1
|
Qi J, Wan Y, Li J, Jiang G, Wang J, Ozaki Y, Pi F. A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering. Biosens Bioelectron 2025; 272:117114. [PMID: 39752887 DOI: 10.1016/j.bios.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs. In this method, an Ag@NH2-MIL-101(Al)-Ag nanoprobe that leverages the synergistic effect between silver nanoparticles (AgNPs) and NH2-MIL-101(Al), resulting in remarkable peroxidase-like activity and enhanced SERS performance, was proposed. Moreover, for the instant colorimetric sensing, a competitive oxidative-reaction between TCs and 3,3',5,5'-tetramethylbenzidine (TMB) was developed based on the peroxidase-like activity of nanoprobe. Our innovative colorimetric-SERS dual-mode approach demonstrated high sensitivity accompanied by robust selectivity with limits of detection (LODs) for TCs of 10-3 ppm in colorimetric mode and 10-5 ppm in SERS mode. Furthermore, TCs can be reliably detected in honey samples with recoveries ranging from 87.69% to 120.49%. This dual-mode sensing strategy effectively combining the ease of colorimetric detection with high sensitivity of SERS provides significant values for rapid, direct, and multiplexed evaluation on various hazards in environment and food chains.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 669-1330, Sanda, Hyogo, Japan
| | - Fuwei Pi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Han C, Kong XY, Ye L, Huang Y. Piezoelectric Activation of Peroxymonosulfate by CoMn 2O 4 for Highly Efficient Tetracycline Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:755-764. [PMID: 39714337 DOI: 10.1021/acs.langmuir.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Advanced oxidation processes employing peroxymonosulfate (PMS) show significant promise for wastewater treatment. However, PMS activation typically relies on energy- and chemically intensive techniques due to its relatively low reactivity. Hence, the exploration of novel and energy-efficient approaches, such as the piezoelectric effect, for PMS activation is of paramount importance. Herein, we prepared a piezoelectric material (CoMn2O4) via a simple hydrothermal method followed by calcination. The degradation experiments of tetracycline (TC) demonstrated that CoMn2O4 exhibited excellent performance under ultrasound, the apparent rate constant k is 0.191 min-1, and its degradation rate reached 83.63% after 10 min. Piezo force microscopy (PFM) tests confirmed that CoMn2O4 exhibited a piezotronic effect under ultrasound. In situ electron paramagnetic resonance (in situ EPR) tests revealed that PMS could be activated to form hydroxyl radicals (•OH) and sulfate radicals (SO4•-) under ultrasound, which are active species for TC degradation. Consequently, CoMn2O4 effectively activated PMS into •OH and SO4•- active species, enabling the effective TC degradation. Moreover, biotoxicity experiments using germination tests showed that CoMn2O4 was capable of effectively degrading TC, thereby reducing environmental toxicity. This work not only provides mechanistic insights into piezoelectric material-activated PMS for pollutants degradation but also establishes a basis for the application of piezoelectric materials in pollutant degradation.
Collapse
Affiliation(s)
- Li Wang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| | - Chunqiu Han
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xin Ying Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
| |
Collapse
|
3
|
Bian S, Cai Z, Xing W, Zhao C, Pan Y, Han J, Wu G, Huang Y. Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials. ENVIRONMENTAL RESEARCH 2025; 268:120785. [PMID: 39800294 DOI: 10.1016/j.envres.2025.120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.0% with a PC-1-KOH weight of 20 mg. In addition, the TC removal efficiency stayed over 80.0% within the rage of pH of 3-9 and different water bodies. The adsorption process was described by the Pseudo-second-order kinetic model and the Langmuir isotherm, suggesting that the adsorption of TC was predominantly chemical in nature and occurred on a homogeneous surface. The pores filling, hydrogen bonding, π-π stacking interactions and electrostatic interaction are the main mechanisms of TC adsorption. This work demonstrates a sustainable approach to converting plastic waste derived materials into functional materials for effective pollution removal and environmental remediation.
Collapse
Affiliation(s)
- Shiyu Bian
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuoyu Cai
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weinan Xing
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunyu Zhao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yuwei Pan
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangang Han
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Guangyu Wu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Fu R, Liu J, Ma Y, Li H, Hai X, Niu J, Guo X, Di X. Portable and real-time detection for tetracycline antibiotics using europium-doped LDH gel intercalated graphene quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137143. [PMID: 39787930 DOI: 10.1016/j.jhazmat.2025.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Tetracyclines (TCs) residues pose a significant threat to the aquatic environment and human health, therefore this study aims to develop a simple, rapid, and sensitive TCs detection method. Herein, a dual-responsive gel probe (LDH-CES@N) was designed, consisting of the intercalation of graphene quantum dots into europium-doped layered double hydroxide (LDH). In the presence of TCs, the as-prepared probe exhibited dual emission fluorescence at 504 nm and 616 nm due to the synergistic effect of aggregation-induced emission and antenna effect. Meanwhile, the density functional theory was employed to validate the mechanism underlying TC-induced electron transfer from graphene quantum dots. The dual-signal response fluorescence probe has excellent detection ability of oxytetracycline, including a wide detection range (0-60 μM), low detection limit (0.145 μM), and rapid response time (120 s). Furthermore, combined with the smartphone, a portable and real-time detection platform was established for the visual detection of oxytetracycline in tap water and honey samples with desirable recovery rates (97.8 %-105.4 %). Therefore, this work provides a new strategy for fluorescence detection of trace pollutants, demonstrating considerable practical application potential.
Collapse
Affiliation(s)
- Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiawei Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yongpeng Ma
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Wei J, Gu Q, Er X, Sun J, Jin H. Dual excitation channel ratiometric fluorescent probes for visual and fluorescent detection of anthrax spore biomarker and tetracycline hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124942. [PMID: 39128386 DOI: 10.1016/j.saa.2024.124942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Long-term and excessive use of tetracycline hydrochloride (TC) can lead to its accumulation in the environment, which can cause water contamination, bacterial resistance, and food safety problems. 2,6-Pyridine dicarboxylic acid (DPA) is a major biomarker of Bacillus anthracis spores, and its rapid and sensitive detection is of great significance for disease prevention and counter-terrorism. A bifunctional ratiometric fluorescent nanoprobe has been fabricated to detect DPA and TC. 3,5-dicarboxyphenylboronic acid (BOP) was intercalated into layered europium hydroxide (LEuH) by the ion-exchange method and exfoliated into nanosheets as a fluorescent nanoprobe (PNP). DPA and TC could significantly enhance the red fluorescence of Eu3+ through the antenna effect under different excitation wavelengths, while the fluorescence of BOP can be used as a reference based on the constant emission intensity, realizing ratiometric detection. A low limit of detection (LOD) for the target (DPA: 9.7 nM, TC: 21.9 nM) can be achieved. In addition, visual detection of DPA and TC was realized using color recognition software based on the obvious color changes. This is the first ratiometric fluorescent nanoprobe based on layered rare-earth hydroxide (LRH) for the detection of DPA and TC simultaneously, which opens new ideas in the design of multifunctional probes.
Collapse
Affiliation(s)
- Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Xinyu Er
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Jia Sun
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
6
|
Khezerlou A, Tavassoli M, Abedi-Firoozjah R, Alizadeh Sani M, Ehsani A, Varma RS. MOFs-based adsorbents for the removal of tetracycline from water and food samples. Sci Rep 2025; 15:502. [PMID: 39747525 PMCID: PMC11697006 DOI: 10.1038/s41598-024-84122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Tetracyclines (TCs) are widely employed for the prevention and treatment of diseases in animals besides being deployed to promote animal growth and weight gain. Such practices result in trace amounts of TCs occurrence in water and foodstuffs of animal origin, including eggs and milk, thus posing severe health risks to humans. To ensure the food and water safety and to avoid exposure to humans, the removal of TC residues from food and water has recently garnered a considerable attention. Metal-organic frameworks (MOFs), endowed with unique structural and surface properties with high affinity toward TCs, are recognized as excellent absorbents for removal of TCs from food and water samples. Herein, the utilization of MOFs in the adsorption of TC from food and water samples is deliberated including the underlying mechanisms and various factors that affect the adsorption and degradation of TCs. The strategy may be extendible to other pollutants as well.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran
| | - Milad Tavassoli
- Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
7
|
Liu Z, Zhou Q, Xue J, Cui M, Xu L, Fang T, Wen Z, Li D, Wang J, Deng X, Zhou Y. Recent discoveries of propyl gallate restore the antibacterial effect of tigecycline against tet(X4)-positive Escherichia coli. Biochem Pharmacol 2025; 231:116638. [PMID: 39571915 DOI: 10.1016/j.bcp.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Propyl gallate (PG), an approved food additive, can be added to different foods and drugs to provide health benefits with minimal danger. However, no clinical application of PG as an antibacterial agent for the treatment of antimicrobial resistance (AMR) has been documented. The aim of this study was to elucidate the effects and mechanisms by which PG inhibits the activity of Tet(X4). Enzyme activity inhibition assay, antimicrobial tests, scanning electron microscopy (SEM) assay, molecular docking and dynamics simulation assays, and animal infection models were used to confirm the synergistic efficacy and mechanism. Here, we found that PG efficiently inhibited Tet(X4) enzyme activity (IC50 = 34.83 μg/mL) while affecting the expression of tet(X4). PG has a synergistic effect with tigecycline (fractional inhibitory concentration index (FICI) < 0.5) against tet(X4)-positive Escherichia coli (E. coli) isolates of animal origin. The survival rates of G. mellonella larvae and the mouse systemic infection model increased by 60 % and 39 %, respectively. The combination of PG and tigecycline showed remarkable treatment benefits in terms of the bacterial load and inflammatory factors in mice. Our results indicate that PG is a valuable adjuvant with tetracyclines and can be considered to address the inevitable infection caused by tet(X4)-positive bacteria, which is a feasible way to extend the lifespan of existing antibiotics.
Collapse
Affiliation(s)
- Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianyu Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinjing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Minhe Cui
- Jilin Mushuo Breeding Co., Ltd, Changchun 130052, Jilin, China
| | - Lei Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China; College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China.
| |
Collapse
|
8
|
Jiang S, Zhao H, Ma Z, Zhu H, Shang D, Zhai L, Wang Y, Song Y, Yang F. Densely distributed Co onto carbon-layer-coated flower-like Ni/Al 2O 3 and its tailored integration into a stirrer for multiple catalytic degradation and solar-powered water evaporation. NANOSCALE 2024. [PMID: 39704420 DOI: 10.1039/d4nr04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/Al2O3 hydrangea composites (Ni/Al2O3@Co) via the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/Al2O3@Co, with abundant exposed bimetallic Co-Ni species on the surface of Al2O3, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation. The tetracycline (TC) degradation rate of optimal Ni/Al2O3@Co500 reached 98.1% within 15 min with a first-order rate constant of 0.498 min-1, which is ∼1.38 times that of Al2O3@Co500 (0.362 min-1), indicating the existing Co-Ni intermetallic synergy. Free radical quenching experiments indicated that ˙O2- plays a leading role in the catalytic degradation of TC. Moreover, Ni/Al2O3@Co500 afforded strong flexibility for the degradation of methylene blue (MB), norfloxacin (NFX), bisphenol A (BPA), and oxytetramycin (OTC). Ni/Al2O3@Co500 catalysts were anchored onto a customized sponge via a calcium-triggered hydrogel crosslink strategy to construct an integral and tailored stirrer, which was used directly as the mechanical stirrer catalyst for the activation of peroxymonosulfate and pollutant removal. This obtained stirrer was also used as a monolith evaporator affording an evaporation rate of 1.944 kg m-2 h-1 at a solar-driven photothermal interface. We also demonstrated that the shape of the tailored sponge weakly affects the course of the degradation reaction. Furthermore, the degradation rates of TC in actual water sources on a Ni/Al2O3@Co500 sponge were still maintained up to 90% with rational recycling properties, which provide a promising solution for the multiple-functional pollutant degradation and water regeneration.
Collapse
Affiliation(s)
- Shuang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Hongyao Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Zichen Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Hongyang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Danhong Shang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Linzhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yanyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yiyan Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215000, China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
9
|
Staita K, Khmaissa M, Akrout I, Greff S, Ghariani B, Turbé-Doan A, Lambert J, Lomascolo A, Albert Q, Faulds CB, Sciara G, Zouari-Mechichi H, Record E, Mechichi T. Biotransformation of the Fluoroquinolone Antibiotic, Levofloxacin, by the Free and Immobilized Secretome of Coriolopsis gallica. J Fungi (Basel) 2024; 10:861. [PMID: 39728357 DOI: 10.3390/jof10120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Antibiotics play a crucial role in human and animal medical healthcare, but widespread use and overuse of antibiotics poses alarming health and environmental issues. Fluoroquinolones constitute a class of antibiotics that has already become ubiquitous in the environment, and their increasing use and high persistence prompt growing concern. Here we investigated a fungal secretome prepared from the white-rot fungus Coriolopsis gallica, which is able to effectively degrade the environmentally persistent fluoroquinolone, levofloxacin. We tested various physical-chemical factors such as concentrations of 1-hydroxybenzotriazol (HBT), of enzyme, and of antibiotic, and pH and temperature of the reaction for biotransformation of the antibiotic. We compared the free with the immobilized Coriolopsis gallica secretome proteins, and analyzed the collective reaction products for residual activity against E. coli (growth inhibition test). We also performed HPLC analysis. The results show that treatment with the free secretome yielded a highest removal efficiency of 50 mg L-1 levofloxacin in the presence of 2.5 mM HBT, whereas the immobilized secretome was only able to degrade 10 mg L-1 levofloxacin with the same concentration of mediator, but presenting the advantage of being reusable.
Collapse
Affiliation(s)
- Karima Staita
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Marwa Khmaissa
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Imen Akrout
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Stéphane Greff
- IMBE, UMR 7263, CNRS, IRD, Aix-Marseille Université, Avignon Université, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| | - Bouthaina Ghariani
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Annick Turbé-Doan
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Julien Lambert
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Anne Lomascolo
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Quentin Albert
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Craig B Faulds
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Giuliano Sciara
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Héla Zouari-Mechichi
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Eric Record
- INRAE, Aix Marseille Univ BBF, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Tahar Mechichi
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| |
Collapse
|
10
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
11
|
Gu L, Zhang J, Ding S, Wang L, Xia W, Wang P, Zhai W, Kong C, Shen X, Fan C, Yang G. Cost-effective synthesis and application of Cu²⁺-doped melamine formaldehyde resin for enhanced tetracycline enrichment in environmental water. J Chromatogr A 2024; 1738:465499. [PMID: 39531995 DOI: 10.1016/j.chroma.2024.465499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Tetracycline antibiotics (TCs) are typically present at low residue levels in environmental water, necessitating enrichment prior to analysis. In this study, a Cu2+-doped melamine formaldehyde resin (Cu-MFR) was synthesized to enhance the adsorption efficiency for TCs, leveraging the formation of stable Cu2+-TC complexes on the sorbent surface. Then it was used as an adsorbent in solid-phase extraction (SPE) for the enrichment of four TCs from water samples. The optimized parameters for Cu-MFR in the analysis of TCs in environmental water enabled linear detection ranges from 0.20 to 50 ng/mL, with relative recoveries ranging from 79.5 % to 97.6 % and relative standard deviations ≤ 10.0 %, using high-performance liquid chromatography-tandem high-resolution mass spectrometry (HPLC-HRMS). The limits of detection for the four TCs were determined to be between 0.11 and 0.16 ng/mL, indicating its potential for practical application in real sample analysis.
Collapse
Affiliation(s)
- Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Junyu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shuhai Ding
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Longlong Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wei Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Peng Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, PR China
| | - Cong Kong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Xiaosheng Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Chengqi Fan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Guangxin Yang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, (Academy of Forensic Science), PR China.
| |
Collapse
|
12
|
Kurczewska J, Stachowiak M, Cegłowski M. Chitosan-based hydrogel beads with molecularly imprinted receptors on halloysite nanotubes for tetracycline separation in water and soil. ENVIRONMENTAL RESEARCH 2024; 262:119924. [PMID: 39276838 DOI: 10.1016/j.envres.2024.119924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Tetracycline (TC), a commonly utilized broad-spectrum antibiotic, is frequently detected in water and soil, posing a significant risk to the natural environment and human health. In the present study, the composite hydrogel beads based on chitosan (CS) and halloysite-supported molecularly imprinted polymers, synthesized by two procedures with significantly different solvent volumes (Hal@MIPa(b)), were obtained and used to adsorb the antibiotic. The presence of Hal improved the thermal stability of the hydrogel beads. The system with a thinner polymer layer (CS_Hal@MIPb), containing polymers produced under conditions of significantly higher reagent dilution, was more resistant to higher temperatures than CS_Hal@MIPa. The adsorptive properties were compared with pure CS beads, those containing incorporated Hal, and free polymers obtained by different protocols (MIPa(b)). In the optimized pH 5.0, the maximum adsorption capacities were 175.24 and 178.05 mg g-1 for CS_Hal@MIPa and CS_Hal@MIPb, respectively. The values were slightly lower compared to the systems with free polymers, but the materials achieved equilibrium more rapidly (12 h). The adsorption process was spontaneous and exothermic. Freundlich isotherm and pseudo-second-order kinetic models most accurately described the experimental data. The hydrogel beads retained high selectivity in the presence of other antibiotics, and their high efficiency in the TC removal from real water samples was maintained. Their addition to soil enhanced adsorption capacities, surpassing that of chitosan-based beads containing free polymers. Significantly, the quantity of TC desorption diminished due to the halloysite's presence, which limited its penetration into groundwater. The primary mechanism of tetracycline adsorption on the hydrogel beads studied is pore filling, but other interactions (hydrogen bonding, π-π stacking, electrostatic attraction) are also involved.
Collapse
Affiliation(s)
- Joanna Kurczewska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Maria Stachowiak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Michał Cegłowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
13
|
Li ZY, Zhu JH, Zhao J, Yang XS, Liu YS, Cheng T, Chen YX, Sun SY, Wang LL. Self-assembled Fe 3O 4-COOH @ hydrogen-bonded organic framework composites for magnetic solid-phase extraction of tetracycline in food samples coupled with HPLC determination. Talanta 2024; 280:126746. [PMID: 39182415 DOI: 10.1016/j.talanta.2024.126746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Magnetic solid-phase extraction (MSPE) technology for tetracycline (TCC) was developed by employing the novel and pre-designed Fe3O4-COOH@hydrogen-bonded organic frameworks (HOFs) adsorbents in complex food samples. The HOF shell was grown onto the Fe3O4-COOH core by in-situ self-assembled method. The excellent MSPE performances with less solvent, less adsorbent and time consumption were derived from the hydrogen bonding, π-π and hydrophobic interactions between HOF shell and TCC. Combined with HPLC analysis, Fe3O4@ HOFs adsorbent reduced matrix effects and the established MSPE-HPLC method for TCC gave the linearity of 0.001-6 μg mL-1 with the limit of detection 0.0003 μg mL-1. The recoveries in pure milk, canned yellow peach and carrot were 82.4-103.7 %. The method provided a simple, efficient and dependable alternative to monitor trace TCC antibiotics in food or environmental samples.
Collapse
Affiliation(s)
- Zi-Yu Li
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Jia-Hui Zhu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Xiao-Shuai Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, PR China
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Ting Cheng
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yan-Xin Chen
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Shu-Yang Sun
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai, Shandong, 264025, PR China.
| |
Collapse
|
14
|
Ariani IK, Aydin S, Yangin-Gomec C. Assessment of antibiotics removal and transformation products by Eichhornia crassipes-assisted biomass in a UASB reactor treating pharmaceutical effluents. BIOFOULING 2024; 40:915-931. [PMID: 39564881 DOI: 10.1080/08927014.2024.2429554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
The dried roots of an aquatic plant (Eichhornia crassipes commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% E. crassipes (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L-1, respectively) regardless of E. crassipes addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of E. crassipes, no positive impact against TPs formation was observed.
Collapse
Affiliation(s)
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Krupka M, Michalczyk DJ, Piotrowicz-Cieślak AI. Critical stages in pea photosynthesis impaired by tetracycline as an environmental contaminant. JOURNAL OF PLANT RESEARCH 2024; 137:1049-1059. [PMID: 39305403 PMCID: PMC11525401 DOI: 10.1007/s10265-024-01580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/25/2024] [Indexed: 11/01/2024]
Abstract
The widespread use of antibiotics in intensive animal husbandry, and the agricultural utilization of manure from such farms, imposes a significant burden on the environment. Consequently, the effects of antibiotics should be studied not only in animals and humans but also in all components of biocenoses and agrocenoses. In our study, we analyze the impact of four different concentrations of tetracycline present in soil (0, 5, 50, and 500 mg/kg of soil) on the growth and key photosynthesis parameters of pea seedlings: chlorophyll concentration, aminolevulinic acid concentration, aminolevulinic acid dehydrogenase activity, and ribulose bisphosphate carboxylase-oxygenase (RuBisCO) activity. At the lowest tetracycline concentration, chlorophyll content decreased by 13% compared to the control (0 tetracycline), while at the highest antibiotic concentration, it decreased by as much as 27%. Similarly, the decrease in aminolevulinic acid (a chlorophyll precursor) concentration was significant, amounting to 34%. However, the activity of the dehydrogenase enzyme, which consumes this precursor, decreased even more drastically by 51%, indicating significant disturbances in the light phase of photosynthesis. However, the activity of RuBisCO in pea plants subjected to tetracycline was even more severely affected, dropping by 58%, 69%, and 70% in soils with increasing concentrations of tetracycline. The reduction in enzyme activity could only partially be explained by a less pronounced decrease in the quantity of RuBisCO (large subunit) protein, which amounted to 6.5%, 11%, and 35% for tetracycline concentrations of 5, 50, and 500 mg/kg of soil, respectively.
Collapse
Affiliation(s)
- Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dariusz J Michalczyk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka I Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
16
|
Baig MT, Kayan A. Advanced biopolymer-based Ti/Si-terephthalate hybrid materials for sustainable and efficient adsorption of the tetracycline antibiotic. Int J Biol Macromol 2024; 280:135676. [PMID: 39288857 DOI: 10.1016/j.ijbiomac.2024.135676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
This study involves the synthesis of an organic-inorganic hybrid material consisting of Ti/Si-terephthalate (Ti-TPA-Si) in a 1:1:1 ratio using sol-gel method and its reaction with cellulose and chitosan (Ti-TPA-Si-C and Ti-TPA-Si-CS). Characterization techniques such as XRD, FTIR, SEM, EDS, XPS, BET, TGA, and DTA were used. The incorporation of biopolymers (cellulose and chitosan) into the Ti/Si-terephthalate structure improved the morphology and textural properties of the hybrid materials, leading to increased adsorption capacity and sustainability. Adsorption experiments reveal that Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS hybrid materials exhibit a high affinity towards tetracycline, achieving remarkable adsorption efficiencies of 88.27, 89.60, and 88.98 %, respectively. Isotherm studies indicate that the adsorption process follows both Langmuir (R2 = 0.971, 0.990, and 0.994) and Dubinin-Radushkevich (R2 = 0.922, 0.965, and 0.949) isotherm models. According to the Langmuir model, the maximum adsorption capacity (qm) of Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS adsorbents was found to be 24.10, 33.56, and 26.59 mg/g, respectively. Kinetic studies indicate that the adsorption process follows both pseudo-second-order (R2 = 0.998, 0.984, and 0.989) and intra-particle diffusion (R2 = 0.995, 0.994, and 0.988) models. Thermodynamic studies reveal that adsorption processes are spontaneous and endothermic in nature. Reusability studies demonstrate their potential for repeated use without significant loss in performance.
Collapse
Affiliation(s)
- Mirza Talha Baig
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| | - Asgar Kayan
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey.
| |
Collapse
|
17
|
Zhu YM, Chen Y, Lu H, Jin K, Lin Y, Ren H, Xu K. Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. WATER RESEARCH 2024; 262:122107. [PMID: 39038424 DOI: 10.1016/j.watres.2024.122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Hewei Lu
- Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Kai Jin
- Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China.
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China.
| |
Collapse
|
18
|
Luo Y, Su R. Preparation of NH 2-MIL-101(Fe) Metal Organic Framework and Its Performance in Adsorbing and Removing Tetracycline. Int J Mol Sci 2024; 25:9855. [PMID: 39337342 PMCID: PMC11432026 DOI: 10.3390/ijms25189855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Tetracycline's accumulation in the environment poses threats to human health and the ecological balance, necessitating efficient and rapid removal methods. Novel porous metal-organic framework (MOF) materials have garnered significant attention in academia due to their distinctive characteristics. This paper focuses on studying the adsorption and removal performance of amino-modified MIL-101(Fe) materials towards tetracycline, along with their adsorption mechanisms. The main research objectives and conclusions are as follows: (1) NH2-MIL-101(Fe) MOF materials were successfully synthesized via the solvothermal method, confirmed through various characterization techniques including XRD, FT-IR, SEM, EDS, XPS, BET, and TGA. (2) NH2-MIL-101(Fe) exhibited a 40% enhancement in tetracycline adsorption performance compared to MIL-101(Fe), primarily through chemical adsorption following pseudo-second-order kinetics. The adsorption process conformed well to Freundlich isotherm models, indicating multilayer and heterogeneous adsorption characteristics. Thermodynamic analysis revealed the adsorption process as a spontaneous endothermic reaction. (3) An increased adsorbent dosage and temperature correspondingly improved NH2-MIL-101(Fe)'s adsorption efficiency, with optimal performance observed under neutral pH conditions. These findings provide new strategies for the effective removal of tetracycline from the environment, thus holding significant implications for environmental protection.
Collapse
Affiliation(s)
- Yiting Luo
- School of Business, Hunan First Normal University, Changsha 410114, China
- National Engineering Laboratory of Southern Forestry Ecological Application Technology, Changsha 410004, China
| | - Rongkui Su
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
19
|
Justo-Tirado M, Pérez-Herráez I, Escorihuela J, Arenal R, Zaballos-García E, Pérez-Prieto J. Harnessing sustainable nanoclusters for sensitive optical detection of tetracyclines and the underlying mechanism. NANOSCALE ADVANCES 2024:d4na00637b. [PMID: 39345791 PMCID: PMC11425532 DOI: 10.1039/d4na00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Simple and rapid sensing methods for the detection of antibiotics in drinks and foods are highly desirable due to the presence of these drugs in food products, as a consequence of extensive abuse of antibiotics in livestock production. In this study, we report a facile synthesis strategy of gold nanoclusters (AuNCs) passivated with N-acetyl-l-cysteine (AuNC@NAC). This nanocluster exhibits a fluorescence emission peak at 700 nm, which gradually decreases at increasing concentrations of antibiotics, such as tetracyclines. The limit of detection (LOD) was determined to be 0.8 ppm with a linear range of 0.1-140 μM (0.04-62 ppm). This method showcased exceptional selectivity in the detection of tetracyclines compared to anions, metallic cations and amino acids. The underlying mechanism has been elucidated, and the fluorescence quenching was found to be a combination of dynamic and static quenching mechanisms, with photoinduced electron transfer (PET) identified as the primary process for dynamic quenching.
Collapse
Affiliation(s)
- Miguel Justo-Tirado
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| | - Irene Pérez-Herráez
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica, University de València Av. Vicent Andres Estelles s/n Burjassot Spain
| | - Raúl Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
- Laboratorio de Microscopias Avanzadas (LMA), U. Zaragoza C/Mariano Esquillor s/n 50018 Zaragoza Spain
- ARAID Foundation 50018 Zaragoza Spain
| | - Elena Zaballos-García
- Departamento de Química Orgánica, University de València Av. Vicent Andres Estelles s/n Burjassot Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| |
Collapse
|
20
|
Cui W, Zhang C, Li S, Liu Y, Tian L, Li M, Zhi Y, Shan S. The construction of Z-scheme heterojunction ZnIn 2S 4@CuO with enhanced charge transfer capability and its mechanism study for the visible light degradation of tetracycline. J Colloid Interface Sci 2024; 669:402-418. [PMID: 38723530 DOI: 10.1016/j.jcis.2024.04.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/27/2024]
Abstract
In this study, copper oxide (CuO) was prepared by the microwave-assisted hydrothermal technique subsequently, CuO was grown in situ onto different rare metal compounds to prepare Z-scheme heterojunctions to improve the degradation efficiency of tetracycline (TC) in water environments. Various characterization proved the successful synthesis of all composite materials, and the formation of tight heterojunction interfaces, among which, the core-shell structure ZnIn2S4@CuO exhibited excellent photocatalytic degradation capability. Research results indicated that the degradation efficiency of ZnIn2S4@CuO for TC (50 mg/L) in the water environment reached 95.8 %, and the degradation rate is 2.41 times and 12.93 times that of CuO and ZnIn2S4 alone, respectively, the reason is because of the introduction of ZnIn2S4, Z-scheme heterojunction structures and internal electric field (IEF) is constructed and formed to extend the visible light response range of photocatalysts to improve electron-hole separation efficiency, and enhance charge transfer. In addition, ZnIn2S4@CuO-2 exhibited good stability and reproducibility, with no significant loss of activity after five cycles. Finally, the precise locations of free radical attack on TC were investigated by the combined use of high-resolution mass spectrometry (HR-MC) and frontier electron densities (FEDs), and a reasonable degradation pathway was provided. The results of this research provide a new and viable approach to overcome the limitations of conventional photocatalytic materials in terms of limited visible light absorption range and fast carrier recombination rates, which offers promising prospects for a wide range of applications in the field of wastewater purification.
Collapse
Affiliation(s)
- Weigang Cui
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Churu Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Long Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Mengrui Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
21
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Sikorski Ł, Bęś A, Warmiński K, Truszkowski W, Kowal P. Utilizing Morphological and Physiological Parameters of Lemna minor for Assessing Tetracyclines' Removal. Molecules 2024; 29:3971. [PMID: 39203049 PMCID: PMC11356931 DOI: 10.3390/molecules29163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50-80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) on L. minor. Our research evaluated the phytotoxicity of the TCs by analyzing plant growth and biomass and evaluating assimilation pigment levels and fluorescence. The research was extended with the ability potential of duckweed as a tool for removing TCs from water/wastewater. The results demonstrated that both TCs influenced Ir, Iy, biomass, and photosynthetic efficiency. The uptake of TC and MIN by duckweed was proportional to the concentration in the growth medium. The TC was absorbed more readily, reaching up to 8.09 mg × g-1 of dry weight (DW) at the highest concentration (19.2 mg × L-1), while MIN reached 6.01 mg × g-1 of DW. As indicated, the consequences of the influence of TC on plants were slightly smaller, in comparison to MIN, while the plants could biosorb this drug, even at the lowest tested concentration. This study has shown that using plants for drug biosorption can be an effective standalone or complementary method for water and wastewater treatment.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Kazimierz Warmiński
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727 Olsztyn, Poland; (A.B.); (K.W.)
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8, 10-719 Olsztyn, Poland;
| | - Przemysław Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
23
|
Zhou Z, Wei W, Wu H, Gong H, Zhou K, Zheng Q, Liu S, Gui L, Jiang Z, Zhu S. Coupling Electro-Fenton and Electrocoagulation of Aluminum-Air Batteries for Enhanced Tetracycline Degradation: Improving Hydrogen Peroxide and Power Generation. Molecules 2024; 29:3781. [PMID: 39202861 PMCID: PMC11356830 DOI: 10.3390/molecules29163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Electro-Fenton (EF) technology has shown great potential in environmental remediation. However, developing efficient heterogeneous EF catalysts and understanding the relevant reaction mechanisms for pollutant degradation remain challenging. We propose a new system that combines aluminum-air battery electrocoagulation (EC) with EF. The system utilizes dual electron reduction of O2 to generate H2O2 in situ on the air cathodes of aluminum-air batteries and the formation of primary cells to produce electricity. Tetracycline (TC) is degraded by ·OH produced by the Fenton reaction. Under optimal conditions, the system exhibits excellent TC degradation efficiency and higher H2O2 production. The TC removal rate by the reaction system using a graphite cathode reached nearly 100% within 4 h, whereas the H2O2 yield reached 127.07 mg/L within 24 h. The experimental results show that the novel EF and EC composite system of aluminum-air batteries, through the electroflocculation mechanism and ·OH and EF reactions, with EC as the main factor, generates multiple •OH radicals that interact to efficiently remove TC. This work provides novel and important insights into EF technology, as well as new strategies for TC removal.
Collapse
Affiliation(s)
- Zhenghan Zhou
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Wei Wei
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Houfan Wu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Haoyang Gong
- Hefei Water Supply Group Co., Ltd., No. 70, Tunxi Road, Hefei 230011, China;
| | - Kai Zhou
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Qiyuan Zheng
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Shaogen Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Ling Gui
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Zhongqi Jiang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
| | - Shuguang Zhu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Energy Saving Research Institute, Anhui Jianzhu University, Hefei 230601, China
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
24
|
Hu F, Ning S, Li Z, Zhu H, Fujita T, Yin X, Chen L, Zeng D, Hamza MF, Wei Y, Wang X. A new strategy to construct MOF-on-MOF derivatives for the removal of tetracycline hydrochloride from water by activation of peroxymonosulfate. CHEMOSPHERE 2024; 362:142676. [PMID: 38936487 DOI: 10.1016/j.chemosphere.2024.142676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
A MOF-on-MOF composite derivative material named ZIF-67@Ce-MOF-600 was designed and synthesized. The preparation of ZIF-67@Ce-MOF-600 was optimized from the aspects of the ratio of metal and ligand, heat-treatment temperature. It was demonstrated by XRD, FT-IR, SEM-EDS and TEM. The optimum conditions for the activation of PMS by ZIF-67@Ce-MOF-600 for the degradation of tetracycline (TC) were investigated by adjusting the catalyst dosage, TC, pH, peoxymonosulfate (PMS) concentration, and different kinds of water, co-existing anions and pollution. Under optimal conditions (20 mg catalysts and 50 mg PMS added) in 100 mL of tetracyclines (TC) solvent (20 mg TC/L), the removal rate could reach up to 99.2% and after five cycles was 70.5%. The EPR results indicated the presence of free radicals and non-free radical, among which free radicals intended to play a major role in the degradation process. Its possible degradation pathways and attack sites were analyzed by liquid-phase mass spectrometry and DFT analysis.
Collapse
Affiliation(s)
- Fengtao Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China.
| | - Zengzhiqiang Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hao Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Lifeng Chen
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Deqian Zeng
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
25
|
García Y, Aguilar J, Polania L, Duarte Y, Sellergren B, Jiménez VA. Rational Design and Evaluation of Photoactive Molecularly Imprinted Nanoparticles for Tetracycline Degradation Under Visible Light. ACS OMEGA 2024; 9:33140-33152. [PMID: 39100280 PMCID: PMC11292816 DOI: 10.1021/acsomega.4c04550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
This work presents the use of photoactive molecularly imprinted nanoparticles (MINs) to promote antibiotic degradation under visible light irradiation. Prototype MINs for the model antibiotic tetracycline (TC) were developed using molecular dynamics simulations to predict the TC-binding capacity of seven pre-polymerization mixtures. The studied formulations contained varying proportions of functional monomers with diverse physicochemical profiles, namely N-isopropylacrylamide (NIPAM), N-tert-butylacrylamide (TBAM), acrylic acid (AA), and (N-(3-aminopropyl)methacrylamide hydrochloride) (APMA) and a constant ratio of the cross-linker N,N'-methylene-bis-acrylamide (BIS). Two monomer formulations showed markedly higher TC-binding capacities based on template-monomer interaction energies. These mixtures were used to synthesize photoactive MINs by high-dilution radical polymerization, followed by the EDC/NHS conjugation with the organic photosensitizer toluidine blue. MINs showed higher TC-binding capacities than non-imprinted nanoparticles (nINs) of identical composition. MINs and nINs exhibited photodynamic activity under visible light irradiation, as confirmed by singlet oxygen generation experiments. TC degradation was evaluated in 50 μmol L-1 solutions placed in microplate wells containing immobilized nanoparticles and irradiated with white LED light (150 W m-2) for 1 h at room temperature. Degradation followed pseudo-zero-order kinetics with accelerated profiles in MIN-containing wells. Our findings suggest a key role of molecularly imprinted cavities in bringing TC closer to the photosensitizing moieties, minimizing the loss of oxidative potential due to reactive oxygen species diffusion. This degradation strategy can potentially extend to any organic pollutants for which MINs can be synthesized and opens valuable opportunities for exploring novel applications for molecularly imprinted materials.
Collapse
Affiliation(s)
- Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Joao Aguilar
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Laura Polania
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, República, 239, Santiago 8370146, Chile
| | - Börje Sellergren
- Surecapture Technologies AB, Per Albin Hanssons väg 35, Malmö 214 32, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, Malmö 214 32, Sweden
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| |
Collapse
|
26
|
Yee BJ, Zakaria SNA, Chandrawati R, Ahmed MU. Detection of Tetracycline with a CRISPR/Cas12a Aptasensor Using a Highly Efficient Fluorescent Polystyrene Microsphere Reporter System. ACS Synth Biol 2024; 13:2166-2176. [PMID: 38866727 DOI: 10.1021/acssynbio.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
CRISPR-based diagnostics use the CRISPR-Cas system trans-cleavage activity to identify specific target sequences. When activated, this activity cleaves surrounding reporter molecules, producing a detectable signal. This technique has great specificity, sensitivity, and rapid detection, making it an important molecular diagnostic tool for medical and infectious disease applications. Despite its potential, the present CRISPR/Cas system has challenges with its single-stranded DNA reporters, characterized by low stability and limited sensitivity, restricting effective application in complex biological settings. In this work, we investigate the trans-cleavage activity of CRISPR/Cas12a on substrates utilizing fluorescent polystyrene microspheres to detect tetracycline. This innovative discovery led to the development of microsphere probes addressing the stability and sensitivity issues associated with CRISPR/Cas biosensing. By attaching the ssDNA reporter to polystyrene microspheres, we discovered that the Cas12a system exhibits robust and sensitive trans-cleavage activity. Further work revealed that the trans-cleavage activity of Cas12a on the microsphere surface is significantly dependent on the concentration of the ssDNA reporters. Building on these intriguing discoveries, we developed microsphere-based fluorescent probes for CRISPR/Cas aptasensors, which showed stability and sensitivity in tetracycline biosensing. We demonstrated a highly sensitive detection of tetracycline with a detection limit of 0.1 μM. Finally, the practical use of a microsphere-based CRISPR/Cas aptasensor in spiked food samples was proven successful. These findings highlighted the remarkable potential of microsphere-based CRISPR/Cas aptasensors for biological research and medical diagnosis.
Collapse
Affiliation(s)
- Bong Jing Yee
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Siti Nurul Azian Zakaria
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
27
|
Lv J, Huang R, Zeng K, Zhang Z. Magnetic Immunoassay Based on Au Pt Bimetallic Nanoparticles/Carbon Nanotube Hybrids for Sensitive Detection of Tetracycline Antibiotics. BIOSENSORS 2024; 14:342. [PMID: 39056618 PMCID: PMC11274607 DOI: 10.3390/bios14070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Misusage of tetracycline (TC) antibiotics residue in animal food has posed a significant threat to human health. Therefore, there is an urgent need to develop highly sensitive and robust assays for detecting TC. In the current study, gold and platinum nanoparticles were deposited on carbon nanotubes (CNTs) through the superposition method (Au@Pt/CNTs-s) and one-pot method (Au@Pt/CNTs-o). Au@Pt/CNTs-s displayed higher enzyme-like activity than Au@Pt/CNTs-o, which were utilized for the development of sensitive magnetic immunoassays. Under the optimized conditions, the limits of detection (LODs) of magnetic immunoassays assisted by Au@Pt/CNTs-s and Au@Pt/CNTs-o against TCs could reach 0.74 ng/mL and 1.74 ng/m, respectively, which were improved 6-fold and 2.5-fold in comparison with conventional magnetic immunoassay. In addition, the measurement of TC-family antibiotics was implemented by this assay, and ascribed to the antibody used that could recognize TC, oxytetracycline, chlortetracycline, and doxycycline with high cross-reactivity. Furthermore, the method showed good accuracy (recoveries, 92.1-114.5% for milk; 88.6-92.4% for pork samples), which also were applied for determination of the targets in real samples. This study provides novel insights into the rapid detection of targets based on high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jianxia Lv
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China;
| | - Rui Huang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
28
|
Zhang R, Dong J, Li L, Zhao J, Ji M, Wang B, Xia J, Li H. Low concentration of peroxymonosulfate coupled with visible light triggers oxygen reactive species generation over constructed Bi 25FeO 40/BiOCl Z-scheme heterojunction for various tetracycline antibiotics removal. J Colloid Interface Sci 2024; 665:825-837. [PMID: 38564946 DOI: 10.1016/j.jcis.2024.03.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Photocatalytic peroxymonosulfate (PMS) oxidation systems demonstrate significant potential and promising prospects through the interconnection of photocatalytic and PMS oxidation for simultaneously achieving efficient pollutant removal and reduction of PMS dosage, which prevents resource wastage and secondary pollution. In this study, a Z-scheme Bi25FeO40/BiOCl (BOFC) heterojunction was constructed to carry out the photocatalytic PMS oxidation process for tetracyclines (TCs) pollutants at low PMS concentrations (0.08 mM). The photocatalytic PMS oxidation rate of Bi25FeO40/BiOCl composites for tetracycline hydrochloride (TCH), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DXC) reaches 86.6%, 83.6%, 86.7%, and 88.0% within 120 min. Simultaneously, the BOFC/PMS system under visible light (Vis) equally displayed the practical application prospects for the solo and mixed simulated TCs antibiotics wastewater. Based on the electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) valence band spectrum, a Z-scheme electron migration pathway was proposed to elucidate the mechanism underlying the performance enhancement of BOFC composites. Bi25FeO40 in BOFC composites can serve as active site for activating PMS by the formation of Fe3+/Fe2+ cycle. Toxicity estimation software tool (T.E.S.T.) and mung beans planting experiment demonstrates that BOFC/PMS/Vis system can reduce toxicity of TCs wastewater. Therefore, BOFC/PMS/Vis system achieves efficient examination in different water environments and efficient utilization of PMS, which displays a scientific reference for achieving environmentally-friendly and resource-saving handling processes.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jintao Dong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lina Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junze Zhao
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mengxia Ji
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
29
|
Mosaffa E, Ramsheh NA, Banerjee A, Ghafuri H. Bacterial cellulose microfilament biochar-architectured chitosan/polyethyleneimine beads for enhanced tetracycline and metronidazole adsorption. Int J Biol Macromol 2024; 273:132953. [PMID: 38944566 DOI: 10.1016/j.ijbiomac.2024.132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
30
|
Zhang T, Zhang X, Yu J, Hu H, He P, Li Z, Fang Y, Li T, Guo Y. Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:2921. [PMID: 38930985 PMCID: PMC11206360 DOI: 10.3390/molecules29122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The abuse and irrational use of tetracyclines (TCs) in human medicine and animal husbandry has become a serious concern, affecting the ecological environment and human health. The aim of this study was to develop a sensitive and selective method using fully automatic solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the determination of twelve TCs in water. Four isotope-labeled internal standards for TCs were used to correct matrix effects. Several parameters affecting extraction efficiency were systematically optimized, and the optimum experimental conditions found were 1.0 L water sample with 0.5 g/L Na2EDTA (pH 3.0) extracted and enriched by CNW HLB cartridge and eluted by 4 mL of acetone:methanol (v/v, 1:1). The enrichment factors were up to 798-1059 but only requiring about 60 min per six samples. Under the optimized conditions, the linearity of the method ranged from 0.2 to 100 μg/L for 12 TCs, the detection limits were as low as 0.01-0.15 ng/L, and the recoveries were in the range of 70%-118%, with relative standard deviations less than 15%. The developed method can be successfully utilized for the determination of 12 TCs in pure water, tap water, river water, and mariculture seawater. In summary, three and six TCs were detected in river water and mariculture seawater, respectively, with total concentrations of 0.074-0.520 ng/L (mean 0.248 ng/L) and 0.792-58.369 ng/L (12.629 ng/L), respectively. Tetracycline (TC) and oxytetracycline (OTC) were the dominant TCs in river water, while doxytetracycline (DXC) and OTC were dominant in mariculture seawater.
Collapse
Affiliation(s)
- Tongtong Zhang
- Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiangyang Zhang
- Daishan County Science and Technology Innovation Center, Zhoushan 316200, China
| | - Jiangmei Yu
- Zhoushan Ecological Environment Protection Technology Center, Zhoushan 316021, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Pengfei He
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yi Fang
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
31
|
Hong J, Chu Z, Li C, Yang W, Kawi S, Ye Q. Innovative Bi 5O 7I/MIL-101(Cr) Compounds: A Leap Forward in Photocatalytic Tetracycline Removal. Int J Mol Sci 2024; 25:6759. [PMID: 38928465 PMCID: PMC11203606 DOI: 10.3390/ijms25126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
In environmental chemistry, photocatalysts for eliminating organic contaminants in water have gained significant interest. Our study introduces a unique heterostructure combining MIL-101(Cr) and bismuth oxyiodide (Bi5O7I). We evaluated this nanostructure's efficiency in adsorbing and degrading tetracycline (TC) under visible light. The Bi5O7I@MIL-101(Cr) composite, with a surface area of 637 m2/g, prevents self-aggregation seen in its components, enhancing visible light absorption. Its photocatalytic efficiency surpassed Bi5O7I and MIL-101(Cr) by 33.4 and 9.2 times, respectively. Comprehensive analyses, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirmed the successful formation of the heterostructure with defined morphological characteristics. BET analysis demonstrated its high surface area, while X-ray diffraction (XRD) confirmed its crystallinity. Electron spin resonance (ESR) tests showed significant generation of reactive oxygen species (ROS) like h+ and·•O2- under light, crucial for TC degradation. The material maintained exceptional durability over five cycles. Density functional theory (DFT) simulations and empirical investigations revealed a type I heterojunction between Bi5O7I and MIL-101(Cr), facilitating efficient electron-hole pair separation. This study underscores the superior photocatalytic activity and stability of Bi5O7I@MIL-101(Cr), offering insights into designing innovative photocatalysts for water purification.
Collapse
Affiliation(s)
- Jie Hong
- GuiZhou University Medical College, Guiyang 550025, China
| | - Zhaohan Chu
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang 550025, China;
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore;
| | - Wanliang Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore;
| | - Qinong Ye
- GuiZhou University Medical College, Guiyang 550025, China
| |
Collapse
|
32
|
Sudheer NS, Biju IF, Balasubramanian CP, Panigrahi A, Kumar TS, Kumar S, Mandal B, Das S, De D. Probiotic potential of a novel endophytic Streptomyces griseorubens CIBA-NS1 isolated from Salicornia sp. against Vibrio campbellii infection in shrimp. Microb Pathog 2024; 191:106677. [PMID: 38705217 DOI: 10.1016/j.micpath.2024.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.
Collapse
Affiliation(s)
- N S Sudheer
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India.
| | - I F Biju
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - C P Balasubramanian
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - A Panigrahi
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Sujeet Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Babita Mandal
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - S Das
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| | - D De
- Kakdwip Research Centre of ICAR-CIBA, Kakdwip, South 24 Parganas, West Bengal, India
| |
Collapse
|
33
|
Nguyen ML, Ngo HL, Nguyen Hoang TT, Le DT, Nguyen DD, Huynh QS, Nguyen TTT, Nguyen TT, Juang RS. Effective degradation of tetracycline in aqueous solution by an electro-Fenton process using chemically modified carbon/α-FeOOH as catalyst. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:313-327. [PMID: 38887776 PMCID: PMC11180057 DOI: 10.1007/s40201-024-00902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
This study applied an electro-Fenton process using chemically modified activated carbon derived from rubber seed shells loaded with α-FeOOH (RSCF) as catalyst to remove tetracycline residues from aquatic environment. Catalyst characteristics were evaluated using SEM, EDS, XRD, and XPS, showing successful insertion of iron onto the activated carbon. The effects of the parameters were investigated, and the highest treatment efficiency was achieved at pH of 3, Fe: H2O2 ratio (w/w) of 500:1, catalyst dose of 1 g/L, initial TCH concentration of 100 mg/L, and electric current of 150 mA, with more than 90% of TCH being eliminated within 30 min. Furthermore, even after five cycles of use, the treatment efficiency remains above 90%. The rate constant is calculated to be 0.218 min-1, with high regression coefficients (R 2 = 0.93). The activation energy (Ea) was found to be 32.2 kJ/mol, indicating that the degradation of TCH was a simple reaction with a low activation energy. These findings showed that the RSCF is a highly efficient and cost-effective catalyst for TCH degradation. Moreover, the use of e-Fenton process has the advantage of high efficiency, low cost thanks to the recyclability of the catalyst, and environmental friendliness thanks to less use of H2O2.
Collapse
Affiliation(s)
- My Linh Nguyen
- Department of Environmental Technology, Faculty of Chemical and Food Technology, HCMC University of Technology and Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Long Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Thuy Tien Nguyen Hoang
- Institute for Environment and Resources (IER), Vietnam National University of Ho Chi Minh City (VNU-HCM), Dong Hoa Ward, Di An Town, Binh Duong Province Vietnam
| | - Duc Trung Le
- Institute for Environment and Resources (IER), Vietnam National University of Ho Chi Minh City (VNU-HCM), Dong Hoa Ward, Di An Town, Binh Duong Province Vietnam
| | - Duy Dat Nguyen
- Department of Environmental Technology, Faculty of Chemical and Food Technology, HCMC University of Technology and Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Quang Sang Huynh
- Department of Environmental Technology, Faculty of Chemical and Food Technology, HCMC University of Technology and Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Tuyet Trinh Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, Ward 11, District 5, Ho Chi Minh City, Vietnam
| | - Thanh Tung Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, 33302 Guishan, Taoyuan Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, 33305 Taoyuan, Taiwan
| |
Collapse
|
34
|
Borges Serra AR, Castro de Sousa G, de Carvalho Gomes V, Alves de Sousa Filho I, Grisolia CK, Zhao B, Walton RI, Serra OA. Enhancing photocatalytic tetracycline degradation through the fabrication of high surface area CeO 2 from a cerium-organic framework. RSC Adv 2024; 14:17507-17518. [PMID: 38818361 PMCID: PMC11138135 DOI: 10.1039/d4ra02640c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Water pollution is a global environmental issue, and the presence of pharmaceutical compounds, such as tetracyclines (TCs), in aquatic ecosystems has raised growing concerns due to the potential risks to both the environment and human health. A high surface area CeO2 was prepared via atmospheric thermal treatment of a metal-organic framework of cerium and benzene-1,3,5-tricarboxylate. The effects of calcination temperature on the morphology, structure, light absorption properties and tetracycline removal efficiency were studied. The best activity of the photocatalysts could be achieved when the heat treatment temperature is 300 °C, which enhances the photocatalytic degradation performance towards tetracycline under visible light. The resulting CeO2 particles have high capacity for adsorbing TCs from aqueous solution: 90 mg g-1 for 60 mg L-1 TCs. As a result, 98% of the initial TC can be removed under simulated sunlight irradiation. The cooperation of moderate defect concentration and disordered structure showed tetracycline removal activity about 10 times higher than the initial Ce-MOF. An embryotoxicity assessment on zebrafish revealed that treatment with CeO2 particles significantly decreased the toxicity of TC solutions.
Collapse
Affiliation(s)
- Ayla Roberta Borges Serra
- Department of Chemistry and Chemical Engineering, University Federal of São Carlos São Carlos Brazil
| | | | | | | | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University Brasilia-UnB Brasilia Brazil
| | - Baiwen Zhao
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
35
|
Theodorakopoulos GV, Pylarinou M, Sakellis E, Katsaros FK, Likodimos V, Romanos GE. Mo-BiVO 4 Photocatalytically Modified Ceramic Ultrafiltration Membranes for Enhanced Water Treatment Efficiency. MEMBRANES 2024; 14:112. [PMID: 38786946 PMCID: PMC11122868 DOI: 10.3390/membranes14050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
This study highlights the effectiveness of photocatalytically modified ceramic ultrafiltration (UF) membranes in alleviating two major drawbacks of membrane filtration technologies. These are the generation of a highly concentrated retentate effluent as a waste stream and the gradual degradation of the water flux through the membrane due to the accumulation of organic pollutants on its surface. The development of two types of novel tubular membranes, featuring photocatalytic Mo-BiVO4 inverse opal coatings, demonstrated a negligible impact on water permeance, ensuring consistent filtration and photocatalytic efficiency and suggesting the potential for maintaining membrane integrity and avoiding the formation of highly concentrated retentate effluents. Morphological analysis revealed well-defined coatings with ordered domains and interconnected macropores, confirming successful synthesis of Mo-BiVO4. Raman spectroscopy and optical studies further elucidated the composition and light absorption properties of the coatings, particularly within the visible region, which is vital for photocatalysis driven by vis-light. Evaluation of the tetracycline removal efficiency presented efficient adsorption onto membrane surfaces with enhanced photocatalytic activity observed under both UV and vis-light. Additionally, vis-light irradiation facilitated significant degradation, showcasing the versatility of the membranes. Total Organic Carbon (TOC) analysis corroborated complete solute elimination or photocatalytic degradation without the production of intermediates, highlighting the potential for complete pollutant removal. Overall, these findings emphasize the promising applications of Mo-BiVO4 photocatalytic membranes in sustainable water treatment and wastewater remediation processes, laying the groundwork for further optimization and scalability in practical water treatment systems.
Collapse
Affiliation(s)
- George V. Theodorakopoulos
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (E.S.); (F.K.K.)
- Inorganic and Analytical Chemistry Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., 15772 Zografou, Greece
| | - Martha Pylarinou
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.P.); (V.L.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (E.S.); (F.K.K.)
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.P.); (V.L.)
| | - Fotios K. Katsaros
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (E.S.); (F.K.K.)
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.P.); (V.L.)
| | - George Em. Romanos
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (E.S.); (F.K.K.)
| |
Collapse
|
36
|
Derikvand H, Tahmasebi N, Barzegar S. Construction of a direct Z-scheme Cs 3Bi 2Cl 9/g-C 3N 4 heterojunction composite for efficient photocatalytic degradation of various pollutants in water: Performance, kinetics and degradation mechanism. CHEMOSPHERE 2024; 355:141879. [PMID: 38570050 DOI: 10.1016/j.chemosphere.2024.141879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The use of emerging composite materials has been booming to remove environmental pollutants. The aim of this research is to develop a new composite based on Cs3Bi2Cl9 perovskite and graphitic carbon nitride (g-C3N4) to investigate the photocatalytic performance under visible light irradiation. To achieve this, we produce the Cs3Bi2Cl9/g-C3N4 heterojunctions through a simple self-assembly synthesis. The as-synthesized composites are characterized using XRD, FTIR, FESEM, TEM, BET and EDX techniques. The photocatalytic performance of Cs3Bi2Cl9/g-C3N4 is examined in the degradation of various water contaminants, including 4-nitrophenol (4-NP), tetracycline antibiotic (TC), methylene blue (MB) and methyl orange (MO). The experimental results indicate the superior photocatalytic performance of the composites in the degradation of pollutants compared to pure Cs3Bi2Cl9 and g-C3N4. The 10% Cs3Bi2Cl9/g-C3N4 composite achieves the optimal degradation efficiency of 100, 92, 98.7, and 85.1% of 4-NP, TC, MB, and MO, respectively. This superior photocatalytic activity attributes to improved optical and electrochemical properties, including enhanced absorption ability, narrowing band gap, promoted separation efficiency of photogenerated carriers, and a high redox potential, which is confirmed by UV-vis DRS, PL, EIS, and CV analyses. The 10% Cs3Bi2Cl9/g-C3N4 composite also demonstrates high photocatalytic stability after four consecutive cycles. Radical trapping tests show that superoxide radicals (•O2-), holes (h+), and hydroxyl radicals (•OH) contribute to the photocatalytic process. Based on the obtained data, a direct Z-scheme heterojunction mechanism is proposed. Overall, this research offers a new stable photocatalyst with excellent prospect for photocatalytic applications.
Collapse
Affiliation(s)
- Hamed Derikvand
- Department of Physics, Jundi-Shapur University of Technology, Dezful, Iran
| | - Nemat Tahmasebi
- Department of Physics, Jundi-Shapur University of Technology, Dezful, Iran.
| | - Shahram Barzegar
- Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| |
Collapse
|
37
|
Bonerba E, Shehu F, Pandiscia A, Lorusso P, Manfredi A, Huter A, Tantillo GM, Panseri S, Nobile M, Terio V. The EU Interreg Project "ADRINET": Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety. Foods 2024; 13:1235. [PMID: 38672907 PMCID: PMC11048948 DOI: 10.3390/foods13081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Anthropogenic activities lead to the spread of chemicals and biological materials, including plastic waste, toxic metals, and pharmaceuticals, of which the impact on the Mediterranean Sea is of high concern. In this context, the EU Interreg Italy-Albania-Montenegro Project "ADRINET (Adriatic Network for Marine Ecosystem) _244" (2018-2020) arises. It aims to carry out biomonitoring campaigns in the main commercial interest of fish and cephalopod species, such as Sparus aurata, Dicentrarchus labrax, Sepia spp., and Loligo spp. sampled in three different subregions of the Mediterranean Sea. The presence of the main environmental contaminants, such as cadmium, microplastics, and antibiotics was investigated in these seafood samples. Contamination by cadmium and antibiotics in the seafood investigated in our study was negligible. However, a high value of microplastics was detected in the stomach and gut of Sparus aurata and Dicentrarchus labrax. Overall, even though the presence of microplastics needs to be investigated by further studies, the results confirmed that the environmental conditions of the three bays investigated by the ADRINET project partners (Italy, Albania, Montenegro) are positive and not affected by intensive anthropogenic activity.
Collapse
Affiliation(s)
- Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70010 Valenzano, Italy; (E.B.); (P.L.); (A.M.); (V.T.)
| | - Fatmira Shehu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Agricultural University of Tirana, 1025 Tirana, Albania;
| | - Annamaria Pandiscia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70010 Valenzano, Italy; (E.B.); (P.L.); (A.M.); (V.T.)
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70010 Valenzano, Italy; (E.B.); (P.L.); (A.M.); (V.T.)
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70010 Valenzano, Italy; (E.B.); (P.L.); (A.M.); (V.T.)
| | - Aleksandra Huter
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro;
| | - Giuseppina M. Tantillo
- Department of Interdisciplinary Medicine, University of Bari, Place Giulio Cesare 11, 70124 Bari, Italy;
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.P.); (M.N.)
| | - Maria Nobile
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.P.); (M.N.)
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70010 Valenzano, Italy; (E.B.); (P.L.); (A.M.); (V.T.)
| |
Collapse
|
38
|
Antos J, Piosik M, Ginter-Kramarczyk D, Zembrzuska J, Kruszelnicka I. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques. CHEMOSPHERE 2024; 353:141519. [PMID: 38401860 DOI: 10.1016/j.chemosphere.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Tetracyclines are among the most commonly used antibiotics for the treatment of bacterial infections and the improvement of agricultural growth and feed efficiency. All compounds in the group of tetracyclines (tetracycline, chlorotetracycline, doxycycline, and oxytetracycline) are excreted in an unchanged form in urine at a rate of more than 70%. They enter the aquatic environment in altered and unaltered forms which affect aquatic micro- and macroorganisms. This study reviews the occurrence, fate, and removal techniques of tetracycline contamination in Europe. The average level of tetracycline contamination in water ranged from 0 to 20 ng/L. However, data regarding environmental contamination by tetracyclines are still insufficient. Despite the constant presence and impact of tetracyclines in the environment, there are no legal restrictions regarding the discharge of tetracyclines into the aquatic environment. To address these challenges, various removal techniques, including advanced oxidation, adsorption, and UV treatment, are being critically evaluated and compared. The summarized data contributes to a better understanding of the current state of Europe's waters and provides insight into potential strategies for future environmental management and policy development. Further research on the pollution and effects of tetracyclines in aquatic environments is therefore required.
Collapse
Affiliation(s)
- Joanna Antos
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Marianna Piosik
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
39
|
Guirguis H, Youssef N, William M, Abdel-Dayem D, El-Sayed MM. Bioinspired Stevia rebaudiana Green Zinc Oxide Nanoparticles for the Adsorptive Removal of Antibiotics from Water. ACS OMEGA 2024; 9:12881-12895. [PMID: 38524454 PMCID: PMC10955700 DOI: 10.1021/acsomega.3c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Green zinc oxide nanoparticles (ZnO NPs) synthesized using Stevia rebaudiana as a reducing agent were investigated as ecofriendly adsorbents for the removal of the antibiotics ciprofloxacin (CIP) and tetracycline (TET) from water. Green ZnO NPs were synthesized using a rapid novel approach that did not require annealing or calcination at high temperatures to produce mesoporous NPs with a size range of 37.36-71.33 nm, a specific surface area of 15.28 m2/g, and a negative surface charge of -15 mV at pH 5. The green ZnO NPs exhibited an antioxidant activity of 85.57% at 250 μg/mL and an antibacterial activity with MIC and MBC of 50 and 100 mg/mL, respectively, against both Escherichia coli and Staphylococcus aureus. The best adsorption performance was achieved using a 4 g/L dose and pH 5, yielding, respectively, 86.77 ± 0.82% removal and 27.07 ± 0.26 mg/g adsorption capacity for CIP at 10 mg/L and 67.86 ± 3.41% and 15.88 ± 0.37 mg/g for TET at 25 mg/L. The green ZnO NPs achieved 79.71% ± 0.28 and 61.55% ± 0.53 removal of 10 mg/L CIP and 25 mg/L TET, respectively, in a spiked tap water binary system of the two contaminants. Adsorption of CIP and TET occurred mainly via electrostatic interactions, whereby CIP was bound more strongly than TET by virtue of its charge and size. The synthesis and adsorption processes were evaluated by a stepwise regression statistical model to optimize their parameters. Lastly, the green ZnO NPs were regenerated and reused for 5 cycles, indicating their functionality as simple, reusable, and low-cost adsorbents for the removal of CIP and TET from wastewater, in accordance with SDGs #6 and 12 for the sustainable management of water.
Collapse
Affiliation(s)
- Hania
A. Guirguis
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Noha Youssef
- Mathematics
and Actuarial Science Department, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mariam William
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Dania Abdel-Dayem
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mayyada M.H. El-Sayed
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| |
Collapse
|
40
|
Jeganathan Y, Asharp T, Nadarajah K. Adsorptive behavior of engineered biochar /hydrochar for tetracycline removal from synthetic wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123452. [PMID: 38286263 DOI: 10.1016/j.envpol.2024.123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
In this research, engineered biochar and hydrochar derived from paddy husk were compared for the adsorption tetracycline (TC) in water effluents. Biochar was produced at three different pyrolysis temperatures (e.g., 250 °C, 300 °C and 350 °C) while hydrochar was produced using three different HTC temperatures (e.g., 180 °C, 200 °C and 220 °C). The adsorptive experiments were performed for both biochar and hydrochar using well-defined experimental conditions: pH (3); initial TC concentration (10 mg/L); adsorbent dosage (1 g/L); and temperature (27 °C) to study their adsorptive performances (qe in mg/g). After selecting the best qe values for both biochar and hydrochar, both materials were modified using 20% H3PO4. A comprehensive scientific evaluation of both engineered biochar (EBC 350) and hydrochar (EHC 220) was performed using adsorption isotherm, adsorption kinetics, rate-limiting, and thermodynamics tests along with their characterization using FTIR and point of zero charge (pzc). The effects of temperature, dosage, and initial TC concentration on the adsorption process were studied for both EBC 350 and EHC 220. Acid activation improved the adsorptive performance of EHC 220 almost four times (from 1.9 to 7.5 mg/g), whereas adsorptive performance of EBC 350 improved 2.4 times from 3.8 to 9.1 mg/g. The best pH for TC adsorption onto EHC 220 was 5, whereas it was 3 for EBC 350. EBC 350 exhibited a good fit with the Freundlich model, whereas EHC 220 followed the Langmuir model. At 100 mg/L TC concentration, EHC 220 exhibited higher qe value (46.9 mg/g) compared to EBC 350 (41.7 mg/g). The Pseudo-first order kinetic model was the best fit for EHC 220 adsorption, whereas Pseudo-second order model was most suitable for EBC 350. The adsorption mechanisms involved in TC adsorption by EHC 220 included hydrogen bonding, hydrophobic effect, and π-π interaction, whereas cation exchange, mass diffusion, and π-π interaction were involved for EBC 350. The results of this study will facilitate the development of cost-effective filters with the incorporation of engineered biochar/engineered hydrochar for the active removal of emerging contaminants, like tetracycline, from wastewater so as to increase its reusable potential.
Collapse
Affiliation(s)
- Yanushiya Jeganathan
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Thusalini Asharp
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Kannan Nadarajah
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka.
| |
Collapse
|
41
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
42
|
Gholinejad M, Bashirimousavi S, Sansano JM. Novel magnetic bimetallic AuCu catalyst for reduction of nitroarenes and degradation of organic dyes. Sci Rep 2024; 14:5852. [PMID: 38462664 PMCID: PMC10925594 DOI: 10.1038/s41598-024-56559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Herein, core-shell magnetic nanoparticles are modified with imidazolium-tagged phosphine and propylene glycol moieties and used for the stabilization of bimetallic AuCu nanoparticles. The structure and morphology of the prepared material are identified with SEM, TEM, XRD, XPS, atomic absorption spectroscopy, Fourier translation infrared spectroscopy, and a vibrating sample magnetometer. This hydrophilic magnetic bimetallic catalyst is applied in the reduction of toxic nitroarenes and reductive degradation of hazardous organic dyes such as methyl orange (MO), methyl red (MR), and rhodamine B (RhB), as well as in the degradation of tetracycline (TC). This magnetic AuCu catalyst indicated superior activity in all three mentioned reactions in comparison with its single metal Au and Cu analogs. This catalyst is recycled for 17 consecutive runs in the reduction of 4-nitrophenol to 4-aminophenol without a significant decrease in catalytic activity and recycled catalyst is characterized.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Saba Bashirimousavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran
| | - José M Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03690, Alicante, Spain
| |
Collapse
|
43
|
Shen T, Ma H, Xing B. Interfacial interactions of polyethylene terephthalate microplastics and malachite green, tetracycline in aqueous environments. MARINE POLLUTION BULLETIN 2024; 200:116093. [PMID: 38310722 DOI: 10.1016/j.marpolbul.2024.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) are one of pivotal nondegradable emerging pollutant. Here the variation of the surface physicochemical characteristics of PET-MPs with UV irradiation aging and the adsorption behaviors of PET-MPs in malachite green (MG), tetracycline (TC) solution and the effect of coexisting Cu(II) were comparatively investigated. The yellowing, weakened hydrophobicity, and increased surface negative charge, crystallinity degree and oxygen-containing functional groups were manifested specifically by the aged PET-MPs. Different from the single system, the hydrophobic interaction and metal ion bridging complexation dominated the adsorption of MG and TC, respectively, in the binary solution. While in the ternary solution, cationic ion competition of Cu(II) with MG decreased its capture, and the formation of PET-Cu(II)-TC ternary complexes promoted TC adsorption. Moreover, PET-MPs could serve as an efficient vector for MG and TC in MG/TC/Cu(II) ternary system, indicating PET-MPs tend to carry more varieties in the complex environment, that may increase the environmental risk of PET-MPs.
Collapse
Affiliation(s)
- Tong Shen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
44
|
Almashhadany DA, Hassan AA, Rashid RF, Abdulmawjood A, Khan IUH. Assessment and Assay Comparison for Detection of Antimicrobial Residues in Freshwater Aquaculture Fish in Erbil Governorate, Iraq. Antibiotics (Basel) 2024; 13:225. [PMID: 38534660 DOI: 10.3390/antibiotics13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The excessive and uncontrolled application of antibiotics in the fish farming industry, coupled with a lack of health monitoring and medication practices, is a driving force behind the escalating development of antimicrobial resistance. The present study assessed and compared qualitative field diffusion (QFD) and disk diffusion (DD) assays for the detection of antimicrobial residues (ARs) in diverse freshwater aquaculture fish. A total of 380 freshwater aquaculture fish (160 fresh and 180 frozen) samples were systematically collected between January and June 2021 from various retail stores located in Erbil Governorate, Iraq. Based on QFDA results, overall, ARs were detected (52; 15.3%) at a relatively lower frequency with comparatively higher frequency (21; 31.1%) in fresh than (31; 17.2%) frozen fish samples. On the other hand, DDA also revealed a comparable (45; 13.2%) prevalence rate of ARs. However, a low detection was observed more in fresh (17; 10.6%) than frozen (28; 15.6%) fish samples. Moreover, no statistically significant disparity (χ2 = 0.069; p = 0.79) between two assays and types of fish was recorded. In conclusion, the results of the present study showed that detecting a considerable frequency of ARs in these fish samples raises concerns about potential threats to public health. This underscores the necessity for understanding antibiotic application in aquaculture and its potential connection to antibiotic resistance in bacterial pathogens. Such comprehension is pivotal for formulating and implementing effective control and farm management strategies to address this pressing issue.
Collapse
Affiliation(s)
- Dhary Alewy Almashhadany
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq
| | - Abdulwahed Ahmed Hassan
- Metedi Medical Technology Distributions, Rathenaustraße 2, 35394 Giessen, Germany
- Department of Veterinary Public Health (DVPH), College of Veterinary Medicine, University of Mosul, Mosul 41002, Iraq
| | - Rzgar Farooq Rashid
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
45
|
Qin Y, Wang S, Zhang B, Chen W, An M, Yang Z, Gao H, Qin S. Zinc and sulfur functionalized biochar as a peroxydisulfate activator via deferred ultraviolet irradiation for tetracycline removal. RSC Adv 2024; 14:5648-5664. [PMID: 38352677 PMCID: PMC10863648 DOI: 10.1039/d3ra07923f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
To enhance the degradation of tetracycline class (TC) residuals of high-concentration from pharmaceutical wastewater, a novel zinc (Zn) and sulfur (S) functionalized biochar (SC-Zn), as a peroxydisulfate (PDS) activator, was prepared by two-step pyrolysis using ZnSO4 accumulated water-hyacinth. Results showed that the removal rate of 50, 150, and 250 mg per L TC reached 100%, 99.22% and 94.83% respectively, by the SC-Zn/PDS system at a dosage of 0.3 g per L SC-Zn and 1.2 mM PDS, via the deferred ultraviolet (UV) irradiation design. Such excellent performance for TC removal was due to the synergetic activation of PDS by the biochar activator and UV-irradiation with biochar as a responsive photocatalyst. The functionalization of the co-doped Zn and S endowed the biochar SC-Zn with a significantly enhanced catalytic performance, since Zn was inferred to be the dominant catalytic site for SO4˙- generation, while S played a key role in the synergism with Zn by acting as the primary adsorption site for the reaction substrates. The employed SC-Zn/PDS/UV system had excellent anti-interference under different environmental backgrounds, and compared with the removal rate of TC by adsorption of SC-Zn, the increasing rate in the SC-Zn/PDS/UV system (18.75%) was higher than the sum of the increases in the SC-Zn/PDS (9.87%) and SC-Zn/UV systems (3.34%), furtherly verifying the systematic superiority of this synergy effect. This study aimed to prepare a high-performance functionalized biochar activator and elucidate the rational design of deferred UV-irradiation of PDS activation to efficiently remove high-concentration antibiotic pollutants.
Collapse
Affiliation(s)
- Yixue Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Sheng Wang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Bingbing Zhang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Weijie Chen
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Mingze An
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Zhao Yang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Hairong Gao
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Shuhao Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| |
Collapse
|
46
|
Li Y, Zhang G, Liang D, Wang X, Guo H. Tetracycline hydrochloride degradation in polarity inverted microbial fuel cells: Performance, mechanisms and microbiology. CHEMOSPHERE 2024; 349:140902. [PMID: 38096993 DOI: 10.1016/j.chemosphere.2023.140902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/08/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Tetracycline antibiotics are widely used in veterinary medicine, human therapy and agriculture, and their presence in natural water raises environmental concerns. In this study, more than 94% of tetracycline hydrochloride (TCH) could be rapidly degraded within 48 h in polarity-inverted microbial fuel cells. The electrochemically active bacteria had the best electrochemical performance at 1 mg/L of TCH with the minimum internal resistance of 77.38 Ω. The electron-rich functional groups of TCH were continuously attacked and finally degradated into small molecules in three possible degradation pathways. Microbial community structure analysis showed that Comamonas and Shinella were enriched at the electrode as polarity-inverted bacteria. Genomic analysis showed that both direct and indirect electron transfer participated in the degradation of TCH in polarity-inverted microbial fuel cell (MFC) and the functional genes related to electrical conductivity in polarity-inverted MFC were more enriched on the electrode surface than non-polarity-inverted MFC. This study can facilitate further investigations about the biodegradation of TCH in polarity-inverted microbial fuel cell.
Collapse
Affiliation(s)
- Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China.
| | - Danxin Liang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoqin Wang
- College of Chemistry, ZhengZhou University, Zhengzhou, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Ye H, Luo Y, Yu S, Shi G, Zheng A, Huang Y, Xue M, Yin Z, Hong Z, Li X, Xie X, Gao B. 2D/2D Bi 2MoO 6/CoAl LDH S-scheme heterojunction for enhanced removal of tetracycline: Performance, toxicity, and mechanism. CHEMOSPHERE 2024; 349:140932. [PMID: 38096991 DOI: 10.1016/j.chemosphere.2023.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Huiyin Ye
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Shuohan Yu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guangying Shi
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aofeng Zheng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Zuozhu Yin
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhen Hong
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
48
|
Salahshoori I, Namayandeh Jorabchi M, Baghban A, Khonakdar HA. Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment. CHEMOSPHERE 2024; 350:141010. [PMID: 38154677 DOI: 10.1016/j.chemosphere.2023.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R2 at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Baghban
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
49
|
Esfandiaribayat M, Binazadeh M, Sabbaghi S, Mohammadi M, Ghaedi S, Rajabi H. Tetracycline removal from wastewater via g-C 3N 4 loaded RSM-CCD-optimised hybrid photocatalytic membrane reactor. Sci Rep 2024; 14:1163. [PMID: 38216707 PMCID: PMC10786873 DOI: 10.1038/s41598-024-51847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/14/2024] Open
Abstract
In this study, a split-type photocatalytic membrane reactor (PMR), incorporating suspended graphitic carbon nitride (g-C3N4) as photocatalyst and a layered polymeric composite (using polyamide, polyethersulfone and polysulfone polymers) as a membrane was fabricated to remove tetracycline (TC) from aqueous solutions as the world's second most used and discharged antibiotic in wastewater. The photocatalyst was synthesised from melamine by ultrasonic-assisted thermal polymerisation method and, along with the membrane, was characterised using various methods, including Brunauer-Emmett-Teller analysis (BET), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), and Ultraviolet-visible spectroscopy (UV-Vis). The PMR process was optimised, using Design-Expert software for tetracycline removal in terms of UV irradiation time, pH, photocatalyst loading, tetracycline concentration, and membrane separation iteration. It was revealed that a membrane-integrated reactor as a sustainable system could effectively produce clean water by simultaneous removal of tetracycline and photocatalyst from aqueous solution. The maximum removal of 94.8% was obtained at the tetracycline concentration of 22.16 ppm, pH of 9.78 with 0.56 g/L of photocatalyst in the irradiation time of 113.77 min after six times of passing membrane. The PMR system showed reasonable reusability by about a 25.8% drop in TC removal efficiency after seven cycles at optimal conditions. The outcomes demonstrate the promising performance of the proposed PMR system in tetracycline removal from water and suggest that it can be scaled as an effective approach for a sustainable supply of antibiotic-free clean water.
Collapse
Affiliation(s)
- Milad Esfandiaribayat
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
- Department of Civil and Environmental Engineering, University of Alberta, Alberta, T6G 2W2, Canada.
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Milad Mohammadi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Samaneh Ghaedi
- School of Engineering, the University of Manchester, Manchester, M13 9PL, UK
| | - Hamid Rajabi
- Department of Civil and Environmental Engineering, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK.
| |
Collapse
|
50
|
Zhao L, Wang T, Jiang S, Liu T, Lu Z, Su G, Wu C, Rao H, Wang Y, Sun M, Song C. Hollow CoZnSe@CN nanocage with enzymatic activity for determination of tetracycline using smartphone platforms and virtual reality revealing. Mikrochim Acta 2024; 191:79. [PMID: 38183441 DOI: 10.1007/s00604-023-06159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024]
Abstract
Antibiotic residues in the environment pose a serious threat to ecosystems and human health. Therefore, it is important to develop sensitive and rapid in situ detection methods. In this work, the designed nanozymes, with excellent four enzyme activities, were proved to be constituted of unique hollow nanocage structures (CoZnSe@CN HCs). Based on the peroxidase-like enzymes, a portable colorimetric sensor was constructed for the on-site determination of tetracycline (TC) in real samples. The linear range of TC detection was 0.1-100 μM, and the detection limit was 0.02 μM. At the same time, colorimetric detection and smartphones have also been combined for on-site colorimetric detection of TC. In-depth exploration of the detection mechanism showed that TC could be bound with the material, inhibiting the production of oxidized 3,3',5,5'-tetramethylbenzidine. The sensor was also used for the detection of TC in environmental soil and water samples. This study can provide an intelligent detection method for environmental monitoring.
Collapse
Affiliation(s)
- Liying Zhao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Tao Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Shaojuan Jiang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, People's Republic of China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China.
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, People's Republic of China.
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|