1
|
Mu Z, Asensio D, Sardans J, Ogaya R, Llusià J, Filella I, Tie L, Liu L, Tariq A, Zeng F, Peñuelas J. Effects of long-term nighttime warming on extractable soil element composition in a Mediterranean shrubland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175708. [PMID: 39179043 DOI: 10.1016/j.scitotenv.2024.175708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Understanding the soil biogeochemical responses to increasing global warming in the near future is essential for improving our capacity to mitigate the impacts of climate change on highly vulnerable Mediterranean ecosystems. Previous studies have primarily focused on the effects of warming on various biogeochemical processes. However, there is limited knowledge about how the changes in water availability associated to high temperatures can alter the bioavailability and dynamics of soil elements, thereby impacting ecosystem productivity, species composition, and pollution through soil biogeochemical and hydrological processes. In this study, we investigated the effects of long-term nighttime warming on the extractable concentrations of organic carbon (EOC), total nitrogen (ETN), total phosphorus (ETP), and 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulfur (S), strontium (Sr), vanadium (V), and zinc (Zn)) through environmental experiments in a semi-arid Mediterranean shrubland. We explored the potential biotic and abiotic mechanisms underlying the seasonal and long-term changes in extractable-mobilizable elemental composition and concentrations. Our findings revealed that prolonged warming led to higher mean annual soil temperature (with an average increase of 0.67 °C from 1999 to 2014), accumulation of soil organic matter (EOC) and extractable concentrations of soil elements (particularly increased ETP and extractable Ca, Mg, Cu, Sr, Mn, and As). These changes were attributed to uniformly higher activities of extracellular soil enzymes and/or lower plant photosynthetic and nutrient uptake capacity linked to more water deficit under warmer conditions. Seasonality unevenly altered element extractable concentrations, with soil microclimate (temperature and water content) and biological (soil microbial and plant) activity being the main drivers of this variability, thus influencing soil element composition. These results suggest significant fluctuations in the extractable concentrations of specific mineral elements in these soils, implying potential future variations in soil element composition as well as the loss of total element concentrations/contents in semi-arid Mediterranean ecosystems due to increasing warming. Therefore, these findings enhance our ability to predict ecosystem management strategies and mitigate the observed negative impacts on plant-soil systems and water quality in the context of climate change.
Collapse
Affiliation(s)
- Zhaobin Mu
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Liehua Tie
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550025 Guiyang, China
| | - Lei Liu
- Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, 848300 Cele, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Shahzad A, Zahra A, Li HY, Qin M, Wu H, Wen MQ, Ali M, Iqbal Y, Xie SH, Sattar S, Zafar S. Modern perspectives of heavy metals alleviation from oil contaminated soil: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116698. [PMID: 38991309 DOI: 10.1016/j.ecoenv.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.
Collapse
Affiliation(s)
- Asim Shahzad
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, AJK, Pakistan.
| | - Hao Yang Li
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Hao Wu
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mei Qi Wen
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mushtaque Ali
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Younas Iqbal
- National Demonstration Centre for Environmental and Planning, College of Geography and Environmental Sciences, Henan University, Kaifeng, China.
| | - Shao Hua Xie
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Shehla Sattar
- Department of environmental sciences, University of Swabi, Pakistan.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab 54770, Pakistan.
| |
Collapse
|
3
|
Wu XP, Gao X, Zhang R, Luan J, Wang Y, Liu S. Nitrogen addition alleviates water loss of Moso bamboo (Phyllostachys edulis) under drought by affecting light-induced stomatal responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173615. [PMID: 38815830 DOI: 10.1016/j.scitotenv.2024.173615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The combined climate-change-evoked drought and nitrogen (N) deposition have severely affected plant carbon and water relations governed by stomata. However, the interplay between steady-state and dynamic stomatal behavior responses to light remains unclear regarding its impact on plant water and carbon relations. The objective here was to investigate whether light-induced stomatal dynamics could mitigate the adverse effects of steady-state gas exchange on water conservation or photosynthesis under drought and N addition conditions. We conducted a manipulative experiment to investigate the impacts of throughfall reduction, N addition, and their combination on light-induced stomatal and photosynthetic dynamics in a Moso bamboo (Phyllostachys edulis) forest. We determined the influence of stomal response rate on water loss and photosynthesis, and further assessed whether it mitigated the effects of steady-state gas exchange (gs). We found that Moso bamboo decreased gs under throughfall reduction, while accelerated stomatal opening and biochemical activation when irradiance increased, which reduced the lag in photosynthesis during the induction period. In contrast, under the combined throughfall reduction and N addition condition, Moso bamboo increased gs but showed faster stomatal closure, which decreased the percentage of transpiration following a decrease in light intensity. Our findings indicate that stomatal dynamic behavior may depend on the effects of steady-state gas exchange on water conservation and carbon uptake under different soil water and N conditions. These discoveries contribute to our understanding of the coupling mechanisms of plant water use and carbon uptake in the context of global changes.
Collapse
Affiliation(s)
- Xi-Pin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruichang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China
| | - Junwei Luan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Yi Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
4
|
Lu WL, Xie XG, Ai HW, Wu HF, Dai YY, Wang LN, Rahman K, Su J, Sun K, Han T. Crosstalk between H 2O 2 and Ca 2+ signaling is involved in root endophyte-enhanced tanshinone biosynthesis of Salvia miltiorrhiza. Microbiol Res 2024; 285:127740. [PMID: 38795408 DOI: 10.1016/j.micres.2024.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.
Collapse
Affiliation(s)
- Wei-Lan Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xing-Guang Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Hong-Wei Ai
- The 967th hospital of PLA, Dalian 116000, People's Republic of China
| | - Hui-Fen Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Yuan-Yuan Dai
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, People's Republic of China
| | - Lu-Nuan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
5
|
Yan C, Feng B, Zhao Z, Zhang Y, Yin K, Liu Y, Zhang X, Liu J, Li J, Zhao R, Zhao N, Zhou X, Chen S. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112082. [PMID: 38583807 DOI: 10.1016/j.plantsci.2024.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 μM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.
Collapse
Affiliation(s)
- Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Feng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Cao T, Shi M, Zhang J, Ji H, Wang X, Sun J, Chen Z, Li Q, Song X. Nitrogen fertilization practices alter microbial communities driven by clonal integration in Moso bamboo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171581. [PMID: 38461973 DOI: 10.1016/j.scitotenv.2024.171581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Nitrogen (N) fertilization is crucial for maintaining plant productivity. Clonal plants can share resources between connected ramets through clonal integration influencing microbial communities and regulating soil biogeochemical cycling, especially in the rhizosphere. However, the effect of various N fertilization practices on microbial communities in the rhizosphere of clonal ramets remain unknown. In this study, clonal fragments of Moso bamboo (Phyllostachys edulis), consisting of a parent ramet, an offspring ramet, and an interconnecting rhizome, were established in the field. NH4NO3 solution was applied to the parent, offspring ramets or rhizomes to investigate the effect of fertilization practices on the structure and function of rhizosphere microbial communities. The differences in N availability, microbial biomass and community composition, and abundance of nitrifying genes among rhizosphere soils of ramets gradually decreased during the rapid growth of Moso bamboo, irrespective of fertilization practice. The soil N availability variation, particularly in NO3-, caused by fertilization practices altered the rhizosphere microbial community. Soil N availability and stable microbial biomass N in parent fertilization were the highest, being 9.0 % and 18.7 %, as well as 60.8 % and 90.4 % higher than rhizome and offspring fertilizations, respectively. The microbial network nodes and links in rhizome fertilization were 1.8 and 7.5 times higher than in parent and offspring fertilization, respectively. However, the diversity of bacterial community and abundance of nitrifying and denitrifying genes were the highest in offspring fertilization among three practices, which may be associated with increased N loss. Collectively, the rhizosphere microbial community characteristics depended on fertilization practices by altering the clonal integration of N in Moso bamboo. Parent and rhizome fertilization were favorable for N retention in plant-soil system and resulted in more stable microbial functions than offspring fertilization. Our findings provide new insights into precision fertilization for the sustainable Moso bamboo forest management.
Collapse
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hangxiang Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jilei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenxiong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Sun Y, Guo J, Alejandro Jose Mur L, Xu X, Chen H, Yang Y, Yuan H. Nitrogen starvation modulates the sensitivity of rhizobacterial community to drought stress in Stevia rebaudiana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120486. [PMID: 38417363 DOI: 10.1016/j.jenvman.2024.120486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Alterations in water regimes or nitrogen (N) availability lead to shifts in the assemblage of rhizosphere microbial community; however, how the rhizosphere microbiome response to concurrent changes in water and N availability remains largely unclear. Herein, we investigated the taxonomic and functional characteristics of rhizobacteria associated with stevia (Stevia rebaudiana Bertoni) under varying combinations of water and N levels. Community diversity and predicted functions of rhizobacteria were predominantly altered by drought stress, with N-starvation modulating these effects. Moreover, N fertilization simplified the ecological interactions within rhizobacterial communities and heightened the relative role of stochastic processes on community assembly. In terms of rhizobacterial composition, we observed both common and distinctive changes in drought-responsive bacterial taxa under different N conditions. Generally, the relative abundance of Proteobacteria and Bacteroidetes phyla were depleted by drought stress but the Actinobacteria phylum showed increases. The rhizobacterial responses to drought stress were influenced by N availability, where the positive response of δ-proteobacteria and the negative response of α- and γ-proteobacteria, along with Bacteroidetes, were further heightened under N starvation. By contrast, under N fertilization conditions, an amplified negative or positive response to drought were demonstrated in Firmicutes and Actinobacteria phyla, respectively. Further, the drought-responsive rhizobacteria were mostly phylogenetically similar, but this pattern was modulated under N-rich conditions. Overall, our findings indicate an N-dependent specific restructuring of rhizosphere bacteria under drought stress. These changes in the rhizosphere microbiome could contribute to enhancing plant stress tolerance.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Junjie Guo
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hao Chen
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
8
|
Liang J, Wang Z, Ren Y, Jiang Z, Chen H, Hu W, Tang M. The alleviation mechanisms of cadmium toxicity in Broussonetia papyrifera by arbuscular mycorrhizal symbiosis varied with different levels of cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132076. [PMID: 37478589 DOI: 10.1016/j.jhazmat.2023.132076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The alleviation of cadmium (Cd) toxicity in Broussonetia papyrifera by arbuscular mycorrhizal (AM) fungi are still not completely elucidated. This study investigated the effects of Rhizophagus irregularis on physiological and biochemical characteristics, and molecular regulation in B. papyrifera under different levels of Cd (0, 30, 90 and 270 mg kg-1 Cd) stress. Results showed that (1) AM symbiosis improved the growth and photosynthesis, enhanced ROS levels as stress signaling and maintained ROS balance under low and medium Cd stress. (2) AM symbiosis regulated AsA-GSH cycle to mitigate ROS overproduction under high Cd stress. (3) AM fungus can chelate more Cd under high Cd stress, increasing soil pH and GRSP content. (4) AM plants can fix or chelate more Cd by P in leaves and reserve more P in stems under high Cd stress. (5) AM symbioses increased root net Cd2+ influx and uptake under medium Cd stress but inhibited under high Cd stress, with upregulation of genes related heavy metals (HMs) transport under medium Cd stress and inhibited the transcription of genes related HMs transport under high Cd stress. Therefore, the alleviation mechanisms of Cd toxicity in B. papyrifera by R. irregularis symbiosis depends on the levels of Cd stress.
Collapse
Affiliation(s)
- Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Dai H, Wei S, Grzebelus D, Skuza L, Jia J, Hou N. Mechanism exploration of Solanum nigrum L. hyperaccumulating Cd compared to Zn from the perspective of metabolic pathways based on differentially expressed proteins using iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129717. [PMID: 35961076 DOI: 10.1016/j.jhazmat.2022.129717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to determine the mechanism involved in only Cd hyperaccumulation by Solanum nigrum L. owing to the uniqueness of the process. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to explore the mechanism by which S. nigrum hyperaccumulates Cd by comparing the differentially expressed proteins (DEPs) for Cd and Zn accumulation (non-Zn hyperaccumulator). Based on the comparison between the DEPs associated with Cd and Zn accumulation, the relative metabolic pathways reflected by 17 co-intersecting specific proteins associated with Cd and Zn accumulation included phagosome, aminoacyl-tRNA biosynthesis, and carbon metabolism. Apart from the 17 co-intersecting specific proteins, the conjoint metabolic pathways reported by 21 co-intersecting specific proteins associated with Cd accumulation and 30 co-intersecting specific proteins associated with Zn accumulation, the most differentially expressed metabolic pathways might cause Cd TF (Translocation factor)> 1 and Zn TF< 1, including protein export, ribosome, amino sugar, and nucleotide sugar metabolism. The determined DEPs were verified using qRT-PCR with the four key proteins M1CW30, A0A3Q7H652, A0A0V0IFB9, and A0A0V0IAC4. The plasma membrane H+-ATPase protein was identified using western blotting. Some physiological indices for protein-related differences indirectly confirmed the above results. These results are crucial to further explore the mechanisms involved in Cd hyperaccumulation.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow 31-120, Poland
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin 71-415, Poland
| | - Jibao Jia
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
10
|
Teglia A, Di Baccio D, Matteucci G, Scartazza A, De Cinti B, Mazzenga F, Ravaioli D, Muzzi E, Marcolini G, Magnani F. Effects of simulated nitrogen deposition on the nutritional and physiological status of beech forests at two climatic contrasting sites in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155362. [PMID: 35460784 DOI: 10.1016/j.scitotenv.2022.155362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities have resulted in a significant increase of reactive nitrogen (N) compounds in the atmosphere and a rise in N deposition on forest ecosystems. Increasing N loads impact forest productivity and health, altering tree physiological status and nutrient balance with possible beneficial and detrimental consequences. The impact of N deposition has received considerable attention by scientific research, covering medium and high latitudes, while experimental studies in the Mediterranean area are almost absent. The present study used a manipulative approach, through replicated N additions (background deposition, 30, 60 kg N ha-1yr-1) to simulate the cumulative effects of N deposition in two beech (Fagus sylvaticaL.) forests located in contrasting climatic regions of Italy. Leaf nutrients and photosynthetic pigments were tested as monitoring indicators after four years of N fertilization. Foliar N and pigment concentrations indicated not limiting N conditions at both forest sites, although changes in chlorophylls and carotenoids showed an early response of the canopy to N additions. N-to-phosphorus (P) and sulfur (S) ratios increased under elevated N fertilization, which could be partly related to the relative enhancement of foliar N concentration, and partly associated with the reduction of foliar P and S. The two eutrophic beech forests monitored were not severely affected by chronic N addition, not showing critical nutritional and physiological impairments over the short to medium period. However, the modifications in leaf nutrient and pigment compositions showed an incipient stress response and accentuated the differences induced by climatic and soil characteristics at the two sites. The potential use of nutrients and photosynthetic pigments in monitoring forest N deposition under contrasting climatic conditions and the eventual limits of manipulative experiments are discussed.
Collapse
Affiliation(s)
- Alessandra Teglia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, Italy.
| | - Daniela Di Baccio
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems (CNR-IRET), Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Giorgio Matteucci
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Scartazza
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems (CNR-IRET), Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Bruno De Cinti
- National Research Council of Italy, Institute for Terrestrial Ecosystems (CNR-IRET), Via Salaria km 29,300, Montelibretti, RM, Italy
| | - Francesco Mazzenga
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), via dei Taurini 19, 00185, Rome
| | - Dario Ravaioli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, Italy
| | - Enrico Muzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, Italy
| | - Graziella Marcolini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, Italy
| | - Federico Magnani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, Italy
| |
Collapse
|
11
|
Shi Y, Yan T, Yuan C, Li C, Rensing C, Chen Y, Xie R, Zhang T, Lian C. Comparative Physiological and Transcriptome Analysis Provide Insights into the Response of Cenococcum geophilum, an Ectomycorrhizal Fungus to Cadmium Stress. J Fungi (Basel) 2022; 8:jof8070724. [PMID: 35887479 PMCID: PMC9323960 DOI: 10.3390/jof8070724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) displays strong toxicity, high mobility, and cannot be degraded, which poses a serious threat to the environment. Cenococcum geophilum (C. geophilum) is one of the most common ectomycorrhizal fungi (ECMF) in the natural environment. In this study, three Cd sensitive and three Cd tolerant strains of C. geophilum were used to analyze the physiological and molecular responses to Cd exposure. The results showed that Cd inhibited the growth of all strains of C. geophilum but had a less toxic effect on the tolerant strains, which may be correlated to a lower content of Cd and higher activity of antioxidant enzymes in the mycelia of tolerant strains. Comparative transcriptomic analysis was used to identify differentially expressed genes (DEGs) of four selected C. geophilum strains after 2 mg/L Cd treatment. The results showed that the defense response of C. geophilum strain to Cd may be closely related to the differential expression of functional genes involved in cell membrane ion transport, macromolecular compound metabolism, and redox pathways. The results were further confirmed by RT-qPCR analysis. Collectively, this study provides useful information for elucidation of the Cd tolerance mechanism of ECMF.
Collapse
Affiliation(s)
- Yuyu Shi
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (T.Y.); (C.Y.)
| | - Tianyi Yan
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (T.Y.); (C.Y.)
| | - Chao Yuan
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (T.Y.); (C.Y.)
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan; (C.L.); (C.L.)
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China;
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (T.Y.); (C.Y.)
- Correspondence: ; Tel.: +86-180-0691-1945
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan; (C.L.); (C.L.)
| |
Collapse
|
12
|
Zhang X, Zhai P, Huang J. Leaf Carbon Exchange of Two Dominant Plant Species Impacted by Water and Nitrogen Application in a Semi-Arid Temperate Steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:736009. [PMID: 35586215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic characteristics are widely used as indicators of plant responses to global environmental changes such as precipitation change and nitrogen (N) deposition increase. How different plant species respond physiologically to the future precipitation change combined with increasing N availability is largely unclear. A field experiment was conducted to study responses in seasonal and interannual leaf carbon (C) exchange of two dominant plant species, Leymus chinensis and Stipa grandis, to additional water (either as spring snow or as summer water) and N application in a semi-arid temperate steppe of China. Our results showed that spring snow and summer water addition both increased the maximum photosynthetic rate (Amax) of two dominant species. Such effect was likely caused by raised light saturation point, the maximum apparent quantum yield, stomatal conductance, and transpiration rate. The N application combined with spring snow or summer water addition both enhanced Amax of S. grandis in both experimental years, whereas N application only increased Amax of L. chinensis combined with summer water addition. Their responses were attributed to a concurrent increase in leaf N concentration (Nleaf) and decrease in leaf phosphorus (P) concentration (Pleaf), indicating that Nleaf and Pleaf affect photosynthetic characteristics to regulate leaf C exchange. Our results suggest that differentiated responses among different species in photosynthetic characteristics may lead to changes in ecosystem structure and functioning under increasing precipitation and N deposition.
Collapse
Affiliation(s)
- Xiaolin Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Penghui Zhai
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Guo A, Zuo X, Hu Y, Yue P, Li X, Lv P, Zhao S. Two Dominant Herbaceous Species Have Different Plastic Responses to N Addition in a Desert Steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:801427. [PMID: 35557730 PMCID: PMC9087737 DOI: 10.3389/fpls.2022.801427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) deposition rates are increasing in the temperate steppe due to human activities. Understanding the plastic responses of plant dominant species to increased N deposition through the lens of multiple traits is crucial for species selection in the process of vegetation restoration. Here, we measured leaf morphological, physiological, and anatomical traits of two dominant species (Stipa glareosa and Peganum harmala) after 3-year N addition (0, 1, 3, and 6 g N m-2 year-1, designated N0, N1, N3, and N6, respectively) in desert steppe of Inner Mongolia. We separately calculated the phenotypic plasticity index (PI) of each trait under different N treatments and the mean phenotypic plasticity index (MPI) of per species. The results showed that N addition increased the leaf N content (LNC) in both species. N6 increased the contents of soluble protein and proline, and decreased the superoxide dismutase (SOD) and the peroxidase (POD) activities of S. glareosa, while increased POD and catalase (CAT) activities of P. harmala. N6 increased the palisade tissue thickness (PT), leaf thickness (LT), and palisade-spongy tissue ratio (PT/ST) and decreased the spongy tissue-leaf thickness ratio (ST/LT) of S. glareosa. Furthermore, we found higher physiological plasticity but lower morphological and anatomical plasticity in both species, with greater anatomical plasticity and MPI in S. glareosa than P. harmala. Overall, multi-traits comparison reveals that two dominant desert-steppe species differ in their plastic responses to N addition. The higher plasticity of S. glareosa provides some insight into why S. glareosa has a broad distribution in a desert steppe.
Collapse
Affiliation(s)
- Aixia Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
| | - Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
| | - Peng Lv
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Lanzhou, China
| | - Shenglong Zhao
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, China
| |
Collapse
|
14
|
Liu D, Zheng K, Wang Y, Zhang Y, Lao R, Qin Z, Li T, Zhao Z. Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar (Populus yunnanensis) to cadmium stress: Physiological and molecular responses. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127430. [PMID: 34678563 DOI: 10.1016/j.jhazmat.2021.127430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Populus yunnanensis Dode, a facultative metallophytic poplar, exhibits afforestation potential in barren mine tailing areas. However, the interactions and functional roles of arbuscular mycorrhizal fungus (AMF) in P. yunnanensis adaptability to heavy metal stress remain unclear. Physiological and molecular responses of P. yunnanensis plantlets to AMF (Funneliformis mosseae) under cadmium (Cd) stress (50 mg kg-1) were investigated. Results showed attenuation of Cd phytotoxicity effects on cell organelles upon AMF inoculation, which also reduced the Cd concentration in the poplar leaves, stems, and roots. Under Cd stress, AMF-blocking of metal transporter (e.g., Ca2+ channel) activity occurred, decreasing root cell Cd influx by reducing H+ efflux. Bioaugmentation of rhizosphere sediments by AMF to stabilize metals with a decreasing DTPA-extractable Cd also occurred. The AMF inoculation promoted Cd conversion into inactive, less phytotoxic forms, and helped to maintain ion homeostasis and relieve nutritional ion (e.g., Ca, Mg) disorders caused by excessive Cd. Leaf enzyme and non-enzyme antioxidant systems were triggered. Root and leaf physiological response patterns differed. The AMF regulated the poplar functional genes, and nine metal-responsive gene clusters were identified. We suggest that AMF is a functional component of P. yunnanensis phenotype extension, contributing to strong adaptability to unfavorable mine tailings conditions.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Kuanyu Zheng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Yue Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Yan Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Ruimin Lao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Zhiyang Qin
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
15
|
Song H, Chen Y, Cai Z, Wu X, Zhang S. Nitrogen-influenced competition between the genders of Salix rehderiana. TREE PHYSIOLOGY 2021; 41:2375-2391. [PMID: 34137865 DOI: 10.1093/treephys/tpab083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Male and female willow plants show spatial segregation of genders along the environmental gradients. The skewed gender ratio of willows is related not only to altitude, but also to nutrient status and sexual competition, which can affect their growth and defense by altering secondary metabolite production. The relationship between metabolites and nutrients in the two genders of Salix rehderiana was explored in the Gongga Mountain. We found that the gender ratio was altered with a change in soil nitrogen (N) status; in the high N habitats, secondary metabolites accumulated in males. Furthermore, a pot experiment was conducted to test the effect of N supply on gender competition in S. rehderiana. Sufficient N supply stimulated females to produce amino acids and carbon (C)-containing secondary metabolites for maintaining their C-N balance, but extra N for males was used for growth to occupy more space. Nitrogen supply induced foliar nutrient imbalances and growth of opportunistic species, allowing them to outcompete neighbors. Better C allocation and storage in male than female willows would benefit intersexual competitiveness of males if environment N increases. Competition between the genders has a significant correlation with skewed gender ratio, spatial separation and resource utilization. Female willows would suffer fiercer competition for space by males with the increased soil N, which would result in the gender ratio alteration. Therefore, gender ratio of willows is likely to convert to gender balance from female-biased with long-term N deposition in the future.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xinxin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Ectomycorrhizal Fungal Strains Facilitate Cd 2+ Enrichment in a Woody Hyperaccumulator under Co-Existing Stress of Cadmium and Salt. Int J Mol Sci 2021; 22:ijms222111651. [PMID: 34769083 PMCID: PMC8583747 DOI: 10.3390/ijms222111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing environmental concern in the world. Fast-growing poplars have been widely utilized for phytoremediation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator, Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate HMs from salt-affected soils. The aim of the present study was to testify whether colonization of P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 μM, 30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycorrhization of woody hyperaccumulator species such as poplar could improve phytoremediation of Cd2+ in salt-affected areas.
Collapse
|
17
|
Peng C, Song Y, Li C, Mei T, Wu Z, Shi Y, Zhou Y, Zhou G. Growing in Mixed Stands Increased Leaf Photosynthesis and Physiological Stress Resistance in Moso Bamboo and Mature Chinese Fir Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:649204. [PMID: 34093612 PMCID: PMC8173113 DOI: 10.3389/fpls.2021.649204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/22/2021] [Indexed: 05/13/2023]
Abstract
Mixed-stand plantations are not always as beneficial for timber production and carbon sequestration as monoculture plantations. Systematic analyses of mixed-stand forests as potential ideal plantations must consider the physiological-ecological performance of these plantations. This study aimed to determine whether mixed moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J. Houz.) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands exhibited better physiological-ecological performance than monoculture plantations of these species. We analyzed leaf photosynthesis, chlorophyll fluorescence, antioxidant enzyme activities, chlorophyll content and leaf chemistry in a moso bamboo stand, a Chinese fir stand and a mixed stand with both species. The results showed that both species in the mixed stand exhibited significantly higher leaf net photosynthesis rate (Amax), instantaneous carboxylation efficiency (CUE), chlorophyll content, maximum quantum yield of photosynthesis (Fv/Fm), photochemical quenching coefficient (qP), PSII quantum yield [Y(II)], leaf nitrogen content, and antioxidant enzyme activities than those in the monoculture plantations. However, the non-photochemical quenching (NPQ) in Chinese fir and 2-year-old moso bamboo was significantly lower in the mixed stand than in the monocultures. In addition, the water use efficiency (WUE) of Chinese fir was significantly higher in the mixed stand. The results suggest that the increase in leaf net photosynthetic capacity and the improved growth in the mixed stand could be attributed primarily to the (i) more competitive strategies for soil water use, (ii) stronger antioxidant systems, and (iii) higher leaf total nitrogen and chlorophyll contents in the plants. These findings suggest that mixed growth has beneficial effects on the leaf photosynthesis capacity and physiological resistance of moso bamboo and Chinese fir.
Collapse
Affiliation(s)
- Chunju Peng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yandong Song
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Chong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Zhili Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yongjun Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| |
Collapse
|
18
|
Pb Stress and Ectomycorrhizas: Strong Protective Proteomic Responses in Poplar Roots Inoculated with Paxillus involutus Isolate and Characterized by Low Root Colonization Intensity. Int J Mol Sci 2021; 22:ijms22094300. [PMID: 33919023 PMCID: PMC8122328 DOI: 10.3390/ijms22094300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023] Open
Abstract
The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. The analyzed plants, lacking a mantle—a protective fungal biofilter—were grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized ‘bare’ roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.
Collapse
|
19
|
Li Q, Peng C, Zhang J, Li Y, Song X. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest. Sci Rep 2021; 11:5578. [PMID: 33692387 PMCID: PMC7947007 DOI: 10.1038/s41598-021-84422-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Forest soils play an important role in controlling global warming by reducing atmospheric methane (CH4) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH4 cycle or CH4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha−1 yr−1) on soil CH4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo (Phyllostachys edulis) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
Collapse
Affiliation(s)
- Quan Li
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changhui Peng
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, 712100, China. .,Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Case Postale 8888, Succursale Centre-Ville, Montreal, H3C3P8, Canada.
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
20
|
Zhang Y, Sa G, Zhang Y, Hou S, Wu X, Zhao N, Zhang Y, Deng S, Deng C, Deng J, Zhang H, Yao J, Zhang Y, Zhao R, Chen S. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124063. [PMID: 33092878 DOI: 10.1016/j.jhazmat.2020.124063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation offers a great potential for affordable remediation of heavy metal (HM)-polluted soil and water. Screening and identifying candidate genes related to HM uptake and transport is prerequisite for improvement of phytoremediation by genetic engineering. Using the cadmium (Cd)-hypersensitive Populus euphratica, an annexin encoding gene facilitating Cd enrichment was identified in this study. With a 12 h exposure to CdCl2 (50-100 μM), P. euphratica cells down-regulated transcripts of annexin1 (PeANN1). PeANN1 was homologue to Arabidopsis annexin1 (AtANN1) and localized mainly to the plasma membrane (PM) and cytosol. Compared with wild type and Atann1 mutant, PeANN1 overexpression in Arabidopsis resulted in a more pronounced decline in survival rate and root length after a long-term Cd stress (10 d, 50 μM), due to a higher cadmium accumulation in roots. PeANN1-transgenic roots exhibited enhanced influx conductance of Cd2+ under cadmium shock (30 min, 50 μM) and short-term stress (12 h, 50 μM). Noteworthy, the PeANN1-facilitated Cd2+ influx was significantly inhibited by a calcium-permeable channel (CaPC) inhibitor (GdCl3) but was promoted by 1 mM H2O2, indicating that Cd2+ entered root cells via radical-activated CaPCs in the PM. Therefore, PeANN1 can serve as a candidate gene for improvement of phytoremediation by genetic engineering.
Collapse
Affiliation(s)
- Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Siyuan Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Xia Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Hou P, Wang F, Luo B, Li A, Wang C, Shabala L, Ahmed HAI, Deng S, Zhang H, Song P, Zhang Y, Shabala S, Chen L. Antioxidant Enzymatic Activity and Osmotic Adjustment as Components of the Drought Tolerance Mechanism in Carex duriuscula. PLANTS (BASEL, SWITZERLAND) 2021; 10:436. [PMID: 33668813 PMCID: PMC7996351 DOI: 10.3390/plants10030436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022]
Abstract
Drought stress is a major environmental constraint for plant growth. Climate-change-driven increases in ambient temperatures resulted in reduced or unevenly distributed rainfalls, leading to increased soil drought. Carex duriuscula C. A. Mey is a typical drought-tolerant sedge, but few reports have examined the mechanisms conferring its tolerant traits. In the present study, the drought responses of C. duriuscula were assessed by quantifying activity of antioxidant enzymes in its leaf and root tissues and evaluating the relative contribution of organic and inorganic osmolyte in plant osmotic adjustment, linking it with the patterns of the ion acquisition by roots. Two levels of stress-mild (MD) and severe (SD) drought treatments-were used, followed by re-watering. Drought stress caused reduction in a relative water content and chlorophyll content of leaves; this was accompanied by an increase in the hydrogen peroxide (H2O2) and superoxide (O2-) contents in leaves and roots. Under MD stress, the activities of catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPX) increased in leaves, whereas, in roots, only CAT and POD activities increased. SD stress led to an increase in the activities of CAT, POD, superoxide dismutase (SOD), and GPX in both tissues. The levels of proline, soluble sugars, and soluble proteins in the leaves also increased. Under both MD and SD stress conditions, C. duriuscula increased K+, Na+, and Cl- uptake by plant roots, which resulted in an increased K+, Na+, and Cl- concentrations in leaves and roots. This reliance on inorganic osmolytes enables a cost-efficient osmotic adjustment in C. duriuscula. Overall, this study revealed that C. duriuscula was able to survive arid environments due to an efficient operation of its ROS-scavenging systems and osmotic adjustment mechanisms.
Collapse
Affiliation(s)
- Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
| | - Feifei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Bin Luo
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528011, China
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- Department of Botany, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (S.D.); (Y.Z.)
| | - Huilong Zhang
- Tianjin Research Institute of Forestry of Chinese Academy of Forestry, Tianjin 300000, China;
| | - Peng Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (S.D.); (Y.Z.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528011, China
| | - Liping Chen
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| |
Collapse
|
22
|
Hu Y, Huang Y, Xu Z, Ma Y, Chen H, Cui D, Su J, Nan Z. Redistribution of calcium and sodium in calcareous soil profile and their effects on copper and lead uptake: A poplar-based phytomanagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142535. [PMID: 33032137 DOI: 10.1016/j.scitotenv.2020.142535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Poplar serves as a phytostabilizator in phytomanagement of the trace metals (TMs) copper (Cu) and lead (Pb) contaminated land. In the process of long-term phytomanagement, it is not clear how the cycling of the mineral nutrients calcium (Ca) and sodium (Na) in calcareous soil will affect poplar remediation mechanisms. We selected a site contaminated by Cu and Pb and phytomanaged by Populus simonii Carr. stands of different ages (7, 14, and 28 years) to study the influencing mechanisms. The results showed that after afforestation, the Ca in the subsoil returned to the topsoil through fallen leaves, whereas the Na in the topsoil migrated downward to the subsoil by leaching, resulting in the redistribution of mineral nutrients in the soil profile. In addition, the Ca content in soil solution of the root-zone was significantly lower relative to that of the bulk soil, whereas the Na content in soil solution was significantly higher in all stands. As a result, because of the competitive adsorption of mineral nutrient and TM cations on the soil surface, the pool of bioavailable TM in root-zone soils did not significantly decrease with stand age. On the contrary, the TM content in poplar leaves (Cu: 31-37 mg kg-1; Pb: 62-84 mg kg-1) and litter (Cu: 230-790 mg kg-1; Pb: 394-1366 mg kg-1) increased significantly with stand age. Nevertheless, the TM content in poplar wood (Cu < 3 mg kg-1; Pb < 12 mg kg-1) remained at an extremely low level in all stands. Our results highlighted that strengthening leaf collection is necessary to eliminate ecological risks and ensure the safe production of poplar wood in the long-term phytomanagement of TM-contaminated land.
Collapse
Affiliation(s)
- Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yu Huang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Ma
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haibin Chen
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Cui
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongren Nan
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Dai H, Wei S, Pogrzeba M, Krzyżak J, Rusinowski S, Zhang Q. The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111847. [PMID: 33388723 DOI: 10.1016/j.ecoenv.2020.111847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/19/2020] [Indexed: 05/15/2023]
Abstract
Bidens pilosa L. is a widely distributed Cd-hyperaccumulator species in the world with large biomass and fast growth rate. The Cd accumulating differences between different ecotypes of B. pilosa is not clear. This experiment firstly compared the Cd concentrations and relative physio-biochemical indices using two B. pilosa ecotypes collected from clean soils. The results showed that the Cd concentrations of stems and leaves of Hanzhong ecotype of B. pilosa (HZ) and Shenyang ecotype (SY) were all higher than their root Cd concentrations in different Cd concentration gradient experiment (from 2.57 mg kg-1 to 37.17 mg kg-1 in soils). Cd concentrations of the roots, stems and leaves of HZ and SY were all higher than in the soils either. However, HZ accumulated higher Cd concentrations than SY, i.e. roots increased by 32.7-45.8%, stems increased by 32.3-46.6% and leaves increased by 33.4-68.4%, respectively. Furthermore, the biomasses of HZ were all higher than the SY either. Compared to SY, higher Cd accumulation of HZ might be relevant with its higher photosynthetic pigment content, stomatal conductance, intercellular CO2 concentration, some antioxidant enzyme activities, H+-ATPase, Ca2+-ATPase and 5'-AMPase activities, and lower malondialdehyde (MDA) content. Particularly, the changes of extractable Cd concentrations in rhizospheric soils of HZ and SY were corresponding to their Cd concentrations. Considering the two different ecotypes of HZ and SY were all collected from different clean farmlands, the new foundings that different mechanisms of HZ and SY accumulating Cd from the soil might be very important for screening and constructing ideal hyperaccumulator aimed at improving phytoremediation capacities in the future.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Qing Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
24
|
Zhang Z, Tariq A, Zeng F, Chai X, Graciano C. Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:32-43. [PMID: 33012086 DOI: 10.1111/plb.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 05/26/2023]
Abstract
The planting of seedlings is the most effective measure for vegetation restoration. However, this practice is challenging in desert ecosystems where water and nutrients are scarce. Calligonum mongolicum is a sand-fixing pioneer shrub species, and its adaptive strategy for nitrogen (N) deposition and drought is poorly understood. Thus, in a pot experiment, we studied the impacts of four N levels (0, 3, 6, 9 gN·m-2 ·year-1 ) under drought or a well-watered regime on multiple eco-physiological responses of 1-year-old C. mongolicum seedlings. Compared to well-watered conditions, drought considerably influenced seedling growth by impairing photosynthesis, osmolyte accumulation and activity of superoxide dismutase and enzymes related to N metabolism. Nitrogen addition improved the productivity of drought-stressed seedlings, as revealed by increased water use efficiency, enhanced superoxide dismutase and nitrite reductase activity and elevated N and phosphorus (P) levels in seedlings. Nevertheless, the addition of moderate to high levels of N (6-9 gN·m-2 ·year-1 ) impaired net photosynthesis, osmolyte accumulation and nitrate reductase activity. N addition and water regimes did not markedly change the N:P ratios of aboveground parts; while more biomass and nutrients were allocated to fine roots to assimilate the insufficient resources. Soluble protein in assimilating shoots might play a vital role in adaptation to the desert environment. The response of C. mongolicum seedlings to N addtion and drought involved an interdependency between soluble protein and morphological, physiological and biochemical processes. These findings provide an important reference for vegetation restoration in arid lands under global change.
Collapse
Affiliation(s)
- Z Zhang
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - A Tariq
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - F Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - X Chai
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
25
|
Gao J, Li Q, Zhang J, Cui K, Wu Z, Shi M, Song X. Biochar Amendment Alters the Nutrient-Use Strategy of Moso Bamboo Under N Additions. FRONTIERS IN PLANT SCIENCE 2021; 12:667964. [PMID: 34249039 PMCID: PMC8261046 DOI: 10.3389/fpls.2021.667964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha-1 yr-1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha-1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from "conservative consumption" to "resource spending." Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.
Collapse
Affiliation(s)
- Jinpei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kunkai Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhizhuang Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Xinzhang Song,
| |
Collapse
|
26
|
Zhang Z, Tariq A, Zeng F, Graciano C, Zhang B. Nitrogen application mitigates drought-induced metabolic changes in Alhagi sparsifolia seedlings by regulating nutrient and biomass allocation patterns. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:828-841. [PMID: 32882620 DOI: 10.1016/j.plaphy.2020.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 05/24/2023]
Abstract
Groundwater and its associated nutrients sustain the establishment and persistence of phreatophytes. Rapid root elongation immediately after germination is vital for desert species to access deep water sources to avoid water-deficit stress. However, the growth strategy and responses to nutrients and water of young phreatophyte seedlings before their roots reach the water table are poorly understood, especially in the scenarios of nitrogen (N) deposition and drought. We investigated how simulated N deposition and drought affect the plasticity of Alhagi sparsifolia seedlings by multiple eco-physiological mechanisms. Seedlings were planted under drought-stressed or well-watered conditions and subjected to various levels of N addition (0, 3.0, 6.0, or 9.0 gN·m-2 yr-1). The amounts of N and water independently or interactively affected the photosynthetic traits, drought tolerance characteristics, morphological traits, biomass allocation strategy, and nutrient distribution patterns among the plant organs. Moreover, changes mediated by N addition at the leaf level reflected the drought acclimation of the seedlings, which may be related to biomass and nutrient partitioning between organs. The roots were found to be more sensitive to variation of the N:phosphorus (P) ratio, and greater proportions of biomass, N, and P were allocated to resource-acquiring organs (i.e., leaves and fine roots) than to other tissues. A. sparsifolia adopts numerous strategies to tolerate drought, and additional N input was crucial to enhance the growth of drought-stressed A. sparsifolia, which was mainly attributable to its positive impact on the N and P uptake capacity mediated by increased biomass allocation to the roots.
Collapse
Affiliation(s)
- Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Bo Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| |
Collapse
|
27
|
Song Y, Chen P, Liu P, Bu C, Zhang D. High-Temperature-Responsive Poplar lncRNAs Modulate Target Gene Expression via RNA Interference and Act as RNA Scaffolds to Enhance Heat Tolerance. Int J Mol Sci 2020; 21:ijms21186808. [PMID: 32948072 PMCID: PMC7555564 DOI: 10.3390/ijms21186808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
High-temperature stress is a threat to plant development and survival. Long noncoding RNAs (lncRNAs) participate in plant stress responses, but their functions in the complex stress response network remain unknown. Poplar contributes to terrestrial ecological stability. In this study, we identified 204 high-temperature-responsive lncRNAs in an abiotic stress-tolerant poplar (Populus simonii) species using strand-specific RNA sequencing (ssRNA-seq). Mimicking overexpressed and repressed candidate lncRNAs in poplar was used to illuminate their regulation pattern on targets using nano sheet mediation. These lncRNAs were predicted to target 185 genes, of which 100 were cis genes and 119 were trans genes. Gene Ontology enrichment analysis showed that anatomical structure morphogenesis and response to stress and signaling were significantly enriched. Among heat-responsive LncRNAs, TCONS_00202587 binds to upstream sequences via its secondary structure and interferes with target gene transcription. TCONS_00260893 enhances calcium influx in response to high-temperature treatment by interfering with a specific variant/isoform of the target gene. Heterogeneous expression of these two lncRNA targets promoted photosynthetic protection and recovery, inhibited membrane peroxidation, and suppressed DNA damage in Arabidopsis under heat stress. These results showed that lncRNAs can regulate their target genes by acting as potential RNA scaffolds or through the RNA interference pathway.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Arabidopsis
- Base Sequence
- Calcium Signaling
- DNA Damage
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Gene Ontology
- Genes, Plant
- Hot Temperature
- Nanostructures
- Nucleic Acid Conformation
- Nucleotide Motifs
- Photosynthesis
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Plants, Genetically Modified
- Populus/genetics
- Populus/physiology
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Recombinant Proteins/metabolism
- Stress, Physiological/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China; (Y.S.); (P.C.); (P.L.); (C.B.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- Correspondence:
| |
Collapse
|
28
|
Szuba A, Marczak Ł, Kozłowski R. Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114585. [PMID: 32387672 DOI: 10.1016/j.envpol.2020.114585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Lead is a dangerous pollutant that accumulates in plant tissues and causes serious damage to plant cell macromolecules. However, plants have evolved numerous tolerance mechanisms, including ectomycorrhizae, to maintain cellular Pb2+ at the lowest possible level. When those mechanisms are successful, Pb-exposed plants should exhibit no negative phenotypic changes. However, actual molecular-level plant adjustments at Pb concentrations below the toxicity threshold are largely unknown, similar to the molecular effects of protective ectomycorrhizal root colonization. In this study, we (1) determined the molecular adjustments in plants exposed to Pb but without visible Pb stress symptoms and (2) examined ectomycorrhizal root colonization (the role of fungal biofilters) with respect to molecular-level Pb perception by plant root cells. Biochemical, microscopic, proteomic and metabolomic studies were performed to determine the molecular status of Populus × canescens microcuttings grown in agar medium enriched with 0.75 mM Pb(NO3)2. Noninoculated and inoculated with Paxillus involutus poplars were analyzed in two independent comparisons of the corresponding control and Pb treatments. After six weeks of growth, Pb caused no negative phenotypic effects. No Pb-exposed poplar showed impaired growth or decreased leaf pigmentation. Proteomic signals of intensified Pb sequestration in the plant cell wall and vacuoles, cytoskeleton modifications, H+-ATPase-14-3-3 interactions, and stabilization of protein turnover in chronically Pb-exposed plants co-occurred with high metabolomic stability. There were no differentially abundant root primary metabolites; only a few differentially abundant root secondary metabolites and no Pb-triggered ROS burst were observed. Our results strongly suggest that proteome adjustments targeting Pb sequestration and ROS scavenging, which are considerably similar but less intensive in ectomycorrhizal poplars than in control poplars due to the P. involutus biofilter (as confirmed in a mineral study), were responsible for the metabolomic and phenotypic stability of poplars exposed to chronic mild Pb stress.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Rafał Kozłowski
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, Universytecka 7, 24-406, Kielce, Poland
| |
Collapse
|
29
|
Red maple (Acer rubrum L.) trees demonstrate acclimation to urban conditions in deciduous forests embedded in cities. PLoS One 2020; 15:e0236313. [PMID: 32706781 PMCID: PMC7380610 DOI: 10.1371/journal.pone.0236313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
The impacts of urbanization, such as urban heat island (UHI) and nutrient loads, can influence tree function through altered physiology and metabolism and stress response, which has implications for urban forest health in cities across the world. Our goal was to compare growth-stimulating and stress-mitigating acclimation patterns of red maple (Acer rubrum) trees in deciduous forests embedded in a small (Newark, DE, US) and a large (Philadelphia, PA, US) city. The study was conducted in a long-term urban forest network on seventy-nine mature red maple trees spanning ten forests across Newark and Philadelphia. We hypothesized that red maples in Philadelphia forests compared to Newark forests will be healthier and more acclimated to warmer temperatures, elevated CO2 concentrations and reactive nitrogen (Nr) deposition, and higher nutrient/heavy metal loads. Therefore, these red maples will have higher foliar pigments, nutrients, and stress-indicating elements, enriched δ15N isotopes and increased free polyamines and amino acids to support a growth-stimulating and stress-induced response to urbanization. Our results indicate red maples are potentially growth-stimulated and stress-acclimated in Philadelphia forests experiencing a greater magnitude of urban intensity. Red maples in Philadelphia forests contained higher concentrations of foliar chlorophyll, %N, δ15N, and nutrients than those in Newark forests. Similarly, lower foliar magnesium and manganese, and higher foliar zinc, cadmium, lead, and aluminum reflected the difference in soil biogeochemistry in Philadelphia forests. Accumulation patterns of foliar free amino acids, polyamines, phosphorous, and potassium ions in red maples in Philadelphia forests shows a reallocation in cellular metabolism and nutrient uptake pathways responsible for physiological acclimation. Our results suggest the approach used here can serve as a model for investigating ‘plant physiology’ and the use of urban trees as a biomonitor of the impacts of ‘urban pollution’ on urban forests. The results suggest that cellular oxidative stress in trees caused by pollutant uptake is mitigated by the accumulation of free amino acids, polyamines, and nutrients in a larger city. Our study provides a framework for determining whether trees respond to complex urban environments through stress memory and/or acclimation.
Collapse
|
30
|
Lan XY, He QS, Yang B, Yan YY, Li XY, Xu FL. Influence of Cd exposure on H + and Cd 2+ fluxes in the leaf, stem and root of a novel aquatic hyperaccumulator - Microsorum pteropus. CHEMOSPHERE 2020; 249:126552. [PMID: 32217414 DOI: 10.1016/j.chemosphere.2020.126552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Microsorum pteropus has been proven to be a potential novel aquatic Cd hyperaccumulator. In this study, Non-invasive Micro-test Technology (NMT) was used to observe the ion fluxes of different M. pteropus tissues under Cd exposure. M. pteropus can hyperaccumulate more than 1000 mg/kg Cd in roots and leaves and approximately 600 mg/kg Cd in stems after seven days of exposure to 500 μM Cd, showing that this plant have a great capacity for Cd enrichment and resistance. The NMT test found H+ fluxes increased in all tissues after Cd exposure, with the largest increases being observed in stems, followed by the leaves and roots. Cd2+ fluxes showed different accumulation levels in different tissues, with low-level Cd exposure leading to influxes into roots and leaves, and high-level Cd exposure resulting in effluxes from roots. No significant influxes or effluxes were observed in leaves under high-level Cd exposure, or in stems under low- and high-levels of Cd exposure. However, transient high-level Cd exposure showed long-term Cd2+ influxes into roots and short-term Cd2+ effluxes out of stems and leaves. The roots of M. pteropus had greater regulation mechanisms for Cd enrichment and resistance, with influxes occurring following low-level exposure and effluxes occurring from high-level exposure. When exposed to Cd, M. pteropus stems showed less transportation and absorption. Low-level Cd exposure resulted in individual leaves directly absorbing Cd from hydroponic solutions. Different Cd enrichment and resistance mechanisms were exhibited by different M. pteropus tissues.
Collapse
Affiliation(s)
- Xin-Yu Lan
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qi-Shuang He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bin Yang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yun-Yun Yan
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xin-Yuan Li
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Song X, Peng C, Ciais P, Li Q, Xiang W, Xiao W, Zhou G, Deng L. Nitrogen addition increased CO 2 uptake more than non-CO 2 greenhouse gases emissions in a Moso bamboo forest. SCIENCE ADVANCES 2020; 6:eaaw5790. [PMID: 32206705 PMCID: PMC7080497 DOI: 10.1126/sciadv.aaw5790] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/20/2019] [Indexed: 05/05/2023]
Abstract
Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO2 exchange and the emission of non-CO2 GHGs (CH4 and N2O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N2O and CH4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N2O emission, and reduced soil CH4 uptake. Despite higher N2O and CH4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO2 equivalent hectare-1 year-1 after 4 years of N addition against 22.7 hectare-1 year-1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare-1 year-1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO2 equivalent year-1.
Collapse
Affiliation(s)
- Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Corresponding author.
| | - Changhui Peng
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succursale Centre-Ville, Montreal H3C3P8, Canada
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ, Gif-sur-Yvette 91191, France
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Shen H, Dong S, Li S, Xiao J, Han Y, Yang M, Zhang J, Gao X, Xu Y, Li Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:731-737. [PMID: 31112927 DOI: 10.1016/j.envpol.2019.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha-1year-1 (CK), 8 kgNha-1year-1 (Low N), and 72 kg N ha-1 year-1 (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha-1year-1) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Collapse
Affiliation(s)
- Hao Shen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Shikui Dong
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China.
| | - Shuai Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yuhui Han
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Mingyue Yang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Jing Zhang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Xiaoxia Gao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yudan Xu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yu Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yangliu Zhi
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Shiliang Liu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Quanming Dong
- Qinghai Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, 810003, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Key Laboratory of Restoration Ecology of Cold Are in Qinghai Province, Xining, 810008, China
| | | |
Collapse
|
33
|
Sa G, Yao J, Deng C, Liu J, Zhang Y, Zhu Z, Zhang Y, Ma X, Zhao R, Lin S, Lu C, Polle A, Chen S. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. THE NEW PHYTOLOGIST 2019; 222:1951-1964. [PMID: 30756398 PMCID: PMC6594093 DOI: 10.1111/nph.15740] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.
Collapse
Affiliation(s)
- Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Gansu Provincial Key Laboratory of Aridland Crop SciencesGansu Agricultural UniversityLanzhou730070China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Zhimei Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Xujun Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Urat Desert‐Grassland Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of ScienceLanzhou730000China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Forest Botany and Tree PhysiologyUniversity of GoettingenGöttingen37077Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| |
Collapse
|
34
|
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo ZB. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. PLANT, CELL & ENVIRONMENT 2019; 42:1087-1103. [PMID: 30375657 DOI: 10.1111/pce.13471] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Heinz Rennenberg
- Institute for Forest Sciences, University of Freiburg, 79110, Freiburg, Germany
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
35
|
Tang J, Sun B, Cheng R, Shi Z, Da Luo, Liu S, Centritto M. Effects of soil nitrogen (N) deficiency on photosynthetic N-use efficiency in N-fixing and non-N-fixing tree seedlings in subtropical China. Sci Rep 2019; 9:4604. [PMID: 30872731 PMCID: PMC6418086 DOI: 10.1038/s41598-019-41035-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/11/2022] Open
Abstract
Soil nitrogen (N) deficiencies can affect the photosynthetic N-use efficiency (PNUE), mesophyll conductance (gm), and leaf N allocation. However, lack of information about how these physiological characteristics in N-fixing trees could be affected by soil N deficiency and the difference between N-fixing and non-N-fixing trees. In this study, we chose seedlings of two N-fixing (Dalbergia odorifera and Erythrophleum fordii) and two non-N-fixing trees (Castanopsis hystrix and Betula alnoides) as study objects, and we conducted a pot experiment with three levels of soil N treatments (high nitrogen, set as Control; medium nitrogen, MN; and low nitrogen, LN). Our results showed that soil N deficiency significantly decreased the leaf N concentration and photosynthesis ability of the two non-N-fixing trees, but it had less influence on two N-fixing trees. The LN treatment had lower gm in D. odorifera and lower leaf N allocated to Rubisco (PR), leaf N allocated to bioenergetics (PB), and gm in B. alnoides, eventually resulting in low PNUE values. Our findings suggested that the D. odorifera and E. fordii seedlings could grow well in N-deficient soil, and adding N may increase the growth rates of B. alnoides and C. hystrix seedlings and promote the growth of artificial forests.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China. .,Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Da Luo
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, 830000, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|