1
|
Gong JH, Kim CS, Park J, Kang S, Jang Y, Kim MS, Chung HT, Joe Y, Yu R. Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression. Neurochem Res 2024; 50:44. [PMID: 39636503 PMCID: PMC11621137 DOI: 10.1007/s11064-024-04290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including BDNF, Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP+, where it was observed to counteract PA and MPTP/MPP+-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.
Collapse
Affiliation(s)
- Jeong Heon Gong
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Soeun Kang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yumi Jang
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
| | - Rina Yu
- Department of Food and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
2
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2024:10.1038/s41380-024-02861-6. [PMID: 39639174 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
3
|
Dya GA, Lebedeva OS, Gushchevarov DA, Volovikov EA, Belikova LD, Kopylova IV, Postnikov AB, Artemieva MM, Medvedeva NA, Lagarkova MA, Katrukha AG, Serebryanaya DV. Specific cleavage of IGFBP-4 by papp-a in nervous tissue. Biochem Biophys Res Commun 2024; 733:150655. [PMID: 39244846 DOI: 10.1016/j.bbrc.2024.150655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Astrocytes are subtypes of glial cells involved in metabolic, structural, homeostatic, and neuroprotective processes that help neurons maintain viability. Insulin-like growth factors IGF-1 and IGF-2 are known to have neuroprotective effects on neurons and glial cells through interaction with specific receptors. IGF forms a complex with IGF-binding proteins (IGFBP) in nervous tissue and is released from the complex via IGFBP proteolysis by specific proteases. It has been reported that IGFBP-2, 5 and 6 are cleaved by specific proteases in the central nervous system (CNS), followed by IGF release; however, it was unknown whether IGFBP-4 was exposed to a particular proteolysis in nervous tissue. Using neurons and astrocytes derived from human induced pluripotent stem cell lines (hiPSC), as well as rat brain-sourced primary neuron-glia cultures, we demonstrated that IGFBP-4 is specifically cleaved in nervous tissue by the Pregnancy Associated Plasma Protein A (PAPP-A) protease and that this cleavage is IGF-dependent. Our results indicate that astrocyte rather than neuron PAPP-A cleaves IGFBP-4 in nervous tissue suggesting that this may be one of the fundamental mechanisms for IGF interchange between these two types of cells.
Collapse
Affiliation(s)
- German A Dya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Egor A Volovikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Lilia D Belikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V Kopylova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | | | - Maria A Lagarkova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Hytest, Turku, Finland
| | - Daria V Serebryanaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
4
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024; 72:2001-2021. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
5
|
Wright B, King S, Suphioglu C. The Importance of Phosphoinositide 3-Kinase in Neuroinflammation. Int J Mol Sci 2024; 25:11638. [PMID: 39519189 PMCID: PMC11546674 DOI: 10.3390/ijms252111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood-brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Brock Wright
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Samuel King
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| |
Collapse
|
6
|
Koychev I, Reid G, Nguyen M, Mentz RJ, Joyce D, Shah SH, Holman RR. Inflammatory proteins associated with Alzheimer's disease reduced by a GLP1 receptor agonist: a post hoc analysis of the EXSCEL randomized placebo controlled trial. Alzheimers Res Ther 2024; 16:212. [PMID: 39358806 PMCID: PMC11448378 DOI: 10.1186/s13195-024-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists are a viable option for the prevention of Alzheimer's disease (AD) but the mechanisms of this potential disease modifying action are unclear. We investigated the effects of once-weekly exenatide (EQW) on AD associated proteomic clusters. METHODS The Exenatide Study of Cardiovascular Event Lowering study compared the cardiovascular effects of EQW 2 mg with placebo in 13,752 people with type 2 diabetes mellitus. 4,979 proteins were measured (Somascan V0.4) on baseline and 1-year plasma samples of 3,973 participants. C-reactive protein (CRP), ficolin-2 (FCN2), plasminogen activator inhibitor 1 (PAI-1), soluble vascular cell adhesion protein 1 (sVCAM1) and 4 protein clusters were tested in multivariable mixed models. RESULTS EQW affected FCN2 (Cohen's d -0.019), PAI-1 (Cohen's d -0.033), sVCAM-1 (Cohen's d 0.035) and a cytokine-cytokine cluster (Cohen's d 0.037) significantly compared with placebo. These effects were sustained in individuals over the age of 65 but not in those under 65. CONCLUSIONS EQW treatment was associated with significant change in inflammatory proteins associated with AD. TRIAL REGISTRATION EXSCEL is registered on ClinicalTrials.gov: NCT01144338 on 10th of June 2010.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Graham Reid
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Maggie Nguyen
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
| | | | - Dan Joyce
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Svati H Shah
- Duke Center for Precision Health, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Islek Z, Ucisik MH, Sahin F. Astrocytes Can Be Key Players Against Cerebral Leishmaniasis: In Vitro Co-Culture Model for the Assessment of Infection. Parasite Immunol 2024; 46:e13071. [PMID: 39449623 DOI: 10.1111/pim.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Leishmaniasis is a neglected tropical disease, caused by protozoan parasites of Leishmania (L.), and is transmitted by bite of phlebotomine sandflies. There are several studies on central nervous system infection to indicate that Leishmania can cross the blood-brain barrier, resulting in neurological manifestations, known as "cerebral leishmaniasis." This study highlighted the notions: (i) polarisation of bone marrow-derived macrophages (BMDM) incubated following stimulation with lipopolysaccharide (LPS) or soluble Leishmania antigen (SLA), (ii) quantification of parasites within co-culture of Leishmania-infected macrophages, and astrocytes, and (iii) effect of interferon-gamma (IFN-γ) on the infection rate of co-culture populations. Accordingly, 83% of overall macrophage population was identified on day 7 for CD11b and F4/80 macrophage markers. Flow cytometry analysis revealed significant increases in CD11b and F4/80 surface markers in LPS and SLA-stimulated BMDMs at 24 h, compared to untreated cells. TNF-α levels increased significantly in both LPS and SLA-treated BMDMs after 48 h. Additionally, SLA treatment induced a more elongated, spindle-like shape in the cells, indicative of M2 macrophage polarisation over the M1 phenotype. When non-infected astrocytes with/without stimulation with IFN-γ before co-culture, gp63 FITC-labelled parasite populations (%) in co-culture decreased to 25% at 72 h, thus indicating a lower infection rate in a time-dependent manner. IFN-γ and IL-6 levels significantly increased to 71.66 ± 3.51 and 184 ± 14.42 pg/mL, resulting in the inflammatory response in the co-culture system at 48 h (p ≤ 0.0001), when compared to the control (30 ± 2.52 pg/mL for IFN-γ and 8.66 ± 2.37 pg/mL for IL-6) at 0 h of the incubation. It is the first study to emphasize the communication between Leishmania-infected macrophages and astrocytes regarding Leishmania parasite load. The results suggest that astrocytes can lead to the reduction in Leishmania parasites, thereby controlling the incidence of cerebral leishmaniasis.
Collapse
Affiliation(s)
- Zeynep Islek
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Fikrettin Sahin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| |
Collapse
|
8
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
9
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2024:revneuro-2024-0081. [PMID: 39240134 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C Y Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
10
|
Madsen SS, Andersen TL, Pihl-Thingvad J, Brandt L, Olsen BB, Gerke O, Videbech P. Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress. Diagnostics (Basel) 2024; 14:1730. [PMID: 39202218 PMCID: PMC11353128 DOI: 10.3390/diagnostics14161730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Stress is a ubiquitous challenge in modern societies. Symptoms range from mood swings and cognitive impairment to autonomic symptoms. This study explores the link between work-related stress and the neurobiological element of brain processing, testing the hypothesis that patients with occupational stress have altered cerebral glucose consumption compared to healthy controls. The participants' present conditions were evaluated using an adapted WHO SCAN interview. Neural activity at rest was assessed by positron emission tomography (PET) with the glucose analogue [18F]fluorodeoxyglucose. Participants were genotyped for the Val158Met polymorphism of the COMT gene, believed to influence stress resilience. This study included 11 women with work-related stress and 11 demographically comparable healthy controls aged 28-62 years, with an average of 46.2 years. The PET scans indicated clusters of decreased glucose consumption primarily located in the white matter of frontal lobe sub-gyral areas in stress patients. COMT Val158Met polymorphism detection indicated no immediate relation of the homozygous alleles and stress resilience; however, healthy controls mainly had the heterozygous allele. In conclusion, the results support that work-related stress does affect the brain in the form of altered glucose metabolism, suggesting neurobiological effects could be related to white matter abnormalities rather than gray matter deterioration. Genotyping indicates a more complex picture than just that of the one type being more resilient to stress. Further studies recruiting a larger number of participants are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Saga Steinmann Madsen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, University of Copenhagen, 2600 Glostrup, Denmark; (S.S.M.); (P.V.)
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- OPEN (Open Patient data Explorative Network), Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jesper Pihl-Thingvad
- Department of Occupational and Environmental Medicines, Odense University Hospital, 5000 Odense, Denmark; (J.P.-T.)
- Research Unit of Occupational & Environmental Medicine, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Lars Brandt
- Department of Occupational and Environmental Medicines, Odense University Hospital, 5000 Odense, Denmark; (J.P.-T.)
- Research Unit of Occupational & Environmental Medicine, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Oke Gerke
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, University of Copenhagen, 2600 Glostrup, Denmark; (S.S.M.); (P.V.)
| |
Collapse
|
11
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Floryanzia S, Lee S, Nance E. Isolation methods and characterization of primary rat neurovascular cells. J Biol Eng 2024; 18:39. [PMID: 38992711 PMCID: PMC11241874 DOI: 10.1186/s13036-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources. Here, we present simplified, robust, and reproducible methodology for isolating astrocytes, pericytes, and endothelial cells, and demonstrate several morphological benchmarks for each cell type throughout the process and culture timeframe. We also analyze common considerations for developing neurovascular cell isolation procedures and recommend solutions for troubleshooting. RESULTS The presented methodology isolated astrocytes, pericytes, and endothelial cells and enabled cell attachment, maturation, and cell viability. We characterized milestones in cell maturation over 12 days in culture, a common timeline for applications of these cell types in BBB models. Phase contrast microscopy was used to show initial cell plating, attachment, and daily growth of isolated cells. Confocal microscopy images were analyzed to determine the identity of cell types and changes to cell morphology. Nuclear staining was also used to show the viability and proliferation of glial cells at four time points. Astrocyte branches became numerous and complex with increased culture time. Microglia, oligodendrocytes, and neurons were present in mixed glial cultures for 12 days, though the percentage of microglia and neurons expectedly decreased after passaging, with microglia demonstrating a less branched morphology. CONCLUSIONS Neurovascular cells can be isolated through our optimized protocols that minimize cell loss and encourage the adhesion and proliferation of isolated cells. By identifying timepoints of viable glia and neurons within an astrocyte-dominant mixed culture, these cells can be used to evaluate drug targeting, uptake studies, and response to pathological stimulus in the neurovascular unit.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Seoyoung Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
14
|
Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1401706. [PMID: 38846716 PMCID: PMC11155303 DOI: 10.3389/fnins.2024.1401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.
Collapse
Affiliation(s)
| | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
15
|
Overgaard Wichmann T, Hedegaard Højsager M, Hasager Damkier H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front Cell Neurosci 2024; 18:1414662. [PMID: 38818518 PMCID: PMC11137310 DOI: 10.3389/fncel.2024.1414662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.
Collapse
|
16
|
Adkins AM, Luyo ZNM, Gibbs AJ, Boden AF, Heerbrandt RS, Gotthold JD, Britten RA, Wellman LL, Sanford LD. Alterations in Blood-Brain Barrier Integrity and Lateral Ventricle Differ in Rats Exposed to Space Radiation and Social Isolation. Life (Basel) 2024; 14:636. [PMID: 38792656 PMCID: PMC11122575 DOI: 10.3390/life14050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The proposed Mars missions will expose astronauts to long durations of social isolation (SI) and space radiation (SR). These stressors have been shown to alter the brain's macrostructure and microenvironment, including the blood-brain barrier (BBB). Breakdown of the BBB is linked to impaired executive functions and physical deficits, including sensorimotor and neurocognitive impairments. However, the precise mechanisms mediating these effects remain unknown. Additionally, the synergistic effects of combined exposure to SI and SR on the structural integrity of the BBB and brain remain unknown. We assessed the BBB integrity and morphology in the brains of male rats exposed to ground-based analogs of SI and SR. The rats exposed to SR had enlarged lateral ventricles and increased BBB damage associated with a loss of astrocytes and an increased number of leaky vessels. Many deficits observed in SR-treated animals were attenuated by dual exposure to SI (DFS). SI alone did not show BBB damage but did show differences in astrocyte morphology compared to the Controls. Thus, determining how single and combined inflight stressors modulate CNS structural integrity is crucial to fully understand the multiple pathways that could impact astronaut performance and health, including the alterations to the CNS structures and cell viability observed in this study.
Collapse
Affiliation(s)
- Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Zachary N. M. Luyo
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Alayna J. Gibbs
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Alea F. Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Riley S. Heerbrandt
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Justin D. Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Richard A. Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| | - Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (A.M.A.); (Z.N.M.L.); (A.F.B.); (R.S.H.); (J.D.G.); (L.L.W.)
| |
Collapse
|
17
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
18
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
19
|
Puebla M, Muñoz MF, Lillo MA, Contreras JE, Figueroa XF. Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels. Biol Res 2024; 57:19. [PMID: 38689353 PMCID: PMC11059852 DOI: 10.1186/s40659-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Manuel F Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
| |
Collapse
|
20
|
Khaire OT, Mhaske A, Prasad AG, Almalki WH, Srivastava N, Kesharwani P, Shukla R. State-of-the-art drug delivery system to target the lymphatics. J Drug Target 2024; 32:347-364. [PMID: 38253594 DOI: 10.1080/1061186x.2024.2309671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
PRIMARY OBJECTIVE The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.
Collapse
Affiliation(s)
- Omkar T Khaire
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| |
Collapse
|
21
|
Tan Q, Zhang C, Rao X, Wan W, Lin W, Huang S, Ying J, Lin Y, Hua F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: mechanisms and therapeutic application. Front Immunol 2024; 15:1358719. [PMID: 38533497 PMCID: PMC10963420 DOI: 10.3389/fimmu.2024.1358719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.
Collapse
Affiliation(s)
- Qianqian Tan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Lin
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shupeng Huang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Zahumenska R, Badurova B, Pavelek M, Sojka P, Pavlisova T, Spanik P, Sivonova MK, Novakova S, Strnadel J, Halasova E, Frivaldsky M, Skovierova H. Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells. Sci Rep 2024; 14:5514. [PMID: 38448548 PMCID: PMC10918061 DOI: 10.1038/s41598-024-56051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
In recent decades, we have seen significant technical progress in the modern world, leading to the widespread use of telecommunications systems, electrical appliances, and wireless technologies. These devices generate electromagnetic radiation (EMR) and electromagnetic fields (EMF) most often in the extremely low frequency or radio-frequency range. Therefore, they were included in the group of environmental risk factors that affect the human body and health on a daily basis. In this study, we tested the effect of exposure EMF generated by a new prototype wireless charging system on four human cell lines (normal cell lines-HDFa, NHA; tumor cell lines-SH-SY5Y, T98G). We tested different operating parameters of the wireless power transfer (WPT) device (87-207 kHz, 1.01-1.05 kW, 1.3-1.7 mT) at different exposure times (pulsed 6 × 10 min; continuous 1 × 60 min). We observed the effect of EMF on cell morphology and cytoskeletal changes, cell viability and mitotic activity, cytotoxicity, genotoxicity, and oxidative stress. The results of our study did not show any negative effect of the generated EMF on either normal cells or tumor cell lines. However, in order to be able to estimate the risk, further population and epidemiological studies are needed, which would reveal the clinical consequences of EMF impact.
Collapse
Affiliation(s)
- Romana Zahumenska
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Bibiana Badurova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01, Martin, Slovakia
| | - Miroslav Pavelek
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 010 26, Žilina, Slovakia
| | - Peter Sojka
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 010 26, Žilina, Slovakia
| | - Tereza Pavlisova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Pavol Spanik
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 010 26, Žilina, Slovakia
| | - Monika Kmetova Sivonova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01, Martin, Slovakia
| | - Slavomira Novakova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jan Strnadel
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Erika Halasova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Michal Frivaldsky
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 010 26, Žilina, Slovakia.
| | - Henrieta Skovierova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia.
| |
Collapse
|
23
|
Li M, Liu Z, Wu Y, Zheng N, Liu X, Cai A, Zheng D, Zhu J, Wu J, Xu L, Li X, Zhu LQ, Manyande A, Xu F, Wang J. In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging. Mol Psychiatry 2024; 29:545-552. [PMID: 35484244 DOI: 10.1038/s41380-022-01580-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.
Collapse
Affiliation(s)
- Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhuang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinpiao Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, PR China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
24
|
Niu W, Siciliano B, Wen Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J Pediatr 2024; 20:208-218. [PMID: 35759110 DOI: 10.1007/s12519-022-00576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment. DATA SOURCES Literature reviews and research articles were published in PubMed-indexed journals. RESULTS Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain. CONCLUSIONS In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Benjamin Siciliano
- The Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Whitehead Research Building 447, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells 2024; 13:286. [PMID: 38334678 PMCID: PMC10855155 DOI: 10.3390/cells13030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
The key to the effective treatment of neurodegenerative disorders is a thorough understanding of their pathomechanism. Neurodegeneration and neuroinflammation are mutually propelling brain processes. An impairment of glymphatic system function in neurodegeneration contributes to the progression of pathological processes. The question arises as to how neuroinflammation and the glymphatic system are related. This review highlights the direct and indirect influence of these two seemingly independent processes. Protein aggregates, a characteristic feature of neurodegeneration, are correlated with glymphatic clearance and neuroinflammation. Glial cells cannot be overlooked when considering the neuroinflammatory processes. Astrocytes are essential for the effective functioning of the glymphatic system and play a crucial role in the inflammatory responses in the central nervous system. It is imperative to acknowledge the significance of AQP4, a protein that exhibits a high degree of polarization in astrocytes and is crucial for the functioning of the glymphatic system. AQP4 influences inflammatory processes that have not yet been clearly delineated. Another interesting issue is the gut-brain axis and microbiome, which potentially impact the discussed processes. A discussion of the correlation between the functioning of the glymphatic system and neuroinflammation may contribute to exploring the pathomechanism of neurodegeneration.
Collapse
Affiliation(s)
- Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warszawa, Poland; (K.K.)
| | | | | | | |
Collapse
|
26
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
27
|
Lindsay HG, Hendrix CJ, Gonzalez Murcia JD, Haynie C, Weber KS. The Role of Atypical Chemokine Receptors in Neuroinflammation and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:16493. [PMID: 38003682 PMCID: PMC10671188 DOI: 10.3390/ijms242216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Neuroinflammation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation provides protection in acute situations but results in significant damage to the nervous system if chronic. Overexpression of chemokines within the brain results in the recruitment and activation of glial and peripheral immune cells which can propagate a cascading inflammatory response, resulting in neurodegeneration and the onset of neurodegenerative disorders. Recent work has identified the role of atypical chemokine receptors (ACKRs) in neurodegenerative conditions. ACKRs are seven-transmembrane domain receptors that do not follow canonical G protein signaling, but regulate inflammatory responses by modulating chemokine abundance, location, and availability. This review summarizes what is known about the four ACKRs and three putative ACKRs within the brain, highlighting their known expression and discussing the current understanding of each ACKR in the context of neurodegeneration. The ability of ACKRs to alter levels of chemokines makes them an appealing therapeutic target for neurodegenerative conditions. However, further work is necessary to understand the expression of several ACKRs within the neuroimmune system and the effectiveness of targeted drug therapies in the prevention and treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Hunter G. Lindsay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Colby J. Hendrix
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Christopher Haynie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
28
|
Schmitz I, da Silva A, Bobermin LD, Gonçalves CA, Steiner J, Quincozes-Santos A. The Janus face of antipsychotics in glial cells: Focus on glioprotection. Exp Biol Med (Maywood) 2023; 248:2120-2130. [PMID: 38230521 PMCID: PMC10800129 DOI: 10.1177/15353702231222027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Antipsychotics are commonly prescribed to treat several neuropsychiatric disorders, including schizophrenia, mania in bipolar disorder, autism spectrum disorder, delirium, and organic or secondary psychosis, for example, in dementias such as Alzheimer's disease. There is evidence that typical antipsychotics such as haloperidol are more effective in reducing positive symptoms than negative symptoms and/or cognitive deficits. In contrast, atypical antipsychotic agents have gained popularity over typical antipsychotics, due to fewer extrapyramidal side effects and their theoretical efficacy in controlling both positive and negative symptoms. Although these therapies focus on neuron-based therapeutic schemes, glial cells have been recognized as important regulators of the pathophysiology of neuropsychiatric disorders, as well as targets to improve the efficacy of these drugs. Glial cells (astrocytes, oligodendrocytes, and microglia) are critical for the central nervous system in both physiological and pathological conditions. Astrocytes are the most abundant glial cells and play important roles in brain homeostasis, regulating neurotransmitter systems and gliotransmission, since they express a wide variety of functional receptors for different neurotransmitters. In addition, converging lines of evidence indicate that psychiatric disorders are commonly associated with the triad neuroinflammation, oxidative stress, and excitotoxicity, and that glial cells may contribute to the gliotoxicity process. Conversely, glioprotective molecules attenuate glial damage by generating specific responses that can protect glial cells themselves and/or neurons, resulting in improved central nervous system (CNS) functioning. In this regard, resveratrol is well-recognized as a glioprotective molecule, including in clinical studies of schizophrenia and autism. This review will provide a summary of the dual role of antipsychotics on neurochemical parameters associated with glial functions and will highlight the potential activity of glioprotective molecules to improve the action of antipsychotics.
Collapse
Affiliation(s)
- Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg 39120, Germany
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
29
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
30
|
Patel T, Skonieczna M, Turczyn R, Krukiewicz K. Modulating pro-adhesive nature of metallic surfaces through a polypeptide coupling via diazonium chemistry. Sci Rep 2023; 13:18365. [PMID: 37884622 PMCID: PMC10603177 DOI: 10.1038/s41598-023-45694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The design of biomaterials able to facilitate cell adhesion is critical in the field of tissue engineering. Precise control of surface chemistry at the material/tissue interface plays a major role in enhancing the interactions between a biomaterial and living cells. Bio-integration is particularly important in case of various electrotherapies, since a close contact between tissue and electrode's surface facilitates treatment. A promising approach towards surface biofunctionalization involves the electrografting of diazonium salts followed by the modification of organic layer with pro-adhesive polypeptides. This study focuses on the modification of platinum electrodes with a 4-nitrobenzenediazonium layer, which is then converted to the aminobenzene moiety. The electrodes are further biofunctionalized with polypeptides (polylysine and polylysine/laminin) to enhance cell adhesion. This study also explores the differences between physical and chemical coupling of selected polypeptides to modulate pro-adhesive nature of Pt electrodes with respect to human neuroblastoma SH-SY5Y cells and U87 astrocytes. Our results demonstrate the significant enhancement in cell adhesion for biofunctionalized electrodes, with more amplified adhesion noted for covalently coupled polypeptides. The implications of this research are crucial for the development of more effective and functional biomaterials, particularly biomedical electrodes, which have the potential to advance the field of bioelectronics and improve patients' outcomes.
Collapse
Affiliation(s)
- Taral Patel
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
| |
Collapse
|
31
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
32
|
Oginga FO, Mpofana T. The impact of early life stress and schizophrenia on motor and cognitive functioning: an experimental study. Front Integr Neurosci 2023; 17:1251387. [PMID: 37928003 PMCID: PMC10622780 DOI: 10.3389/fnint.2023.1251387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Early life stress (ELS) and parental psychopathology, such as schizophrenia (SZ), have been associated with altered neurobiological and behavioral outcomes later in life. Previous studies have investigated the effects of ELS and parental SZ on various aspects of behavior, however, we have studied the combined effects of these stressors and how they interact, as individuals in real-life situations may experience multiple stressors simultaneously. Objective The aim of this study was to investigate the impact of ELS and schizophrenia on locomotor activity, anxiety-like behavior, exploratory tendencies, and spatial memory in Sprague Dawley (SD) rats. Methods Male and female SD pups were randomly assigned to eight groups: control, ELS, schizophrenia, and ELS + schizophrenia. ELS was induced by prenatal stress (maternal stress) and maternal separation (MS) during the first 2 weeks of life, while SZ was induced by subcutaneous administration of ketamine. Behavioral tests included an open field test (OFT) for motor abilities and a Morris water maze (MWM) for cognitive abilities. ANOVA and post hoc Tukey tests were utilized to analyze the data. Results Our results show that ELS and parental psychopathology had enduring effects on SZ symptoms, particularly psychomotor retardation (p < 0.05). The OFT revealed increased anxiety-like behavior in the ELS group (p = 0.023) and the parental psychopathology group (p = 0.017) compared to controls. The combined ELS and parental psychopathology group exhibited the highest anxiety-like behavior (p = 0.006). The MWM analysis indicated impaired spatial memory in the ELS group (p = 0.012) and the combined ELS and parental psychopathology group (p = 0.003) compared to controls. Significantly, the exposure to ELS resulted in a decrease in the population of glial fibrillary acidic protein-positive (GFAP+) astrocytes. However, this effect was reversed by positive parental mental health. Conclusion Our findings highlight the interactive effects of ELS and parental psychopathology on anxiety-like behavior and spatial memory in rats. ELS was linked to increased anxiety-like behavior, while SZ was associated with anhedonia-like behavior. Positive parenting augments neuroplasticity, synaptic function, and overall cognitive capacities.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
- Department of Human Physiology, School of Bio-molecular & Chemical Sciences Mandela University, University Way, Summerstrand, Gqeberha, South Africa
| |
Collapse
|
33
|
Kc E, Islam J, Kim HK, Park YS. GFAP-NpHR mediated optogenetic inhibition of trigeminal nucleus caudalis attenuates hypersensitive behaviors and thalamic discharge attributed to infraorbital nerve constriction injury. J Headache Pain 2023; 24:137. [PMID: 37821818 PMCID: PMC10566148 DOI: 10.1186/s10194-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The significance of hyperactive astrocytes in neuropathic pain is crucial. However, the association between medullary astrocytes and trigeminal neuralgia (TN)-related pain processing is unclear. Here, we examined how optogenetic inhibition of medullary astrocytes in the trigeminal nucleus caudalis (TNC) regulates pain hypersensitivity in an infraorbital nerve (ION) constricted TN model. We used adult Sprague Dawley rats subjected to infraorbital nerve (ION) constriction to mimic TN symptoms, with naive and sham rats serving as controls. For in vivo optogenetic manipulations, rats stereotaxically received AAV8-GFAP-eNpHR3.0-mCherry or AAV8-GFAP-mCherry at the trigeminal nucleus caudalis (TNC). Open field, von Frey, air puff, and acetone tests measured pain behavioral flexibility. In vivo thalamic recordings were obtained simultaneously with optogenetic manipulation in the TNC. Orofacial hyperalgesia and thalamic hyperexcitability were both accompanied by medullary astrocyte hyperactivity, marked by upregulated GFAP. The yellow laser-driven inhibition of TNC astrocytes markedly improved behavioral responses and regulated thalamic neuronal responses. Halorhodopsin-mediated inhibition in medullary astrocytes may modify the nociceptive input transmitted through the trigeminothalamic tract and pain perception. Taken together, these findings imply that this subpopulation in the TNC and its thalamic connections play a significant role in regulating the trigeminal pain circuitry, which might aid in the identification of new therapeutic measures in TN management.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
34
|
Komorowska J, Wątroba M, Bednarzak M, Grabowska AD, Szukiewicz D. The Role of Glucose Concentration and Resveratrol in Modulating Neuroinflammatory Cytokines: Insights from an In Vitro Blood-Brain Barrier Model. Med Sci Monit 2023; 29:e941044. [PMID: 37817396 PMCID: PMC10578643 DOI: 10.12659/msm.941044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus is rising, presumably because of a coexisting pandemic of obesity. Since diabetic neuropathy and neuroinflammation are frequent and significant complications of both prolonged hyperglycemia and iatrogenic hypoglycemia, the effect of glucose concentration and resveratrol (RSV) supplementation on cytokine profile was assessed in an in vitro model of the blood-brain barrier (BBB). MATERIAL AND METHODS The in vitro model of BBB was formed of endothelial cells and astrocytes, which represented the microvascular and brain compartments (MC and BC, respectively). The BC concentrations of selected cytokines - IL-10, IL-12, IL-17A, TNF-alpha, IFN-γ, GM-CSF in response to different glucose concentrations in the MC were studied. The influence of LPS in the BC and RSV in the MC on the cytokine profile in the BC was examined. RESULTS Low glucose concentration (40 mg/dL) in the MC resulted in increased concentration of all the cytokines in the BC except TNF-alpha, compared to normoglycemia-imitating conditions (90 mg/dL) (P<0.05). High glucose concentration (450 mg/dL) in the MC elevated the concentration of all the cytokines in the BC (P<0.05). RSV decreased the level of all cytokines in the BC after 24 h following its administration for all glucose concentrations in the MC (P<0.02). The greatest decline was observed in normoglycemic conditions (P<0.05). CONCLUSIONS Both hypo- and hyperglycemia-simulating conditions impair the cytokine profile in BC, while RSV can normalize it, despite relatively poor penetration through the BBB. RSV exhibits anti-neuroinflammatory effects, especially in the group with normoglycemia-simulating conditions.
Collapse
|
35
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
36
|
Kim CH, Kim HY, Nah SY, Choi YK. The effects of Korean Red Ginseng on heme oxygenase-1 with a focus on mitochondrial function in pathophysiologic conditions. J Ginseng Res 2023; 47:615-621. [PMID: 37720574 PMCID: PMC10499582 DOI: 10.1016/j.jgr.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 09/19/2023] Open
Abstract
Korean Red Ginseng (KRG) plays a key role in heme oxygenase (HO)-1 induction under physical and moderate oxidative stress conditions. The transient and mild induction of HO-1 is beneficial for cell protection, mitochondrial function, regeneration, and intercellular communication. However, chronic HO-1 overexpression is detrimental in severely injured regions. Thus, in a chronic pathological state, diminishing HO-1-mediated ferroptosis is beneficial for a therapeutic approach. The molecular mechanisms by which KRG protects various cell types in the central nervous system have not yet been established, especially in terms of HO-1-mediated mitochondrial functions. Therefore, in this review, we discuss the multiple roles of KRG in the regulation of astrocytic HO-1 under pathophysiological conditions. More specifically, we discuss the role of the KRG-mediated astrocytic HO-1 pathway in regulating mitochondrial functions in acute and chronic neurodegenerative diseases as well as physiological conditions.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
38
|
Kim H, Moon S, Lee D, Park J, Kim CH, Kim YM, Choi YK. Korean Red Ginseng-Induced SIRT3 Promotes the Tom22-HIF-1α Circuit in Normoxic Astrocytes. Cells 2023; 12:1512. [PMID: 37296633 PMCID: PMC10252242 DOI: 10.3390/cells12111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.
Collapse
Affiliation(s)
- Hyungsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Sunhong Moon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Dohyung Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Jinhong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| |
Collapse
|
39
|
Jo D, Lim YH, Jung YS, Kim YK, Song J. Circular RNA Tmcc1 improves astrocytic glutamate metabolism and spatial memory via NF-κB and CREB signaling in a bile duct ligation mouse model: transcriptional and cellular analyses. J Neuroinflammation 2023; 20:121. [PMID: 37217942 DOI: 10.1186/s12974-023-02806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy-induced hyperammonemia alters astrocytic glutamate metabolism in the brain, which is involved in cognitive decline. To identify specific therapeutic strategies for the treatment of hepatic encephalopathy, various molecular signaling studies, such as non-coding RNA functional study, have been conducted. However, despite several reports of circular RNAs (circRNAs) in the brain, few studies of circRNAs in hepatic encephalopathy-induced neuropathophysiological diseases have been conducted. METHODS In this study, we performed RNA sequencing to identify whether the candidate circRNA cirTmcc1 is specifically expressed in the brain cortex in a bile duct ligation (BDL) mouse model of hepatic encephalopathy. RESULTS Based on transcriptional and cellular analysis, we investigated the circTmcc1-dysregulation-induced changes in the expression of several genes that are associated with intracellular metabolism and astrocyte function. We found that the circTmcc1 binds with the NF-κB p65-CREB transcriptional complex and regulates the expression of the astrocyte transporter EAAT2. Furthermore, circTmcc1 contributed to the secretion of proinflammatory mediators and glutamate metabolism in astrocytes and subsequently modulated an improvement in spatial memory by mediating neuronal synaptic plasticity. CONCLUSIONS Thus, circTmcc1 may be a promising circRNA candidate for targeted interventions to prevent and treat the neuropathophysiological complications that occur due to hepatic encephalopathy.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Jeollanam-Do, Hwasun, 58128, Republic of Korea
- Chonnam National University, Seoyangro 264, Hwasun, 58128, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Seoyangro 264, Hwasun, 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Jeollanam-Do, Hwasun, 58128, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Seoyangro 264, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Jeollanam-Do, Hwasun, 58128, Republic of Korea.
- Chonnam National University, Seoyangro 264, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
40
|
Das TK, Ganesh BP, Fatima-Shad K. Common Signaling Pathways Involved in Alzheimer's Disease and Stroke: Two Faces of the Same Coin. J Alzheimers Dis Rep 2023; 7:381-398. [PMID: 37220617 PMCID: PMC10200243 DOI: 10.3233/adr-220108] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause of death and affect the neurons in the brain and central nervous system. Although amyloid-β aggregation, tau hyperphosphorylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for these diseases.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kaneez Fatima-Shad
- School of Life Sciences, University of Technology Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, NSW, Australia
| |
Collapse
|
41
|
Winkelman MA, Dai G. Bioengineered perfused human brain microvascular networks enhance neural progenitor cell survival, neurogenesis, and maturation. SCIENCE ADVANCES 2023; 9:eaaz9499. [PMID: 37163593 PMCID: PMC10171804 DOI: 10.1126/sciadv.aaz9499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Neural progenitor cells (NPCs) have the capability to self-renew and differentiate into neurons and glial cells. In the adult brain, NPCs are found near brain microvascular networks (BMVNs) in specialized microenvironments called the neurovascular niche (NVN). Although several in vitro NVN models have been previously reported, most do not properly recapitulate the intimate cellular interactions between NPCs and perfused brain microvessels. Here, we developed perfused BMVNs composed of primary human brain endothelial cells, pericytes, and astrocytes within microfluidic devices. When induced pluripotent stem cell-derived NPCs were introduced into BMVNs, we found that NPC survival, neurogenesis, and maturation were enhanced. The application of flow during BMVN coculture was also beneficial for neuron differentiation. Collectively, our work highlighted the important role of BMVNs and flow in NPC self-renewal and neurogenesis, as well as demonstrated our model's potential to study the biological and physical interactions of human NVN in vitro.
Collapse
Affiliation(s)
- Max A. Winkelman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
42
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
44
|
Orso R, Creutzberg KC, Lumertz FS, Kestering-Ferreira E, Stocchero BA, Perrone MK, Begni V, Grassi-Oliveira R, Riva MA, Viola TW. A systematic review and multilevel meta-analysis of the prenatal and early life stress effects on rodent microglia, astrocyte, and oligodendrocyte density and morphology. Neurosci Biobehav Rev 2023; 150:105202. [PMID: 37116770 DOI: 10.1016/j.neubiorev.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Exposure to stress during early development may lead to altered neurobiological functions, thus increasing the risk for psychiatric illnesses later in life. One potential mechanism associated with those outcomes is the disruption of glial density and morphology, despite results from rodent studies have been conflicting. To address that we performed a systematic review and meta-analysis of rodent studies that investigated the effects of prenatal stress (PNS) and early life stress (ELS) on microglia, astrocyte, and oligodendrocyte density and morphology within the offspring. Our meta-analysis demonstrates that animals exposed to PNS or ELS showed significant increase in microglia density, as well as decreased oligodendrocyte density. Moreover, ELS exposure induced an increase in microglia soma size. However, we were unable to identify significant effects on astrocytes. Meta-regression indicated that experimental stress protocol, sex, age, and type of tissue analyzed are important covariates that impact those results. Importantly, PNS microglia showed higher estimates in young animals, while the ELS effects were stronger in adult animals. This set of data reinforces that alterations in glial cells could play a role in stress-induced dysfunctions throughout development.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Francisco Sindermann Lumertz
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Erika Kestering-Ferreira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Bruna Alvim Stocchero
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Mariana Kude Perrone
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy).
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Aarhus University - Entrance A, Palle Juul-Jenses Blvd. 11, 6(th) floor, 8200 - Aarhus (Denmark).
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan - Via Balzaretti 9, 20133 - Milan (Italy); Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli - Via Pilastroni 4, 25125- Brescia (Italy).
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul - Avenida Ipiranga 6681, Building 12A, 90619-900 - Porto Alegre (Brazil).
| |
Collapse
|
45
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
46
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
48
|
Wiseman JA, Dragunow M, I-H Park T. Cell Type-Specific Nuclei Markers: The Need for Human Brain Research to Go Nuclear. Neuroscientist 2023; 29:41-61. [PMID: 34459315 DOI: 10.1177/10738584211037351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
50
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|