1
|
Schutte R, Zhang J, Kiran M, Ball G. Alcohol and arterial stiffness in middle-aged and older adults: Cross-sectional evidence from the UK Biobank study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1915-1922. [PMID: 39164060 DOI: 10.1111/acer.15426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The association between arterial stiffness and alcohol consumption is still controversial. We investigated this relationship by performing continuous analysis in men drinking only beer/cider, and women drinking only red wine. METHODS This cross-sectional study involved participants aged 40-69 years consisting of 9029 men who drank only beer/cider, and 6989 women drinking only red wine. Alcohol consumption was captured by self-reported questionnaire and reported as units per week, where one unit is equal 10 mL pure ethanol. Arterial stiffness index (ASI) was estimated using photoplethysmography. RESULTS In men consuming a mean 17.8 (5th and 95th percentiles, 2.6-76.7) units/week, ASI increased by heptiles (sevenths) of alcohol captured from beer/cider consumption and after adjusting for age (9.14, 9.40, 9.51, 9.53, 9.80, 9.80, 10.00 m/s; p-trend < 0.001) and after full adjustment (9.29, 9.46. 9.55, 9.55, 9.73, 9.73, 9.75 m/s; p-trend = 0.013). Similarly, in women consuming a mean 8.1 (1.6-29.3) units/week, ASI increased by heptiles of alcohol captured from red wine consumption and after adjusting for age (8.05, 8.05, 8.05, 8.11, 8.17, 8.30, 8.45 m/s; p-trend = 0.012) and borderline significant after full adjustment (8.05, 8.07, 8.05, 8.07, 8.11, 8.22, 8.43 m/s; p-trend = 0.055). These associations were confirmed in multivariable-adjusted regression analysis in all men, men younger and older than 50 years, and when consuming more than 14 units per week. Similarly, these associations were confirmed in all women, women older than 50 years, and in those consuming more than 14 units per week. CONCLUSIONS Positive linear relationships exist between arterial stiffness and alcohol, irrespective of whether captured from beer/cider consumption in men or red wine consumption in women. No evidence existed to support the notion that our arteries benefit from any level of alcohol consumption.
Collapse
Affiliation(s)
- Rudolph Schutte
- School of Allied Health, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Jufen Zhang
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
- School of Medicine, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Mahreen Kiran
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
2
|
Santos J, La Fuente JM, Fernández A, Ruano P, Angulo J. LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects. Antioxidants (Basel) 2024; 13:1139. [PMID: 39334798 PMCID: PMC11444145 DOI: 10.3390/antiox13091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The identification of obese subjects at higher risk for cardiovascular disease (CVD) is required. We aimed to characterize determinants of endothelial dysfunction, the initial step to CVD, in small omental arteries of visceral fat from obese subjects. The influences of analytical parameters and vascular oxidative stress mediated by NADPH-oxidase-2 (NOX2) on endothelial function were determined. Specimens were obtained from 51 obese subjects undergoing bariatric surgery and 14 non-obese subjects undergoing abdominal surgery. Obese subjects displayed reduced endothelial vasodilation to bradykinin (BK). Endothelial vasodilation (pEC50 for BK) among obese subjects was significantly and negatively associated with low-density lipoprotein cholesterol (LDL-c)/high-density lipoprotein cholesterol (HDL-c) ratio (r = -0.510, p = 0.0001) in both women and men, while other metabolic parameters and comorbidities failed to predict endothelial function. The vascular expression of NOX2 was upregulated in obese subjects and was related to decreased endothelial vasodilation (r = -0.529, p = 0.0006, n = 38) and increased oxidative stress (r = 0.783, p = 0.0044, n = 11) in arterial segments. High LDL-c/HDL-c (>2) and high NOX2 (above median) were independently associated with reduced endothelial function, but the presence of both conditions was related to a further impairment. Concomitant elevated LDL-c/HDL-c ratio and high vascular expression of NOX2 would exacerbate endothelial impairment in obesity and could reveal a deleterious profile for cardiovascular outcomes among obese subjects.
Collapse
Affiliation(s)
- Jorge Santos
- Unidade de Cirurgia Esofagogástrica e Tratamento Cirúrgico de Obesidade, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - José M La Fuente
- Serviço de Urologia, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - Argentina Fernández
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Paula Ruano
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Siddiqui SH, Pitpitan R, Boychev B, Komnenov D, Rossi NF. Impact of inhibition of the renin-angiotensin system on early cardiac and renal abnormalities in Sprague Dawley rats fed short-term high fructose plus high salt diet. Front Nutr 2024; 11:1436958. [PMID: 39238563 PMCID: PMC11376227 DOI: 10.3389/fnut.2024.1436958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction The combination of a high fructose and high salt diet typical of western diet induces high blood pressure, aortic stiffening, left ventricular (LV) diastolic dysfunction and impaired renal function in rodents. Despite an activated renin-angiotensin system (RAS) in rats fed high fructose and high salt, acute inhibition of the RAS pathway does not improve cardiac and vascular parameters. It may well be that longer term treatment is required to permit remodeling and improve cardiovascular function. Thus, we hypothesized that chronic RAS inhibition fructose+high salt-fed rats to restore blood pressure (BP) to levels similar to glucose plus normal salt-fed controls will improve cardiorenal function and histopathology. Methods Male and female Sprague Dawley rats monitored by hemodynamic telemetry were fed 0.4% NaCl chow during baseline, then changed to chow containing either 20% glucose+0.4% NaCl (G) or 20% fructose+4% NaCl (F) and treated with vehicle, enalapril (Enal, 4 mg/kg/d) or losartan (Los, 8 mg/kg/d) by osmotic minipump for 25-26 days. Results BP was elevated in the fructose+high salt groups of both sexes (P < 0.05) and restored to control levels by Enal or Los. Pulse wave velocity (PWV) was lower in female F+Los rats and cardiac output higher in female F+Enal rats. GFR was not changed by diet or treatment. Fructose+high salt groups of both sexes displayed higher albuminuria that was decreased by Enal in male rats. Cardiac fibrosis and mesangial hypercellularity were greater in fructose+high salt-fed rats of both sexes and improved with either Los or Enal. Discussion Thus, inhibition of the RAS improves early changes in cardiac and renal histopathology in both sexes and albuminuria in male rats fed high fructose and high salt diet. Functional improvements in cardiorenal parameters may require longer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Noreen F. Rossi
- Department of Physiology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Wilburn D, Miserlis D, Fletcher E, Papoutsi E, Ismaeel A, Bradley C, Ring A, Wilkinson T, Smith RS, Ferrer L, Haynatzki G, Monteleone P, Banerjee S, Brisbois E, Bohannon WT, Koutakis P. Skeletal muscle desmin alterations following revascularization in peripheral artery disease claudicants. Sci Rep 2024; 14:12609. [PMID: 38824194 PMCID: PMC11144188 DOI: 10.1038/s41598-024-63626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Ahmed Ismaeel
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cassandra Bradley
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Andrew Ring
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Lucas Ferrer
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Monteleone
- Department of Internal Medicine, University of Texas, Austin, TX, USA
| | - Subhash Banerjee
- Department of Cardiology, Baylor Scott & White Medical Center, Dallas, TX, USA
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA.
| |
Collapse
|
5
|
Bradley CE, Fletcher E, Wilkinson T, Ring A, Ferrer L, Miserlis D, Pacher P, Koutakis P. Mitochondrial fatty acid beta-oxidation: a possible therapeutic target for skeletal muscle lipotoxicity in peripheral artery disease myopathy. EXCLI JOURNAL 2024; 23:523-533. [PMID: 38741727 PMCID: PMC11089102 DOI: 10.17179/excli2024-7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease impacting over 200 million individuals and the prevalence increases with age. PAD occurs when plaque builds up within the peripheral arteries, leading to reduced blood flow and oxygen supply to the outer extremities. Individuals who experience PAD suffer from ischemia, which is typically accompanied by significant damage to skeletal muscles. Additionally, this tissue damage affects mitochondria, causing them to become dysregulated and dysfunctional, resulting in decreased metabolic rates. As there is no known cure for PAD, researchers are exploring potential therapeutic targets by examining coexisting cardiovascular conditions and metabolic risk factors, such as the aging process. Among these comorbidities, type-two diabetes mellitus and obesity are particularly common in PAD cases. These conditions, along with aging itself, are associated with an elevated accumulation of ectopic lipids within skeletal muscles, similar to what is observed in PAD. Researchers have attempted to reduce excess lipid accumulation by increasing the rate of fatty acid beta oxidation. Manipulating acetyl coenzyme A carboxylase 2, a key regulatory protein of fatty acid beta oxidation, has been the primary focus of such research. When acetyl coenzyme A carboxylase 2 is inhibited, it interrupts the conversion of acetyl-CoA into malonyl-CoA, resulting in an increase in the rate of fatty acid beta oxidation. By utilizing samples from PAD patients and applying the pharmacological strategies developed for acetyl coenzyme A carboxylase 2 in diabetes and obesity to PAD, a potential new therapeutic avenue may emerge, offering hope for improved quality of life for individuals suffering from PAD.
Collapse
Affiliation(s)
- Cassandra E. Bradley
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Andrew Ring
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Pal Pacher
- National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| |
Collapse
|
6
|
Koutakis P, Hernandez H, Miserlis D, Thompson JR, Papoutsi E, Mietus CJ, Haynatzki G, Kim JK, Casale GP, Pipinos II. Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease. NPJ AGING 2024; 10:21. [PMID: 38580664 PMCID: PMC10997596 DOI: 10.1038/s41514-024-00147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Patients with peripheral artery disease (PAD) have increased mortality rates and a myopathy in their affected legs which is characterized by increased oxidative damage, reduced antioxidant enzymatic activity and defective mitochondrial bioenergetics. This study evaluated the hypothesis that increased levels of oxidative damage in gastrocnemius biopsies from patients with PAD predict long-term mortality rates. Oxidative damage was quantified as carbonyl adducts in myofibers of the gastrocnemius of PAD patients. The oxidative stress data were grouped into tertiles and the 5-year, all-cause mortality for each tertile was determined by Kaplan-Meier curves and compared by the Modified Peto test. A Cox-regression model was used to control the effects of clinical characteristics. Results were adjusted for age, sex, race, body mass index, ankle-brachial index, smoking, physical activity, and comorbidities. Of the 240 study participants, 99 died during a mean follow up of 37.8 months. Patients in the highest tertile of oxidative damage demonstrated the highest 5-year mortality rate. The mortality hazard ratios (HR) from the Cox analysis were statistically significant for oxidative damage (lowest vs middle tertile; HR = 6.33; p = 0.0001 and lowest vs highest; HR = 8.37; p < 0.0001). Survival analysis of a contemporaneous population of PAD patients identifies abundance of carbonyl adducts in myofibers of their gastrocnemius as a predictor of mortality rate independently of ankle-brachial index, disease stage and other clinical and myopathy-related covariates.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX, USA.
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hernan Hernandez
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery and Perioperative Care, University of Texas at Austin, Austin, TX, USA
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julian K Kim
- Department of Biology, Baylor University, Waco, TX, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
7
|
Li J, Arora S, Wheat H, Dash S, Kimura S, Smith J, Castro-Dominguez Y, Oommen C, Hammad TA, Shishehbor MH, Al-Kindi S, Zidar DA. Immunologic profiles in patients with chronic limb-threatening ischemia undergoing endovascular revascularization. Vasc Med 2023; 28:387-396. [PMID: 37249001 DOI: 10.1177/1358863x231169323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Inflammation and immune dysregulation have been associated with adverse outcomes in cardiovascular disease. There is limited understanding of the association of different profiles of white blood cell (WBC) subsets and red cell distribution width (RDW) in patients with chronic limb-threatening ischemia (CLTI). METHODS Patients with CLTI undergoing endovascular revascularization in our single-center, tertiary care hospital from 2017 to 2019, who had a preceding complete blood count (CBC) with WBC differentials (n =213), were included in the analysis. Patient characteristics, laboratory values, and clinical outcomes were collected. Cox proportional hazards regression models were used to assess for associations between all-cause mortality and leukocyte subset; multivariate analysis was used to account for confounders. Kaplan-Meier curves were generated to depict survival censored at 1 year postrevascularization using baseline CBC indices. RESULTS Adjusting for confounders, elevated RDW was associated with increased mortality (continuous per % increase, adjusted hazard ratio [HR] 1.33, p < 0.001). Baseline lymphopenia was associated with mortality in univariate analysis. Other leukocyte subtypes were not associated with mortality outcomes in our population. Exploratory analysis showed negative deflections in ∆WBC from pre- to postprocedure day 1 were affiliated with increased mortality when adjusted for age, sex, race, chronic kidney disease, and baseline hemoglobin (∆WBC HR 1.16, p = 0.004). Further exploratory analysis showed an association between RDW and all-comers readmission. CONCLUSIONS The utilization of a periprocedural WBC subset differential can be a useful adjunct to risk-stratify patients with CLTI undergoing endovascular revascularization. Further studies are needed to understand potential ways to modulate immune dysregulation so as to improve mortality outcomes.
Collapse
Affiliation(s)
- Jun Li
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Shilpkumar Arora
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Heather Wheat
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Siddhartha Dash
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Promedica University of Toledo, Toledo, OH, USA
| | - Stephen Kimura
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Division of General Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin Smith
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yulanka Castro-Dominguez
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Clint Oommen
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tarek A Hammad
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mehdi H Shishehbor
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sadeer Al-Kindi
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - David A Zidar
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
8
|
Han F, Yu C, Hu F, Zhou W, Wang T, Zhu L, Huang X, Bao H, Cheng X. Association between serum uric acid levels and peripheral artery disease in Chinese adults with hypertension. Front Endocrinol (Lausanne) 2023; 14:1197628. [PMID: 37674616 PMCID: PMC10478083 DOI: 10.3389/fendo.2023.1197628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Background Higher serum uric acid (SUA) can cause gout, which is principally characterized by arthritis due to monosodium urate crystal deposition in the lower extremities. High levels of SUA have been linked to endothelial dysfunction, oxidative stress, and inflammation, all of which are involved in the pathogenesis of peripheral artery disease(PAD). To date, the relationship between SUA levels and PAD is still poorly understood. Method An analysis of 9,839 Chinese adults with essential hypertension from the ongoing China H-type Hypertension Registry Study was conducted in this cross-sectional study. Patients with an ABI ≤0.9 was diagnosed with PAD. Hyperuricemia was defined as SUA levels >420 mol/L in men and >360 mol/L in women. The association between SUA levels and PAD was evaluated using multivariable logistic regression models based on odds ratios (ORs) and their 95% confidence intervals (CIs). Results The enrolled subjects ranged in age from 27 to 93 years, with a mean age of 63.14 ± 8.99 years. The proportion of male patients was 46.22%, and the prevalence of hyperuricemia was 50.72%. In males, hyperuricemia was positively associated with the risk of PAD (adjusted OR per SD increase: 1.72, 95% CI 1.17 to 2.53, P =0.006). Males in the highest SUA tertile were significantly more likely to have PAD (adjusted OR: 2.63, 95% CI 1.42 to 4.86, P = 0.002; P for trend = 0.001). However, this positive relationship was not observed in females (adjusted OR: 1.29, 95% CI 0.77 to 2.17, P = 0.327; P for trend = 0.347). Conclusion According to this cross-sectional study, higher SUA levels were positively associated with PAD in male hypertensive patients, while this positive relationship disappeared in female participants.
Collapse
Affiliation(s)
- Fengyu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Chao Yu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Wei Zhou
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Wang
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linjuan Zhu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Wang X, Nai YH, Gan J, Lian CPL, Ryan FK, Tan FSL, Chan DYS, Ng JJ, Lo ZJ, Chong TT, Hausenloy DJ. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. Int J Mol Sci 2023; 24:11123. [PMID: 37446302 DOI: 10.3390/ijms241311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral artery disease (PAD) is a common and debilitating condition characterized by the narrowing of the limb arteries, primarily due to atherosclerosis. Non-invasive multi-modality imaging approaches using computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging have emerged as valuable tools for assessing PAD atheromatous plaques and vessel walls. This review provides an overview of these different imaging techniques, their advantages, limitations, and recent advancements. In addition, this review highlights the importance of molecular markers, including those related to inflammation, endothelial dysfunction, and oxidative stress, in PAD pathophysiology. The potential of integrating molecular and imaging markers for an improved understanding of PAD is also discussed. Despite the promise of this integrative approach, there remain several challenges, including technical limitations in imaging modalities and the need for novel molecular marker discovery and validation. Addressing these challenges and embracing future directions in the field will be essential for maximizing the potential of molecular and imaging markers for improving PAD patient outcomes.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian Gan
- Siemens Healthineers, Singapore 348615, Singapore
| | - Cheryl Pei Ling Lian
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Fraser Kirwan Ryan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Forest Su Lim Tan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Dexter Yak Seng Chan
- Department of General Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhiwen Joseph Lo
- Vascular Surgery Service, Department of Surgery, Woodlands Health, Singapore 258499, Singapore
- Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, Singapore 168752, Singapore
- Surgical Academic Clinical Programme, Singapore General Hospital, Singapore 169608, Singapore
- Vascular SingHealth Duke-NUS Disease Centre, Singapore 168752, Singapore
| | - Derek John Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 117597, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| |
Collapse
|
10
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Song SS, Wang RY, Li ZH, Yang Y, Wang TT, Qing LS, Luo P. Role of simulated in vitro gastrointestinal digestion on biotransformation and bioactivity of astragalosides from Radix Astragali. J Pharm Biomed Anal 2023; 231:115414. [PMID: 37141677 DOI: 10.1016/j.jpba.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.
Collapse
Affiliation(s)
- Shan-Shan Song
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Run-Yue Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Hua Li
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau
| | - Tian-Tian Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau.
| |
Collapse
|
12
|
Cassano V, Armentaro G, Magurno M, Aiello V, Borrello F, Miceli S, Maio R, Perticone M, Marra AM, Cittadini A, Hribal ML, Andreozzi F, Sesti G, Sciacqua A. Short-term effect of sacubitril/valsartan on endothelial dysfunction and arterial stiffness in patients with chronic heart failure. Front Pharmacol 2022; 13:1069828. [PMID: 36545306 PMCID: PMC9760824 DOI: 10.3389/fphar.2022.1069828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Heart failure (HF) is associated to endothelial dysfunction that promotes the increase of arterial stiffness thus augmenting myocardial damage. Sacubitril/Valsartan is used in the treatment of HF reduced ejection fraction (HFrEF) and has been proven effective in reducing cardiovascular disease (CVD) progression and all-cause mortality. The aim of this study was to evaluate the effect of Sacubitril/Valsartan on endothelial dysfunction, arterial stiffness, oxidative stress levels and platelets activation in patients with HFrEF, at baseline and after 6 months of treatment. We enrolled 100 Caucasian patients. Endothelial function was evaluated by the reactive hyperemia index (RHI) and arterial stiffness (AS) by the measurement of carotid-femoral pulse wave velocity (PWV), augmentation pressure (AP) and augmentation index (AI). At baseline, among enrolled outpatients, 43% showed a NYHA class II and 57% a NYHA class III. At 6 months, there was a significant improvement of several hemodynamic, clinical and metabolic parameters with a significant reduction in oxidative stress indices such as 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), platelets activity biomarkers such as sP-selectin (p < 0.0001) and Glycoprotein-VI (p < 0.0001), and inflammatory indices. Moreover, we observed a significant improvement in arterial stiffness parameters and in endothelial function indices. Our study demonstrated that 6 months treatment with Sacubitril/Valsartan, in patients with HFrEF, improves endothelial dysfunction and arterial stiffness, by reducing oxidative stress, platelet activation and inflammation circulating biomarkers, without adverse effects.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Marcello Magurno
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Aiello
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Francesco Borrello
- Division of Cardiology and Intensive Cardiac Care Unit, Pugliese-Ciaccio Hospital, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | | | - Antonio Cittadini
- Department of Translational Medical Sciences, University Federico II of Naples, Naples, Italy
| | - Marta L. Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy,Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy,Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy,Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, Catanzaro, Italy,*Correspondence: Angela Sciacqua,
| |
Collapse
|
13
|
Adebayo OG, Aduema W, Iwueke AV, Asiwe JN, Onyeleonu I, Akpotu AE, Wopara I, Adebayo OR, Onuoha OG, Eleazar ES, Onwuka FC. Treatment with Ginkgo biloba supplement modulates oxidative disturbances, inflammation and vascular functions in oxygen deprived hypothyroid mice: Involvement of endothelin-1/NO signaling pathways. J Food Biochem 2022; 46:e14477. [PMID: 36226765 DOI: 10.1111/jfbc.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
A double-hit biological alteration involving exposure to oxygen deprivation in hypothyroid condition may exacerbate cellular oxidative and inflammatory disturbances comparative to a one-hit biological exposure. This study investigated the therapeutic effect of Ginkgo biloba as cardioprotective against aortic oxido-inflammatory disturbances following oxygen deprivation in hypothyroid mice. Male Swiss mice were partitioned into 5 groups (n = 6) for hypothyroidism (Carbimazole 1.2 mg/kg) and hypoxia induction. Group 1 (normal control), group 2 (hypoxic stress control), group 3 (hypoxic and hypothyroid stress), group 4 (hypoxic and hypothyroid stress and Ginkgo biloba 20 mg/kg; p.o) and group 5 (hypoxic and hypothyroid stress and Levothyroxine 10 μg/kg; p.o) for 14 days. Thereafter, serum and aorta was collected for biochemical evaluation. GBS did not up-regulate the serum thyroid hormone imbalances (tri-iodothyronine (T3), thyroxin (T4)) but maintains the TSH levels. The blood glucose level was reduced with decrease oxidative stress and inflammatory mediators in the serum/aorta indicated by inhibited redox status following treatment with GBS. Moreover, endothelin-1/nitric oxide signaling pathways were markedly regulated in the aorta. Conclusively, GBS acts as a therapeutic agent and may be consider as a potential vasodilator candidate in the management and control of hypoxic stress in hypothyroid condition. PRACTICAL APPLICATIONS: Treatment with Gingko biloba supplement abated endothelial abnormalities via elevation of nitric oxide release and suppression of endothelin activity in hypothyroid mice exposed to hypoxic hypoxia. The activity of myeloperoxidase enzyme and redo-inflammatory status was downregulated following treatment with Gingko biloba supplement in hypothyroid mice exposed to hypoxic hypoxia. Treatment with Gingko biloba supplement modulates hypothalamic-pituitary-adrenal (HPA) axis by inhibiting corticosterone release in hypothyroid mice exposed to hypoxic hypoxia.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Adaku V Iwueke
- Department of Biochemistry, Faculty of Science and Computing, University of Agriculture and Environmental Sciences, Umuagwo, Nigeria
| | - Jerome N Asiwe
- Cardiorespiratory Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ijeoma Onyeleonu
- Department of Anatomy, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Ajirioghene E Akpotu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Oluwakemi Rachael Adebayo
- Department of Human Nutrition and Dietetics, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Ogechukwu G Onuoha
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Emeka Spiff Eleazar
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Favour C Onwuka
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
14
|
Li XF, Wan CQ, Mao YM. Analysis of pathogenesis and drug treatment of chronic obstructive pulmonary disease complicated with cardiovascular disease. Front Med (Lausanne) 2022; 9:979959. [PMID: 36405582 PMCID: PMC9672343 DOI: 10.3389/fmed.2022.979959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airflow limitation, and is associated with abnormal inflammatory responses in the lungs to cigarette smoke and toxic and harmful gases. Due to the existence of common risk factors, COPD is prone to multiple complications, among which cardiovascular disease (CVD) is the most common. It is currently established that cardiovascular comorbidities increase the risk of exacerbations and mortality from COPD. COPD is also an independent risk factor for CVD, and its specific mechanism is still unclear, which may be related to chronic systemic inflammation, oxidative stress, and vascular dysfunction. There is evidence that chronic inflammation of the airways can lead to destruction of the lung parenchyma and decreased lung function. Inflammatory cells in the airways also generate reactive oxygen species in the lungs, and reactive oxygen species further promote lung inflammation through signal transduction and other pathways. Inflammatory mediators circulate from the lungs to the whole body, causing intravascular dysfunction, promoting the formation and rupture of atherosclerotic plaques, and ultimately leading to the occurrence and development of CVD. This article reviews the pathophysiological mechanisms of COPD complicated by CVD and the effects of common cardiovascular drugs on COPD.
Collapse
Affiliation(s)
- Xiao-Fang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Cheng-Quan Wan
- Department of Neonatology, Luoyang Maternal and Child Health Hospital,, Luoyang, Henan, China
| | - Yi-Min Mao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
15
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
16
|
Wei J, Zhang X, Mugo SM, Zhang Q. A Portable Sweat Sensor Based on Carbon Quantum Dots for Multiplex Detection of Cardiovascular Health Biomarkers. Anal Chem 2022; 94:12772-12780. [PMID: 36066349 DOI: 10.1021/acs.analchem.2c02587] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The future of personalized diagnostics and treatment of cardiovascular diseases lies in the use of portable sensors. Portable sensors can acquire biomarker information in biological fluids such as sweat, an approach that mitigates the shortcomings of conventional hospital-centered healthcare. Low sensitivity, selectivity, and specificity remain bottlenecks for the widespread use of portable sensors. Herein, we demonstrate a portable sensor that simultaneously detects Na+, ascorbic acid, and human neuropeptide Y in sweat, all useful biomarkers to index cardiovascular health. The portable sensor comprises a six-electrode system containing three working electrodes, two reference electrodes, and one counter electrode. The working electrodes were prepared by depositing sensing components on carbon quantum dot (CQD) electrodes. The sensing mechanisms were based on selective ion recognition, enzyme catalytic reaction, and immune response, which guarantees specificity to corresponding targets. The CQDs offer massive reactive sites and effectively reduce the interfacial impedance during the sensing reaction, thereby enhancing the three biomarkers' detection sensitivity. As evidence of portable sensor capability, we demonstrate herein its effective simultaneous detection of the three biomarkers in a real sweat from healthy volunteers during routine activities including exercise, extra ascorbic acid ingestion, and extra Na+ ingestion. As such, the sensor shows promise for real-time noninvasive personalized medical diagnostics and metabolic wellness management.
Collapse
Affiliation(s)
- Jingwei Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xieli Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Samuel M Mugo
- Physical Science Department, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
17
|
Szeghy RE, Stute NL, Province VM, Augenreich MA, Stickford JL, Stickford ASL, Ratchford SM. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol (1985) 2022; 132:1297-1309. [PMID: 35439042 PMCID: PMC9126215 DOI: 10.1152/japplphysiol.00793.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can increase arterial stiffness 3–4 wk following infection, even among young, healthy adults. However, the long-term impacts of SARS-CoV-2 infection on cardiovascular health and the duration of recovery remain unknown. The purpose of this study was to elucidate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults during the 6 mo following infection. Assessments were performed at months 1, 2, 3, 4, and ∼6 following SARS-CoV-2 infection. Doppler ultrasound was used to measure carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness, and arterial tonometry was used to measure central blood pressures and aortic augmentation index at a heart rate of 75 beats·min−1 (AIx@HR75). Vascular (VCAM-1) and intracellular (ICAM-1) adhesion molecules were analyzed as circulating markers of arterial stiffness. From months 1–6, a significant reduction in cfPWV was observed (month 1: 5.70 ± 0.73 m·s−1; month 6: 4.88 ± 0.65 m·s−1; P < 0.05) without any change in carotid stiffness measures. Reductions in systolic blood pressure (month 1: 123 ± 8 mmHg; month 6: 112 ± 11 mmHg) and mean arterial pressure (MAP; month 1: 97 ± 6 mmHg; month 6: 86 ± 7 mmHg) were observed (P < 0.05), although AIx@HR75 did not change over time. The month 1–6 change in cfPWV and MAP were correlated (r = 0.894; P < 0.001). A reduction in VCAM-1 was observed at month 3 compared with month 1 (month 1: 5,575 ± 2,242 pg·mL−1; month 3: 4,636 ± 1,621 pg·mL−1; P < 0.05) without a change in ICAM-1. A reduction in cfPWV was related with MAP, and some indicators of arterial stiffness remain elevated for several months following SARS-CoV-2 infection, possibly contributing to prolonged recovery and increased cardiovascular health risks. NEW & NOTEWORTHY We sought to investigate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults for 6 mo following infection. Carotid femoral pulse wave velocity was significantly reduced while carotid stiffness measures remained unaltered over the 6-mo period. These findings suggest several months of recovery from infection may be necessary for young adults to improve various markers of arterial stiffness, possibly contributing to cardiovascular health and recovery among those infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Rachel E Szeghy
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| |
Collapse
|
18
|
Brassington K, Chan S, De Luca S, Dobric A, Almerdasi S, Mou K, Seow H, Oseghale O, Bozinovski S, Selemidis S, Vlahos R. Ebselen abolishes vascular dysfunction in influenza A virus-induced exacerbations of cigarette smoke-induced lung inflammation in mice. Clin Sci (Lond) 2022; 136:537-555. [PMID: 35343564 PMCID: PMC9069468 DOI: 10.1042/cs20211090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
People with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory infections which exacerbate pulmonary and/or cardiovascular complications, increasing their likelihood of death. The mechanisms driving these complications remain unknown but increased oxidative stress has been implicated. Here we investigated whether influenza A virus (IAV) infection, following chronic cigarette smoke (CS) exposure, worsens vascular function and if so, whether the antioxidant ebselen alleviates this vascular dysfunction. Male BALB/c mice were exposed to either room air or CS for 8 weeks followed by inoculation with IAV (Mem71, 1 × 104.5 pfu). Mice were treated with ebselen (10 mg/kg) or vehicle (5% w/v CM-cellulose in water) daily. Mice were culled 3- and 10-days post-infection, and their lungs lavaged to assess inflammation. The thoracic aorta was excised to investigate endothelial and smooth muscle dilator responses, expression of key vasodilatory and oxidative stress modulators, infiltrating immune cells and vascular remodelling. CS increased lung inflammation and caused significant vascular endothelial dysfunction, which was worsened by IAV infection. CS-driven increases in vascular oxidative stress, aortic wall remodelling and suppression of endothelial nitric oxide synthase (eNOS) were not affected by IAV infection. CS and IAV infection significantly enhanced T cell recruitment into the aortic wall. Ebselen abolished the exaggerated lung inflammation, vascular dysfunction and increased T cell infiltration in CS and IAV-infected mice. Our findings showed that ebselen treatment abolished vascular dysfunction in IAV-induced exacerbations of CS-induced lung inflammation indicating it may have potential for the treatment of cardiovascular comorbidities seen in acute exacerbations of COPD (AECOPD).
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Stanley M.H. Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Simone N. De Luca
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Aleksandar Dobric
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Suleman A. Almerdasi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Kevin Mou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Huei Jiunn Seow
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Osezua Oseghale
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
19
|
Yang Q, Li C, Chen Q. SS31 Ameliorates Oxidative Stress via the Restoration of Autophagic Flux to Protect Aged Mice From Hind Limb Ischemia. Front Cardiovasc Med 2022; 9:789331. [PMID: 35497980 PMCID: PMC9046554 DOI: 10.3389/fcvm.2022.789331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background Oxidative stress and impaired autophagic flux play important roles in the development of peripheral artery disease (PAD). SS31 is considered an important antioxidant peptide and autophagy regulator. We aimed to investigate the role of SS31 in PAD myopathy and its possible mechanism both in vivo and in vitro. Methods A hind limb ischemia (HLI) model was established with old C57BL/6 (14-month-old) mice. Mice in the SS31 group were intraperitoneally injected with SS31 (3 mg/kg) for 4 weeks. We examined skeletal muscle function and histomorphology, autophagy-related protein levels and reactive oxygen species (ROS) content. For the in vitro experiments, after C2C12 myotubes were treated with CoCl2, SS31, and chloroquine (CQ) or rapamycin (RAPA), we measured ROS content, autophagy-related protein levels and antioxidant enzyme expression. Results SS31 treatment effectively enhanced the recovery of skeletal muscle function, alleviated skeletal muscle injury and suppressed mitochondrial ROS production in ischemic limbs. SS31 reduced apoptosis and oxidative stress, and SS31 restored impaired autophagic flux by inhibiting the AKT-mTOR pathway. In vitro studies showed that SS31 restored autophagic flux and improved oxidative stress in C2C12 cells. Moreover, phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) levels were reduced. Conclusion These experiments indicated that SS31 can inhibit oxidative stress by restoring autophagic flux to reverse hypoxia-induced injury in vivo and in vitro.
Collapse
|
20
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
21
|
Ring A, Ismaeel A, Wechsler M, Fletcher E, Papoutsi E, Miserlis D, Koutakis P. MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms. Ther Adv Cardiovasc Dis 2022; 16:17539447221096940. [PMID: 35583375 PMCID: PMC9121511 DOI: 10.1177/17539447221096940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Peripheral artery disease (PAD) is a disease of atherosclerosis in the lower extremities. PAD carries a massive burden worldwide, while diagnosis and treatment options are often lacking. One of the key points of research in recent years is the involvement of microRNAs (miRNAs), which are short 20-25 nucleotide single-stranded RNAs that can act as negative regulators of post-transcriptional gene expression. Many of these miRNAs have been discovered to be misregulated in PAD patients, suggesting a potential utility as biomarkers for PAD diagnosis. miRNAs have also been shown to play an important role in many different pathophysiological aspects involved in the initiation and progression of the disease including angiogenesis, hypoxia, inflammation, as well as other cellular functions like cell proliferation and migration. The research on miRNAs in PAD has the potential to lead to a whole new class of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Andrew Ring
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Marissa Wechsler
- Department of Biomedical Engineering and
Chemical Engineering, The University of Texas at San Antonio, San Antonio,
TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco,
TX, USA
| | | | - Dimitrios Miserlis
- Department of Surgery, The University of Texas
Health Science Center at San Antonio, San Antonio, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207
Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388,
USA
| |
Collapse
|
22
|
Soltani M, Baluchi MJ, Boullosa D, Daraei A, Doyle-Baker PK, Saeidi A, Knechtle B, Dehbaghi KM, Mollabashi SS, VanDusseldorp TA, Zouhal H. Effect of Intensity on Changes in Cardiac Autonomic Control of Heart Rate and Arterial Stiffness After Equated Continuous Running Training Programs. Front Physiol 2021; 12:758299. [PMID: 34955880 PMCID: PMC8696079 DOI: 10.3389/fphys.2021.758299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Background: It is well known that exercise training has positive effects on both cardiac autonomic function and arterial stiffness (AS). However, it is not clear that which exercise training variables, intensity or volume, or both, play a crucial role in this regard. This study investigates the chronic effects of high-volume moderate-intensity training (HVMIT) and low-volume high-intensity training (LVHIT) on heart rate variability (HRV) and AS in sedentary adult men. Materials and Methods: Notably, 45 males (age: 42 ± 5.7 years) were randomly assigned to a control (n = 15), HVMIT (n = 15), or LVHIT (n = 15). The HVMIT group ran three times per week on a treadmill at 50–60% of VO2max for 45–60 min, while the LVHIT trained at 70–85% of VO2max for 25–40 min. Both training protocols were equated by caloric expenditure. HRV, pulse wave velocity (PWV), hemodynamic variables, and body composition were measured before and after 12 weeks. Results: Both protocols (i.e., HVMIT and LVHIT) significantly increased the SD of normal sinus beat intervals (SDNN) and high-frequency (HF) bands (p < 0.05) after 12 weeks. Whereas the low-frequency (LF)-HF ratio decreased significantly in both training protocols (p < 0.05); however, these changes were significantly greater in the LVHIT protocol (p < 0.05). Furthermore, the root mean square of successive RR interval differences (RMSSD) significantly increased only in the LVHIT (p < 0.05). Moreover, a significant decrease in LF and PWV was only observed following the LVHIT protocol (p < 0.05). Some measures of HRV and PWV were significantly correlated (r = 0.275–0.559; p < 0.05). Conclusion: These results show that the LVHIT protocol was more efficient for improving HRV variables and PWV than the HVMIT protocol after 12 weeks of continuous running training. Interestingly, changes in some HRV parameters were related to changes in PWV. Further studies should elaborate on the link between central and peripheral cardiovascular adaptations after continuous and intermittent training regimens differing in intensity.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Masoud Jokar Baluchi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Daniel Boullosa
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Sport and Exercise Science, James Cook University, Townsville, QLD, Australia
| | - Ali Daraei
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC, Canada
| | | | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland.,Institute of Primary Care, University of Zūrich, Zurich, Switzerland
| | | | | | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé - EA 1274, University of Rennes, Rennes, France.,Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
23
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
24
|
Collins BJ, Delaney CL, Boffo JE, Miller MD. Development and Validation of a Short Food Frequency Questionnaire to Measure Dietary Intake of a Selection of Immune-Modulating Nutrients in Patients with Established Peripheral Arterial Disease. Nutrients 2021; 13:nu13103316. [PMID: 34684317 PMCID: PMC8540050 DOI: 10.3390/nu13103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutrients with the ability to modulate the immune system (immune-modulating nutrients; IMN) may help prevent the development and progression of atherosclerosis, the main disease process underlying peripheral artery disease (PAD). Currently, no screening tool exists to measure IMN intake; therefore, the aim of this project is to develop and validate a short food frequency questionnaire (FFQ) that measures dietary intake of 14 nutrients with proposed immune-modulating effects, identified by the literature (copper, iron and zinc, vitamins A, C, D and E, alpha linolenic acid, total long-chain omega-3 fatty acids, arginine, glutamic acid, isoleucine, leucine and valine) in patients with established PAD. A 21-item FFQ was developed to measure average daily intake of IMNs over the past 12 months. Participants (n = 106) were recruited from Flinders Medical Centre, where they completed the FFQ followed by the reference method, a diet history reflecting usual intake over the past week. The mean age of participants was 72 years, with 83% being male (n = 88). Bland–Altman analysis resulted in a statistically non-significant p-value (p-value > 0.05) for 12 out of 14 nutrients, demonstrating good agreement between the two methods. Additionally, over 50% of nutrients had a sensitivity or specificity >70%. Consequently, the novel 21-item FFQ was determined to be a promising measure of dietary intake of 14 IMNs in patients with PAD when compared to the reference method of a diet history, and it is recommended that further investigations of the utility against biomarkers be explored in the future.
Collapse
Affiliation(s)
- Bianca J. Collins
- Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Christopher L. Delaney
- Department of Vascular Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia;
| | - Jade E. Boffo
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Michelle D. Miller
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
- Correspondence:
| |
Collapse
|
25
|
Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front Cardiovasc Med 2021; 8:704106. [PMID: 34513948 PMCID: PMC8429807 DOI: 10.3389/fcvm.2021.704106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.
Collapse
Affiliation(s)
- Weiming Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kang Geng
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
26
|
Zhou B, Wu LL, Zheng F, Wu N, Chen AD, Zhou H, Chen JY, Chen Q, Li YH, Kang YM, Zhu GQ. miR-31-5p Promotes Oxidative Stress and Vascular Smooth Muscle Cell Migration in Spontaneously Hypertensive Rats via Inhibiting FNDC5 Expression. Biomedicines 2021; 9:biomedicines9081009. [PMID: 34440213 PMCID: PMC8393189 DOI: 10.3390/biomedicines9081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress and the migration of vascular smooth muscle cells (VSMCs) are important for vascular remodeling in a variety of vascular diseases. miR-31-5p promotes cell migration in colorectal cancer cells but inhibits cell migration in renal cell carcinoma. However, whether miR-31-5p is involved in oxidative stress and VSMC migration remains unknown. This study shows the crucial roles of miR-31-5p in oxidative stress and VSMC migration, as well as underlying mechanisms. Experiments were carried out in primary VSMCs from aortic media of Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), as well as the A7r5 cell line. Oxidative stress was assessed by NADPH oxidase (NOX) expression, NOX activity, and reactive oxygen species (ROS) production. Cell migration was evaluated with a Boyden chamber assay and a wound healing assay. The miR-31-5p mimic and inhibitor promoted and attenuated oxidative stress and cell migration in the VSMCs of SHR, respectively. A dual-luciferase reporter assay indicated that miR-31-5p targeted the 3’UTR domain of FNDC5. The miR-31-5p level was raised and FNDC5 expression was reduced in the VSMCs of SHR compared with those of WKY. The miR-31-5p mimic reduced FNDC5 expression in the A7r5 cells and the VSMCs of both WKY and SHR, while the miR-31-5p inhibitor only increased FNDC5 expression in the VSMCs of SHR. Exogenous FNDC5 attenuated not only the oxidative stress and VSMC migration in SHR but also the roles of the miR-31-5p mimic in inducing oxidative stress and VSMC migration. These results indicate that miR-31-5p promotes oxidative stress and VSMC migration in SHR via inhibiting FNDC5 expression. The increased miR-31-5p and reduced FNDC5 in the VSMCs of SHR contribute to enhanced oxidative stress and cell migration.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Lu-Lu Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Jing-Yu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yu-Ming Kang
- Cardiovascular Research Center, Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Medicine, Xi’an 710061, China;
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
- Correspondence: ; Tel./Fax: +86-25-86869351
| |
Collapse
|
27
|
de Souza P, Perfete C. The Paradox of Exercise Intensity in Preventing Cardiovascular Events in Peripheral Arterial Occlusive Disease. Arq Bras Cardiol 2021; 117:317-318. [PMID: 34495226 PMCID: PMC8395792 DOI: 10.36660/abc.20210595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Pablo de Souza
- Clínica CardiosportFlorianópolisSCBrasilClínica Cardiosport, Florianópolis SC - Brasil.
- Instituto de Cardiologia de Santa CatarinaSão JoséSCBrasilInstituto de Cardiologia de Santa Catarina (ICSC), São José SC - Brasil.
| | - Cássio Perfete
- Clínica CardiosportFlorianópolisSCBrasilClínica Cardiosport, Florianópolis SC - Brasil.
| |
Collapse
|
28
|
Collins BJ, Mukherjee MS, Miller MD, Delaney CL. Effect of Dietary or Supplemental Vitamin C Intake on Vitamin C Levels in Patients with and without Cardiovascular Disease: A Systematic Review. Nutrients 2021; 13:nu13072330. [PMID: 34371840 PMCID: PMC8308513 DOI: 10.3390/nu13072330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a pro-oxidative and pro-inflammatory disease state, which is the underlying cause of most cardiovascular events, estimated to affect 5.2% of the Australian population. Diet, and specifically vitamin C, through its antioxidant properties can play a role in impeding the development and progression of atherosclerosis. This systematic review conducted comprehensive searches in Medline, Emcare, Scopus, PubMed, and Cochrane using key search terms for vitamin C, plasma vitamin C, supplementation, and cardiovascular disease (CVD). The results demonstrated that vitamin C supplementation resulted in a significant increase in vitamin C levels in populations with or without CVD, except for one study on the CVD population. It was also seen that the healthy population baseline and post-intervention vitamin C levels were high compared to the CVD population. However, further research is indicated for CVD population groups with varying baseline vitamin C levels, such as low baseline vitamin C, within a more representative elderly cohort in order to formulate and update vitamin C repletion guidelines.
Collapse
Affiliation(s)
- Bianca J. Collins
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Mitali S. Mukherjee
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Michelle D. Miller
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
- Correspondence:
| | - Christopher L. Delaney
- Department of Vascular Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
29
|
Scola L, Giarratana RM, Marinello V, Cancila V, Pisano C, Ruvolo G, Frati G, Lio D, Balistreri CR. Polymorphisms of Pro-Inflammatory IL-6 and IL-1β Cytokines in Ascending Aortic Aneurysms as Genetic Modifiers and Predictive and Prognostic Biomarkers. Biomolecules 2021; 11:biom11070943. [PMID: 34202072 PMCID: PMC8301826 DOI: 10.3390/biom11070943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Previous studies have demonstrated that polymorphisms involved in immune genes can affect the risk, pathogenesis, and outcome of thoracic ascending aortic aneurysms (TAAA). Here, we explored the potential associations of five functional promoter polymorphisms in interleukin-6 (IL-6), IL-1B, IL-1A, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA. Methods: 144 TAAA patients and 150 age/gender matched controls were typed using KASPar assays. Effects on telomere length and levels of TAAA related histopathological and serological markers were analyzed. Results: Significant associations with TAAA risk were obtained for IL-6 rs1800795G>C and IL-1B rs16944C>T SNPs. In addition, the combined rs1800795C/rs16944T genotype showed a synergic effect on TAAA pathogenesis and outcome. The combined rs1800795C/rs16944T genotype was significantly associated with: (a) higher serum levels of both cytokines and MMP-9 and -2; (b) a significant CD3+CD4+CD8+ CD68+CD20+ cell infiltration in aorta aneurysm tissues; (c) a significant shorter telomere length and alterations in telomerase activity. Finally, it significantly correlated with TAAA aorta tissue alterations, including elastic fragmentation, medial cell apoptosis, cystic medial changes, and MMP-9 levels. Conclusions: the combined rs1800795C/rs16944T genotype appears to modulate TAAA risk, pathogenesis, and outcome, and consequently can represent a potential predictive and prognostic TAAA biomarker for individual management, implementation of innovative treatments, and selection of the more proper surgical timing and approaches.
Collapse
Affiliation(s)
- Letizia Scola
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy (R.M.G.); (C.R.B.)
| | - Rosa Maria Giarratana
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy (R.M.G.); (C.R.B.)
| | - Vincenzo Marinello
- Department of Legal and Economic Sciences, University of Enna “Kore”, 94100 Enna, Italy;
| | - Valeria Cancila
- Tumor Immunology Unit, Department PROMISE, University of Palermo, 90100 Palermo, Italy;
| | - Calogera Pisano
- Department of Cardiac Surgery, University of Rome ‘Tor Vergata’, 00100 Rome, Italy; (C.P.); (G.R.)
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, University of Rome ‘Tor Vergata’, 00100 Rome, Italy; (C.P.); (G.R.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
- IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Domenico Lio
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy (R.M.G.); (C.R.B.)
- Correspondence:
| | - Carmela Rita Balistreri
- Clinical Pathology, Department of Bio-Medicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy (R.M.G.); (C.R.B.)
| |
Collapse
|
30
|
Ismaeel A, Greathouse KL, Newton N, Miserlis D, Papoutsi E, Smith RS, Eidson JL, Dawson DL, Milner CW, Widmer RJ, Bohannon WT, Koutakis P. Phytochemicals as Therapeutic Interventions in Peripheral Artery Disease. Nutrients 2021; 13:2143. [PMID: 34206667 PMCID: PMC8308302 DOI: 10.3390/nu13072143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) affects over 200 million people worldwide, resulting in significant morbidity and mortality, yet treatment options remain limited. Among the manifestations of PAD is a severe functional disability and decline, which is thought to be the result of different pathophysiological mechanisms including oxidative stress, skeletal muscle pathology, and reduced nitric oxide bioavailability. Thus, compounds that target these mechanisms may have a therapeutic effect on walking performance in PAD patients. Phytochemicals produced by plants have been widely studied for their potential health effects and role in various diseases including cardiovascular disease and cancer. In this review, we focus on PAD and discuss the evidence related to the clinical utility of different phytochemicals. We discuss phytochemical research in preclinical models of PAD, and we highlight the results of the available clinical trials that have assessed the effects of these compounds on PAD patient functional outcomes.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
- Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA
| | - Nathan Newton
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Jack L. Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - David L. Dawson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Craig W. Milner
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Robert J. Widmer
- Heart & Vascular Department, Baylor Scott & White Medical Center, Temple, TX 76508, USA;
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| |
Collapse
|
31
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
32
|
Zhou Z, Xing AJ, Zhang JN, Xia WH, Su C, Xu SY, Zhang XY, Chen SH, Huang Z, Qian XX, Wu SL, Tao J. Hypertension, Arterial Stiffness, and Clinical Outcomes: A Cohort Study of Chinese Community-Based Population. Hypertension 2021; 78:333-341. [PMID: 34120451 DOI: 10.1161/hypertensionaha.121.17131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Ai-Jun Xing
- Cardiology Department, Kailuan General Hospital, Tangshan, China (A.-J.X., Z.H., S.-L.W.)
| | - Jian-Ning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Wen-Hao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Chen Su
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Shi-Yue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Xiao-Yu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| | - Shuo-Hua Chen
- Health Care Center, Kailuan Group, Tangshan, China (S.-H.C.)
| | - Zhe Huang
- Cardiology Department, Kailuan General Hospital, Tangshan, China (A.-J.X., Z.H., S.-L.W.)
| | - Xiao-Xian Qian
- Department of Cardiology, Third Affiliated Hospital (X.-X.Q.), Sun Yat-Sen University, Guangzhou, China
| | - Shou-Ling Wu
- Cardiology Department, Kailuan General Hospital, Tangshan, China (A.-J.X., Z.H., S.-L.W.)
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.), Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China (Z.Z., J.-N.Z., W.-H.X., C.S., S.-Y.X., X.-Y.Z., J.T.)
| |
Collapse
|
33
|
Abstract
Peripheral artery disease (PAD) is a manifestation of systemic atherosclerosis. Modifiable risk factors including cigarette smoking, dyslipidemia, diabetes, poor diet quality, obesity, and physical inactivity, along with underlying genetic factors contribute to lower extremity atherosclerosis. Patients with PAD often have coexistent coronary or cerebrovascular disease, and increased likelihood of major adverse cardiovascular events, including myocardial infarction, stroke and cardiovascular death. Patients with PAD often have reduced walking capacity and are at risk of acute and chronic critical limb ischemia leading to major adverse limb events, such as peripheral revascularization or amputation. The presence of polyvascular disease identifies the highest risk patient group for major adverse cardiovascular events, and patients with prior critical limb ischemia, prior lower extremity revascularization, or amputation have a heightened risk of major adverse limb events. Medical therapies have demonstrated efficacy in reducing the risk of major adverse cardiovascular events and major adverse limb events, and improving function in patients with PAD by modulating key disease determining pathways including inflammation, vascular dysfunction, and metabolic disturbances. Treatment with guideline-recommended therapies, including smoking cessation, lipid lowering drugs, optimal glucose control, and antithrombotic medications lowers the incidence of major adverse cardiovascular events and major adverse limb events. Exercise training and cilostazol improve walking capacity. The heterogeneity of risk profile in patients with PAD supports a personalized approach, with consideration of treatment intensification in those at high risk of adverse events. This review highlights the medical therapies currently available to improve outcomes in patients with PAD.
Collapse
Affiliation(s)
- Marc P Bonaca
- Division of Cardiology, CPC Clinical Research, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO (M.P.B.)
| | - Naomi M Hamburg
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Section of Vascular Biology, Boston Medical Center, MA (N.M.H.)
| | - Mark A Creager
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.A.C.)
| |
Collapse
|
34
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Park SY, Pekas EJ, Headid RJ, Son WM, Wooden TK, Song J, Layec G, Yadav SK, Mishra PK, Pipinos II. Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2020; 319:H456-H467. [DOI: 10.1152/ajpheart.00235.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The results of this study reveal for the first time that acute oral intake of mitochondrial-targeted antioxidant (MitoQ, 80 mg) is effective for improving vascular endothelial function and superoxide dismutase in patients with peripheral artery disease (PAD). Acute MitoQ intake is also effective for improving maximal walking capacity and delaying the onset of claudication in patients with PAD. These findings suggest that the acute oral intake of MitoQ-mediated improvements in vascular mitochondria play a pivotal role for improving endothelial function, the redox environment, and skeletal muscle performance in PAD.
Collapse
Affiliation(s)
- Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Ronald J. Headid
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Won-Mok Son
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K. Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jiwon Song
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Santosh K. Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K. Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
36
|
Association between sleep-disordered breathing and lower extremity artery disease: a meta-analysis. Sleep Breath 2020; 25:227-236. [DOI: 10.1007/s11325-020-02096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
37
|
MiR155-5p Inhibits Cell Migration and Oxidative Stress in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9030204. [PMID: 32121598 PMCID: PMC7140008 DOI: 10.3390/antiox9030204] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Migration of vascular smooth muscle cells (VSMCs) is essential for vascular reconstruction in hypertension and several vascular diseases. Our recent study showed that extracellular vesicles derived from vascular adventitial fibroblasts of normal rats inhibited VSMC proliferation by delivering miR155-5p to VSMCs. It is unknown whether miR155-5p inhibits cell migration and oxidative stress in VSMCs of spontaneously hypertensive rats (SHR) and in angiotensin II (Ang II)-treated VSMCs. The purpose of this study was to determine the role of miR155-5p in VSMC migration and its underlying mechanisms. Primary VSMCs were isolated from the aortic media of Wistar-Kyoto rats (WKY) and SHR. Wound healing assay and Boyden chamber assay were used to evaluate VSMC migration. A miR155-5p mimic inhibited, and a miR155-5p inhibitor promoted the migration of VSMC of SHR but had no significant effect on the migration of VSMC of WKY. The miR155-5p mimic inhibited angiotensin-converting enzyme (ACE) mRNA and protein expression in VSMCs. It also reduced superoxide anion production, NAD(P)H oxidase (NOX) activity, as well as NOX2, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) expression levels in VSMCs of SHR but not in VSMCs of WKY rats. Overexpression of miR155-5p inhibited VSMC migration and superoxide anion and IL-1β production in VSMCs of SHR but had no impact on exogenous Ang II-induced VSMC migration and on superoxide anion and IL-1β production in WKY rats and SHR. These results indicate that miR155-5p inhibits VSMC migration in SHR by suppressing ACE expression and its downstream production of Ang II, superoxide anion, and inflammatory factors. However, miR155-5p had no effects on exogenous Ang II-induced VSMC migration.
Collapse
|
38
|
Weihrauch D, Martin DP, Jones D, Krolikowski J, Struve J, Naylor S, Pritchard KA. Inhibition of myeloperoxidase increases revascularization and improves blood flow in a diabetic mouse model of hindlimb ischaemia. Diab Vasc Dis Res 2020; 17:1479164120907971. [PMID: 32223319 PMCID: PMC7510377 DOI: 10.1177/1479164120907971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia. METHODS Leptin receptor-deficient (db/db) mice were subjected to hindlimb ischaemia. Ischaemic mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC) to inhibit myeloperoxidase. After ligating the femoral artery, effects of treatments were determined with respect to hindlimb blood flow, neutrophil infiltration, oxidative damage, and the capability of hindlimb extracellular matrix to support human endothelial cell proliferation and migration. RESULTS KYC treatment improved hindlimb blood flow at 7 and 14 days in db/db mice; decreased the formation of advanced glycation end products, 4-hydroxynonenal, and 3-chlorotyrosine; reduced neutrophil infiltration into the hindlimbs; and improved the ability of hindlimb extracellular matrix from db/db mice to support endothelial cell proliferation and migration. CONCLUSION These results demonstrate that inhibiting myeloperoxidase reduces oxidative stress in ischaemic hindlimbs of db/db mice, which improves blood flow and reduces neutrophil infiltration such that hindlimb extracellular matrix from db/db mice supports endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Dorothee Weihrauch
- Department of Anesthesiology, Medical
College of Wisconsin, Milwaukee, WI, USA
| | - Dustin P Martin
- Division of Pediatric Surgery,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- ReNeuroGen LLC, Elm Grove, WI, USA
| | - Deron Jones
- Division of Pediatric Surgery,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John Krolikowski
- Department of Anesthesiology, Medical
College of Wisconsin, Milwaukee, WI, USA
| | - Janine Struve
- Department of Orthopedic Surgery,
Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kirkwood A Pritchard
- Division of Pediatric Surgery,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- ReNeuroGen LLC, Elm Grove, WI, USA
- Kirkwood A Pritchard Jr, Division of
Pediatric Surgery, Department of Surgery, Medical College of Wisconsin,
Children’s Research Institute, C4440, 8701 Watertown Plank Road, Milwaukee, WI
53226, USA.
| |
Collapse
|
39
|
Signorelli SS, Vanella L, Abraham NG, Scuto S, Marino E, Rocic P. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis 2020; 11:2040622319894466. [PMID: 32076496 PMCID: PMC7003198 DOI: 10.1177/2040622319894466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral arterial disease (PAD) affects individuals particularly over 65 years old in the more advanced countries. Hemodynamic, inflammatory, and oxidative mechanisms interact in the pathophysiological scenario of this chronic arterial disease. We discuss the hemodynamic, muscle tissue, and oxidative stress (OxS) conditions related to chronic ischemia of the peripheral arteries. This review summarizes the results of evaluating both metabolic and oxidative markers, and also therapy to counteract OxS. In conclusion, we believe different pathways should be highlighted to discover new drugs to treat patients suffering from PAD.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico’, Catania, 95124, Italy
| | - Luca Vanella
- Department of Drug Science, University of Catania, Catania, Italy
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Petra Rocic
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
40
|
In Vitro Effects of Plasma Collected From Rats Administered Naftopidil on Whole Urinary Bladder Preparation Isolated From Rats. Int Neurourol J 2020; 23:277-286. [PMID: 31905274 PMCID: PMC6944793 DOI: 10.5213/inj.1938102.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022] Open
Abstract
Purpose Alpha-1-adrenoceptor blockers (e.g., naftopidil) are prescribed for the treatment of male lower urinary tract symptoms. Although the mechanism of action of naftopidil has been studied in various organs, that in the urinary bladder remains unknown. To clarify the direct effects of naftopidil on this organ, activities were assessed in the isolated rat whole urinary bladder. Methods A total of 30 female rats were used. In Experiment 1, bladder activity was measured during a cumulative administration of 2.5–75μM naftopidil (n=7). In Experiment 2, rats were divided into 2 groups: control (n=10) and naftopidil (5 mg/animal/day, oral gavage, once-daily for 2 weeks) (n=13). After the treatment period, plasma was obtained from each rat. The urinary bladders were harvested from the control rats. Isovolumetric rhythmic bladder contractions were induced at above the threshold volume, and intravesical pressure was recorded. Control plasma was added to the organ bath; after subsequent wash-out, plasma collected from rats administered naftopidil was added. In Experiment 3, the plasma levels of monoamines and amino acids were quantified using the individual plasma prepared in the Experiment 2. Results Cumulative dosing with naftopidil did not change the interval between spontaneous contractions compared to the interval at baseline. After adding control plasma, the interval was shortened compared to the baseline (P=0.008). The plasma collected from rats administered naftopidil suppressed the shortening of the interval compared to the control plasma (P=0.041). Naftopidil resulted in a decrease in the level of noradrenaline (P=0.009) and an increase in that of glycine (P=0.014). Conclusions Although naftopidil did not directly act on the interval between spontaneous contractions of the urinary bladder, the plasma collected from rats administered naftopidil, with changing levels of monoamines and amino acids, may suppressed shortening the interval.
Collapse
|
41
|
Al-Nimer M, Ratha R, Mahwi T. Utility of Tetrahydrobiopterin Pathway in the Assessment of Diabetic Foot Ulcer: Significant and Complex Interrelations. J Diabetes Res 2019; 2019:3426878. [PMID: 31828160 PMCID: PMC6881761 DOI: 10.1155/2019/3426878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Tetrahydrobiopterin (BH4) pathway that included generation of neopterin (Neop), biopterin (Biop), and nitric oxide (NO) is altered in type 2 diabetes (T2D). The aim of this study was to assess the biomarkers of BH4 pathway in noninfected DFUs and to relate these levels to the variables of diabetes as well as to the hematological indices. METHODS We performed a cross-sectional investigating study in a Kurdish people including 30 healthy subjects (group I), 66 T2D patients (group II), and 57 DFUs patients (group III). Hematological indices including red cell distribution width (RDW), mean platelet volume (MPV), and platelet distribution width (PDW) were determined by Coulter hematological analysis. Serum BH4 markers including NO, Neop, and Biop were determined by using an enzyme-linked immunosorbent assay (ELISA) technology. The relationship between BH4 markers with glycemic and hematological indices was assessed by Spearman's correlation and multivariable regression analysis. RESULTS Neop was significantly increased while PDW was significantly decreased in group III compared with group II patients. Nitric oxide was found to be inversely correlated with age (r = -0.382), duration of diabetes (r = -0.264), mean arterial blood pressure (r = -0.532), body mass index (r = -0.321), RDW (r = -0.322), and PDW (r = -0.284) in group III patients. Circulating Neop and Biop significantly correlated with RDW and erythrocyte sedimentation rate. Multivariable regression analysis revealed that serum Neop predicted the DFUs in 92.5% of group III patients. CONCLUSION Tetrahydrobiopterin biomarkers are predictors of DFUs and the significant correlation of neopterin with red distribution width and erythrocyte sedimentation rate indicating the role of neopterin in the vascular and inflammation concerns of noninfected DFUs.
Collapse
Affiliation(s)
- Marwan Al-Nimer
- Department of Pharmacology and Toxicology, Hawler Medical University, Erbil, Iraq
- Department of Clinical Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Rawa Ratha
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Taha Mahwi
- Department of Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
42
|
Ismaeel A, Franco ME, Lavado R, Papoutsi E, Casale GP, Fuglestad M, Mietus CJ, Haynatzki GR, Smith RS, Bohannon WT, Sawicki I, Pipinos II, Koutakis P. Altered Metabolomic Profile in Patients with Peripheral Artery Disease. J Clin Med 2019; 8:E1463. [PMID: 31540015 PMCID: PMC6780416 DOI: 10.3390/jcm8091463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Peripheral artery disease (PAD) is a common atherosclerotic disease characterized by narrowed or blocked arteries in the lower extremities. Circulating serum biomarkers can provide significant insight regarding the disease progression. Here, we explore the metabolomics signatures associated with different stages of PAD and investigate potential mechanisms of the disease. We compared the serum metabolites of a cohort of 26 PAD patients presenting with claudication and 26 PAD patients presenting with critical limb ischemia (CLI) to those of 26 non-PAD controls. A difference between the metabolite profiles of PAD patients from non-PAD controls was observed for several amino acids, acylcarnitines, ceramides, and cholesteryl esters. Furthermore, our data demonstrate that patients with CLI possess an altered metabolomic signature different from that of both claudicants and non-PAD controls. These findings provide new insight into the pathophysiology of PAD and may help develop future diagnostic procedures and therapies for PAD patients.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Evlampia Papoutsi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - George P Casale
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Matthew Fuglestad
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Gleb R Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - Ian Sawicki
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Panagiotis Koutakis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
43
|
Oxidative Stress in Peripheral Arterial Disease (PAD) Mechanism and Biomarkers. Antioxidants (Basel) 2019; 8:antiox8090367. [PMID: 31480714 PMCID: PMC6770183 DOI: 10.3390/antiox8090367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hemodynamic dysfunction mainly characterizes pathophysiology of peripheral arterial disease (PAD) leading to chronic ischemia. Hemodynamic dysfunction is the origin of intermittent claudication (chronic PAD) or of critical limb ischemia (very severe PAD). Notably, it is well known that oxidative stress (OxS) plays a pathophysiological role in PAD. The higher production of reactive oxygen species (ROS) from OxS and reduced redox capability are two crucial players in initiating and progressing PAD. A number of biomarkers highlight OxS and monitor it in PAD. The present review summarizes data on OxS, on biomarkers available to mark OxS occurrence and to monitor on PAD progression, as well as to evaluate the effects treatments in PAD patients. In conclusion, by detailing OxS and its biomarkers, we hope to encourage more studies to focus on drugs which combat OxS and inflammation.
Collapse
|
44
|
Zadeh JK, Ruemmler R, Hartmann EK, Ziebart A, Ludwig M, Patzak A, Xia N, Li H, Pfeiffer N, Gericke A. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp Eye Res 2019; 184:152-161. [DOI: 10.1016/j.exer.2019.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 01/16/2023]
|
45
|
Brassington K, Selemidis S, Bozinovski S, Vlahos R. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond) 2019; 133:885-904. [PMID: 30979844 PMCID: PMC6465303 DOI: 10.1042/cs20180316] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterised by persistent airflow limitation that is not fully reversible and is currently the fourth leading cause of death globally. It is now well established that cardiovascular-related comorbidities contribute to morbidity and mortality in COPD, with approximately 50% of deaths in COPD patients attributed to a cardiovascular event (e.g. myocardial infarction). Cardiovascular disease (CVD) and COPD share various risk factors including hypertension, sedentarism, smoking and poor diet but the underlying mechanisms have not been fully established. However, there is emerging and compelling experimental and clinical evidence to show that increased oxidative stress causes pulmonary inflammation and that the spill over of pro-inflammatory mediators from the lungs into the systemic circulation drives a persistent systemic inflammatory response that alters blood vessel structure, through vascular remodelling and arterial stiffness resulting in atherosclerosis. In addition, regulation of endothelial-derived vasoactive substances (e.g. nitric oxide (NO)), which control blood vessel tone are altered by oxidative damage of vascular endothelial cells, thus promoting vascular dysfunction, a key driver of CVD. In this review, the detrimental role of oxidative stress in COPD and comorbid CVD are discussed and we propose that targeting oxidant-dependent mechanisms represents a novel strategy in the treatment of COPD-associated CVD.
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
46
|
Tetsi L, Charles AL, Georg I, Goupilleau F, Lejay A, Talha S, Maumy-Bertrand M, Lugnier C, Geny B. Effect of the Phosphodiesterase 5 Inhibitor Sildenafil on Ischemia-Reperfusion-Induced Muscle Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2019; 8:antiox8040093. [PMID: 30959961 PMCID: PMC6523910 DOI: 10.3390/antiox8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lower-limb ischemia-reperfusion (IR) is frequent and associated with significant morbidity and mortality. Phosphodiesterase 5 inhibitors demonstrated antioxidant and beneficial effects in several organs submitted to IR, but their effects on muscle mitochondrial functions after lower-limb IR are unknown. Unilateral hindlimb IR (2 h tourniquet followed by 2 h reperfusion) without or with sildenafil (1mg/kg ip 30 minutes before ischemia) was performed in 18 mice. Maximal oxidative capacity (VMax), relative contribution of the mitochondrial respiratory chain complexes, calcium retention capacity (CRC)—a marker of apoptosis—and reactive oxygen species (ROS) production were determined using high-resolution respirometry, spectrofluorometry, and electron paramagnetic resonance in gastrocnemius muscles from both hindlimbs. IR significantly reduced mitochondrial VMax (from 11.79 ± 1.74 to 4.65 ± 1.11 pmol/s*mg wet weight (ww), p < 0.05, −50.2 ± 16.3%) and CRC (from 2.33 ± 0.41 to 0.84 ± 0.18 µmol/mg dry weight (dw), p < 0.05; −61.1 ± 6.8%). ROS tended to increase in the ischemic limb (+64.3 ± 31.9%, p = 0.08). Although tending to reduce IR-related ROS production (−42.4%), sildenafil failed to reduce muscle mitochondrial dysfunctions (−63.3 ± 9.2%, p < 0.001 and −55.2 ± 7.6% p < 0.01 for VMax, and CRC, respectively). In conclusion, lower limb IR impaired skeletal muscle mitochondrial function, but, despite tending to reduce ROS production, pharmacological preconditioning with sildenafil did not show protective effects.
Collapse
Affiliation(s)
- Liliane Tetsi
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne-Laure Charles
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Isabelle Georg
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Fabienne Goupilleau
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne Lejay
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
- Hôpitaux Universitaires de Strasbourg, Service de Chirurgie vasculaire et de transplantation rénale, 67000 Strasbourg, France.
| | - Samy Talha
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| | - Myriam Maumy-Bertrand
- IRMA, équipe MoCo et LabEx IRMIA, 7 rue René Descartes, 67084 Strasbourg CEDEX, France.
| | - Claire Lugnier
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Bernard Geny
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| |
Collapse
|