1
|
Bunn RA, Corrêa A, Joshi J, Kaiser C, Lekberg Y, Prescott CE, Sala A, Karst J. What determines transfer of carbon from plants to mycorrhizal fungi? THE NEW PHYTOLOGIST 2024; 244:1199-1215. [PMID: 39352455 DOI: 10.1111/nph.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.
Collapse
Affiliation(s)
- Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, 516 HIgh Street, Bellingham, WA, 98225, USA
| | - Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Jaya Joshi
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Cindy E Prescott
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| |
Collapse
|
2
|
Veselkin DV, Dubrovin DI, Rafikova OS. Occurrence of Arbuscular Mycorrhizal Herbs Decreases Selectively in Communities Dominated by Invasive Tree Acer negundo. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:225-229. [PMID: 39128963 DOI: 10.1134/s0012496624600076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024]
Abstract
We tested whether one of the consequences predicted for alien plant invasion by the mutualism disruption hypothesis was true in the case of the ash-leaved maple Acer negundo L. The study aimed to determine whether the occurrences of mycorrhizal and nonmycorrhizal herbs varied similarly or differently in communities with varying degrees of A. negundo dominance. The analysis included the results of 78 vegetation descriptions carried out in Belarusian Polesia, the Middle Volga region, and the Middle Urals. Communities with or without A. negundo dominance were described in each region. The mycorrhizal status of plant species was determined using the FungalRoot Database. Species that are more likely to form arbuscular mycorrhiza were found to occur less frequently in A. negundo thickets. On the contrary, a higher probability of the nonmycorrhizal status was associated with a lower frequency of detection in A. negundo thickets. Therefore, the occurrence of arbuscular mycorrhizal herbs was found to selectively decrease in communities dominated by A. negundo.
Collapse
Affiliation(s)
- D V Veselkin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 620144, Yekaterinburg, Russia.
| | - D I Dubrovin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 620144, Yekaterinburg, Russia
| | - O S Rafikova
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 620144, Yekaterinburg, Russia
| |
Collapse
|
3
|
Li W, Wu H, Hua J, Zhu C, Guo S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon ( Antirrhinum majus L.) through physiological and transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330032. [PMID: 38681217 PMCID: PMC11045995 DOI: 10.3389/fpls.2024.1330032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Introduction Low temperature (LT) and weak light (WL) seriously affects the yield and quality of snapdragon in winter greenhouse. Arbuscular mycorrhizal fungi (AMF) exert positive role in regulating growth and enhancing abiotic stress tolerance in plants. Nevertheless, the molecular mechanisms by AMF improve the LT combined with WL (LTWL) tolerance in snapdragon remain mostly unknown. Methods We compared the differences in root configuration, osmoregulatory substances, enzymatic and non-enzymatic antioxidant enzyme defense systems and transcriptome between AMF-inoculated and control groups under LT, WL, low light, and LTWL conditions. Results Our analysis showed that inoculation with AMF effectively alleviated the inhibition caused by LTWL stress on snapdragon root development, and significantly enhanced the contents of soluble sugars, soluble proteins, proline, thereby maintaining the osmotic adjustment of snapdragon. In addition, AMF alleviated reactive oxygen species damage by elevating the contents of AsA, and GSH, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR). RNA-seq analysis revealed that AMF regulated the expression of genes related to photosynthesis (photosystem I related proteins, photosystem II related proteins, chlorophyll a/b binding protein), active oxygen metabolism (POD, Fe-SOD, and iron/ascorbate family oxidoreductase), plant hormone synthesis (ARF5 and ARF16) and stress-related transcription factors gene (bHLH112, WRKY72, MYB86, WRKY53, WRKY6, and WRKY26) under LTWL stress. Discussion We concluded that mycorrhizal snapdragon promotes root development and LTWL tolerance by accumulation of osmoregulatory substances, activation of enzymatic and non-enzymatic antioxidant defense systems, and induction expression of transcription factor genes and auxin synthesis related genes. This study provides a theoretical basis for AMF in promoting the production of greenhouse plants in winter.
Collapse
Affiliation(s)
- Wei Li
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiying Wu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Junkai Hua
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengshang Zhu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoxia Guo
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Wood KEA, Kobe RK, Ibáñez I, McCarthy-Neumann S. Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLoS One 2023; 18:e0293906. [PMID: 38011125 PMCID: PMC10681222 DOI: 10.1371/journal.pone.0293906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
1. Though not often examined together, both plant-soil feedbacks (PSFs) and functional traits have important influences on plant community dynamics and could interact. For example, seedling functional traits could impact seedling survivorship responses to soils cultured by conspecific versus heterospecific adults. Furthermore, levels of functional traits could vary with soil culturing source. In addition, these relationships might shift with light availability, which can affect trait values, microbe abundance, and whether mycorrhizal colonization is mutualistic or parasitic to seedlings. 2. To determine the extent to which functional traits mediate PSFs via seedling survival, we conducted a field experiment. We planted seedlings of four temperate tree species across a gradient of light availability and into soil cores collected beneath conspecific (sterilized and live) and heterospecific adults. We monitored seedling survival twice per week over one growing season, and we randomly selected subsets of seedlings to measure mycorrhizal colonization and phenolics, lignin, and NSC levels at three weeks. 3. Though evidence for PSFs was limited, Acer saccharum seedlings exhibited positive PSFs (i.e., higher survival in conspecific than heterospecific soils). In addition, soil microbes had a negative effect on A. saccharum and Prunus serotina seedling survival, with reduced survival in live versus sterilized conspecific soil. In general, we found higher trait values (measured amounts of a given trait) in conspecific than heterospecific soils and higher light availability. Additionally, A. saccharum survival increased with higher levels of phenolics, which were higher in conspecific soils and high light. Quercus alba survival decreased with higher AMF colonization. 4. We demonstrate that functional trait values in seedlings as young as three weeks vary in response to soil source and light availability. Moreover, seedling survivorship was associated with trait values for two species, despite both drought and heavy rainfall during the growing season that may have obscured survivorship-trait relationships. These results suggest that seedling traits could have an important role in mediating the effects of local soil source and light levels on seedling survivorship and thus plant traits could have an important role in PSFs.
Collapse
Affiliation(s)
- Katherine E. A. Wood
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard K. Kobe
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah McCarthy-Neumann
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Mohd-Radzman NA, Drapek C. Compartmentalisation: A strategy for optimising symbiosis and tradeoff management. PLANT, CELL & ENVIRONMENT 2023; 46:2998-3011. [PMID: 36717758 DOI: 10.1111/pce.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plant root architecture is developmentally plastic in response to fluctuating nutrient levels in the soil. Part of this developmental plasticity is the formation of dedicated root cells and organs to host mutualistic symbionts. Structures like nitrogen-fixing nodules serve as alternative nutrient acquisition strategies during starvation conditions. Some root systems can also form myconodules-globular root structures that can host mycorrhizal fungi. The myconodule association is different from the wide-spread arbuscular mycorrhization. This range of symbiotic associations provides different degrees of compartmentalisation, from the cellular to organ scale, which allows the plant host to regulate the entry and extent of symbiotic interactions. In this review, we discuss the degrees of symbiont compartmentalisation by the plant host as a developmental strategy and speculate how spatial confinement mitigates risks associated with root symbiosis.
Collapse
Affiliation(s)
| | - Colleen Drapek
- Sainsbury Laboratory Cambridge University (SLCU), Bateman Street, Cambridge, UK
| |
Collapse
|
6
|
Wang M, Chen J, Lee TM, Xi J, Veresoglou SD. Context-dependent plant responses to arbuscular mycorrhiza mainly reflect biotic experimental settings. THE NEW PHYTOLOGIST 2023; 240:13-16. [PMID: 37366071 DOI: 10.1111/nph.19108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Min Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Junjiang Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tien-Ming Lee
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingjing Xi
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
7
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
8
|
Groten K, Yon F, Baldwin IT. Arbuscular mycorrhizal fungi influence the intraspecific competitive ability of plants under field and glasshouse conditions. PLANTA 2023; 258:60. [PMID: 37535207 PMCID: PMC10400695 DOI: 10.1007/s00425-023-04214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
MAIN CONCLUSION Nicotiana attenuata's capacity to interact with arbuscular mycorrhizal fungi influences its intraspecific competitive ability under field and glasshouse conditions, but not its overall community productivity. Arbuscular mycorrhizal (AM) fungi can alter the nutrient status and growth of plants, and they can also affect plant-plant, plant-herbivore, and plant-pathogen interactions. These AM effects are rarely studied in populations under natural conditions due to the limitation of non-mycorrhizal controls. Here we used a genetic approach, establishing field and glasshouse communities of AM-harboring Nicotiana attenuata empty vector (EV) plants and isogenic plants silenced in calcium- and calmodulin-dependent protein kinase expression (irCCaMK), and unable to establish AM symbioses. Performance and growth were quantified in communities of the same (monocultures) or different genotypes (mixed cultures) and both field and glasshouse experiments returned similar responses. In mixed cultures, AM-harboring EV plants attained greater stalk lengths, shoot and root biomasses, clearly out-competing the AM fungal-deficient irCCaMK plants, while in monocultures, both genotypes grew similarly. Competitive ability was also reflected in reproductive traits: EV plants in mixed cultures outperformed irCCaMK plants. When grown in monocultures, the two genotypes did not differ in reproductive performance, though total leaf N and P contents were significantly lower independent of the community type. Plant productivity in terms of growth and seed production at the community level did not differ, while leaf nutrient content of phosphorus and nitrogen depended on the community type. We infer that AM symbioses drastically increase N. attenuata's competitive ability in mixed communities resulting in increased fitness for the individuals harboring AM without a net gain for the community.
Collapse
Affiliation(s)
- Karin Groten
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| | - Felipe Yon
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
- Instituto de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| |
Collapse
|
9
|
Luo X, Liu Y, Li S, He X. Interplant carbon and nitrogen transfers mediated by common arbuscular mycorrhizal networks: beneficial pathways for system functionality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169310. [PMID: 37502701 PMCID: PMC10369077 DOI: 10.3389/fpls.2023.1169310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in soil and form nutritional symbioses with ~80% of vascular plant species, which significantly impact global carbon (C) and nitrogen (N) biogeochemical cycles. Roots of plant individuals are interconnected by AMF hyphae to form common AM networks (CAMNs), which provide pathways for the transfer of C and N from one plant to another, promoting plant coexistence and biodiversity. Despite that stable isotope methodologies (13C, 14C and 15N tracer techniques) have demonstrated CAMNs are an important pathway for the translocation of both C and N, the functioning of CAMNs in ecosystem C and N dynamics remains equivocal. This review systematically synthesizes both laboratory and field evidence in interplant C and N transfer through CAMNs generated through stable isotope methodologies and highlights perspectives on the system functionality of CAMNs with implications for plant coexistence, species diversity and community stability. One-way transfers from donor to recipient plants of 0.02-41% C and 0.04-80% N of recipient C and N have been observed, with the reverse fluxes generally less than 15% of donor C and N. Interplant C and N transfers have practical implications for plant performance, coexistence and biodiversity in both resource-limited and resource-unlimited habitats. Resource competition among coexisting individuals of the same or different species is undoubtedly modified by such C and N transfers. Studying interplant variability in these transfers with 13C and 15N tracer application and natural abundance measurements could address the eco physiological significance of such CAMNs in sustainable agricultural and natural ecosystems.
Collapse
Affiliation(s)
- Xie Luo
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yining Liu
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| | - Xinhua He
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, United States
| |
Collapse
|
10
|
Pang J, Ryan MH, Wen Z, Lambers H, Liu Y, Zhang Y, Tueux G, Jenkins S, Mickan B, Wong WS, Yong JWH, Siddique KHM. Enhanced nodulation and phosphorus acquisition from sparingly-soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13873. [PMID: 36762694 DOI: 10.1111/ppl.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 μg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.
Collapse
Affiliation(s)
- Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhihui Wen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang Agricultural University, Shenyang, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Guillaume Tueux
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Ecole d'Ingénieurs de PURPAN, Toulouse, France
| | - Sasha Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Bede Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei San Wong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Wang M, Wang Z, Guo M, Qu L, Biere A. Effects of arbuscular mycorrhizal fungi on plant growth and herbivore infestation depend on availability of soil water and nutrients. FRONTIERS IN PLANT SCIENCE 2023; 14:1101932. [PMID: 36778709 PMCID: PMC9909235 DOI: 10.3389/fpls.2023.1101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fitness of plants is affected by their symbiotic interactions with arbuscular mycorrhizal fungi (AMF), and such effects are highly dependent on the environmental context. METHODS In the current study, we inoculated the nursery shrub species Artemisia ordosica with AMF species Funneliformis mosseae under contrasting levels of soil water and nutrients (diammonium phosphate fertilization), to assess their effects on plant growth, physiology and natural infestation by herbivores. RESULTS Overall, plant biomass was synergistically enhanced by increasing soil water and soil nutrient levels. However, plant height was surprisingly repressed by AMF inoculation, but only under low water conditions. Similarly, plant biomass was also reduced by AMF but only under low water and nutrient conditions. Furthermore, AMF significantly reduced leaf phosphorus levels, that were strongly enhanced under high nutrient conditions, but had only minor effects on leaf chlorophyll and proline levels. Under low water and nutrient conditions, specific root length was enhanced, but average root diameter was decreased by AMF inoculation. The negative effects of AMF on plant growth at low water and nutrient levels may indicate that under these conditions AMF inoculation does not strongly contribute to nutrient and water acquisition. On the contrary, the AMF might have suppressed the direct pathway of water and nutrient absorption by the plant roots themselves despite low levels of mycorrhizal colonization. AMF inoculation reduced the abundance of the foliar herbivore Chrysolina aeruginosa on plants that had been grown on the low nutrient soil, but not on high nutrient soil. Fertilization enhanced the abundance of this herbivore but only in plants that had received the high water treatment. The lower abundance of the herbivore on AMF plants could be related to their decreased leaf P content. In conclusion, our results indicate that AMF negatively affect the growth of Artemisia ordosica but makes them less attractive to a dominant herbivore. DISCUSSION Our study highlights that plant responses to AMF depend not only on the environmental context, but that the direction of the responses can differ for different components of plant performance (growth vs. defense).
Collapse
Affiliation(s)
- Minggang Wang
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhongbin Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Mingjie Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
12
|
Faghihinia M, Jansa J. Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple ( 13C, 15N and 33P) labeling study. FRONTIERS IN PLANT SCIENCE 2022; 13:1047270. [PMID: 36589136 PMCID: PMC9799978 DOI: 10.3389/fpls.2022.1047270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Collapse
Affiliation(s)
- Maede Faghihinia
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
13
|
Tan B, Li Y, Deng D, Pan H, Zeng Y, Tan X, Zhuang W, Li Z. Rhizosphere inoculation of Nicotiana benthamiana with Trichoderma harzianum TRA1-16 in controlled environment agriculture: Effects of varying light intensities on the mutualism-parasitism interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:989155. [PMID: 36340354 PMCID: PMC9630631 DOI: 10.3389/fpls.2022.989155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Trichoderma spp., a genus of fast-growing and highly adaptable fungi that form symbiotic relationships with plant roots, rendering them ideal for practical use in controlled environment agriculture. Herein, this paper aims to understand how the Nicotiana benthamiana with inoculation of Trichoderma harzianum strain TRA1-16 responds to light intensity variation. Pot experiments were conducted under low and high light intensities (50 and 150 μmol·m-2·s-1, respectively) and microbial treatments. Plant growth, physio-biochemical attributes, activities of antioxidant enzymes, and phytohormones regulation were investigated. The results showed that for non-inoculated plants, the reduction in light intensity inhibited plant growth, nitrogen (N) and phosphorus (P) uptake, chlorophyll a/b, and carotenoid content. Trichoderma inoculation resulted in 1.17 to 1.51 times higher concentrations of available N and P in the soil than the non-inoculated group, with higher concentrations at high light intensity. Plant height, dry weight, nutrient uptake, and antioxidant activity were significantly increased after inoculation (p<0.05). However, the growth-promoting effect was less effective under low light conditions, with lower plant height and P content in plants. We suggested that when the light was attenuated, the mutualism of the Trichoderma turned into parasitism, slowing the growth of the host plant. The application of fungal inoculation techniques for plant growth promotion required coordination with appropriate light complementation. The mechanisms of coordination and interaction were proposed to be incorporated into the biological market theory.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Yihan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
- Sichuan Development Guorun Water Investment Co. Ltd., Chengdu, China
| | | | - Hongli Pan
- Sichuan Academy of Forestry, Chengdu, China
| | - Yue Zeng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Wenhua Zhuang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China
| | - Zhuo Li
- Key Laboratory of Water Saving Agriculture in Hill Areas in Southern China of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
14
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
15
|
Holík J, Janík D. Seed and seedling predation by vertebrates mediates the effects of adult trees in two temperate tree species. Oecologia 2022; 199:625-636. [PMID: 35661249 DOI: 10.1007/s00442-022-05203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Specialised natural enemies can locally suppress seeds and seedlings near conspecific adults more than far from them. Whilst this is thought to facilitate species coexistence, the relative contribution of multiple enemies to whether heterospecific seeds and seedlings rather than conspecifics perform better beneath a particular adult species remains less clear, especially in regions with spatially extensive monodominant stands. We designed a field exclusion experiment to separate the effects of fungi, insects and vertebrates on the seedling establishment and early survival of two temperate tree species, Fagus sylvatica and Picea abies, in the adult tree monocultures of these species. Our experiment demonstrates the key role of vertebrates in mediating the effects of adult trees on seeds and seedlings. Due to vertebrates and partly insects, Fagus sylvatica seedlings survived worse beneath conspecific than heterospecific adults and were also outperformed by Picea abies seedlings beneath their own adults. Picea abies seedling establishment was higher beneath conspecific than heterospecific adults, but Fagus sylvatica seedlings outperformed them beneath their own adults. The impact of enemies on Picea abies establishment beneath conspecific adults was less clear. Fungi did not influence seedling establishment and survival. Our findings highlight the need to compare enemy impacts on each seedling species beneath conspecific and heterospecific adults with their impacts on conspecific and heterospecific seedlings beneath a particular adult species. Such evaluations can shed more light on the role of enemies in tree communities by identifying the plant-enemy interactions that facilitate species coexistence and those that promote species monodominance.
Collapse
Affiliation(s)
- Jan Holík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic.
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - David Janík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic
| |
Collapse
|
16
|
Bennett AE, Groten K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:649-672. [PMID: 35216519 DOI: 10.1146/annurev-arplant-102820-124504] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant-AM fungal interaction across disciplines.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA;
| | - Karin Groten
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
17
|
Saha H, Kaloterakis N, Harvey JA, Van der Putten WH, Biere A. Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. PLANTS 2022; 11:plants11070861. [PMID: 35406841 PMCID: PMC9002964 DOI: 10.3390/plants11070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Beneficial soil microbes can enhance plant growth and defense, but the extent to which this occurs depends on the availability of resources, such as water and nutrients. However, relatively little is known about the role of light quality, which is altered during shading, resulting a low red: far-red ratio (R:FR) of light. We examined how low R:FR light influences arbuscular mycorrhizal fungus (AMF)-mediated changes in plant growth and defense using Solanum lycopersicum (tomato) and the insect herbivore Chrysodeixis chalcites. We also examined effects on third trophic level interactions with the parasitoid Cotesia marginiventris. Under low R:FR light, non-mycorrhizal plants activated the shade avoidance syndrome (SAS), resulting in enhanced biomass production. However, mycorrhizal inoculation decreased stem elongation in shaded plants, thus counteracting the plant’s SAS response to shading. Unexpectedly, activation of SAS under low R:FR light did not increase plant susceptibility to the herbivore in either non-mycorrhizal or mycorrhizal plants. AMF did not significantly affect survival or growth of caterpillars and parasitoids but suppressed herbivore-induced expression of jasmonic acid-signaled defenses genes under low R:FR light. These results highlight the context-dependency of AMF effects on plant growth and defense and the potentially adverse effects of AMF under shading.
Collapse
Affiliation(s)
- Haymanti Saha
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Correspondence: ; Tel.: +31-645036538
| | - Nikolaos Kaloterakis
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Soil Biology Group, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
| |
Collapse
|
18
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Xu H, Chen P, Tao Y. Understanding the Shade Tolerance Responses Through Hints From Phytochrome A-Mediated Negative Feedback Regulation in Shade Avoiding Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:813092. [PMID: 35003197 PMCID: PMC8727698 DOI: 10.3389/fpls.2021.813092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.
Collapse
Affiliation(s)
| | | | - Yi Tao
- Key Laboratory of Xiamen Plant Genetics and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Co-inoculation with a dark septate endophyte alters arbuscular mycorrhizal colonization of two widespread plants of the sagebrush steppe. Symbiosis 2021. [DOI: 10.1007/s13199-021-00819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Wang Y, Bao X, Li S. Effects of Arbuscular Mycorrhizal Fungi on Rice Growth Under Different Flooding and Shading Regimes. Front Microbiol 2021; 12:756752. [PMID: 34764946 PMCID: PMC8577809 DOI: 10.3389/fmicb.2021.756752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are present in paddy fields, where they suffer from periodic soil flooding and sometimes shading stress, but their interaction with rice plants in these environments is not yet fully explained. Based on two greenhouse experiments, we examined rice-growth response to AMF under different flooding and/or shading regimes to survey the regulatory effects of flooding on the mycorrhizal responses of rice plants under different light conditions. AMF had positive or neutral effects on the growth and yields of both tested rice varieties under non-flooding conditions but suppressed them under all flooding and/or shading regimes, emphasizing the high importance of flooding and shading conditions in determining the mycorrhizal effects. Further analyses indicated that flooding and shading both reduced the AMF colonization and extraradical hyphal density (EHD), implying a possible reduction of carbon investment from rice to AMF. The expression profiles of mycorrhizal P pathway marker genes (GintPT and OsPT11) suggested the P delivery from AMF to rice roots under all flooding and shading conditions. Nevertheless, flooding and shading both decreased the mycorrhizal P benefit of rice plants, as indicated by the significant decrease of mycorrhizal P responses (MPRs), contributing to the negative mycorrhizal effects on rice production. The expression profiles of rice defense marker genes OsPR1 and OsPBZ1 suggested that regardless of mycorrhizal growth responses (MGRs), AMF colonization triggered the basal defense response, especially under shading conditions, implying the multifaceted functions of AMF symbiosis and their effects on rice performance. In conclusion, this study found that flooding and shading both modulated the outcome of AMF symbiosis for rice plants, partially by influencing the mycorrhizal P benefit. This finding has important implications for AMF application in rice production.
Collapse
Affiliation(s)
- Yutao Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaozhe Bao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Sportes A, Hériché M, Boussageon R, Noceto PA, van Tuinen D, Wipf D, Courty PE. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. MYCORRHIZA 2021; 31:637-653. [PMID: 34657204 DOI: 10.1007/s00572-021-01053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense. The chronicle of mycorrhizal research is marked by multiple key milestones such as the initial description of a "persistent epiderm and pellicular wall structure" by Hartig; the introduction of the "Symbiotismus" and "Mycorrhiza" concepts by Frank; the description of diverse root-fungal morphologies; the first description of arbuscules by Gallaud; Mosse's pivotal statement of the beneficial nature of the arbuscular mycorrhizal symbiosis; the impact of molecular tools on the taxonomy of mycorrhizal fungi as well as the development of in vitro root organ cultures for producing axenic arbuscular mycorrhizal fungi (AMF). An appreciation of the story - full of twists and turns - of the arbuscular mycorrhiza, going from the roots of mycorrhiza history, along with the discovery of different mycorrhiza types such as ectomycorrhiza, can improve research to help face our days' challenge of developing sustainable agriculture that integrates the arbuscular mycorrhiza and its ecosystem services.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Raphaël Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Antoine Noceto
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
23
|
Ficano N, Porder S, McCulloch LA. Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps. Ecology 2021; 102:e03489. [PMID: 34292601 DOI: 10.1002/ecy.3489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022]
Abstract
Plants and their soil microbial symbionts influence ecosystem productivity and nutrient cycling, but the controls on these symbioses remain poorly understood. This is particularly true for plants in the Fabaceae family (hereafter legumes), which can associate with both arbuscular mycorrhizal fungi (AMF) and nitrogen (N) -fixing bacteria. Here we report results of the first manipulated field experiment to explore the abiotic and biotic controls of this tripartite symbiosis in Neotropical canopy gaps (hereafter gaps). We grew three species of Neotropical N-fixing legume seedlings under different light (gap-full light, gap-shadecloth, and understory) and soil nitrogen (20 g N·m-2 ·yr-1 vs. 0 g N·m-2 ·yr-1 ) conditions across a lowland tropical forest at La Selva Biological Station, Costa Rica. We harvested the seedlings after 4 months of growth in the field and measured percent AMF root colonization (%AMF), nodule and seeding biomass, and seedling aboveground:belowground biomass ratios. Our expectation was that seedlings in gaps would grow larger and, as a result of higher light, invest more carbon in both AMF and N-fixing bacteria. Indeed, seedlings in gaps had higher total biomass, nodule biomass (a proxy for N-fixing bacteria investment) and rates of AMF root colonization, and the three were significantly positively correlated. However, we only found a significant positive effect of light availability on %AMF when seedlings were fertilized with N. Furthermore, when we statistically controlled for treatment, species, and site effects, we found %AMF and seedling biomass had a negative relationship. This was likely driven by the fact that seedlings invested relatively less in AMF as they increased in biomass (lower %AMF per gram of seedling). Taken together, these results challenge the long-held assumption that high light conditions universally increase carbon investment in AMF and demonstrate that this tripartite symbiosis is influenced by soil nutrient and light conditions.
Collapse
Affiliation(s)
- Nikayla Ficano
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, 02912, USA
| | - Stephen Porder
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, 02912, USA.,Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912, USA
| | - Lindsay A McCulloch
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
24
|
Cavagnaro R, Oyarzabal M, Oesterheld M, Grimoldi A. Species-specific trade-offs between regrowth and mycorrhizas in the face of defoliation and phosphorus addition. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Pozo de la Hoz J, Rivero J, Azcón-Aguilar C, Urrestarazu M, Pozo MJ. Mycorrhiza-Induced Resistance against Foliar Pathogens Is Uncoupled of Nutritional Effects under Different Light Intensities. J Fungi (Basel) 2021; 7:402. [PMID: 34063889 PMCID: PMC8224078 DOI: 10.3390/jof7060402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023] Open
Abstract
The use of microbial inoculants, particularly arbuscular mycorrhizal fungi, has great potential for sustainable crop management, which aims to reduce the use of chemical fertilizers and pesticides. However, one of the major challenges of their use in agriculture is the variability of the inoculation effects in the field, partly because of the varying environmental conditions. Light intensity and quality affect plant growth and defense, but little is known about their impacts on the benefits of mycorrhizal symbioses. We tested the effects of five different light intensities on plant nutrition and resistance to the necrotrophic foliar pathogen Botrytis cinerea in mycorrhizal and non-mycorrhizal lettuce plants. Our results evidence that mycorrhiza establishment is strongly influenced by light intensity, both regarding the extension of root colonization and the abundance of fungal vesicles within the roots. Light intensity also had significant effects on plant growth, nutrient content, and resistance to the pathogen. The effect of the mycorrhizal symbiosis on plant growth and nutrient content depended on the light intensity, and mycorrhiza efficiently reduced disease incidence and severity under all light intensities. Thus, mycorrhiza-induced resistance can be uncoupled from mycorrhizal effects on plant nutrition. Therefore, mycorrhizal symbioses can be beneficial by providing biotic stress protection even in the absence of nutritional or growth benefits.
Collapse
Affiliation(s)
- Judith Pozo de la Hoz
- Department of Agronomy, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (J.P.d.l.H.); (M.U.)
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain; (J.R.); (C.A.-A.)
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain; (J.R.); (C.A.-A.)
| | - Concepción Azcón-Aguilar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain; (J.R.); (C.A.-A.)
| | - Miguel Urrestarazu
- Department of Agronomy, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (J.P.d.l.H.); (M.U.)
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain; (J.R.); (C.A.-A.)
| |
Collapse
|
26
|
Shtark O, Puzanskiy R, Avdeeva G, Yemelyanov V, Shavarda A, Romanyuk D, Kliukova M, Kirpichnikova A, Tikhonovich I, Zhukov V, Shishova M. Metabolic Alterations in Pisum sativum Roots during Plant Growth and Arbuscular Mycorrhiza Development. PLANTS 2021; 10:plants10061033. [PMID: 34063836 PMCID: PMC8224052 DOI: 10.3390/plants10061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Intensive exchange of nutrients is a crucial part of the complex interaction between a host plant and fungi within arbuscular mycorrhizal (AM) symbiosis. For the first time, the present study demonstrates how inoculation with AMF Rhizophagus irregularis affects the pea (Pisum sativum L.) root metabolism at key stages of plant development. These correspond to days 21 (vegetation), 42 (flowering initiation), and 56 (fruiting-green pod). Metabolome profiling was carried out by means of a state-of-the-art GC-MS technique. The content shifts revealed include lipophilic compounds, sugars, carboxylates, and amino acids. The metabolic alterations were principally dependent on the stage of plant development but were also affected by the development of AM fungi, a fact which highlights interaction between symbiotic partners. The comparison of the present data with the results of leaf metabolome profiling earlier obtained did not reveal common signatures of metabolic response to mycorrhization in leaves and roots. We supposed that the feedback for the development and symbiotic interaction on the part of the supraorganismic system (root + AM fungi) was the cause of the difference between the metabolic profile shift in leaf and root cells that our examination revealed. New investigations are required to expand our knowledge of metabolome plasticity of the whole organism and/or system of organisms, and such results might be put to use for the intensification of sustainable agriculture.
Collapse
Affiliation(s)
- Oksana Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| | - Roman Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Galina Avdeeva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladislav Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Alexey Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria Romanyuk
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Marina Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Anastasia Kirpichnikova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Igor Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladimir Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Maria Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| |
Collapse
|
27
|
Massmann A, Cavaleri MA, Oberbauer SF, Olivas PC, Porder S. Foliar Stoichiometry is Marginally Sensitive to Soil Phosphorus Across a Lowland Tropical Rainforest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00640-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Qu L, Wang M, Biere A. Interactive Effects of Mycorrhizae, Soil Phosphorus, and Light on Growth and Induction and Priming of Defense in Plantago lanceolata. FRONTIERS IN PLANT SCIENCE 2021; 12:647372. [PMID: 33833771 PMCID: PMC8021950 DOI: 10.3389/fpls.2021.647372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 06/01/2023]
Abstract
Increasing demands to reduce fertilizer and pesticide input in agriculture has triggered interest in arbuscular mycorrhizal fungi (AMF) that can enhance plant growth and confer mycorrhiza-induced resistance (MIR). MIR can be based on a variety of mechanisms, including induction of defense compounds, and sensitization of the plant's immune system (priming) for enhanced defense against later arriving pests or pathogens signaled through jasmonic acid (JA). However, growth and resistance benefits of AMF highly depend on environmental conditions. Low soil P and non-limiting light conditions are expected to enhance MIR, as these conditions favor AMF colonization and because of observed positive cross-talk between the plant's phosphate starvation response (PSR) and JA-dependent immunity. We therefore tested growth and resistance benefits of the AMF Funneliformis mosseae in Plantago lanceolata plants grown under different levels of soil P and light intensity. Resistance benefits were assessed in bioassays with the leaf chewing herbivore Mamestra brassicae. Half of the plants were induced by jasmonic acid prior to the bioassays to specifically test whether AMF primed plants for JA-signaled defense under different abiotic conditions. AMF reduced biomass production but contrary to prediction, this reduction was not strongest under conditions considered least optimal for carbon-for-nutrient trade (low light, high soil P). JA application induced resistance to M. brassicae, but its extent was independent of soil P and light conditions. Strikingly, in younger plants, JA-induced resistance was annulled by AMF under high resource conditions (high soil P, ample light), indicating that AMF did not prime but repressed JA-induced defense responses. In older plants, low soil P and light enhanced susceptibility to M. brassicae due to enhanced leaf nitrogen levels and reduced leaf levels of the defense metabolite catalpol. By contrast, in younger plants, low soil P enhanced resistance. Our results highlight that defense priming by AMF is not ubiquitous and calls for studies revealing the causes of the increasingly observed repression of JA-mediated defense by AMF. Our study further shows that in our system abiotic factors are significant modulators of defense responses, but more strongly so by directly modulating leaf quality than by modulating the effects of beneficial microbes on resistance.
Collapse
Affiliation(s)
- Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Minggang Wang
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
29
|
Van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. THE ISME JOURNAL 2021; 15:435-449. [PMID: 32989245 PMCID: PMC8027207 DOI: 10.1038/s41396-020-00786-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Loreto Oyarte Galvez
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Malin Klein
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Shimizu
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Cesaro P, Massa N, Cantamessa S, Todeschini V, Bona E, Berta G, Barbato R, Lingua G. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis. MYCORRHIZA 2020; 30:601-610. [PMID: 32621137 DOI: 10.1007/s00572-020-00973-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The concept of symbiosis can be described as a continuum of interactions between organisms ranging from mutualism to parasitism that can also change over time. Arbuscular mycorrhizal fungi (AMF) are among the most important obligate plant symbionts. Once the symbiosis is well established, mycorrhizal plants are more tolerant to biotic or abiotic stresses, so the AMF relationship with the host plant is generally described as mutualistic. However, little is known about AMF effects on the plant during the early stages of root colonization. The aim of this work was to assess the type of interaction (mutualistic or parasitic) between the arbuscular mycorrhizal (AM) fungus Funelliformis mosseae and Solanum lycopersicum cv. Rio Grande plants, at 7, 14, 21, and 28 days after inoculation (DAI), considering that in the adopted experimental design (one plant per pot), the seedling was the only carbon source for fungus development in the absence of common mycorrhizal networks with other plants. At each harvest, mycorrhizal colonization, shoot and root weights, morphometric parameters, and photosynthetic efficiency were evaluated. The presence of the AM fungus in the tomato root system was observed starting from the 14th DAI, and its level increased over time. Few effects of the fungus presence on the considered parameters were observed, and no stress symptoms ever appeared; so, we can state that the fungus behaved as a mutualistic symbiont during the early stages of plant growth. Moreover, a trend towards a positive effect on plant growth was observed at 28 DAI in mycorrhizal plants.
Collapse
Affiliation(s)
- Patrizia Cesaro
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy
| | - Nadia Massa
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy.
| | - Simone Cantamessa
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy
| | - Valeria Todeschini
- DISIT, Università del Piemonte Orientale, Piazza Sant'Eusebio, 5, 13100, Vercelli, Italy
| | - Elisa Bona
- DISIT, Università del Piemonte Orientale, Piazza Sant'Eusebio, 5, 13100, Vercelli, Italy
| | - Graziella Berta
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy
| | - Roberto Barbato
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy
| | - Guido Lingua
- DISIT, Università del Piemonte Orientale, Viale T. Michel, 11, 15121, Alessandria, Italy
| |
Collapse
|
31
|
Aldrich-Wolfe L, Black KL, Hartmann EDL, Shivega WG, Schmaltz LC, McGlynn RD, Johnson PG, Asheim Keller RJ, Vink SN. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. MYCORRHIZA 2020; 30:513-527. [PMID: 32500441 DOI: 10.1007/s00572-020-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.
Collapse
Affiliation(s)
- Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Katie L Black
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | - W Gaya Shivega
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | | | | | | | - Stefanie N Vink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Salloum MS, Insani M, Monteoliva MI, Menduni MF, Silvente S, Carrari F, Luna C. Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes. MYCORRHIZA 2019; 29:459-473. [PMID: 31410554 DOI: 10.1007/s00572-019-00909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.
Collapse
Affiliation(s)
- María Soraya Salloum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina.
| | - Marina Insani
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Mariela Inés Monteoliva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - María Florencia Menduni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCyT), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA),, Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - Sonia Silvente
- Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), Av Los Peregrinos s/n, Chilecito, F5360CKB, La Rioja, Argentina
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| |
Collapse
|
33
|
Veresoglou SD, Chen B, Fischer MM, Helgason T, Mamolos AP, Rillig MC, Roldán A, Johnson D. Latitudinal constraints in responsiveness of plants to arbuscular mycorrhiza: the 'sun-worshipper' hypothesis. THE NEW PHYTOLOGIST 2019; 224:552-556. [PMID: 31087653 DOI: 10.1111/nph.15918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Stavros D Veresoglou
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195, Berlin, Germany
- Laboratory of Ecology and Environmental Protection, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100091, China
- University of Chinese Academy of Sciences, PO Box 2871, Beijing, China
| | - Matthias M Fischer
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195, Berlin, Germany
| | | | - Andreas P Mamolos
- Laboratory of Ecology and Environmental Protection, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195,, Berlin, Germany
| | - Antonio Roldán
- Department of Soil and Water Conservation, CSIC-Centro de Edafología y Biología Aplicada del Segura, PO Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - David Johnson
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
34
|
Shtark OY, Puzanskiy RK, Avdeeva GS, Yurkov AP, Smolikova GN, Yemelyanov VV, Kliukova MS, Shavarda AL, Kirpichnikova AA, Zhernakov AI, Afonin AM, Tikhonovich IA, Zhukov VA, Shishova MF. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ 2019; 7:e7495. [PMID: 31497392 PMCID: PMC6709666 DOI: 10.7717/peerj.7495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.
Collapse
Affiliation(s)
- Oksana Y. Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Dynamics of Arctic Vegetation, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina S. Avdeeva
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey P. Yurkov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Marina S. Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey L. Shavarda
- Center for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksandr I. Zhernakov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Alexey M. Afonin
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Igor A. Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Vladimir A. Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
35
|
|
36
|
Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 2019; 190:149-157. [PMID: 31079274 DOI: 10.1007/s00442-019-04406-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
Due to human influence, large tracts of natural vegetation have been cleared and replaced by other types of land use, resulting in highly fragmented landscapes consisting of small fragments of well-conserved habitat scattered within a matrix of intensively managed land. Changes in land use and associated fragmentation have important consequences for biodiversity in the remaining fragments. Most studies so far have investigated the impact of land use change on macro-organisms, but little is known about how landscape fragmentation affects microbial communities. Here, we studied how changes in land use and abiotic conditions affected the arbuscular mycorrhizal fungal (AMF) communities in the roots of the forest herb Stachys sylvatica. Root samples were collected from 40 populations occurring in fragmented forest patches of varying age and size embedded within an agricultural landscape. Our results showed that forest age and isolation did not affect AMF diversity or community composition, suggesting that AMF disperse easily throughout the landscape and that AMF communities reassemble fast in recently established forest patches. On the other hand, AMF richness increased with increasing forest area, indicating that small forest sizes limit AMF richness. Additionally, AMF richness increased with increasing soil pH and decreased with soil nitrate content, while AMF community composition was affected plant-available phosphorus. Overall, these results show that landscape context is less important than local abiotic conditions for structuring AMF communities. However, the significant area effect indicates that further reductions in forest area will lead to impoverished AMF communities, potentially affecting long-term plant fitness and community structure.
Collapse
|
37
|
Voříšková A, Jansa J, Püschel D, Vosátka M, Šmilauer P, Janoušková M. Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. MYCORRHIZA 2019; 29:127-139. [PMID: 30612193 DOI: 10.1007/s00572-018-00878-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 05/26/2023]
Abstract
The relationship between mycorrhiza functioning and composition of arbuscular mycorrhizal (AM) fungal communities is an important but experimentally still rather little explored topic. The main aim of this study was thus to link magnitude of plant benefits from AM symbiosis in different abiotic contexts with quantitative changes in AM fungal community composition. A synthetic AM fungal community inoculated to the model host plant Medicago truncatula was exposed to four different abiotic contexts, namely drought, elevated phosphorus availability, and shading, as compared to standard cultivation conditions, for two cultivation cycles. Growth and phosphorus uptake of the host plants was evaluated along with the quantitative composition of the synthetic AM fungal community. Abiotic context consistently influenced mycorrhiza functioning in terms of plant benefits, and the effects were clearly linked to the P requirement of non-inoculated control plants. In contrast, the abiotic context only had a small and transient effect on the quantitative AM fungal community composition. Our findings suggest no relationship between the degree of mutualism in AM symbiosis and the relative abundances of AM fungal species in communities in our simplified model system. The observed progressive dominance of one AM fungal species indicates an important role of different growth rates of AM fungal species for the establishment of AM fungal communities in simplified systems such as agroecosystems.
Collapse
Affiliation(s)
- Alena Voříšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic.
| | - Jan Jansa
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic
| | - David Püschel
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Petr Šmilauer
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| |
Collapse
|
38
|
Kafle A, Garcia K, Wang X, Pfeffer PE, Strahan GD, Bücking H. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:270-284. [PMID: 29859016 DOI: 10.1111/pce.13359] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.
Collapse
Affiliation(s)
- Arjun Kafle
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| | - Kevin Garcia
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| | - Xiurong Wang
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
- South China Agricultural University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, Guangzhou, China
| | - Philip E Pfeffer
- Eastern Regional Research Center, USDA, Agricultural Research Service, Wyndmoor, Pennslyvania
| | - Gary D Strahan
- Eastern Regional Research Center, USDA, Agricultural Research Service, Wyndmoor, Pennslyvania
| | - Heike Bücking
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| |
Collapse
|
39
|
Bitterlich M, Franken P, Graefe J. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. MYCORRHIZA 2019; 29:13-28. [PMID: 30382414 PMCID: PMC6311195 DOI: 10.1007/s00572-018-0872-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/22/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhiza fungi (AMF) consume plant carbon and impact photosynthesis, but effects of AMF on plant gas exchange are transient and hardly predictable. This is at least partially because plant-internal nutrient-, water-, and sink-related effects, which can be influenced AMF, and atmospheric conditions integrate at the photosynthesis level. In nature and in plant production, plants face periodical and random short-term switches of environmental conditions that limit photosynthesis, which may impede stimulatory effects of AMF on leaf photosynthetic capacities. We hypothesized that mycorrhizal effects on plant internal-photosynthetic potentials will only translate to actual photosynthetic rates, if atmospheric conditions do not superimpose limitations to the photosynthetic process. We aimed to cover wide ranges of within and between-day variations in light intensities and vapor pressure deficits with an untargeted approach. We grew tomato plants hydroponically for 8 weeks in open pots and irrigated beyond pot water capacity every morning. Plants were inoculated or not with Funneliformis mosseae and were fertilized with a low-strength nutrient solution, which guaranteed good AMF colonization and comparable sets of mycorrhizal and non-mycorrhizal plants regarding developmental stage and leaf age. Instantaneous leaf photosynthesis was monitored continuously with transparent chambers during 3 days under naturally fluctuating greenhouse conditions on the two uppermost fully expanded leaves. We fitted mechanistic gas exchange models and modeled continuous daytime dynamics of net photosynthetic rates and stomatal conductance for representative sunlit canopies of random populations of mycorrhizal and non-mycorrhizal plants. Depending on time, mycorrhizal plants showed enhanced or decreased stomatal conductance over wide ranges of light intensities. Higher or lower stomatal opening in mycorrhizal plants became ineffective for photosynthetic rates under low light. In contrast and in accordance with the effects on stomatal conductance, photosynthetic rates were comparatively increased or decreased in mycorrhizal plants under high light conditions. This required at least moderate vapor pressure deficits. Under high atmospheric drought, stomatal conductance strongly declined in all plants, which also capped maximum photosynthetic rates under high light. Leaf photosynthetic capacities were higher in mycorrhizal plants when leaves contained more proteins and/or the plant-internal moisture stress was lower than in non-mycorrhizal plants. However, this only resulted in enhanced photosynthetic rates as long as leaves were not exposed to low radiation or high atmospheric drought. We conclude that light and atmospheric moisture are decisive factors for potential carbon cost and gain scenarios of plants associated with AMF.
Collapse
Affiliation(s)
- Michael Bitterlich
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Jan Graefe
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| |
Collapse
|
40
|
Pedone-Bonfim MVL, Silva DKAD, Silva-Batista ARD, de Oliveira AP, Almeida JRGDS, Yano-Melo AM, Maia LC. Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content. Fungal Biol 2018; 122:918-927. [DOI: 10.1016/j.funbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
|
41
|
Noë R, Kiers ET. Mycorrhizal Markets, Firms, and Co-ops. Trends Ecol Evol 2018; 33:777-789. [PMID: 30177306 DOI: 10.1016/j.tree.2018.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
The nutrient exchange mutualism between arbuscular mycorrhizal fungi (AMFs) and their host plants qualifies as a biological market, but several complications have hindered its appropriate use. First, fungal 'trading agents' are hard to identify because AMFs are potentially heterokaryotic, that is, they may contain large numbers of polymorphic nuclei. This means it is difficult to define and study a fungal 'individual' acting as an independent agent with a specific trading strategy. Second, because nutrient exchanges occur via communal structures (arbuscules), this temporarily reduces outbidding competition and transaction costs and hence resembles exchanges among divisions of firms, rather than traditional trade on markets. We discuss how fungal nuclei may coordinate their trading strategies, but nevertheless retain some independence, similar to human co-operatives (co-ops).
Collapse
Affiliation(s)
- Ronald Noë
- Department of Psychology, Université de Strasbourg, Strasbourg, France.
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Werner GDA, Zhou Y, Pieterse CMJ, Kiers ET. Tracking plant preference for higher-quality mycorrhizal symbionts under varying CO 2 conditions over multiple generations. Ecol Evol 2018; 8:78-87. [PMID: 29321853 PMCID: PMC5756855 DOI: 10.1002/ece3.3635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023] Open
Abstract
The symbiosis between plants and root-colonizing arbuscular mycorrhizal (AM) fungi is one of the most ecologically important examples of interspecific cooperation in the world. AM fungi provide benefits to plants; in return plants allocate carbon resources to fungi, preferentially allocating more resources to higher-quality fungi. However, preferential allocations from plants to symbionts may vary with environmental context, particularly when resource availability affects the relative value of symbiotic services. We ask how differences in atmospheric CO 2-levels influence root colonization dynamics between AMF species that differ in their quality as symbiotic partners. We find that with increasing CO 2-conditions and over multiple plant generations, the more beneficial fungal species is able to achieve a relatively higher abundance. This suggests that increasing atmospheric carbon supply enables plants to more effectively allocate carbon to higher-quality mutualists, and over time helps reduce lower-quality AM abundance. Our results illustrate how environmental context may affect the extent to which organisms structure interactions with their mutualistic partners and have potential implications for mutualism stability and persistence under global change.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Yeling Zhou
- Plant‐Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
43
|
Bitterlich M, Rouphael Y, Graefe J, Franken P. Arbuscular Mycorrhizas: A Promising Component of Plant Production Systems Provided Favorable Conditions for Their Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:1329. [PMID: 30250477 PMCID: PMC6139337 DOI: 10.3389/fpls.2018.01329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi have become an attractive target as biostimulants in agriculture due to their known contributions to plant nutrient uptake and abiotic stress tolerance. However, inoculation with AM fungi can result in depressed, unchanged, or stimulated plant growth, which limits security of application in crop production systems. Crop production comprises high diversity and variability in atmospheric conditions, substrates, plant species, and more. In this review, we emphasize that we need integrative approaches for studying mycorrhizal symbioses in order to increase the predictability of growth outcomes and security of implementation of AM fungi into crop production. We briefly review known mechanisms of AM on nutrient uptake and drought tolerance of plants, on soil structure and soil hydraulic properties. We carve out that an important factor for both nutrient availability and drought tolerance is yet not well understood; the AM effects on soil hydraulic properties. We gave special emphasis to circular references between atmospheric conditions, soil hydraulic properties and plant nutrient and water uptake. We stress that interdisciplinary approaches are needed that account for a variability of atmospheric conditions and, how this would match to mycorrhizal functions and demands in a way that increased plant nutrient and water uptake can be effectively used for physiological processes and ultimately growth. Only with integrated analyses under a wide range of growing conditions, we will be able to make profound decisions whether or not to use AM in particular crop production systems or can adjust culture conditions in ways that AM plants thrive.
Collapse
Affiliation(s)
- Michael Bitterlich
- Department of Plant-Microbe Interactions, Leibniz-Institute of Vegetable and Ornamental Crops e.V., Großbeeren, Germany
- *Correspondence: Michael Bitterlich,
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Jan Graefe
- Department of Plant-Microbe Interactions, Leibniz-Institute of Vegetable and Ornamental Crops e.V., Großbeeren, Germany
| | - Philipp Franken
- Department of Plant-Microbe Interactions, Leibniz-Institute of Vegetable and Ornamental Crops e.V., Großbeeren, Germany
- Department of Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
|
45
|
Tian H, Yuan X, Duan J, Li W, Zhai B, Gao Y. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. PLoS One 2017; 12:e0172154. [PMID: 28207830 PMCID: PMC5312871 DOI: 10.1371/journal.pone.0172154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolei Yuan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Duan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhu Li
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingnian Zhai
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| | - Yajun Gao
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
46
|
Slavíková R, Püschel D, Janoušková M, Hujslová M, Konvalinková T, Gryndlerová H, Gryndler M, Weiser M, Jansa J. Monitoring CO 2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. MYCORRHIZA 2017; 27:35-51. [PMID: 27549438 DOI: 10.1007/s00572-016-0731-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13CO2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO2 collection system is presented which allows assessment of gaseous CO2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13C allocation to mycorrhizal substrate) and 2.9% (reduction of 13C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO2 released belowground. These results advocate quantification of both above- and belowground CO2 emissions in future studies.
Collapse
Affiliation(s)
- Renata Slavíková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - David Püschel
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Martina Janoušková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Martina Hujslová
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Hana Gryndlerová
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Milan Gryndler
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Martin Weiser
- Faculty of Science, Department of Botany, Charles University in Prague, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|