1
|
El-Hefny M, Hussien MK. Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment. Sci Rep 2025; 15:774. [PMID: 39755703 DOI: 10.1038/s41598-024-82127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L. extract (ME) as a biostimulant in combination with humic acid (HA) in a field experiment in two successive seasons of 2022 and 2023. The phenolic, flavonoid and water-soluble vitamins of the ME were analyzed using an HPLC. The protein amino acids of the ME were identified by an amino acid analyzer. The prepared concentrations of HA (0, 1, 2, and 4 g/L) were applied to the soil. While, they for ME (0, 2, 4, and 6 g/L) were added as a foliar spray. The EO compositions collected from the leaves of the treated L. latifolia plants were subjected to the hydro-distillation method and analyzed using GC-MS. The most prevalent vitamins found in ME were vitamin B12, vitamin C, and folic acid. Besides, several phenolic compounds were found in ME, such as catechol, cinnamic acid and syringic acid, while flavonoid chemicals, such as luteolin and quercetin. Also, alanine, ammonia, aspartic acid, glutamic acid, glycine, and tyrosine were the ME's most prominent nitrogenous and amino acid components. The most effective treatments of HA and ME on the plant height, the number of branches/plant, and plant fresh weight were 4 + 6 g/L and 4 + 2 g/L for leaf area and chlorophyll content, it was 4 + 4 g/L; and for EO percentage were 4 + 0 g/L, 2 + 0 g/L, and 4 + 4 g/L, compared to the control treatment for each characteristic. The main EO compounds eucalyptol, camphor, α-pinene, β-pinene, Δ-elemene, germacrene D-4-ol, isoborneol, β-caryophyllene oxide, and tau.-cadinol identified in the leaves were found in the range of 28.74-46.19%, 15.34-30.49%, 3.39-7.16%, 0-5.08%, 0-5.18%, 0-3.20%, 0-3.31% and 0-3.40%, respectively. It can be concluded that a combination treatment of HA and ME as natural biostimulant compounds at 4 + 4 g/L could be recommended for good plant growth, and EO quantity of L. latifolia plants.
Collapse
Affiliation(s)
- Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mahmoud Khattab Hussien
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
2
|
Mishra A, Kar S, Bisht N, Mishra SK, Chauhan PS. Synergistic effect of Adathoda vasica plant-derived biostimulant and PGPR on Zea mays L. for drought stress management. Microbiol Res 2025; 290:127968. [PMID: 39536514 DOI: 10.1016/j.micres.2024.127968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Drought is a significant abiotic stress that adversely affects the physiological and biochemical processes in crops, posing a considerable challenge to agricultural productivity. The present study explored the efficacy of plant-derived biostimulant (PDB) and plant growth-promoting rhizobacteria (PGPR) strains Pseudomonas putida (RA) and Paenibacillus lentimorbus CHM12) in the management of negative impacts of drought stress in Zea mays (maize). Adathoda vasica leaf extracts (ADLE) emerged as the most potent biostimulant of the seven evaluated medicinal plant extracts. The synergetic effect of ADLE and RA enhances plant vegetative growth (root length, shoot length, fresh weight and dry weight) as well as significantly modulates drought-induced oxidative stress, as indicated by higher chlorophyll content and increased sugar and phenolic levels and reduction of proline level. The expression of defence-related (ZmAPX, ZmSOD, and ZmCAT) and transcription factor (ZmNAC, ZmWRKY, and ZmMYB) genes further supported the beneficial effects of this synergism under drought conditions. Furthermore, metabolite profiling through GC-MS analysis showed significant alterations in metabolites such as glucose, galactose, mannose, hexopyranose, linolenic acid, hexadecenoic acid, and butanedioic acid when PDB and PGPR were applied together. Overall, the findings of the present study affirm that the combined application of plant-derived biostimulant ADLE and plant-beneficial rhizobacteria RA can effectively alleviate the adverse effects of drought on maize, providing an eco-friendly and sustainable solution for improving productivity under stress.
Collapse
Affiliation(s)
- Abhilasha Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Srishti Kar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Bisht
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
3
|
Ben Sedrine I, Werghi S, Hachef A, Maalaoui A, Zarkouna R, Akriche S, Hannachi H, Zehdi S, Fakhfakh H, Gorsane F. Alleviation of drought stress in tomato by foliar application of seafood waste extract. Sci Rep 2024; 14:30572. [PMID: 39706919 DOI: 10.1038/s41598-024-80798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants. Along with changes in morphological parameters, the accumulation of chlorophyll and carotenoids was improved. The biostimulant also mediates the accumulation of osmoprotectants and an increased leaf water content. Furthermore, the biostimulant effectively promotes tolerance by increasing drought-stress SIERF84 Transcription factor and decreasing both SIARF4 and SlWRKY81 transcript levels, which in turn, mediates stomatal closure. In addition, the up-regulation of key genes related to NO3- uptake (NTR1.1/2) and assimilation (NR) coupled with the downregulation of ammonium transporters' genes (AMT1.1/2), allowed the uptake of NO3- over NH4+ in the tolerant genotype which is likely to be associated with drought tolerance. Overall, the biostimulant was effective in alleviating water stress and showed similar effects to commercial chitosan. Besides the benefits of a circular economy framework, this biostimulant-based approach is innovative to promote a sustainable eco-agriculture, in the face of persistent water scarcity.
Collapse
Grants
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
Collapse
Affiliation(s)
- Imen Ben Sedrine
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Afifa Hachef
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Ahlem Maalaoui
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Rahma Zarkouna
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Samah Akriche
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Hedia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint (LR18ES04), University of Tunis El Manar, Tunis, Tunisia
| | - Salwa Zehdi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia.
| |
Collapse
|
4
|
Heydarzadeh S, Tobeh A, Jahanbakhsh S, Farzaneh S, Vitale E, Arena C. The Application of Stress Modifiers as an Eco-Friendly Approach to Alleviate the Water Scarcity in Ajwain ( Carum copticum L.) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3354. [PMID: 39683147 DOI: 10.3390/plants13233354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Stress modifiers are recognized as biostimulants providing beneficial effects on various plant species. However, the specific potential of modulators such as melatonin, chitosan, humic acid, and selenium in enhancing the resistance of ajwain (Carum copticum L.) plants to water scarcity remains an open question. To address this knowledge gap, we conducted a randomized, field block-designed factorial experiment over two years (2022-2023) to compare the effectiveness of these biostimulants in mitigating the impact of water shortage on ajwain plants. This study involved three irrigation regimes: 100% field water capacity (FC100%-unstressed), 75% irrigation deficit (FC75%-moderate) and 50% irrigation deficit (FC50%-severe), and four modifier treatments (melatonin, chitosan, humic acid, selenium), plus untreated controls. Plant growth, seed yields, essential oil production, as well as eco-physiological traits were studied to assess the efficacy of these compounds as stress modulators. Water regimes and stress modifier applications, as a single factor or in synergy, significantly affected plant physiology and seed yield, highlighting the importance of sustainability in agricultural practices. Compared to FC100%, biological and seed yield, chlorophyll, and nutrient content decreased under FC75% and FC50%, while essential oil production, proline, soluble sugars, flavonoids, phenols and antioxidant enzymatic activity increased. Notably, regardless of the type of modulator used, the application of these modifiers improved all physiological attributes under moderate and severe irrigation deficits. Among the involved compounds, melatonin induced the most pronounced effects, leading to higher biological and seed yield, essential and fixed oil production, relative leaf water content, chlorophyll and nutrient concentration, and antioxidant activity. Our results demonstrate that such compounds effectively function as stress modulators against water scarcity in ajwain plants by preserving specific eco-physiological traits and promoting water saving. These findings provide valuable insights into their use as a nature-based solution for addressing water stress in sustainable agriculture and climate change challenges.
Collapse
Affiliation(s)
- Saeid Heydarzadeh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Ahmad Tobeh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Sodabeh Jahanbakhsh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Salim Farzaneh
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Katerova Z, Todorova D, Vaseva II, Shopova E, Petrakova M, Iliev M, Sergiev I. Effects of Melatonin Pre- and Post-Drought Treatment on Oxidative Stress Markers and Expression of Proline-Related Transcripts in Young Wheat Plants. Int J Mol Sci 2024; 25:12127. [PMID: 39596196 PMCID: PMC11594100 DOI: 10.3390/ijms252212127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Wheat can tolerate a mild water deficit, but prolonged drought causes a number of detrimental physiological changes resulting in a substantial decrease in productivity. The present study evaluates the potential of the natural plant growth regulator melatonin to alleviate the negative effects of moderate drought in two Bulgarian winter wheat cultivars at the early vegetative stage. Melatonin doses of 75 µM were root-supplemented 24 h before or after the stress period. The levels of several biometric parameters, osmolyte content and stress indicators as well as the expression of genes coding for key enzymes of the proline biosynthesis pathway were analyzed in leaves at the end of the drought stress and after two and four days of recovery. Applied alone, melatonin did not exert significant effects on most of the monitored parameters. Water deprivation negatively affected seedlings' fresh weight and water content and increased the stress markers and osmolyte levels. These were accompanied by a high accumulation of TaP5CS and TaP5CR transcripts coding for the enzymes Δ-pyrroline-5-carboxylate synthase and Δ-pyrroline-5-carboxylate reductase, respectively. The effect of melatonin in reducing drought stress was similar whether applied before or after exposure, though slightly more effective when used as a pre-treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.K.); (D.T.); (I.I.V.); (E.S.); (M.P.); (M.I.)
| |
Collapse
|
6
|
Narayanan K, Chellappan RK. Exploring the growth and phytoremediation efficacy of Suaeda fruticosa in agricultural soil contaminated by shrimp aquaculture. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39520281 DOI: 10.1080/15226514.2024.2426177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plants face numerous environmental challenges from biotic and abiotic stressors, with soil salinization emerging as a significant global concern. The coastal regions of Tamil Nadu, face severe environmental challenges due to discharge of saline water from shrimp farms exacerbates this issue, compromising the viability of paddy and other crops in the vicinity. This study explores the phytoremediation potential of Suaeda fruticosa in addressing soil salinity resulting from shrimp farming activities under field conditions over a 120-day period to restore soil health in salt affected soil. This research demonstrates Suaeda fruticosa's exceptional salt tolerance and bioaccumulation potential in facilitating soil restoration. Significant enhancements were observed in various growth parameters, including 466% increase in plant height, 338% in fresh weight and 387% in dry weight. Biochemical parameters also showed substantial enhancements with total chlorophyll, protein, proline, phenol, and glycinebetaine levels increasing by 655%, 588%, 690%, 153%, and 531%, respectively. Enzymatic activities exhibited notable elevations as well, with catalase, peroxidase, and polyphenol oxidase activities escalating by 258%, 587%, and 121% respectively, indicating robust adaptation to saline environments. Moreover, Suaeda fruticosa exhibited remarkable bioaccumulation capabilities, accumulating 461 kg NaCl ha-1. This led to substantial improvements in soil characteristics, including a reduction in pH from 8.8 to 6.49, electrical conductivity from 5.7 to 1.53 dSm-1, and sodium adsorption ratio from 16.1 to 4.4 mmol L-1. The successive cultivation of Suaeda fruticosa in this study, has proven to be a viable strategy for reclaiming salt-affected lands, thereby alleviating a significant constraint on crop productivity.
Collapse
Affiliation(s)
- Killivalavan Narayanan
- Phytoremediation Lab, Department of Botany, Faculty of Science, Annamalai University, Chidambaram, India
| | | |
Collapse
|
7
|
Ben Saad R, Ben Romdhane W, Wiszniewska A, Baazaoui N, Taieb Bouteraa M, Chouaibi Y, Alfaifi MY, Kačániová M, Čmiková N, Ben Hsouna A, Garzoli S. Rosmarinus officinalis L. essential oil enhances salt stress tolerance of durum wheat seedlings through ROS detoxification and stimulation of antioxidant defense. PROTOPLASMA 2024; 261:1207-1220. [PMID: 38940918 PMCID: PMC11511768 DOI: 10.1007/s00709-024-01965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Salt-induced stress poses a significant barrier to agricultural productivity by impeding crop growth. Presently, environmentalists are dedicated to safeguarding food security by enhancing agricultural yields in challenging environments. Biostimulants play a crucial role in mitigating abiotic stresses in crop production, and among these, plant essential oils (EOs) stand out as organic substances with diverse biological effects on living organisms. Among the natural promoters of plant growth, Rosmarinus officinalis L. essential oil (RoEO) has gained considerable attention. Although the manifold effects of essential oils (EOs) on plant growth have been extensively demonstrated, their impact on salt stress tolerance in durum wheat seedlings remains unexplored. This investigation was undertaken to evaluate the biostimulatory capabilities of RoEO on the durum wheat cultivar "Mahmoudi." The effects of three RoEO concentrations (1, 2.5, and 5 ppm) on seed germination, growth establishment, and the induction of salt resistance under salinity conditions (150 mM NaCl) were tested. At 5 ppm, RoEO enhanced seedlings' tolerance to salinity by improving growth and reducing membrane deterioration and oxidative stress-induced damage. The expression profile analyses of seven stress-related genes (TdNHX1, TdSOS1, TdSOD, TdCAT, TdGA20-ox1, TdNRT2.1, and TdGS) using RT-qPCR showed enhancement of several important genes in durum wheat seedlings treated with 5 ppm RoEO, even under control conditions, which may be related to salt stress tolerance. The results indicate that the application of RoEO suggests a possible alternative strategy to increase salt tolerance in durum wheat seedlings towards better growth quality, thus increasing ROS scavenging and activation of antioxidant defense.
Collapse
Affiliation(s)
- Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Cracow, Poland
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
- Faculty of Sciences of Bizerte UR13ES47, University of Carthage, BP W, 7021, Jarzouna, Bizerte, Tunisia
| | - Yosra Chouaibi
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043, Warsaw, Poland
| | - Natália Čmiková
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Anis Ben Hsouna
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P '1177', 3018, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5100, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
Cerruti P, Campobenedetto C, Montrucchio E, Agliassa C, Contartese V, Acquadro A, Bertea CM. Antioxidant activity and comparative RNA-seq analysis support mitigating effects of an algae-based biostimulant on drought stress in tomato plants. PHYSIOLOGIA PLANTARUM 2024; 176:e70007. [PMID: 39703136 DOI: 10.1111/ppl.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Drought is a significant global environmental stress. Biostimulants offer a sustainable solution to enhance crop tolerance and mitigate productivity losses. This study assessed the impact of foliar application of ERANTHIS®, a biostimulant derived from the algae Ascophyllum nodosum and Laminaria digitata and yeast extracts, on tomato plants under mild water stress. Evaluations were conducted at 5 and 24 hours after the third treatment. Under optimal water conditions, the biostimulant showed a priming effect, with an early increase of stress markers and a timing-specific modulation of ROS non enzymatic and enzymatic ROS scavenging activities. Under drought stress, the biostimulant later decreased stress markers, by aligning the majority of analyzed ROS scavengers closer to levels in well-irrigated plants. Transcriptome analysis using RNA-seq data revealed differentially expressed genes (DEGs) and multivariate data highlighted groups of co-regulated genes (k-means clustering). Genes involved in water channel activity, transcription regulator activity, and oxidoreductase activity were significantly modulated. Cluster analysis identified distinct gene clusters influenced by the biostimulant under optimal conditions, including early responses (cell wall modification, hormone signaling) and late responses (RNA modification, nutrient uptake process). Under water stress, early responses involved actin filament organization and MAPK signaling, while late responses were related to plasma membrane components and cell wall organization. This study, integrating biochemical and transcriptomic data, provides a comprehensive understanding of how a biostimulant primes plants under optimal conditions and mitigates water stress effects, offering valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Paolo Cerruti
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Elisa Montrucchio
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | | | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
9
|
Vultaggio L, Ciriello M, Campana E, Bellitto P, Consentino BB, Rouphael Y, Colla G, Mancuso F, La Bella S, Napoli S, Sabatino L. Single or Blended Application of Non-Microbial Plant-Based Biostimulants and Trichoderma atroviride as a New Strategy to Enhance Greenhouse Cherry Tomato Performance. PLANTS (BASEL, SWITZERLAND) 2024; 13:3048. [PMID: 39519966 PMCID: PMC11548452 DOI: 10.3390/plants13213048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The need to increase yield and enhance the sustainability of crop production systems has led to the development and employment of natural products, such as plant biostimulants. In recent years, a number of reports have researched the effects of biostimulants on plant performance; however, few studies have focused on the mutual application of microbial and/or non-microbial biostimulants. This research, conducted in the framework of the SO.MI.PR.O.N regional project, aimed to investigate the single or mutual application of three biostimulants, a tropical plant extract (PE), a vegetal protein hydrolysate (PH), and Trichoderma atroviride, on 'Creativo' F1 cherry tomato plants cultivated during two growing cycles (2022-2023 and 2023-2024). Our results showed that plants treated with the combination Tricho + PE + PH had statistically significant higher fresh shoot biomass (+64.2%, 1647.0 g plant-1), total fruit production (+37.9%, 1902.5 g plant-1), marketable fruit production (+52.9%, 1778.5 g plant-1), and average weight of marketable fruits (+53.1%, 17.0 g) compared to control plants (untreated plants). Furthermore, biostimulant treatments, especially T. atroviride, variably enhanced cherry tomato fruits' qualitative traits, such as firmness, total soluble solids, ascorbic acid, lycopene, and total polyphenols compared to control plants. Overall, the best combinations to increase tomato fruit qualitative features were PE + PH, Tricho + PE, and Tricho + PH. From an economic point of view, the best treatment for achieving the highest net return was PE. This study underlines that biostimulant features (yield, qualitative aspects, and economic profitability) can be supported through the application of specific biostimulant combinations.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Emanuela Campana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Pietro Bellitto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Beppe Benedetto Consentino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Fabiana Mancuso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Salvatore La Bella
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy
| | - Simona Napoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Leo Sabatino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| |
Collapse
|
10
|
Franzoni G, Ferrante A. Plant extract improves quality traits of green and red lettuce cultivars. Heliyon 2024; 10:e39224. [PMID: 39640666 PMCID: PMC11620208 DOI: 10.1016/j.heliyon.2024.e39224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The use of biostimulants in agriculture has been rapidly increasing in recent years, because of their positive effects on crop yield, product quality, and tolerance to abiotic stresses. In the present study the efficacy of multiple applications of a plant-derived biostimulant, obtained from the aqueous maceration of borage (Borago officinalis, L.) flowers on two lettuce cultivars, namely a green (Lactuca sativa L. cv. Expertise RZ) and red (Lactuca sativa L. cv. Codex RZ) Salanova® was evaluated. The treatment was applied at 10 mL L-1 as foliar spray three times, once a week starting from two weeks after transplant. Control plants were treated with water. Non-destructive measurements (pigments, leaf nitrogen index, chlorophyll a fluorescence) were taken during plant growth after at each treatment application. At the end of the experiment, destructive analyses were performed to assess qualitative traits. The research work was focused on the evaluation of physiological parameter changes during plant growth, and on primary and secondary metabolism. Foliar applications did not affect the accumulation of total sugars (4.56 mg g-1 in Expertise, 3.5 mg g-1 in Codex) in either cultivar. However, the lettuce head weight was negatively affected by the extract application in red cultivar (-10 g/plant), while no changes were observed in the green lettuce. The nitrogen-flavonol index (NFI) increased after the third application of borage extract in green cultivar (+67 %), suggesting an improvement of nitrogen nutrition status or a reduced stress condition. A different response resulted in term of maximum quantum efficiency of PSII (FV/FM), performance index (PI), nitrate, and anthocyanin accumulation in leaves. The FV/FM ratio significantly increased in green cultivar after the first application (from 0.80 to 0.84) and at harvest (from 0.79 to 0.84). The PI showed a slight but not significant increase at the same time points. On the contrary, the PI was significantly higher in red cultivar after the third application (+9.4 %). Interestingly, the borage extract induced a significant decrease of nitrate accumulation in lettuce leaves of the red cultivar (from 4149.7 to 2711.6 mg/kg, -34 %). At the same time a positive variation of anthocyanin content was observed in red lettuce (+24.7 %). The application of biostimulant products might improve the quality of some lettuce varieties as regards the accumulation of metabolites useful for the plant to overcome stress conditions and fundamental in human healthy diet, increasing the leaf concentration of Ca, Na, and Mg.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Science, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Science, University of Milan, Via Celoria 2, 20133, Milan, Italy
- Institute of Crop Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| |
Collapse
|
11
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
12
|
Lenart A, Wrona D, Krupa T. Biostimulators with marine algae extracts and their role in increasing tolerance to drought stress in highbush blueberry cultivation. PLoS One 2024; 19:e0306831. [PMID: 39298418 DOI: 10.1371/journal.pone.0306831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 09/21/2024] Open
Abstract
Drought is one of the most serious challenges facing agriculture and ecosystems around the world. With more frequent and more extreme weather events, the effects of drought are becoming more severe, leading to yield losses, soil depletion and environmental degradation. In this work, we present an analysis of the impact of a marine algae biostimulanat andits ability to offset the effects of drought stress in blueberry cultivation. The aim of the research was to evaluate various fertilisation programs in increasing plant resistance to abiotic stress such as drought. It was tested whether the algal biostimulator provides the same tolerance to drought stress in highbush blueberry plants as regular fertilisers without biostimulation. The research was conducted in 2022 in a greenhouse in controlled drought conditions. Three-year-old highbush blueberry bushes (12 pieces) were used in the experiment. Highbush blueberry bushes (Vaccinium corymbosum) 'Brigitta Blue' varieties were planted in plastic pots with a capacity of 10 dm3 containing an acidic substrate and placed in a greenhouse. Controlled lighting conditions were maintained using sodium lamps and a temperature of 25°C/20°C day/night. The substrate in pots was maintained at 80% of field water capacity by manual watering and weekly supply of nutrient solution for 5 weeks until water deficit occurred. Half of the plants were sprayed weekly with biostimulant at a concentration of 1%, three times 1 week apart (1 application per week). The biostimulant was evenly applied to the entire plant. Seven days after the third application of the product, half of the unsprayed and sprayed plants were subjected to water deficit stress by holding thewatering until 40% of the field water capacity (FC) was reached. The experimental layout included four combinations: C-Control-no biostimulation, no water deficit; CS-Stress control-water deficit up to 40% FC, no biostimulation; B-Biostimulator-no water deficit, biostimulation; BS-Stress plus biostimulator-water deficit up to 40% FC, biostimulation. Fertilisers with seaweed extracts show the ability to reduce the adverse effects of stress, promoting plant resilience, including tolerance to drought stress. The following were evaluated in the experiment: catalase activity, peroxidase activity, free malondialdehyde content, photosynthetic activity and leaf mineral content. The biostimulant used in experiment increased the oxidative activity of the enzymes pe-roxidase and catalase under simulated drought stress conditions. The algal biostimulant increased the average value of catalase activity by 20% in comparison to the control plants, in both combinatinations. The tested biostimulator had no effect on the chlorophyll content in the leaves or the concentration of nutrients in the leaves. The effect of marine algae products on the yield quantity and high quality is related among other to bioactive substances which helps to prevent drought stress.
Collapse
Affiliation(s)
- Agnieszka Lenart
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Dariusz Wrona
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Tomasz Krupa
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| |
Collapse
|
13
|
İkiz B, Dasgan HY, Balik S, Kusvuran S, Gruda NS. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC PLANT BIOLOGY 2024; 24:808. [PMID: 39198726 PMCID: PMC11351459 DOI: 10.1186/s12870-024-05520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
BACKROUND The utilization of high-quality water in agriculture is increasingly constrained by climate change, affecting availability, quality, and distribution due to altered precipitation patterns, increased evaporation, extreme weather events, and rising salinity levels. Salinity significantly challenges salt-sensitive vegetables like lettuce, particularly in a greenhouse. Hydroponics water quality ensures nutrient solution stability, enhances nutrient uptake, prevents contamination, regulates pH and electrical conductivity, and maintains system components. This study aimed to mitigate salt-induced damage in lettuce grown via the floating culture method under 50 mM NaCl salinity by applying biostimulants. RESULTS We examined lettuce's physiological, biochemical, and agronomical responses to salt stress after applying biostimulants such as amino acids, arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria (PGPR), fulvic acid, and chitosan. The experiment was conducted in a greenhouse with a randomized complete block design, and each treatment was replicated four times. Biostimulant applications alleviated salt's detrimental effects on plant weight, height, leaf number, and leaf area. Yield increases under 50 mM NaCl were 75%, 51%, 31%, 34%, and 33% using vermicompost, PGPR, fulvic acid, amino acid, and chitosan, respectively. Biostimulants improved stomatal conductance (58-189%), chlorophyll content (4-10%), nutrient uptake (15-109%), and water status (9-107%). They also reduced MDA content by 26-42%. PGPR (1.0 ml L‒1), vermicompost (2 ml L‒1), and fulvic acid (40 mg L‒1) were particularly effective, enhancing growth, yield, phenol, and mineral content while reducing nitrate levels under saline conditions. CONCLUSIONS Biostimulants activated antioxidative defense systems, offering a sustainable, cost-effective solution for mitigating salt stress in hydroponic lettuce cultivation.
Collapse
Affiliation(s)
- Boran İkiz
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye
| | - Hayriye Yildiz Dasgan
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye.
| | - Sibel Balik
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye
| | - Sebnem Kusvuran
- Food and Agriculture Vocational School, Cankiri Karatekin University, Çankırı, 18100, Türkiye
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
15
|
Mutlu-Durak H, Arikan-Algul Y, Bayram E, Haznedaroglu BZ, Kutman UB, Kutman BY. Various extracts of the brown seaweed Cystoseira barbata with different compositions exert biostimulant effects on seedling growth of wheat. PHYSIOLOGIA PLANTARUM 2024; 176:e14503. [PMID: 39191702 DOI: 10.1111/ppl.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Worldwide, where the demand for novel and greener solutions for sustainable agricultural production is increasing, the use of eco-friendly products such as seaweed-derived biostimulants as pre-sowing treatment represent a promising and important approach for the future. Cystoseira barbata, a brown seaweed species abundant in the Mediterranean Region, was collected from the Marmara Sea and subjected to water, alkali, and acidic extractions, and the biostimulant activity of these extracts was tested on wheat (Triticum durum cv. Saricanak-98) using different rates through application to the seeds or germination medium (substrate) applications. The different extracts were characterized by mineral, total phenolic, free amino acid, mannitol, polysaccharide, antioxidant concentrations and hormone-like activity. The effects of the extracts on growth parameters, root morphology, esterase activity, and mineral nutrient concentrations of wheat seedlings were investigated. Our results suggest that the substrate application was more effective in enhancing the seedling performance compared to the seed treatment. High rates of seaweed extracts applied to substrates increased the shoot length and fresh weight of wheat seedlings by up to 20 and 25%, respectively. The substrate applications enhanced the root fresh weights of wheat seedlings by up to 25% when compared to control plants. Among the biostimulant extract applications, the water extract at the highest rate yielded the most promising results in terms of the measured parameters. Cystoseira barbata extracts with different compositions can be used as effective biostimulants to boost seedling growth. The local seaweed biomass affected by mucilage problems, has great potential as a bioeconomy resource and can contribute to sustainable practices for agriculture.
Collapse
Affiliation(s)
- Hande Mutlu-Durak
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
| | - Yagmur Arikan-Algul
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
- Gubretas R&D Center, Kocaeli, Turkiye
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Besiktas, Istanbul, Turkiye
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Bogazici University, Besiktas, Istanbul, Turkiye
| | - Umit Baris Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
| | - Bahar Yildiz Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkiye
- Original Bio-Economy Resources Center of Excellence (OBEK), Gebze, Kocaeli, Turkiye
| |
Collapse
|
16
|
Farruggia D, Di Miceli G, Licata M, Leto C, Salamone F, Novak J. Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage ( Salvia officinalis L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1397489. [PMID: 39011298 PMCID: PMC11248988 DOI: 10.3389/fpls.2024.1397489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
Sage (Salvia officinalis L.) is a medicinal and aromatic plant (MAP) belonging to the Lamiaceae family. Its morphological, productive and chemical characteristics are affected by abiotic and biotic factors. The use of biostimulants seems to be one of the most interesting innovative practices due to fact they can represent a promising approach for achieving sustainable and organic agriculture. Despite a large application in horticulture, the use of biostimulants on MAPs has been poorly investigated. On this basis, a field experiment in a 2-year study was done to assess the effect of foliar treatments with different types of biostimulants (containing seaweeds, fulvic acids and protein hydrolysates) and two frequencies of application on morphological, productive, and chemical characteristics of S. officinalis grown organically in Mediterranean environment. Morphological, productive, and chemical parameters were affected by the factors. The biostimulant application generated higher plant height, chlorophyll content, relative water content, biomass yield and essential oil yield compared to control plants. In addition, more frequent application of biostimulants produced higher biomass and essential oil yield. The application of fulvic acid and protein hydrolysates every week produced the highest total fresh yields (between 3.9 and 8.7 t ha-1) and total dry yields (between 1.3 and 2.5 t ha-1). The essential oil yield almost doubled (33.9 kg ha-1) with a higher frequency of protein hydrolysates application. In this study, 44 essential oil compounds were identified, and the frequency factor significantly influenced the percentage of 38 compounds. The highest percentage of some of the most representative monoterpenes, such as 1,8-cineole, α-thujone and camphor, were observed in biostimulated plants, with average increases between 6% and 35% compared to control plants. The highest values for total phenolics, rosmarinic acid, antioxidant activity were obtained in control plants and with a lower frequency of biostimulant applications. This study emphasizes how biostimulant applications may be used to improve sage production performance and essential oil parameters when produced in agricultural organic system. At the same time, biostimulants application caused a decrease in total phenolic, antioxidant activity and rosmarinic acid values.
Collapse
Affiliation(s)
- Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Claudio Leto
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems (CoRiSSIA), Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Johannes Novak
- Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Abu-Ria ME, Elghareeb EM, Shukry WM, Abo-Hamed SA, Ibraheem F. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC PLANT BIOLOGY 2024; 24:514. [PMID: 38849739 PMCID: PMC11157776 DOI: 10.1186/s12870-024-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.
Collapse
Affiliation(s)
- Mohamed E Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Eman M Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa M Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Samy A Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah, 21912, Saudi Arabia
| |
Collapse
|
18
|
Huang S, Jin S. Melatonin Interaction with Other Phytohormones in the Regulation of Abiotic Stresses in Horticultural Plants. Antioxidants (Basel) 2024; 13:663. [PMID: 38929102 PMCID: PMC11201163 DOI: 10.3390/antiox13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Horticultural crops play a vital role in global food production, nutrition, and the economy. Horticultural crops are highly vulnerable to abiotic stresses. These abiotic stresses hinder plant growth and development by affecting seed germination, impairing photosynthetic activity, and damaging root development, thus leading to a decrease in fruit yield, quality, and productivity. Scientists have conducted extensive research to investigate the mechanisms of resilience and the ability to cope with environmental stresses. In contrast, the use of phytohormones to alleviate the detrimental impacts of abiotic stresses on horticulture plants has been generally recognized as an effective method. Among phytohormones, melatonin (MT) is a novel plant hormone that regulates various plants' physiological functions such as seedling development, root system architecture, photosynthetic efficiency, balanced redox homeostasis, secondary metabolites production, accumulation of mineral nutrient uptake, and activated antioxidant defense system. Importantly, MT application significantly restricted heavy metals (HMs) uptake and increased mineral nutrient accumulation by modifying the root architecture system. In addition, MT is a naturally occurring, multifunctional, nontoxic biomolecule having antioxidant properties. Furthermore, this review described the hormonal interaction between MT and other signaling molecules in order to enhance abiotic stress tolerance in horticulture crops. This review focuses on current research advancements and prospective approaches for enhancing crop tolerance to abiotic stress.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China;
| |
Collapse
|
19
|
Disciglio G, Tarantino A, Frabboni L. Yield and Fruit Characteristics of Tomato Crops Grown with Mineral Macronutrients: Impact of Organo-Mineral Fertilizers through Foliar or Soil Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:1458. [PMID: 38891267 PMCID: PMC11174471 DOI: 10.3390/plants13111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The utilization of plant biostimulants has gained importance as a strategy by which to improve plant productivity and soil health. Two independent trials were conducted across two seasons (2021 and 2023) to evaluate the effects of foliar or soil applications of various commercial organo-mineral fertilizers (Futuroot®, Radicon® Amifort®) with biostimulant action that is exerted on yield and fruit characteristics of processing tomato crops (cv Taylor F1) that have been exposed to mineral macronutrients. These treatments were administered three times during the season: at the transplanting, pre-flowering and berry development stages. In the first trial, conducted in two fields characterized respectively by low and high fertility, foliar applications of Radicon®, which is based on humic acid and amino acids, increased the leaf greenness index SPAD compared with the control. Furthermore, the leaf green colour intensity (SPAD index), measured during the reproductive phases of the tomato exhibited a positive correlation (R2 = 0.726) with the marketable yield obtained. This increase in marketable yield was significant in the biostimulant treatment compared with the control in both soils, especially in the soil characterized by lower fertility (16.1%), when compared with the more fertile soil (6.8%). In the second trial, conducted in the low-fertility field mentioned above, soil applications of all biostimulants (Futuroot®, Radicon® and the combinations [Radicon® + Amifort-Plus®]) significantly increased the marketable yield by 27.8%, 13.5% and 27.7%, respectively, compared with the control. The most significant beneficial effects of both Futuroot® and [Radicon® + Amifort®] could be attributed to the combination of humic acids and auxins, cytokinins or microelements (Zn, Mn, MgO) present in the formulation of these products. Furthermore, the increase in marketable yield obtained when Radicon® was applied to leaves was higher (16.1%) than that observed with soil application (13.5%). In both trials, no relevant effects of biostimulant products were observed on most of the physicochemical characteristics of tomato fruits. In conclusion, the biostimulants based on humic acid and amino acids combined with chemical fertilizers tested in the present study and applied by fertigation were more effective in improving tomato yield, and therefore they can be recommended for efficient agricultural production.
Collapse
Affiliation(s)
- Grazia Disciglio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (A.T.); (L.F.)
| | | | | |
Collapse
|
20
|
Ntanasi T, Karavidas I, Spyrou GP, Giannothanasis E, Aliferis KA, Saitanis C, Fotopoulos V, Sabatino L, Savvas D, Ntatsi G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. PLANTS (BASEL, SWITZERLAND) 2024; 13:1404. [PMID: 38794474 PMCID: PMC11125247 DOI: 10.3390/plants13101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Salinity, one of the major abiotic stresses in plants, significantly hampers germination, photosynthesis, biomass production, nutrient balance, and yield of staple crops. To mitigate the impact of such stress without compromising yield and quality, sustainable agronomic practices are required. Among these practices, seaweed extracts (SWEs) and microbial biostimulants (PGRBs) have emerged as important categories of plant biostimulants (PBs). This research aimed at elucidating the effects on growth, yield, quality, and nutrient status of two Greek tomato landraces ('Tomataki' and 'Thessaloniki') following treatments with the Ascophyllum nodosum seaweed extract 'Algastar' and the PGPB 'Nitrostim' formulation. Plants were subjected to bi-weekly applications of biostimulants and supplied with two nutrient solutions: 0.5 mM (control) and 30 mM NaCl. The results revealed that the different mode(s) of action of the two PBs impacted the tolerance of the different landraces, since 'Tomataki' was benefited only from the SWE application while 'Thessaloniki' showed significant increase in fruit numbers and average fruit weight with the application of both PBs at 0.5 and 30 mM NaCl in the root zone. In conclusion, the stress induced by salinity can be mitigated by increasing tomato tolerance through the application of PBs, a sustainable tool for productivity enhancement, which aligns well with the strategy of the European Green Deal.
Collapse
Affiliation(s)
- Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - George P. Spyrou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Evangelos Giannothanasis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus;
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| |
Collapse
|
21
|
Monteiro E, De Lorenzis G, Ricciardi V, Baltazar M, Pereira S, Correia S, Ferreira H, Alves F, Cortez I, Gonçalves B, Castro I. Exploring Seaweed and Glycine Betaine Biostimulants for Enhanced Phenolic Content, Antioxidant Properties, and Gene Expression of Vitis vinifera cv. "Touriga Franca" Berries. Int J Mol Sci 2024; 25:5335. [PMID: 38791373 PMCID: PMC11121377 DOI: 10.3390/ijms25105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change will pose a challenge for the winemaking sector worldwide, bringing progressively drier and warmer conditions and increasing the frequency and intensity of weather extremes. The short-term adaptation strategy of applying biostimulants through foliar application serves as a crucial measure in mitigating the detrimental effects of environmental stresses on grapevine yield and berry quality. The aim of this study was to evaluate the effect of foliar application of a seaweed-based biostimulant (A. nodosum-ANE) and glycine betaine (GB) on berry quality, phenolic compounds, and antioxidant activity and to elucidate their action on the secondary metabolism. A trial was installed in a commercial vineyard (cv. "Touriga Franca") in the Cima Corgo (Upper Corgo) sub-region of the Douro Demarcated Region, Portugal. A total of four foliar sprayings were performed during the growing season: at flowering, pea size, bunch closer, and veraison. There was a positive effect of GB in the berry quality traits. Both ANE and GB increased the synthesis of anthocyanins and other phenolics in berries and influenced the expression of genes related to the synthesis and transport of anthocyanins (CHS, F3H, UFGT, and GST). So, they have the potential to act as elicitors of the secondary metabolism, leading to improved grape quality, and also to set the foundation for sustainable agricultural practices in the long run.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan (UNIMI), Via G. Celoria 2, 20133 Milan, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan (UNIMI), Via G. Celoria 2, 20133 Milan, Italy
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fernando Alves
- Symington Family Estates, Vinhos SA, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
22
|
Alebidi A, Abdel-Sattar M. Synergistic effect of seaweed extract and boric acid and/or calcium chloride on productivity and physico-chemical properties of Valencia orange. PeerJ 2024; 12:e17378. [PMID: 38726378 PMCID: PMC11080991 DOI: 10.7717/peerj.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.
Collapse
Affiliation(s)
- Abdullah Alebidi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abdel-Sattar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S. A red seaweed Kappaphycus alvarezii-based biostimulant (AgroGain ®) improves the growth of Zea mays and impacts agricultural sustainability by beneficially priming rhizosphere soil microbial community. Front Microbiol 2024; 15:1330237. [PMID: 38646629 PMCID: PMC11027899 DOI: 10.3389/fmicb.2024.1330237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The overuse of chemical-based agricultural inputs has led to the degradation of soil with associated adverse effects on soil attributes and microbial population. This scenario leads to poor soil health and is reportedly on the rise globally. Additionally, chemical fertilizers pose serious risks to the ecosystem and human health. In this study, foliar sprays of biostimulant (AgroGain/LBS6) prepared from the cultivated, tropical red seaweed Kappaphycus alvarezii increased the phenotypic growth of Zea mays in terms of greater leaf area, total plant height, and shoot fresh and dry weights. In addition, LBS6 improved the accumulation of chlorophyll a and b, total carotenoids, total soluble sugars, amino acids, flavonoids, and phenolics in the treated plants. LBS6 applications also improved the total bacterial and fungal count in rhizospheric soil. The V3-V4 region of 16S rRNA gene from the soil metagenome was analyzed to study the abundance of bacterial communities which were increased in the rhizosphere of LBS6-treated plants. Treatments were found to enrich beneficial soil bacteria, i.e., Proteobacteria, especially the classes Alphaproteobacteria, Cyanobacteria, Firmicutes, Actinobacteriota, Verrucomicrobiota, Chloroflexi, and Acidobacteriota and several other phyla related to plant growth promotion. A metagenomic study of those soil samples from LBS6-sprayed plants was correlated with functional potential of soil microbiota. Enrichment of metabolisms such as nitrogen, sulfur, phosphorous, plant defense, amino acid, co-factors, and vitamins was observed in soils grown with LBS6-sprayed plants. These results were further confirmed by a significant increase in the activity of soil enzymes such as urease, acid phosphatase, FDAse, dehydrogenase, catalase, and biological index of fertility in the rhizosphere of LBS6-treated corn plant. These findings conclude that the foliar application of LBS6 on Z. mays improves and recruits beneficial microbes and alters soil ecology in a sustainable manner.
Collapse
Affiliation(s)
| | - Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, NCBS-TIFR Campus, Bengaluru, India
| | | | | | | |
Collapse
|
24
|
Da Cunha Leme Filho JF, Chim BK, Bermand C, Diatta AA, Thomason WE. Effect of organic biostimulants on cannabis productivity and soil microbial activity under outdoor conditions. J Cannabis Res 2024; 6:16. [PMID: 38532457 DOI: 10.1186/s42238-024-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
In 2019 and 2020, we investigated the individual and combined effects of two biofertilizers (manure tea and bioinoculant) and one humic acid (HA) product on cannabis biochemical and physiological parameters and soil CO2 evolution under outdoor conditions. Our hypothesis was that HA would increase the microbial activity in the biofertilizers and synergy of both compounds would promote better plant performance and stimulate soil microbial activity. In 2020, the individual and combined application of biofertilizers and HA increased cannabis height, chlorophyll content, photosynthetic efficiency, aboveground biomass, and bucked biomass by 105, 52, 43, 122, and 117%, respectively. Impacts were greater under suboptimal growing conditions caused by planting delay experienced in 2020. In 2019, planting date occurred in-between the most favorable period and chlorophyll content and photosynthetic efficiency were the only parameters influenced by the application of biostimulants. The discrepancies between the two growing seasons reinforce the evidence of other studies that biostimulants efficacy is maximized under stress conditions. This study could not conclusively confirm that the combined use of biofertilizer + HA is a superior practice since affected plant parameters did not differ from application of the compounds singly. Similarly, only one biofertilizer + HA treatment increased soil microbial activity. More research is needed to define optimum rates and combinations of biofertilizer and stimulants for cannabis.
Collapse
Affiliation(s)
- Jose F Da Cunha Leme Filho
- School of Forestry and Horticulture / School of Biological Sciences, Southern Illinois University, Carbondale, USA.
| | - Bee K Chim
- School of Food and Agriculture - Cooperative Extension, The University of Maine, Presque Isle, Presque Isle, USA
| | - Cameron Bermand
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute & State University, Blacksburg, USA
| | - Andre A Diatta
- Department of Agronomy, Gaston Berger University, Saint-Louis, Senegal
| | - Wade E Thomason
- Plant and Soil Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
25
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
26
|
Çelik Ş. Bibliometric analysis of horticultural crop secondary metabolism. Heliyon 2024; 10:e26079. [PMID: 38390077 PMCID: PMC10881373 DOI: 10.1016/j.heliyon.2024.e26079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The goal of the study was to examine the trends in recent years by analyzing 750 studies, 3619 authors, and 166 sources with the statement "Horticultural Crop Secondary Metabolism" in the article title published within the scope of SCI-Expanded and "Scopus" journals in between the years 2010 and 2023. In this case, the Web of Science Core Collection database was scanned under the heading "Horticultural Crop Secondary Metabolism", and bibliometric information was gathered. In order to advance research on horticulture crops, current problems and recommend solutions within "Horticultural Crop Secondary Metabolism" were identified in this study. The number of publications, publication kinds, reference analyses, total citations per year, most common words, most often cited local authors, most pertinent affiliations, and most pertinent sources were all examined in relation to the research. According to the findings, Horticulture Research, Frontiers in Plant Science, Plant Physiology and Biochemistry: PPB, Scientific Reports, and BMC Genomics are the journals that publish the most papers on "Horticultural Crop Secondary Metabolism". The phrases "gene expression regulation plant", "transcriptome", and "plant proteins" are used most frequently. Because of this, the increase of bibliometrics study can be very beneficial by serving as a catalyst for horticulture crop research.
Collapse
Affiliation(s)
- Şenol Çelik
- Biometry Genetics Unit, Department of Animal Science, Agricultural Faculty, Bingöl University, Bingöl, Turkey
| |
Collapse
|
27
|
Alkharpotly AA, Abd-Elkader DY, Salem MZM, Hassan HS. Growth, productivity and phytochemicals of Coriander in responses to foliar application of Acacia saligna fruit extract as a biostimulant under field conditions. Sci Rep 2024; 14:2921. [PMID: 38316894 PMCID: PMC10844193 DOI: 10.1038/s41598-024-53378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of natural extracts to vegetable plants can increase production, optimize nutrient and water uptake, and mitigate the effects of stress on vegetable plants by enhancing primary and secondary metabolism. In this study, Acacia saligna (Labill.) H.L.Wendl. fruit aqueous extract (FAE) was applied as a foliar application to assess and demonstrate its effects on growth, productivity, and phytochemicals of coriander (Coriandrum sativum L.) plants. A. saligna FAE (2%, 4%, and 6%), each combined with 50% of the recommended dose of N fertilizer was applied to coriander plants over the course of two successive seasons in the field. These treatments were compared with the control treatment, which used a 100% recommended dose of N. The four tested treatments were set up in a randomized complete block design with three replicates for a total of 12 experimental plots. Each replicate (experimental plot) was 3 m2 (2 × 1.5 m2) in size and included 300 seeds/m2. The phytochemicals were examined using chromatographic and spectrophotometric methods, where the essential oils (EOs) extracted from leaves were analyzed by Gas chromatography-mass spectrometry (GC-MS), while the phenolic and flavonoid compounds were analyzed by High Performance Liquid Chromatography (HPLC). With the application of A. saligna FAE (4%) + 50% N fertilizer, the levels of total solid content, total carbohydrates, total protein, total phenols, and total antioxidant activity, as well as chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoids, were increased at harvest. The treatment A. saligna FAE at 6% + 50% N fertilizer did not observe significant improvement in the growth parameters of coriander plants because of the anticipated allelopathic effects. By GC-MS analysis, the major compounds in the EO from control treatment were 2-octyn-1-ol (23.93%), and 2-butyl-1-octanol (8.80%), in treated plants with 2% of A. saligna FAE + 50% N fertilizer were (E)-2-decen-1-ol (32.00%), and 1-methoxymethoxy-oct-2-yne (13.71%), in treated plants with 4% A. saligna FAE + 50% N fertilizer were E-2-undecen-1-ol (32.70%), and 3,5,5-trimethyl-1-hexene (8.91%), and in the treated plants with A. saligna FAE (6%) + 50% N fertilizer were phytol (80.44%), and (Z)6,(Z)9-pentadecadien-1-ol (13.75%). The flavonoid components 7-hydroxyflavone, naringin, rutin, quercetin, kaempferol, luteolin, apigenin, and catechin were presented with variable concentrations according to the treatments utilized as identified by HPLC analysis from the methanol extracts of the treated plants with the combination treatments of A. saligna FAE (2, 4, and 6%) and N fertilization (50% from the recommended dose) and control coriander plants (100% N recommended dose). The combination of 50% N fertilizer treatment and the biostimulant A. saligna FAE (4%) seems to improve coriander plant growth while simultaneously lowering N fertilizer consumption. Future research will be needed to further study the effectiveness of several concentrations of A. saligna FAE in various conditions and/or species.
Collapse
Affiliation(s)
- A A Alkharpotly
- Horticulture Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
- Horticulture Department, Faculty of Desert and Environmental Agriculture, Matrouh University, Marsa Matrouh, Egypt
| | - Doaa Y Abd-Elkader
- Department of Vegetable, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Hanaa S Hassan
- Department of Vegetable, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| |
Collapse
|
28
|
Gharib FAEL, Osama K, Sattar AMAE, Ahmed EZ. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Sci Rep 2024; 14:1398. [PMID: 38228623 PMCID: PMC10791689 DOI: 10.1038/s41598-023-50040-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
The use of bio-stimulants in agriculture has emerged as a promising strategy to improve crop growth and yield. One type of bio-stimulant that has gained attention is microalgae extracts, which are known for their high metabolic activity, bioactive compounds, and ability to enhance plant growth and development. To investigate their effectiveness, a pot experiment was conducted at the Experimental Farm of Helwan University in Egypt during the 2022 season. The experiment aimed to evaluate the efficacy of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis (Spirulina platensis) extracts as bio-stimulants, applied through foliar spray at concentrations ranging from 0.25 to 2.0%, on common bean plants. Analysis of algal extract showed that . N. salina had the highest content of promotive growth hormones gibberellins (GA3) (74.85 ± 2.7mg100 g-1 d.wt). and auxins (IAA) (34.57 ± 2.7µg 100 g-1 d.wt.) compared to Chlorella and Arthrospira..The results revealed that the application of C. vulgaris, N. salina, and A. platensis extracts at concentrations up to 1.0% significantly improved various growth parameters, such as root, and shoot length, number of leaves and flowers per plant, leaf area, and total fresh and dry weight per plant. These extracts also positively affected yield attributes, including the number and fresh weight of pods per plant, seed index, seed yield per plant, and per feddan [a unit of land area]. Furthermore, the application of these extracts increased the chlorophyll content index with the maximum values of CCI (17.95. and 17.81%) was obtained at 0.50% N. salina, followed by 0.50% C.vulgaris. In addition to increase in the capacity of both non-enzymatic antioxidants [such as total antioxidant capacity, phenolics, and flavonoids] and enzymatic antioxidants [including catalase and ascorbic oxidase]. The most promising results were observed with the application of N. salina, and C. vulgaris extracts at a concentration of 0.5%. Additionally, the extracts significantly reduced the content of oxidative stress markers, such as malondialdehyde, percentage of electrolyte leakage, and hydrogen peroxide, in common bean plants compared to the control group. Contrarily, the measured parameters were reduced, while the levels of oxidative stress markers and some antioxidants including peroxidase, ascorbic peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione transferase were increased by three algal extracts at a concentration of 2.0%, compared to control plants. Additionally, the application of these microalgae extracts improved the quality parameters, proximate composition, seed energy, and mineral contents of the harvested seeds, with the most significant positive impact was observed at 0.5% concentration of algal extract. These findings demonstrate the successful and safe utilization of extracts from C. vulgaris, N. salina, and A. platensis at concentrations up to 1.0% as bio-stimulants to enhance common bean yields and improve the nutritional quality of dried beans for consumers.
Collapse
Affiliation(s)
| | - Kholoud Osama
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | | | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
29
|
Teles EAP, Xavier JF, Arcênio FS, Amaya RL, Gonçalves JVS, Rouws LFM, Zonta E, Coelho IS. Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. FRONTIERS IN PLANT SCIENCE 2024; 14:1324056. [PMID: 38293620 PMCID: PMC10825674 DOI: 10.3389/fpls.2023.1324056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Soil salinization is a significant abiotic factor threatening agricultural production, while the low availability of phosphorus (P) in plants is another worldwide limitation. Approximately 95-99% of the P in soil is unavailable to plants. Phosphate-solubilizing bacteria (PSB) transform insoluble phosphates into soluble forms that plants can utilize. The application of PSB can replace or partially reduce the use of P fertilizers. Therefore, selecting bacteria with high solubilization capacity from extreme environments, such as saline soils, becomes crucial. This study aimed to identify twenty-nine bacterial strains from the rhizosphere of Salicornia fruticosa by sequencing the 16S rDNA gene, evaluate their development in increasing concentrations of NaCl, classify them according to their salinity response, and determine their P solubilization capability. The bacteria were cultivated in nutrient agar medium with NaCl concentrations ranging from 0.5% to 30%. The phosphate solubilization capacity of the bacteria was evaluated in angar and broth National Botanical Research Institute (NBRIP) media supplemented with calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4), and increased with 3% NaCl. All bacterial strains were classified as halotolerant and identified to the genera Bacillus, Enterobacter, Halomonas, Kushneria, Oceanobacillus, Pantoea, Pseudomonas, and Staphylococcus, with only one isolate was not identified. The isolates with the highest ability to solubilize phosphorus from CaHPO4 in the liquid medium were Kushneria sp. (SS102) and Enterobacter sp. (SS186), with 989.53 and 956.37 mg·Kg-1 P content and final pH of 4.1 and 3.9, respectively. For the solubilization of AlPO4, the most effective isolates were Bacillus sp. (SS89) and Oceanobacillus sp. (SS94), which raised soluble P by 61.10 and 45.82 mg·Kg-1 and final pH of 2.9 and 3.6, respectively. These bacteria demonstrated promising results in in vitro P solubilization and can present potential for the development of bioinput. Further analyses, involving different phosphate sources and the composition of produced organic acids, will be conducted to contribute to a comprehensive understanding of their applications in sustainable agriculture.
Collapse
Affiliation(s)
- E. A. P. Teles
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. F. Xavier
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - F. S. Arcênio
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - R. L. Amaya
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. V. S. Gonçalves
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - E. Zonta
- Laboratory of Soil-Plant Relationship, Department of Soils, Institute of Agronomy, UFRRJ, Seropedica, Brazil
| | - I. S. Coelho
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
30
|
Bhatla SC, Ranjan P, Singh N, Gogna M. Pure biochemicals and nanomaterials as next generation biostimulants for sustainable agriculture under abiotic stress - recent advances and future scope. PLANT SIGNALING & BEHAVIOR 2023; 18:2290336. [PMID: 38050377 PMCID: PMC10732687 DOI: 10.1080/15592324.2023.2290336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 12/06/2023]
Abstract
Sustainable agriculture faces major challenges under abiotic stress conditions owing to extensive application of chemical fertilizers which pollute water, soil and atmosphere. Biostimulants (BSs), comprising of naturally derived complex mixtures of uncharacterized biomolecules, pure biochemicals and nanomaterials, enhance nutrient use efficiency (NUE) and trigger crop's natural defense mechanisms. While it is difficult to specify the metabolic effects of uncharacterized natural mixtures (seaweed extract, protein hydrolyzates, etc.), exogenous application of pure biochemicals and nanomaterials offers an edge as BSs since their physiological roles and mechanisms of action are decipherable. Foliar application or seed treatment of some amino acids, polyamines and biopolymers (chitosan, lipochitin oligosaccharides and thuricin 17) enable plants to overcome drought and salinity stress via activation of mechanisms for reactive oxygen species (ROS) scavenging, osmolyte regulation and chlorophyll accumulation. Interaction of nitric oxide (NO) with some vitamins and melatonin exhibits potential significance as BSs for mitigating stress by ROS scavenging and maintenance of intracellular ionic balance and membrane integrity. Near future is likely to see wide applications of nanoparticles (NPs) and nanomaterials (NMs) as BSs in view of their biphasic mode of action (bio-physical activation of membrane receptors followed by gradual release of BS into the plant cells).
Collapse
Affiliation(s)
| | - Priya Ranjan
- Department of Agriculture & Farmers Welfare, Ministry of Agriculture, Krishi Bhawan, New Delhi, India
| | - Neha Singh
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Mansi Gogna
- Department of Botany, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
31
|
Asif A, Ali M, Qadir M, Karthikeyan R, Singh Z, Khangura R, Di Gioia F, Ahmed ZFR. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1276117. [PMID: 38173926 PMCID: PMC10764035 DOI: 10.3389/fpls.2023.1276117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Plants experience constant exposed to diverse abiotic stresses throughout their growth and development stages. Given the burgeoning world population, abiotic stresses pose significant challenges to food and nutritional security. These stresses are complex and influenced by both genetic networks and environmental factors, often resulting in significant crop losses, which can reach as high as fifty percent. To mitigate the effects of abiotic stresses on crops, various strategies rooted in crop improvement and genomics are being explored. In particular, the utilization of biostimulants, including bio-based compounds derived from plants and beneficial microbes, has garnered considerable attention. Biostimulants offer the potential to reduce reliance on artificial chemical agents while enhancing nutritional efficiency and promoting plant growth under abiotic stress condition. Commonly used biostimulants, which are friendly to ecology and human health, encompass inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g., seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably, prioritizing environmentally friendly biostimulants is crucial to prevent issues such as soil degradation, air and water pollution. In recent years, several studies have explored the biological role of biostimulants in plant production, focusing particularly on their mechanisms of effectiveness in horticulture. In this context, we conducted a comprehensive review of the existing scientific literature to analyze the current status and future research directions concerning the use of various biostimulants, such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop plants. Furthermore, we correlated the molecular modifications induced by these biostimulants with different physiological pathways and assessed their impact on plant performance in response to abiotic stresses, which can provide valuable insights.
Collapse
Affiliation(s)
- Anam Asif
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muslim Qadir
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Balochistan, Pakistan
| | - Rajmohan Karthikeyan
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Ravjit Khangura
- Department of Primary Industries and Regional Development, Government of Western Australia, Kensington, WA, Australia
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural Sciences, The Pennsylvania State University, College State, PA, United States
| | - Zienab F. R. Ahmed
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Janati W, Bouabid R, Mikou K, Ghadraoui LE, Errachidi F. Phosphate solubilizing bacteria from soils with varying environmental conditions: Occurrence and function. PLoS One 2023; 18:e0289127. [PMID: 38064520 PMCID: PMC10707511 DOI: 10.1371/journal.pone.0289127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2023] [Indexed: 12/18/2023] Open
Abstract
Phosphate solubilizing bacteria (PSB) is an advantageous way to supply phosphate (P) to plants. The Mediterranean climate of Morocco, especially the low-lying areas, is semi-arid with nutrient-depleted soils in which small-scale, low-income farmers dominate without access to expensive inorganic fertilizers. However, there is not a wide range of PSBs suitable for various agroecological situations. Furthermore, our understanding of the soil and climatic variables that influence their development is limited. This study aims to examine the impacts of specific environmental factors, such as climate and soil, on the abundance, potential, and diversity of PSBs in four agricultural regions of Morocco. To assess the possible impact of these factors on the P solubilization capacity of PSBs and plant growth-promoting (PGP) traits, we analyzed the soil and climate of each sample studied. Similarly, we tested the P solubilization efficiency of the isolates. The bacteria were isolated in a National Botanical Research Institute's phosphate (NBRIP) agar medium. A total of 51 PSBs were studied in this work. The P-solubilization average of Rock P (RP) and Tricalcium P (TCP) of all strains that were isolated from each of the four regions ranged from 18.69 mg.L-1 to 40.43 mg.L-1 and from 71.71 mg.L-1 to 94.54 mg.L-1, respectively. The PGP traits of the isolated strains are positively correlated with the PSBs abundance and the sample characteristics (soil and climate). The morphological and biochemical characteristics of the strain allowed us to identify around nine different bacterial genera, including Bacillus, Pseudomonas, and Rhizobium. The findings showed that bacterial communities, density, and potency are closely correlated to various edapho-climatic conditions such as temperature, precipitation, soil nutrient status, and soil texture. These findings could be used to improve an effective plant-PSBs system and increase agricultural output by taking into account their specific ecological traits and plant growth mechanisms.
Collapse
Affiliation(s)
- Walid Janati
- Department of Biology, Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Rachid Bouabid
- Department of Agronomy, National School of Agriculture, Meknes, Morocco
| | - Karima Mikou
- Department of Biology, Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Lahsen El Ghadraoui
- Department of Biology, Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Faouzi Errachidi
- Department of Biology, Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
33
|
Hosseini P, Mohsenifar K, Rajaie M, Babaeinejad T. Plant growth regulators affecting canola ( Brasica Napus L.) biochemistry including oil yield under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1663-1674. [PMID: 38162919 PMCID: PMC10754807 DOI: 10.1007/s12298-023-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The objective was to test the effects of PGR on canola (Brassica napus L.) biochemistry including oil yield under drought stress. A two-year (Y1 and Y2) split plot field experiment on the basis of a randomized complete block design with three replications was conducted. The main factor was, drought stress levels, including irrigation after a reduction of 40 (D1), 60 (D2) and 80% (D3) of field capacity (FC) moisture, and the sub-factor was PGR including control (S1), soil application of humic acid (S2), foliar applications of amino acid (S3), fulvic acid (S4) or seaweed extract (S5), and the combination of all PGR (S6). Although drought stress significantly decreased plant chlorophyll contents (a, b and total), oil percentage and oil yield, PGR significantly increased them. The D3 treatment, compared with control, decreased crop oil yield by 48.67 and 35.29% in the first and second year, respectively. However, treatment Y2D3S6 significantly increased oil percentage (43.10%) compared with control (40.97%). The PGR increased seed oil yield, in D3, by a maximum of 254 kg ha-1. The PGR numerically (p ≤ 0.0886) increased proline to 6.14 mg g-1 LFW (Y1D3S6) compared with control (4.79 mg g-1 LFW). The PGR also significantly increased sugar content to 17.05 mg g-1 LFW, significantly different from the control (12.95 mg g-1 LFW). In conclusion, the tested PGR can improve the biochemical properties (quality) including oil yield of canola in drought stress conditions, which is of economic and health significance.
Collapse
Affiliation(s)
- Parviz Hosseini
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Kamran Mohsenifar
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Majid Rajaie
- Soil and Water Research Department, Fars Agricultural and Natural Resources, Research and Education Center, AREEO, Shiraz, Iran
| | - Teimour Babaeinejad
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
34
|
Ferrández-Gómez B, Jordá JD, Cerdán M, Sánchez A. Valorization of Posidonia oceanica biomass: Role on germination of cucumber and tomato seeds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:634-641. [PMID: 37857050 DOI: 10.1016/j.wasman.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Biostimulants are organic compounds from plant sources such as botanical extracts and bioactive substances that promote plant growth, enhance photosynthesis and increase crop quality. The accumulation of detached Posidonia oceanica leaves on coasts of the Mediterranean Sea results in economic problems, due to the rejection of the tourists who frequent the beaches in the summer months. However, it is a plant with high content of secondary metabolites that can be used in sustainable agriculture. In this study we investigated the physicochemical characterization of Posidonia oceanica extracts with three different solutions and their application in tomato and cucumber seeds germination. The results showed that the aqueous extract of Posidonia oceanica had a high concentration of macro and micronutrients, as well as secondary metabolites with bioactive activity. The aqueous extract had a beneficial effect on both leaf and root growth on tomato seeds, specifically, an increase of 76% for the relative root growth and 73% for the germination index was obtained with respect to the control using the sample with the intermediate dilution (POe0.5). In addition, the extracts did not show toxicity to either germination or growth of the tomato plant. As for cucumber seed germination, the improvement was less significant and did result in a phytotoxic effect on both germination and plant growth. The most diluted extract had better results on seed germination. Therefore, the application of aqueous extracts of Posidonia oceanica were suitable to be appropriate for tomato germination and in turn contribute to eliminate the lots of Posidonia oceanica remains recovered in summer months in Mediterranean beaches.
Collapse
Affiliation(s)
- Borja Ferrández-Gómez
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain
| | - Juana D Jordá
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain
| | - Mar Cerdán
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain
| | - Antonio Sánchez
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
35
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
36
|
Bayomy HM, Alamri ES, Alharbi BM, Foudah SH, Genaidy EA, Atteya AK. Response of Moringa oleifera trees to salinity stress conditions in Tabuk region, Kingdom of Saudi Arabia. Saudi J Biol Sci 2023; 30:103810. [PMID: 37766885 PMCID: PMC10519853 DOI: 10.1016/j.sjbs.2023.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Moringa oleifera is an amazing tree with various applications. Salinity is a world major barrier to crop productivity. This study was conducted to investigate salinity and seaweed extract's effect on Moringa oleifera's growth and yields. Measurements were made of growth characteristics, fresh and dried leaf, inflorescence, mature pod and seed weight, and yield per tree, as well as chemical parameters. Seasons had no substantial effect on any of these traits. In terms of seaweed concentrations, the treatment containing 20% seaweed outperformed the treatment containing 0% seaweed in all measurements. Concerning the salinity levels, the maximum level of all studied attributes was at 18.75 mmol/L NaCl, while the level of 70.31 mmol/L NaCl has the lowest values. The interaction between salinity levels and seaweed revealed that T4 (18.75 mmol/L NaCl plus 20 % seaweed) was the highest for all traits and T9 (70.31 mmol/L NaCl plus 0 % seaweed) was the lowest for all traits except for the potassium content. Concerning potassium content, T7 (54.69 mmol/L NaCl plus 0 % seaweed) was the lowest. These findings could help to develop efficient breeding methods for Moringa oleifera in the future.
Collapse
Affiliation(s)
- Hala M. Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eman S. Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shaden H. Foudah
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Esmail A. Genaidy
- Pomology Department, Agricultural and Biology Research Institute, National Research Centre, Giza 12622, Egypt
| | - Amira K. Atteya
- Horticulture Department, Damanhour University, Damanhour 22516, Egypt
| |
Collapse
|
37
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
38
|
Morales-Sierra S, Luis JC, Jiménez-Arias D, Rancel-Rodríguez NM, Coego A, Rodriguez PL, Cueto M, Borges AA. Biostimulant activity of Galaxaura rugosa seaweed extracts against water deficit stress in tomato seedlings involves activation of ABA signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1251442. [PMID: 37780510 PMCID: PMC10538540 DOI: 10.3389/fpls.2023.1251442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Water scarcity is a serious constraint for agriculture, and global warming and climate change can exacerbate it in many areas. Therefore, sustainable approaches must be implemented to deal with current and future water scarcity scenarios. Genetic and chemical approaches are being applied to manage this limitation and maintain crop yields. In particular, biostimulants obtained from natural sources such as marine algae are promising aids for coping with water deficit stress in agriculture. Here we present a bioprospection study of extracts of the macroalgae Bonnemaisonia hamifera, Galaxaura rugosa, Dasycladus vermicularis, Ulva clathrata, Cystoseira foeniculacea, Cystoseira humilis, Lobophora dagamae, Colpomenia sinuosa and Halopteris scoparia from the north coast of Tenerife, in the Canary Islands. The aqueous extracts of Bonnemaisonia hamifera, Galaxaura rugosa, Dasycladus vermicularis and Cystoseira humilis show biostimulant activity against water deficit stress in tomato seedlings under controlled conditions, providing higher tolerance than the mock-treated control. The Galaxaura rugosa extract showed the highest biostimulant activity against water deficit stress. We demonstrate that this positive effect involves the activation of the abscisic acid (ABA) pathway in Arabidopsis thaliana (arabidopsis) and Solanum lycopersicum (tomato). Application of G. rugosa extract to the root system by drenching tomato seedlings subjected to water deficit leads to improved CO2 assimilation and water use efficiency (WUEp), compared to mock-treated plants. These results highlight a new potential seaweed source of substances with osmoprotectant properties, useful for biostimulant development. Future studies may provide further insight into which components of the seaweed extract induce activation of the ABA pathway.
Collapse
Affiliation(s)
- Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada (GBVA), Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Farmacia Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan Cristo Luis
- Grupo de Biología Vegetal Aplicada (GBVA), Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Farmacia Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - David Jiménez-Arias
- Departamento de Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias (ICIA), La Laguna, Tenerife, Spain
| | - Nereida M. Rancel-Rodríguez
- Grupo BotMar-ULL, Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Farmacia Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Mercedes Cueto
- Departamento de Ciencias de la Vida y de la Tierra, Departamento de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Spain
| | - Andrés A. Borges
- Departamento de Ciencias de la Vida y de la Tierra, Departamento de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Spain
| |
Collapse
|
39
|
Borella M, Baghdadi A, Bertoldo G, Della Lucia MC, Chiodi C, Celletti S, Deb S, Baglieri A, Zegada-Lizarazu W, Pagani E, Monti A, Mangione F, Magro F, Hermans C, Stevanato P, Nardi S. Transcriptomic and physiological approaches to decipher cold stress mitigation exerted by brown-seaweed extract application in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1232421. [PMID: 37767293 PMCID: PMC10520554 DOI: 10.3389/fpls.2023.1232421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/29/2023]
Abstract
Chilling temperatures represent a challenge for crop species originating from warm geographical areas. In this situation, biostimulants serve as an eco-friendly resource to mitigate cold stress in crops. Tomato (Solanum lycopersicum L.) is an economically important vegetable crop, but quite sensitive to cold stress, which it encounters in both open field and greenhouse settings. In this study, the biostimulant effect of a brown-seaweed extract (BSE) has been evaluated in tomato exposed to low temperature. To assess the product effects, physiological and molecular characterizations were conducted. Under cold stress conditions, stomatal conductance, net photosynthesis, and yield were significantly (p ≤ 0.05) higher in BSE-treated plants compared to the untreated ones. A global transcriptomic survey after BSE application revealed the impact of the BSE treatment on genes leading to key responses to cold stress. This was highlighted by the significantly enriched GO categories relative to proline (GO:0006560), flavonoids (GO:0009812, GO:0009813), and chlorophyll (GO:0015994). Molecular data were integrated by biochemical analysis showing that the BSE treatment causes greater proline, polyphenols, flavonoids, tannins, and carotenoids contents.The study highlighted the role of antioxidant molecules to enhance tomato tolerance to low temperature mediated by BSE-based biostimulant.
Collapse
Affiliation(s)
- Matteo Borella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Ali Baghdadi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Claudia Chiodi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Silvia Celletti
- Department of Life Sciences (DSV), University of Siena, Siena, Italy
| | - Saptarathi Deb
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Andrea Baglieri
- Department of Agriculture Food Environment (Di3A), University of Catania, Catania, Italy
| | - Walter Zegada-Lizarazu
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Elena Pagani
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Andrea Monti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Francesca Mangione
- Sipcam Italia S.p.A. Belonging Together with Sofbey SA to the Sipcam Oxon S.p.A. Group, Pero, Italy
| | - Francesco Magro
- Sipcam Italia S.p.A. Belonging Together with Sofbey SA to the Sipcam Oxon S.p.A. Group, Pero, Italy
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory (CPBL), Brussels Bioengineering School, Universitè libre de Bruxelles, Brussels, Belgium
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| |
Collapse
|
40
|
Pintó-Marijuan M, Turon-Orra M, González-Betancort A, Muñoz P, Munné-Bosch S. Improved production and quality of peppers irrigated with regenerated water by the application of 24-epibrassinolide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111764. [PMID: 37301327 DOI: 10.1016/j.plantsci.2023.111764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Water shortage for crop irrigation is reducing agricultural production worldwide and the use of sewage treatment plant (STP) water to irrigate horticultural fields is a solution to avoid the use of drinkable water in agriculture. In this study, two different genotypes of pepper (Red Cherry Small and Italian green) were irrigated with STP water, as an alternative to potable water. Moreover, the foliar application of a molecule with biostimulant properties (24-epibrassinolide; EBR) was tested as a strategy to ameliorate the production and quality of fruits. Both genotypes differed on their tolerance to the suffered oxidative stress due to their different salinity tolerance, but fruit commercial weight was reduced by 49% on the salt sensitive and by 37% on the salt tolerant. Moreover, ascorbic acid was also decreased by 37% after STP water irrigation in the Red Cherry Small peppers. However, EBR applications alleviated STP watering stress effects improving pepper plants fruit production and quality parameters, such as ascorbic acid and capsaicinoids. These results have important economic and environmental relevance to overcome present and future water deficiencies in the agricultural sector derived from climate change, guaranteeing the maintenance of production in peppers irrigated with STP water for a more sustainable agriculture following relevant circular economy actions.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
| | - Martina Turon-Orra
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alba González-Betancort
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Dima ȘO, Constantinescu-Aruxandei D, Tritean N, Ghiurea M, Capră L, Nicolae CA, Faraon V, Neamțu C, Oancea F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker's Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3016. [PMID: 37631226 PMCID: PMC10458166 DOI: 10.3390/plants12163016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.
Collapse
Affiliation(s)
- Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biology, University of Bucharest, Splaiul Independenței nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Luiza Capră
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Cristian-Andi Nicolae
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Victor Faraon
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Constantin Neamțu
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
42
|
Turan M, Ekinci M, Argin S, Brinza M, Yildirim E. Drought stress amelioration in tomato ( Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. FRONTIERS IN PLANT SCIENCE 2023; 14:1211210. [PMID: 37662171 PMCID: PMC10469020 DOI: 10.3389/fpls.2023.1211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Drought adversely affects many physiological and biochemical events of crops. This research was conducted to investigate the possible effects of biostimulants containing plant growth-promoting rhizobacteria (PGPR) on plant growth parameters, chlorophyll content, membrane permeability (MP), leaf relative water content (LRWC), hydrogen peroxide (H2O2), proline, malondialdehyde (MDA), hormone content, and antioxidant enzymes (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)) activity of tomato (Solanum lycopersicum L.) seedlings under different irrigation levels. This study was carried out under controlled greenhouse conditions with two irrigation levels (D0: 100% of field capacity and D1: 50% of field capacity) and three biostimulant doses (B0: 0, B1: 4 L ha-1, and B2: 6 L ha-1). The results of the study show that drought stress negatively influenced the growth and physiological characteristics of tomato seedlings while biostimulant applications ameliorated these parameters. Water deficit conditions (50% of field capacity) caused decrease in indole acetic acid (IAA), gibberellic acid (GA), salicylic acid (SA), cytokine, zeatin, and jasmonic acid content of tomato seedlings by ratios of 83%, 93%, 82%, 89%, 50%, and 57%, respectively, and shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, plant height, stem diameter, and leaf area decreased by 43%, 19%, 39%, 29%, 20%, 18%, and 50%, respectively, compared to the control (B0D0). In addition, 21%, 16%, 21%, and 17% reductions occurred in LRWC, chlorophyll a, chlorophyll b, and total chlorophyll contents with drought compared to the control, respectively. Biostimulant applications restored the plant growth, and the most effective dose was 4 L ha-1 under drought condition. Amendment of biostimulant into the soil also enhanced organic matter and the total N, P, Ca, and Cu content of the experiment soil. In conclusion, 4 L ha-1 biostimulant amendment might be a promising approach to mitigate the adverse effects of drought stress on tomato.
Collapse
Affiliation(s)
- Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | - Melek Ekinci
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| | - Sanem Argin
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | | | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
- Atatürk University Plant Production Application and Research Center, Erzurum, Türkiye
| |
Collapse
|
43
|
Jamil M, Lin PY, Berqdar L, Wang JY, Takahashi I, Ota T, Alhammad N, Chen GTE, Asami T, Al-Babili S. New Series of Zaxinone Mimics (MiZax) for Fundamental and Applied Research. Biomolecules 2023; 13:1206. [PMID: 37627271 PMCID: PMC10452442 DOI: 10.3390/biom13081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Pei-Yu Lin
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Ikuo Takahashi
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Noor Alhammad
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Obadi A, Alharbi A, Alomran A, Alghamdi AG, Louki I, Alkhasha A. Effect of Biochar Application on Morpho-Physiological Traits, Yield, and Water Use Efficiency of Tomato Crop under Water Quality and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2355. [PMID: 37375980 DOI: 10.3390/plants12122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Therefore, the experiment was conducted to evaluate the effects of biochar application on the morpho-physiological traits and yield of tomatoes under combined salinity and drought stress in greenhouses. There were 16 treatments consist two water quality fresh and saline (0.9 and 2.3 dS m-1), three deficit irrigation levels (DI) 80, 60, and 40% addition 100% of Evapotranspiration (ETc), and biochar application by rate 5% (BC5%) (w/w) and untreated soil (BC0%). The results indicated that the salinity and water deficit negatively affected morphological, physiological, and yield traits. In contrast, the application of biochar improved all traits. The interaction between biochar and saline water leads to decreased vegetative growth indices, leaf gas exchange, the relative water content of leaves (LRWC), photosynthetic pigments, and yield, especially with the water supply deficit (60 and 40% ETc), where the yield decreased by 42.48% under the highest water deficit at 40% ETc compared to the control. The addition of biochar with freshwater led to a significantly increased vegetative growth, physiological traits, yield, water use efficiency (WUE), and less proline content under all various water treatments compared to untreated soil. In general, biochar combined with DI and freshwater could improve morpho-physiological attributes, sustain the growth of tomato plants, and increase productivity in arid and semi-arid regions.
Collapse
Affiliation(s)
- Abdullah Obadi
- Plant Production Department, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alharbi
- Plant Production Department, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Ibrahim Louki
- Soil Science Department, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arafat Alkhasha
- Soil Science Department, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Wu X, Yuan D, Bian X, Huo R, Lü G, Gong B, Li J, Liu S, Gao H. Transcriptome analysis showed that tomato-rootstock enhanced salt tolerance of grafted seedlings was accompanied by multiple metabolic processes and gene differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1167145. [PMID: 37332726 PMCID: PMC10272605 DOI: 10.3389/fpls.2023.1167145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.
Collapse
Affiliation(s)
- Xiaolei Wu
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ding Yuan
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Xinyu Bian
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ruixiao Huo
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Guiyun Lü
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Binbin Gong
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Jingrui Li
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Sichao Liu
- Chengde Vegetable Technology Promotion Station, Chengde, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| |
Collapse
|
46
|
Ilyas Z, Ali Redha A, Wu YS, Ozeer FZ, Aluko RE. Nutritional and Health Benefits of the Brown Seaweed Himanthalia elongata. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:233-242. [PMID: 36947371 PMCID: PMC10363077 DOI: 10.1007/s11130-023-01056-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, polyphenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. This narrative review provides a comprehensive overview of the nutritional composition, bioactive properties, and food applications of H. elongata.
Collapse
Affiliation(s)
- Zahra Ilyas
- Department of Laboratory, Bahrain Specialist Hospital, P. O. Box: 10588, Juffair, Kingdom of Bahrain
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Fathima Zahraa Ozeer
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Richardson Centre for Food Technology and Research (RCFTR), 196, Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
47
|
Muthuramalingam P, Muthamil S, Shilpha J, Venkatramanan V, Priya A, Kim J, Shin Y, Chen JT, Baskar V, Park K, Shin H. Molecular Insights into Abiotic Stresses in Mango. PLANTS (BASEL, SWITZERLAND) 2023; 12:1939. [PMID: 37653856 PMCID: PMC10224100 DOI: 10.3390/plants12101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea;
| | - Jayabalan Shilpha
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
| | | | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Jinwook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Yunji Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Venkidasamy Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Kyoungmi Park
- Department of Horticulture Research, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 52733, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| |
Collapse
|
48
|
Ahn-Jarvis JH, Sosh D, Lombardo E, Lesinski GB, Conwell DL, Hart PA, Vodovotz Y. Short-Term Soy Bread Intervention Leads to a Dose-Response Increase in Urinary Isoflavone Metabolites and Satiety in Chronic Pancreatitis. Foods 2023; 12:foods12091762. [PMID: 37174299 PMCID: PMC10178207 DOI: 10.3390/foods12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.
Collapse
Affiliation(s)
- Jennifer H Ahn-Jarvis
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Sosh
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Erin Lombardo
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yael Vodovotz
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
50
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|