatory bowel disease. BMC Pediatr 2024; 24:426. [PMID: 38961351 PMCID: PMC11223338 DOI: 10.1186/s12887-024-04890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.
Collapse
Affiliation(s)
- Milos Geryk
- Department of Pediatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic
| | - Veronika Kucerova
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Maria Velganova-Veghova
- Department of Pediatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic
| | - Hana Foltenova
- Department of Pediatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Bouchalova
- Department of Pediatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic
| | - David Karasek
- 3rd Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Martin Radvansky
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava - Poruba, Czech Republic
| | - Eva Karaskova
- Department of Pediatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry Palacky University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
22
|
Bjørkum AA, Griebel L, Birkeland E. Human serum proteomics reveals a molecular signature after one night of sleep deprivation. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae042. [PMID: 39131770 PMCID: PMC11310596 DOI: 10.1093/sleepadvances/zpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/31/2024] [Indexed: 08/13/2024]
Abstract
Study Objectives Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstructive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum after 6 hours of sleep deprivation at night. Methods Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spectrometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinformatic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic datasets. Results Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated gene sets. Conclusions This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches Collection.
Collapse
Affiliation(s)
- Alvhild Alette Bjørkum
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Leandra Griebel
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Even Birkeland
- The Proteomics Unit at The Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Wang L, Liu H, Feng Y, Liu X, Wang Y, Liu Y, Li H, Zhang Y. Decoding the immune landscape: a comprehensive analysis of immune-associated biomarkers in cervical carcinoma and their implications for immunotherapy strategies. Front Genet 2024; 15:1340569. [PMID: 38933923 PMCID: PMC11199791 DOI: 10.3389/fgene.2024.1340569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Background and aims Cervical cancer, a prevalent gynecological malignant tumor, poses a significant threat to women's health and lives. Immune checkpoint inhibitor (ICI) therapy has emerged as a promising avenue for treating cervical cancer. For patients with persistent or recurrent metastatic cervical cancer, If the sequence of dead receptor ligand-1 (PD-L1) is positive, ICI show significant clinical efficacy. PD-L1 expression serves as a valuable biomarker for assessing ICI therapeutic efficacy. However, the complex tumor immune microenvironment (TIME), encompassing immune cell composition and tumor-infiltrating lymphocyte (TIL) status, also exerts a profound influence on tumor immunity and prognosis. Given the remarkable strides made by ICI treatments in improving the survival rates of cervical cancer patients, it becomes essential to identify a comprehensive biomarker that integrates various TIME aspects to enhance the effectiveness of ICI treatment. Therefore, the quest for biomarkers linked to multiple facets of TIME in cervical cancer is a vital pursuit. Methods In this study, we have developed an Immune-Associated Gene Prognostic Index (IRGPI) with remarkable prognostic value specifically for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). The Cancer Genome Atlas CESC dataset (n = 305) was meticulously analyzed to pinpoint key immune-related genes via weighted gene co-expression network analysis and differential gene expression assays. Subsequently, we employed Cox regression analysis to construct the IRGPI. Furthermore, the composition of immune cells and TIL status were examined using CIBERSORT and TIDE. Tumor expression of Epigen, LCN10, and P73 were determined with immunohistochemistry. Results The resulting IRGPI, composed of EPGN, LCN10, and TP73 genes, displayed a strong negative correlation with patient survival. The discovery was validated with a patient cohort from our hospital. The IRGPI not only predicts the composition of immune cell subtypes such as Macrophages M1, NK cells, Mast cells, Plasma cells, Neutrophils, Dendritic cells, T cells CD8, and T cells CD4 within CESC, but also indicates TIL exclusion, dysfunction, and PD-1 and PD-L1 expression. Therefore, the IRGPI emerges as a promising biomarker not only for prognostic assessment but also for characterizing multiple immune features in CESC. Additionally, our results underscored the significant associations between the IRGPI and immune cell composition, TIL exclusion, and dysfunction, along with PD-1 and PD-L1 expression in the TIME. Conclusion Consequently, the IRGPI stands out as a biomarker intimately connected to both the survival and TIME status of CESC patients, offering potential insights into immunotherapy strategies for CESC.
Collapse
Affiliation(s)
- Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huatian Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xueting Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Li
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Fickweiler W, Chokshi T, Jangolla S, Mitzner M, Wu IH, Park H, Park K, Aiello LP, Sun J, King GL. CLINICAL CHARACTERIZATION OF AQUEOUS AND VITREOUS RETINOL-BINDING PROTEIN 3 CONCENTRATIONS IN RELATION TO DIABETIC RETINOPATHY SEVERITY, RETINAL STRUCTURES, AND SYSTEMIC COMPLICATIONS. Retina 2024; 44:1026-1033. [PMID: 38767850 PMCID: PMC11107483 DOI: 10.1097/iae.0000000000004059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE To evaluate Retinol-Binding Protein 3 (RBP3) from photoreceptors in aqueous and its association with vitreous concentrations, diabetic retinopathy (DR) severity, retinal layer thickness, and clinical characteristics in people with diabetes. METHODS RBP3 concentration was measured by custom-developed enzyme-linked immunosorbent assay in aqueous and correlated with vitreous concentrations in patients from the 50-Year Medalist study and Beetham Eye Institute at Joslin Diabetes Center. RESULTS Aqueous RBP3 concentration (N = 131) was elevated in eyes with no to mild DR (mean ± SD 0.7 nM ± 0.2) and decreased in eyes with moderate to severe DR (0.65 nM ± 0.3) and proliferative DR (0.5 nM ± 0.2, P < 0.001) compared to eyes without diabetes. Aqueous and vitreous RBP3 concentrations correlated with each other (r = 0.34, P = 0.001) and between fellow eyes (P < 0.0001). History of retinal surgery did not affect aqueous RBP3 concentrations, but cataract surgery affected both vitreous and aqueous levels. Elevated aqueous RBP3 concentration associated with increased thickness of the outer nuclear layer (P = 0.004) and correlated with hemoglobin A1c, whereas vitreous RBP3 concentrations correlated with diabetic systemic complications. CONCLUSION These findings suggest that aqueous RBP3 concentration may be an important endogenous clinical retinal protective factor, a biomarker for DR severity, and a promising VEGF-independent clinical intervention target in DR.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Beetham Eye Institute, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Department of Ophthalmology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts; and
| | - Tanvi Chokshi
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
| | - Surya Jangolla
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
| | - Margalit Mitzner
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
| | - I-Hsien Wu
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
| | - Hyunseok Park
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
| | - Kyoungmin Park
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts
| | - Lloyd Paul Aiello
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Beetham Eye Institute, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Department of Ophthalmology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer Sun
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Beetham Eye Institute, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Department of Ophthalmology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts; and
| | - George L King
- Research Division, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, Massachusetts
- Department of Ophthalmology, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts; and
- Department of Medicine, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
26
|
Matsuki Y, Ichihara K, Itoh Y, Mori K, Ihara H, Maekawa M, Nishimura M, Kiuchi S, Nomura F, Hashizume N, Itoh N, Matsumura S. Reappraisal of serum retinol-binding protein as a surrogate marker for retinol and discovery of a novel retinol estimation formula. Clin Nutr ESPEN 2024; 61:119-130. [PMID: 38777423 DOI: 10.1016/j.clnesp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Serum retinol (ROH) is commonly used for population level assessment of vitamin A status. High-performance liquid chromatography (HPLC) is considered most accurate method for measuring ROH. However, with the technical difficulty of using HPLC for routine assays, serum retinol-binding protein (RBP) measured by immunological assays is expected to be a surrogate marker for ROH, with reports of a close correlation between serum RBP and ROH. Nevertheless, RBP is not commonly tested to assess vitamin A status with concerns over RBP alterations under various physiopathological conditions. Thus, we reappraised the extent to which RBP could be used as a surrogate marker in representative disorders that alter serum RBP levels. As a related marker, diagnostic utility of transthyretin (TTR) was also evaluated. METHODS To evaluate the reliability of ROH and RBP assays, specimen stability was assessed in terms of (1) storage at 25, 4, -20, and -80 °C for 1-28 days, (2) five-cycle freeze-thawing, and (3) fluorescent light exposure for 1-14 days. Sources of variation (sex, age, body mass index [BMI], and drinking habits) and reference intervals for ROH, RBP, and TTR were determined in 617 well-defined healthy individuals. To investigate the influence of disorders that affect serum RBP, patients with five diagnostic groups were enrolled: 26 with chronic kidney disease (CKD); 13 with various malignancies in advanced stages (AdM), 12 with acute bacterial infections (ABI), 6 with liver cirrhosis (LC), and 26 with simple obesity (BMI ≥ 27 kg/m2). RESULTS The stability of RBP and ROH in serum was confirmed under all conditions. In healthy individuals, serum ROH, RBP, and TTR were appreciably high in males with a slight increase in proportion to age and BMI. The major-axis regression line between RBP (x) and ROH (y) in healthy individuals was y = x, with a correlation coefficient of 0.986. In the LC, AdM, and ABI groups, similar strong correlations were observed; however, the regression lines were shifted slightly rightward from the healthy group line, indicating a positive bias in estimating ROH. Interestingly, the same analyses between TTR and ROH revealed similar strong linear relationships in all groups; however, the regression line of each group showed a leftward (opposite) shift from the healthy group line. Based on these observations, we developed a novel regression model composed of RBP and TTR, which gave much improved accuracy in estimating ROH, even under these pathological conditions. CONCLUSIONS The perfect RBP-ROH correlation in healthy individuals indicates the utility of RPB as a surrogate marker for ROH. Nevertheless, under RBP-altered conditions, a slight overestimation of ROH is inevitable. However, when the TTR was tested together, the bias can be corrected almost perfectly using the novel ROH estimation formula comprising RBP and TTR.
Collapse
Affiliation(s)
- Yuri Matsuki
- Scientific & Technical Affairs Department, Nittobo Medical Co., LTD. Kojimachi-Odori Building 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kiyoshi Ichihara
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| | - Yoshihisa Itoh
- Clinical Laboratory, Eiju General Hospital, Life Extension Research Institute, 23-16 Higashiueno 2-chome, Taito-ku, Tokyo 110-8645, Japan
| | - Kazuo Mori
- Marketing Department, Research & Development Division, Tokuyama Corporation. Front Place Akihabara, 7-5, Sotokanda 1-chome, Chiyoda-ku, Tokyo 101-8618, Japan
| | - Hiroshi Ihara
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 20-1 Handayama 1-chome, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Motoi Nishimura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-33 Yayoicho, Chiba Inage-ku, Chiba, 263-8522 Japan
| | - Sachiko Kiuchi
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| | - Fumio Nomura
- Division of Clinical Genetics, Chiba Foundation for Health Promotion & Disease Prevention, 32-14 Shinminato, Chiba Mihama-ku, Chiba 261-0002, Japan
| | - Naotaka Hashizume
- Donguri Clinic, 1-8-21Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216-0033, Japan
| | - Nobue Itoh
- Medical Technology Course, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Satoshi Matsumura
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
27
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
28
|
Guo W, Yu Z, Li T, Lu L, Lin H, Liao Y, Zheng Y, Liu Y, Alevtinovna GM, Barysavets DS, Chen J, Zan J, Lu J. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of retinol-binding protein 4 in urine. Mikrochim Acta 2024; 191:311. [PMID: 38717575 DOI: 10.1007/s00604-024-06381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.
Collapse
Affiliation(s)
- Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Tianxu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Huiqi Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Liao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanghao Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | - Dzmitry S Barysavets
- Institute of Experimental Veterinary Medicine named of S.N. Vyshelessky, Minsk, Belarus
| | - Jinping Chen
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Key Laboratory of Research on Emergency in TCM, University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
29
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
30
|
Wang H, Zhang Z, Xie L, Lu K, Zhang S, Xing S. Retinol and retinol binding protein 4 levels and COVID-19: a Mendelian randomization study. BMC Pulm Med 2024; 24:206. [PMID: 38671384 PMCID: PMC11046857 DOI: 10.1186/s12890-024-03013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The Corona Virus Disease 2019 (COVID-19) pandemic has struck globally. Whether the related proteins of retinoic acid (RA) signaling pathway are causally associated with the risk of COVID-19 remains unestablished. We conducted a two-sample Mendelian randomization (MR) study to assess the associations of retinol, retinol binding protein 4 (RBP4), retinol dehydrogenase 16 (RDH16) and cellular retinoic acid binding protein 1 (CRABP1) with COVID-19 in European population. METHODS The outcome utilized the summary statistics of COVID-19 from the COVID-19 Host Genetics Initiative. The exposure data were obtained from public genome wide association study (GWAS) database. We extracted SNPs from exposure data and outcome data. The inverse variance weighted (IVW), MR-Egger and Wald ratio methods were employed to assess the causal relationship between exposure and outcome. Sensitivity analyses were performed to ensure the validity of the results. RESULTS The MR estimates showed that retinol was associated with lower COVID-19 susceptibility using IVW (OR: 0.69, 95% CI: 0.53-0.90, P: 0.0065), whereas the associations between retinol and COVID-19 hospitalization or severity were not significant. RBP4 was associated with lower COVID-19 susceptibility using the Wald ratio (OR: 0.83, 95% CI: 0.72-0.95, P: 0.0072). IVW analysis showed RDH16 was associated with increased COVID-19 hospitalization (OR: 1.10, 95% CI: 1.01-1.18, P: 0.0199). CRABP1 was association with lower COVID-19 susceptibility (OR: 0.95, 95% CI: 0.91-0.99, P: 0.0290) using the IVW. CONCLUSIONS We found evidence of possible causal association of retinol, RBP4, RDH16 and CRABP1 with the susceptibility, hospitalization and severity of COVID-19. Our study defines that retinol is significantly associated with lower COVID-19 susceptibility, which provides a reference for the prevention of COVID-19 with vitamin A supplementation.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Zhiyun Zhang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Li Xie
- Clinical Research Institute, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Kongli Lu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Shuyi Zhang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
31
|
Cao X, Zhong G, Jin T, Hu W, Wang J, Shi B, Wei R. Diagnostic value of retinol-binding protein 4 in diabetic nephropathy: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1356131. [PMID: 38711978 PMCID: PMC11070506 DOI: 10.3389/fendo.2024.1356131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Diabetic nephropathy (DN) is a major microvascular complication of diabetes and the leading cause of end-stage renal disease. Early detection and prevention of DN are important. Retinol-binding protein 4 (RBP4) has been considered as a single diagnostic marker for the detection of renal impairment. However, the results have been inconsistent. The present meta-analysis aimed to determine the diagnostic potential of RBP4 in patients in type 2 diabetes mellitus (T2DM) with DN. Methods We searched PubMed, Web of Science, Embase, Wanfang and CNKI databases from inception until January 2024. The meta-analysis was performed by Stata version 15.0, and sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were pooled. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was utilized to assess the quality of each included study. In addition, heterogeneity and publication bias were evaluated. Results Twenty-nine studies were included in the meta-analysis. The pooled sensitivity and specificity were 0.76 [95% confidence interval (CI), 0.71-0.80] and 0.81 (95% CI, 0.76-0.85), respectively. The results showed a pooled PLR of 4.06 (95% CI, 3.16-5.21), NLR of 0.29 (95% CI, 0.24-0.36) and DOR of 13.76 (95% CI, 9.29-20.37). The area under the summarized receiver operating characteristic curve was given a value of 0.85 (95% CI, 0.82-0.88). No obvious publication bias existed in the Deeks' funnel plot asymmetry test. Conclusion Our findings suggest that RBP4 has a promising diagnostic value with good sensitivity and specificity for patients with T2DM with DN.
Collapse
Affiliation(s)
- Xiaodan Cao
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Guanghui Zhong
- Department of Nephrology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Tinglong Jin
- Department of Endocrinology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Weijiao Hu
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Jin Wang
- Department of Endocrinology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Bo Shi
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Renxiong Wei
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
32
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
33
|
Chen S, Pan Z, Liu M, Guo L, Jiang X, He G. Recent Advances on Small-Molecule Inhibitors of Lipocalin-like Proteins. J Med Chem 2024; 67:5144-5167. [PMID: 38525852 DOI: 10.1021/acs.jmedchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linghong Guo
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Malecka-Baturo K, Żółtowska P, Jackowska A, Kurzątkowska-Adaszyńska K, Grabowska I. Electrochemical Aptasensing Platform for the Detection of Retinol Binding Protein-4. BIOSENSORS 2024; 14:101. [PMID: 38392020 PMCID: PMC10887324 DOI: 10.3390/bios14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Paulina Żółtowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Agnieszka Jackowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| |
Collapse
|
35
|
Li Z, Lv F, Wen X, Guo C, Li L, Cai X, Lin C, Zhang M, Yang W, Ji L. Dapagliflozin treatment and cardiovascular outcome in RBP4/TTR Val30Met (transthyretin cardiac amyloidosis) mice. ESC Heart Fail 2024; 11:179-188. [PMID: 37877450 PMCID: PMC10804162 DOI: 10.1002/ehf2.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
AIMS Whether sodium-glucose co-transporter 2 inhibitors are effective for heart failure caused by ATTR-CA (transthyretin cardiac amyloidosis) remains uncertain. The aim of this study is to investigate the cardiovascular prognosis in ATTR-CA mice model with dapagliflozin treatment. METHODS AND RESULTS Humanized RBP4/TTRVal50Met and RBP4/TTR mice models were constructed with clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) techniques and multiple generations breeding. A total of 6 RBP4/TTR mice received placebo treatment, when 12 RBP4/TTRVal50Met received dapagliflozin (1 mg/kg/day, 6 mice) and placebo (6 mice) treatment. Fasting glucose, intraperitoneal glucose tolerance test, and plasma brain natriuretic peptide (BNP) concentration were measured at Day 0, Week 2, and Week 4. BNP, transforming growth factor-beta (TGF-β), collagen type I alpha 1 (COL1A1) protein levels, and Cola1, TGFβ1, TNFα, IL-1β, BNP relative quantities in cardiac, along with cardiac pathology examination including right ventricular collagen percentage, ventricular septum thickness, left ventricular wall thickness, and left ventricular internal diameter were measured at Week 4 after treatment procedure. All 18 mice completed the experiment. The baseline characteristics were balanced among three treatment groups. In placebo-treated mice, the cardiac BNP relative quantity was significantly higher in RBP4/TTRVal50Met mice than RBP4/TTR mice (RBP4[KI/KI], TTR [KI/KI]: 0.72 ± 0.46, RBP4[KI/KI], TTRVal50Met [KI/KI]: 1.44 ± 0.60, P = 0.043), indicating more significant heart failure progression in ATTR-CA mice than normal mice. In ATTR-CA mice, the cardiovascular prognosis measurements including heart failure (plasma BNP concentration and relative quantities of BNP), cardiac inflammation (relative quantities of Cola1, TGFβ1, TNFα, and IL-1β), and pathological changes (right ventricular collagen percentage, ventricular septum thickness, left ventricular wall thickness, and left ventricular internal diameter) were statistically comparable between those under dapagliflozin and placebo treatment. CONCLUSIONS Dapagliflozin did not improve cardiovascular prognosis including the progression of heart failure, cardiac inflammation, and pathological changes in ATTR-CA mice compared with placebo. The results of this study were not in support of dapagliflozin's therapeutic effects for ATTR-CA. More pre-clinical and clinical researches to validate these findings and demonstrate the underlying mechanisms are still required.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Fang Lv
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xin Wen
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Chengcheng Guo
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Li Li
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xiaoling Cai
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Chu Lin
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Mengqing Zhang
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Wenjia Yang
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Linong Ji
- Department of Endocrinology and MetabolismPeking University People's HospitalNo. 11 Xizhimen South Street, Xicheng DistrictBeijing100044China
| |
Collapse
|
36
|
Sampaio P, Waitzberg DL, Machado NM, de Miranda Torrinhas RSM, Fonseca DC, Ferreira BAM, Marques M, Barcelos S, Ishida RK, Guarda IFMS, de Moura EGH, Sakai P, Santo MA, Heymsfield SB, Corrêa-Giannella ML, Passadore MD, Sala P. Gastrointestinal genetic reprogramming of vitamin A metabolic pathways in response of Roux-en-Y gastric bypass. INT J VITAM NUTR RES 2024; 94:27-36. [PMID: 36164727 DOI: 10.1024/0300-9831/a000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) is one of the most performed bariatric surgical techniques. However, RYGB commonly results, as side effects, in nutritional deficiencies. This study aimed to examine changes in the expression of vitamin A pathway encoding genes in the gastrointestinal tract (GI) and to evaluate the potential mechanisms associated with hypovitaminosis A after RYGB. Intestinal biopsies were obtained through double-balloon endoscopy in 20 women with obesity (age 46.9±6.2 years; body mass index [BMI] 46.5±5.3 kg/m2 [mean±SD]) before and three months after RYGB (BMI, 38.2±4.2 kg/m2). Intestinal mucosal gene microarray analyses were performed in samples using a Human GeneChip 1.0 ST array (Affymetrix). Vitamin A intake was assessed from 7-day food records and serum retinol levels were evaluated by electrochemiluminescence immunoassay. Our results showed the following genes with significant downregulation (p≤0.05): LIPF (-0.60), NPC1L1 (-0.71), BCO1 (-0.45), and RBP4 (-0.13) in the duodenum; CD36 (-0.33), and ISX (-0.43) in the jejunum and BCO1 (-0.29) in the ileum. No significant changes in vitamin A intake were found (784±694 retinol equivalents [RE] pre-operative vs. 809±753 RE post-operative [mean±SD]). Although patients were routinely supplemented with 3500 international units IU/day (equivalent to 1050 μg RE/day) of oral retinol palmitate, serum concentrations were lower in the post-operative when compared to pre-operative period (0.35±0.14 μg/L vs. 0.52±0.33 μg/L, respectively - P=0.07), both within the normal range. After RYGB, the simultaneous change in expression of GI genes, may impair carotenoid metabolism in the enterocytes, formation of nascent chylomicrons and transport of retinol, resulting in lower availability of vitamin A.
Collapse
Affiliation(s)
- Priscilla Sampaio
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Natasha Mendonça Machado
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | - Danielle C Fonseca
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Beatriz A M Ferreira
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Mariane Marques
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | - Samira Barcelos
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| | | | | | | | - Paulo Sakai
- Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| | | | | | - Maria Lúcia Corrêa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, University of São Paulo, Brazil
| | | | - Priscila Sala
- Centro Universitário São Camilo, São Paulo, Brazil
- Department of Gastroenterology, Digestive Surgery Discipline, School of Medicine, University of São Paulo (LIM 35), Brazil
| |
Collapse
|
37
|
Pazos-Pérez A, Piñeiro-Ramil M, Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Crespo-Golmar A, López-Fagúndez M, Aranda JC, Bravo SB, Jorge-Mora A, Gómez R. The Hepatokine RBP4 Links Metabolic Diseases to Articular Inflammation. Antioxidants (Basel) 2024; 13:124. [PMID: 38275649 PMCID: PMC10812991 DOI: 10.3390/antiox13010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES This study investigates the role of retinol binding protein 4 (RBP4) in an articular context. RBP4, a vitamin A transporter, is linked to various metabolic diseases. METHODS Synovial fluid RBP4 levels were assessed in crystalline arthritis (CA) patients using ELISA. RBP4's impact on articular cell types was analysed in vitro through RT-PCR and flow cytometry. Proteomic analysis was conducted on primary human osteoarthritis chondrocytes (hOACs). RESULTS Synovial fluid RBP4 concentrations in CA patients correlated positively with glucose levels and negatively with synovial leukocyte count and were elevated in hypertensive patients. In vitro, these RBP4 concentrations activated neutrophils, induced the expression of inflammatory factors in hOACs as well as synoviocytes, and triggered proteomic changes consistent with inflammation. Moreover, they increased catabolism and decreased anabolism, mitochondrial dysfunction, and glycolysis promotion. Both in silico and in vitro experiments suggested that RBP4 acts through TLR4. CONCLUSIONS This study identifies relevant RBP4 concentrations in CA patients' synovial fluids, linking them to hypertensive patients with a metabolic disruption. Evidence is provided that RBP4 acts as a DAMP at these concentrations, inducing robust inflammatory, catabolic, chemotactic, and metabolic responses in chondrocytes, synoviocytes, and neutrophils. These effects may explain RBP4-related metabolic diseases' contribution to joint destruction in various rheumatic conditions like CA.
Collapse
Affiliation(s)
- Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Piñeiro-Ramil
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Javier Conde Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Susana Belen Bravo
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain; (A.P.-P.); (M.P.-R.); (E.F.-T.); (A.A.-P.); (M.G.-F.); (A.C.-G.); (M.L.-F.); (S.B.B.); (A.J.-M.)
| |
Collapse
|
38
|
García-López MÁ, Mora A, Corrales P, Pons T, Sánchez de Diego A, Talavera Gutiérrez A, van Wely KHM, Medina-Gómez G, Sabio G, Martínez-A C, Fischer T. DIDO is necessary for the adipogenesis that promotes diet-induced obesity. Proc Natl Acad Sci U S A 2024; 121:e2300096121. [PMID: 38194457 PMCID: PMC10801893 DOI: 10.1073/pnas.2300096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro. We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants. Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.
Collapse
Affiliation(s)
- María Ángeles García-López
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares, Madrid28029, Spain
| | - Patricia Corrales
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon28922, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Ainhoa Sánchez de Diego
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Amaia Talavera Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Karel H. M. van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Gema Medina-Gómez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon28922, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid28029, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Campus, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
39
|
Zhang W, Yuan Y, Cui X, Chen S, Zhuang X. The level of serum retinol-binding protein is associated with diabetic mild cognitive impairment. Brain Res 2024; 1822:148670. [PMID: 37944571 DOI: 10.1016/j.brainres.2023.148670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Several studies have shown that retinol-binding protein (RBP) is linked to diabetes and neurodegenerative diseases. However, no studies have elucidated the relationship between RBP and diabetic cognitive disorders. OBJECTIVE To determine whether the change characteristics of serum RBP are associated with alterations in cognitive functioning in type 2 diabetes mellitus (T2DM). METHODS In this study, 252 patients with T2DM and 34 people as healthy controls were included. According to the Montreal Cognitive Assessment (MoCA), the diabetic subjects were divided into the mild cognitive impairment (MCI) group and the Non-MCI group. Demographic characteristics and clinical indicators as well as serum RBP levels were analyzed. RESULTS The serum RBP levels in the MCI group were lower compared with the Non-MCI group (P = 0.02). The level of RBP was higher in the diabetes without MCI group than in the healthy control (P < 0.001). Serum RBP levels were positively correlated with MoCA scores (r = 0.178, P = 0.003). Binary Logistic regression model analysis showed that low RBP [odds ratio (OR) = 0.936], old age (OR = 1.074), high fasting blood glucose (OR = 1.164), and low fasting C-peptide (OR = 0.722) may be independent risk factors for diabetic MCI. The ROC curve of serum RBP for predicting diabetic MCI showed that the area under the curve was 0.630. CONCLUSIONS Our study revealed an association between serum RBP and diabetic MCI. Serum RBP levels in diabetic MCI are lower and correlated with cognitive function.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of General Practice, The Second Hospital of Shandong University, Jinan 250000, China
| | - Yuqi Yuan
- Department of Clinical Epidemiology and Evidence-based Medicine, The Second Hospital of Shandong University, Jinan 250000, China
| | - Xiaoxia Cui
- The Second Hospital of Shandong University, Jinan 250000, China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| | - Xianghua Zhuang
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| |
Collapse
|
40
|
Plaisancié J, Martinovic J, Chesneau B, Whalen S, Rodriguez D, Audebert-Bellanger S, Marzin P, Grotto S, Perthus I, Holt RJ, Bax DA, Ragge N, Chassaing N. Clinical, genetic and biochemical signatures of RBP4-related ocular malformations. J Med Genet 2023; 61:84-92. [PMID: 37586836 DOI: 10.1136/jmg-2023-109331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC). METHODS We report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses. RESULTS For the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype-phenotype correlations in RBP4 mutational spectrum. CONCLUSION Dominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.
Collapse
Affiliation(s)
- Julie Plaisancié
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Unité ToNIC Inserm 1214, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Jelena Martinovic
- Département de Génétique, Unité de Fœtopathologie, Hopital Necker-Enfants Malades, Paris, France
| | - Bertrand Chesneau
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Sandra Whalen
- Genetique Medicale, Hopital Armand-Trousseau, Paris, France
| | - Diana Rodriguez
- Département de Génétique, Hôpitaux Universitaires Paris Ile-de-France Ouest, Paris, France
| | | | - Pauline Marzin
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, Necker-Enfants Malades Hospitals, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, FHU PREMA, Hôpital Cochin, Paris, France
| | - Isabelle Perthus
- Centre d'Etude des Malformations Congénitales en Auvergne, Génétique Médicale, CHU Estaing, Clermont-Ferrand, France
| | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Dorine A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nicolas Chassaing
- Laboratoire National de Référence (LBMR), Génétique des anomalies malformatives de l'œil, CHU Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| |
Collapse
|
41
|
Shen T, Lin R, Hu C, Yu D, Ren C, Li T, Zhu M, Wan Z, Su T, Wu Y, Cai W, Yu J. Succinate-induced macrophage polarization and RBP4 secretion promote vascular sprouting in ocular neovascularization. J Neuroinflammation 2023; 20:308. [PMID: 38129891 PMCID: PMC10734053 DOI: 10.1186/s12974-023-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Pathological neovascularization is a pivotal biological process in wet age-related macular degeneration (AMD), retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR), in which macrophages (Mφs) play a key role. Tip cell specialization is critical in angiogenesis; however, its interconnection with the surrounding immune environment remains unclear. Succinate is an intermediate in the tricarboxylic acid (TCA) cycle and was significantly elevated in patients with wet AMD by metabolomics. Advanced experiments revealed that SUCNR1 expression in Mφ and M2 polarization was detected in abnormal vessels of choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) models. Succinate-induced M2 polarization via SUCNR1, which facilitated vascular endothelial cell (EC) migration, invasion, and tubulation, thus promoting angiogenesis in pathological neovascularization. Furthermore, evidence indicated that succinate triggered the release of RBP4 from Mφs into the surroundings to regulate endothelial sprouting and pathological angiogenesis via VEGFR2, a marker of tip cell formation. In conclusion, our results suggest that succinate represents a novel class of vasculature-inducing factors that modulate Mφ polarization and the RBP4/VEGFR2 pathway to induce pathological angiogenic signaling through tip cell specialization.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
42
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
43
|
Ye B, Zhao Q, Fan J, Li X, Shan C, Liu F, Song N, Zhu J, Xia M, Liu Y, Yang Y. RBP4-based Multimarker Score: A Prognostic Tool for Adverse Cardiovascular Events in Acute Coronary Syndrome Patients. J Clin Endocrinol Metab 2023; 108:3111-3121. [PMID: 37402630 DOI: 10.1210/clinem/dgad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
CONTEXT Retinol binding protein 4 (RBP4) has been implicated in the progression of cardiovascular diseases. However, its association with major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS) remains obscure. OBJECTIVE Here, we examined the prognostic value of baseline RBP4 and its derived multimarker score for MACEs in ACS patients. METHODS A total of 826 patients with ACS were consecutively recruited from the department of cardiology and prospectively followed up for a median of 1.95 years (interquartile range, 1.02-3.25 years). Plasma RBP4 was measured using enzyme-linked immunosorbent assay. Adjusted associations between RBP4 and its derived multimarker score (1 point was assigned when RBP4 ≥ 38.18μg/mL, left ventricular ejection fraction [LVEF] ≤ 55%, N-terminal pro-B-type natriuretic peptide [NT-proBNP] ≥ 450 ng/L, estimated glomerular filtration rate [eGFR] ≤ 90 mL/min/1.73 m2, and age ≥60) with MACEs were analyzed. RESULTS In total, 269 ACS patients (32.57%) experienced MACEs. When patients were grouped by multimarker score (0-1, n = 315; 2-3, n = 406; 4-5, n = 105), there was a significant graded association between RBP4-based multimarker score and risk of MACEs (intermediate score (2-3): HRadj: 1.80; 95% CI, 1.34-2.41; high score (4-5): HRadj: 3.26; 95% CI, 2.21-4.81) and its components (P < .05 for each). Moreover, the prognostic and discriminative value of the RBP4-derived multimarker score remained robust in ACS patients with various high-risk anatomical or clinical characteristics. CONCLUSION The RBP4-derived 5-item score serves as a useful risk stratification and decision support for secondary prevention in patients with ACS.
Collapse
Affiliation(s)
- Bingqi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510000, P.R. China
| | - Qian Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Jiahua Fan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510000, P.R. China
| | - Xiaomei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Chunfang Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Ning Song
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Jiajun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510000, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510000, P.R. China
| | - Yining Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830001, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830001, P.R. China
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P.R. China
| |
Collapse
|
44
|
Lu TL, Li CL, Gong YQ, Hou FT, Chen CW. Identification of tumor antigens and immune subtypes of hepatocellular carcinoma for mRNA vaccine development. World J Gastrointest Oncol 2023; 15:1717-1738. [PMID: 37969406 PMCID: PMC10631436 DOI: 10.4251/wjgo.v15.i10.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND mRNA vaccines have been investigated in multiple tumors, but limited studies have been conducted on their use for hepatocellular carcinoma (HCC). AIM To identify candidate mRNA vaccine antigens for HCC and suitable subpopulations for mRNA vaccination. METHODS Gene expression profiles and clinical information of HCC datasets were obtained from International Cancer Genome Consortium and The Cancer Genome Atlas. Genes with somatic mutations and copy number variations were identified by cBioPortal analysis. The differentially expressed genes with significant prognostic value were identified by Gene Expression Profiling Interactive Analysis 2 website analysis. The Tumor Immune Estimation Resource database was used to assess the correlation between candidate antigens and the abundance of antigen-presenting cells (APCs). Tumor-associated antigens were overexpressed in tumors and associated with prognosis, genomic alterations, and APC infiltration. A consensus cluster analysis was performed with the Consensus Cluster Plus package to identify the immune subtypes. The weighted gene coexpression network analysis (WGCNA) was used to determine the candidate biomarker molecules for appropriate populations for mRNA vaccines. RESULTS AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 were identified as candidate HCC antigens for mRNA vaccine development. Four immune subtypes (IS1-IS4) and five immune gene modules of HCC were identified that were consistent in both patient cohorts. The immune subtypes showed distinct cellular and clinical characteristics. The IS1 and IS3 immune subtypes were immunologically "cold". The IS2 and IS4 immune subtypes were immunologically "hot", and the immune checkpoint genes and immunogenic cell death genes were upregulated in these subtypes. IS1-related modules were identified with the WGCNA algorithm. Ultimately, five hub genes (RBP4, KNG1, METTL7A, F12, and ABAT) were identified, and they might be potential biomarkers for mRNA vaccines. CONCLUSION AURKA, CCNB1, CDC25C, CDK1, TRIP13, PES1, MCM3, PPM1G, NEK2, KIF2C, PTTG1, KPNA2, and PRC1 have been identified as candidate HCC antigens for mRNA vaccine development. The IS1 and IS3 immune subtypes are suitable populations for mRNA vaccination. RBP4, KNG1, METTL7A, F12, and ABAT are potential biomarkers for mRNA vaccines.
Collapse
Affiliation(s)
- Tai-Liang Lu
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Cheng-Long Li
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yong-Qiang Gong
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Fu-Tao Hou
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Chao-Wu Chen
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
45
|
Huang WJ, Qiu BJ, Qi XS, Chen CY, Liu WM, Zhou SA, Ding M, Lu FF, Zhao J, Tang D, Zhou X, Fu GB, Wang ZY, Ma HQ, Wu YL, Wu HP, Chen XS, Yu WF, Yan HX. CD24 +LCN2 + liver progenitor cells in ductular reaction contributed to macrophage inflammatory responses in chronic liver injury. Cell Biosci 2023; 13:184. [PMID: 37784089 PMCID: PMC10546777 DOI: 10.1186/s13578-023-01123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Celliver Biotechnology Inc., Shanghai, China
| | - Bi-Jun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Xiao-Shu Qi
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Min Ding
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China
| | - Feng-Feng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Gong-Bo Fu
- Department of Medical Oncology, First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zhen-Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Hong-Qian Ma
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yu-Ling Wu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Song Chen
- Department of Infectious Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200120, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Celliver Biotechnology Inc., Shanghai, China.
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
46
|
Qosa H, de Oliveira CHMC, Cizza G, Lawitz EJ, Colletti N, Wetherington J, Charles ED, Tirucherai GS. Pharmacokinetics, safety, and tolerability of BMS-986263, a lipid nanoparticle containing HSP47 siRNA, in participants with hepatic impairment. Clin Transl Sci 2023; 16:1791-1802. [PMID: 37654022 PMCID: PMC10582666 DOI: 10.1111/cts.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
BMS-986263 is a retinoid-conjugated lipid nanoparticle delivering small interfering RNA designed to inhibit synthesis of HSP47 protein, a collagen-specific chaperone protein involved in fibrosis development. This is a phase I, open-label, two-part study evaluating pharmacokinetics and safety of BMS-986263 in participants with hepatic impairment (HI). Part 1 (n = 24) of this study enrolled two cohorts with mild and moderate HI and a separate cohort of age- and body mass index (BMI)-matched participants with normal hepatic function. Part 2 enrolled eight participants with severe HI and eight age- and BMI-matched participants with normal hepatic function. All participants received a single intravenous 90 mg BMS-986263 infusion. Compared with normal-matched participants, geometric mean area under the plasma concentration-time curve time zero to the time of the last quantifiable concentration (AUC(0-T) ) and AUC from zero to infinity (AUC(INF) ) of HSP47 siRNA were similar in participants with mild HI and 34% and 163% greater in those with moderate and severe HI, respectively, whereas the maximum plasma concentration was ~25% lower in mild and moderate HI groups but 58% higher in the severe HI group than in the normal group. Adverse events were reported by two of eight, four of eight, and three of eight participants with mild, moderate, or severe HI, respectively; none were reported in the normal-matched group. Overall, single-dose BMS-986263 was generally safe and well-tolerated and dose adjustment is not considered necessary for participants with mild or moderate HI. Although available data do not indicate that dose adjustment should be performed in patients with severe HI; the optimal posology of BMS-986263 in patients with severe HI may be determined later in its clinical development when additional data to establish exposure-safety/efficacy relationship becomes available.
Collapse
Affiliation(s)
| | | | | | - Eric J. Lawitz
- The Texas Liver Institute, University of Texas Health San AntonioSan AntonioTexasUSA
| | | | | | | | | |
Collapse
|
47
|
Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol 2023; 14:1130738. [PMID: 37662927 PMCID: PMC10471803 DOI: 10.3389/fimmu.2023.1130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Endometriosis is a worldwide gynacological diseases, affecting in 6-10% of women of reproductive age. The aim of this study was to investigate the gene network and potential signatures of immune infiltration in endometriosis. Methods The expression profiles of GSE51981, GSE6364, and GSE7305 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes related to immune characteristics were identified using a weighted gene coexpression network analysis. Bioinformatics analysis was performed to identify central genes in immune infiltration. Protein-protein interaction (PPI) network was used to identify the hub genes. We then constructed subtypes of endometriosis samples and calculated their correlation with hub genes. qRTPCR and Western blotting were used to verify our findings. Results We identified 10 candidate hub genes (GZMB, PRF1, KIR2DL1, KIR2DL3, KIR3DL1, KIR2DL4, FGB, IGFBP1, RBP4, and PROK1) that were significantly correlated with immune infiltration. Our study established a detailed immune network and systematically elucidated the molecular mechanism underlying endometriosis from the aspect of immune infiltration. Discussion Our study provides comprehensive insights into the immunology involved in endometriosis and might contribute to the development of immunotherapy for endometriosis. Furthermore, our study sheds light on the underlying molecular mechanism of endometriosis and might help improve the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Si-ji Lv
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-ni Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
48
|
Liu C, Gu J, Yao Y. Longitudinal Change of Plasma Retinol-Binding Protein 4 and its Relation to Neurological-Function Recovery, Relapse, and Death in Acute Ischemic Stroke Patients. TOHOKU J EXP MED 2023; 260:293-300. [PMID: 37100600 DOI: 10.1620/tjem.2023.j036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Retinol-binding protein 4 (RBP4) promotes dyslipidemia, insulin resistance, inflammation, and atherosclerosis, etc. which may participate in the progression of acute ischemia stroke (AIS). This study aimed to evaluate the longitudinal change of RBP4 after disease onset and its correlation with prognosis in AIS patients. Plasma RBP4 was measured by enzyme-linked immunosorbent assays in 402 AIS patients at admission, one day (D1), 3 days (D3), 7 days (D7), and 30 days (D30) after admission; and in 100 healthy controls after enrollment. The neurological-function recovery was evaluated by the modified Rankin Scale (mRS) at 3 months (M3); disease relapse and death were also recorded during a median 20-month follow-up in AIS patients. Our study revealed that RBP4 was elevated in AIS patients compared with healthy controls. RBP4 was related to a history of diabetes mellitus, a history of cardiovascular disease, and elevated National Institutes of Health Stroke Scale score in AIS patients. Longitudinally, RBP4 was increased from admission to D1/D3, then reduced gradually to D30 in AIS patients. Notably, RBP4 at admission and D1 was elevated in AIS patients with mRS > 2 compared to those with mRS ≤ 2. Meanwhile, RBP4 at admission, D1, D3, D7, and D30 were all higher in AIS patients occurred relapse than those without; RBP4 at D3, D7, and D30 were also higher in AIS patients who died later than those who survived. In conclusion, plasma RBP4 originally elevates and continuously decreases during disease, which forecasts neurological-function recovery status, relapse, and death risk of AIS.
Collapse
Affiliation(s)
- Chao Liu
- Department of CT Diagnosis, Cangzhou Central Hospital
| | - Juxian Gu
- Department of Neurology, Cangzhou Central Hospital
| | - Yan Yao
- Department of Neurology, Cangzhou Central Hospital
| |
Collapse
|
49
|
Schinzari F, Vizioli G, Campia U, Cardillo C, Tesauro M. Variable dysregulation of circulating lipocalin-2 in different obese phenotypes: Association with vasodilator dysfunction. Vasc Med 2023; 28:266-273. [PMID: 37036109 DOI: 10.1177/1358863x231161657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
BACKGROUND Obesity is linked with heightened cardiovascular risk, especially when accompanied by metabolic abnormalities. Lipocalin (LCN) 2 and retinol-binding protein (RBP) 4, two members of the lipocalin family, may be upregulated in insulin resistance and atherosclerosis. We analyzed whether changes in circulating LCN2 and RBP4 in obese individuals relate with impaired vasodilator reactivity, an early stage in atherosclerosis. METHODS Obese individuals (n = 165), without (n = 48) or with (n = 117) metabolic abnormalities, and lean subjects (n = 42) participated in this study. LCN2 and RBP4 were measured by Luminex assay. Endothelium-dependent and -independent vasodilation to acetylcholine and sodium nitroprusside, respectively, was assessed by strain-gauge plethysmography. RESULTS Circulating LCN2 was higher in obese than in lean subjects (p < 0.001), whereas RBP4 was not different between the two groups (p = 0.12). The vasodilator responses to both acetylcholine and nitroprusside were impaired in obese individuals (p < 0.001 vs lean subjects), with no difference between those with metabolically healthy or unhealthy obesity (p > 0.05). In the whole population, vasodilator responses to acetylcholine (R = 0.23, p = 0.01) and nitroprusside (R = 0.38, p < 0.001) had an inverse, linear relationship with circulating LCN2; no correlation, by contrast, was observed between circulating RBP4 and vasodilator reactivity (both p > 0.05). In a subgroup of obese patients with diabetes (n = 20), treatment with metformin (n = 10) or pioglitazone (n = 10) did not modify circulating LCN2 and RBP4 or vascular reactivity (all p > 0.05). CONCLUSIONS Circulating LCN2, but not RBP4, is higher in obese than in lean individuals. Interestingly, changes in LCN2 inversely relate to those in vasodilator function, thereby making this protein a potential biomarker for risk stratification in obesity.
Collapse
Affiliation(s)
| | - Giuseppina Vizioli
- Department of Translational Medicine and Surgery, Catholic University, Rome, Italy
| | - Umberto Campia
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
50
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|