1
|
Jafari A. Can Coenzyme Q10 Supplementation Reduce Cardiovascular Disease Risk Factors? A Protocol for a GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Health Sci Rep 2025; 8:e70452. [PMID: 39931258 PMCID: PMC11808257 DOI: 10.1002/hsr2.70452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Background and Aims Cardiovascular diseases (CVDs), encompassing a variety of conditions affecting the heart and blood vessels, remain a significant global public health challenge. Among various therapeutic options, Coenzyme Q10 (CoQ10) has garnered attention due to its potential benefits for cardiovascular health. CoQ10 is a naturally occurring antioxidant that plays a crucial role in cellular energy production and has long been used therapeutically. This study aims to summarize and systematically analyze the scientific literature on glycemic profile, lipid profile, anthropometric measures, blood pressure, inflammatory factors, liver function tests, oxidative stress parameters and adipokines associated with CoQ10 supplementation to provide a basis for clinical treatment. Methods A systematic electronic search will be conducted to identify articles published from inception to July 2024 across databases including PubMed, Scopus, Web of Science, CENTRAL, and EMBASE. The search will focus on randomized controlled trials (RCTs) involving both healthy and unhealthy participants. Two independent reviewers will evaluate articles, extract data, and assess study quality using the Cochrane risk of bias tool. Discrepancies will be resolved through consultation with a third reviewer. If a sufficient number of eligible studies are identified, a meta-analysis will be performed on the selected outcomes. Results The results will provide a comprehensive synthesis of the effects of CoQ10 supplementation on cardiovascular disease risk factors, including glycemic profile, lipid profile, anthropometric measures, blood pressure, inflammatory factors, liver function tests, oxidative stress parameters, and adipokines. Conclusion This protocol outlines a comprehensive approach to systematically review and perform a dose-response meta-analysis on the effects of CoQ10 supplementation on CVD risk factors. The study will employ rigorous methodologies, including independent evaluation and GRADE assessment, to ensure high-quality evidence synthesis from RCTs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
2
|
Yao Y, Yang B, Shi J. TiO x(OH) 4-2x Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy. J Am Chem Soc 2025; 147:3885-3895. [PMID: 39813109 DOI: 10.1021/jacs.4c18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment. A two-dimensional TiOx(OH)4-2x nanosheet platform has been constructed with efficient ROS-scavenging activity, which can catalyze antioxidation reaction through redox cycling between TiIV/TiIII accompanied by inner-sphere two-electron transfer. Cellular experiments demonstrate that the TiOx(OH)4-2x nanosheet can not only protect cardiomyocytes from oxidative damage induced by a high glucose environment but also alleviate inflammation to further protect cardiomyocytes from inflammatory injury. The in vivo animal model confirms that the nanosheet alleviates myocardial oxidative injury and recovers cardiac function. Such a nanocatalytic antioxidation strategy is expected to provide a feasible approach for treating DCM and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yufan Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
3
|
Lin X, Chen M, Rodriguez Gonzalez P, Danino D, Corke H. Advancing coenzyme Q10 delivery with plant protein-based nanoparticle-mediated nanosuspensions. Food Res Int 2024; 197:115120. [PMID: 39593351 DOI: 10.1016/j.foodres.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Coenzyme Q10 (CoQ10) possesses significant health-promoting potential, yet its oral delivery encounters obstacles stemming from its distinctive physicochemical characteristics, such as poor solubility, sensitivity to environmental factors and low bioaccessibility. To overcome these challenges, we developed high-payload CoQ10 nanosuspensions (CQ@SPNP, CQ@RPNP, and CQ@WPNP) using plant-based protein nanoparticles (NPs) derived from soybean (SPNP), rice (RPNP), and walnut (WPNP). The nanosuspensions include spherical particles, characterized by small particle size (<230 nm), low polydispersity (PDI < 0.15), and a high zeta potential (<-44 mV). CoQ10 loading capacity exceeded 70.3 %, with an encapsulation efficiency of over 77.4 %. CoQ10 interacted with plant protein-based NPs via hydrophobic effect without losing its crystal structure. Moreover, SPNP, RPNP, and WPNP significantly increased the stability of CoQ10 nanosuspensions against light, heat, long-term storage, and in vitro digestion. In particular, CQ@WPNP exhibited the highest stability and CoQ10 bioaccessibility post-digestion. The observed increases in stability and bioaccessibility were closely related to the specific NPs utilized. This study highlights the potential of plant protein-based NPs in addressing challenges of CoQ10 delivery, offering a promising approach to improve its efficacy.
Collapse
Affiliation(s)
- Xiaoling Lin
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Meier Chen
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Pedro Rodriguez Gonzalez
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Dganit Danino
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Mauriello A, Correra A, Molinari R, Del Vecchio GE, Tessitore V, D’Andrea A, Russo V. Mitochondrial Dysfunction in Atrial Fibrillation: The Need for a Strong Pharmacological Approach. Biomedicines 2024; 12:2720. [PMID: 39767627 PMCID: PMC11727148 DOI: 10.3390/biomedicines12122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Despite great progress in treating atrial fibrillation (AF), especially with the development of increasingly effective invasive techniques for AF ablation, many unanswered questions remain regarding the pathogenic mechanism of the arrhythmia and its prevention methods. The development of AF is based on anatomical and functional alterations in the cardiomyocyte resulting from altered ionic fluxes and cardiomyocyte electrophysiology. Electric instability and electrical remodeling underlying the arrhythmia may result from oxidative stress, also caused by possible mitochondrial dysfunction. The role of mitochondrial dysfunction in the pathogenesis of AF is not yet fully elucidated; however, the reduction in AF burden after therapeutic interventions that improve mitochondrial fitness tends to support this concept. This selected review aims to summarize the mechanisms of mitochondrial dysfunction related to AF and the current pharmacological treatment options that target mitochondria to prevent or improve the outcome of AF.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
- Cardiology and Intensive Care Unit, Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Adriana Correra
- Intensive Cardiac Care Unit, San Giuseppe Moscati Hospital, ASL Caserta, 81031 Aversa, Italy;
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Gerardo Elia Del Vecchio
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| | - Antonello D’Andrea
- Cardiology and Intensive Care Unit, Department of Cardiology, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (R.M.); (G.E.D.V.); (V.T.)
| |
Collapse
|
5
|
Pokushalov E, Ponomarenko A, Shrainer E, Kudlay D, Miller R. Biomarker-Guided Dietary Supplementation: A Narrative Review of Precision in Personalized Nutrition. Nutrients 2024; 16:4033. [PMID: 39683427 DOI: 10.3390/nu16234033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Dietary supplements (DS) are widely used to address nutritional deficiencies and promote health, yet their indiscriminate use often leads to reduced efficacy, adverse effects, and safety concerns. Biomarker-driven approaches have emerged as a promising strategy to optimize DS prescriptions, ensuring precision and reducing risks associated with generic recommendations. Methods: This narrative review synthesizes findings from key studies on biomarker-guided dietary supplementation and the integration of artificial intelligence (AI) in biomarker analysis. Key biomarker categories-genomic, proteomic, metabolomic, lipidomic, microbiome, and immunological-were reviewed, alongside AI applications for interpreting these biomarkers and tailoring supplement prescriptions. Results: Biomarkers enable the identification of deficiencies, metabolic imbalances, and disease predispositions, supporting targeted and safe DS use. For example, genomic markers like MTHFR polymorphisms inform folate supplementation needs, while metabolomic markers such as glucose and insulin levels guide interventions in metabolic disorders. AI-driven tools streamline biomarker interpretation, optimize supplement selection, and enhance therapeutic outcomes by accounting for complex biomarker interactions and individual needs. Limitations: Despite these advancements, AI tools face significant challenges, including reliance on incomplete training datasets and a limited number of clinically validated algorithms. Additionally, most current research focuses on clinical populations, limiting generalizability to healthier populations. Long-term studies remain scarce, raising questions about the sustained efficacy and safety of biomarker-guided supplementation. Regulatory ambiguity further complicates the classification of supplements, especially when combinations exhibit pharmaceutical-like effects. Conclusions: Biomarker-guided DS prescription, augmented by AI, represents a cornerstone of personalized nutrition. While offering significant potential for precision and efficacy, advancing these strategies requires addressing challenges such as incomplete AI data, regulatory uncertainties, and the lack of long-term studies. By overcoming these obstacles, clinicians can better meet individual health needs, prevent diseases, and integrate precision nutrition into routine care.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, Novosibirsk 630090, Russia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| | | | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Richard Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| |
Collapse
|
6
|
Guo Z, Tian Y, Liu N, Chen Y, Chen X, Yuan G, Chang A, Chang X, Wu J, Zhou H. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci 2024; 21:2502-2509. [PMID: 39439461 PMCID: PMC11492880 DOI: 10.7150/ijms.99359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Hypoxic injury is a critical pathological factor in the development of various cardiovascular diseases, such as congenital heart disease, myocardial infarction, and heart failure. Mitochondrial quality control is essential for protecting cardiomyocytes from hypoxic damage. Under hypoxic conditions, disruptions in mitochondrial homeostasis result in excessive reactive oxygen species (ROS) production, imbalances in mitochondrial dynamics, and initiate pathological processes including oxidative stress, inflammatory responses, and apoptosis. Targeted interventions to enhance mitochondrial quality control, such as coenzyme Q10 and statins, have shown promise in mitigating hypoxia-induced mitochondrial dysfunction. These treatments offer potential therapeutic strategies for hypoxia-related cardiovascular diseases by regulating mitochondrial fission and fusion, restoring mitochondrial biogenesis, reducing ROS production, and promoting mitophagy.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guoxing Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - An Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Maciejewska-Stupska K, Czarnecka K, Szymański P. Bioavailability enhancement of coenzyme Q 10: An update of novel approaches. Arch Pharm (Weinheim) 2024; 357:e2300676. [PMID: 38683827 DOI: 10.1002/ardp.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential, lipid-soluble vitamin involved in electron transport in the oxidoreductive reactions of the mitochondrial respiratory chain. Structurally, the quinone ring is connected to an isoprenoid moiety, which has a high molecular weight. Over the years, coenzyme Q10 has become relevant in the treatment of several diseases, like neurodegenerative disorders, coronary diseases, diabetes, hypercholesterolemia, cancer, and others. According to studies, CoQ10 supplementation might be beneficial in the treatment of CoQ10 deficiencies and disorders associated with oxidative stress. However, the water-insoluble nature of CoQ10 is a major hindrance to successful supplementation. So far, many advancements in CoQ10 bioavailability enhancement have been developed using novel drug carriers such as solid dispersion, liposomes, micelles, nanoparticles, nanoemulsions, self-emulsifying drug systems, or various innovative approaches (CoQ10 complexation with proteins). This article aims to provide an update on methods to improve CoQ10 solubility and bioavailability.
Collapse
Affiliation(s)
- Karolina Maciejewska-Stupska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
8
|
Gel G, Unluer C, Yılmaz ER, Erguder BI, Arıkok AT, Sener S, Kertmen HH, Turkoglu ME. Neuroprotective Effects of Coenzyme Q10 and Ozone Therapy on Experimental Traumatic Spinal Cord Injuries in Rats. World Neurosurg 2024; 188:e25-e33. [PMID: 38685349 DOI: 10.1016/j.wneu.2024.04.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE This study investigates the neuroprotective effects and functional recovery potential of Coenzyme Q10 (CoQ10) and ozone therapy in spinal cord injury (SCI). MATERIAL AND METHODS In this study, 40 female Sprague-Dawley rats were divided into 5 groups of 8. Surgical procedures induced spinal cord trauma in all groups, except the control group. The ozone group received 0.7 mg/kg rectal ozone daily for 7 days, starting 1 hour postspinal cord trauma. The CoQ10 group was administered 120 mg/kg CoQ10 orally once daily for 7 days, beginning 24 hours prior to trauma. The CoQ10 + ozone group received both treatments. Examinations included a modified Tarlov scale and inclined plane test on days 1, 3, 5, and 7. Malondialdehyde (MDA) analysis was conducted on serum samples, and assessments of caspase-3, Bcl-2, and Bax levels were performed on tissue samples. Additionally, a comprehensive examination analyzed histopathological and ultrastructural changes. RESULTS After SCI, there was a statistically significant increase in serum MDA, tissue caspase-3, and Bax levels (MDA P < 0.001, caspase-3 P < 0.001, Bax P = 0.003). In the CoQ10 + ozone group, serum MDA (P = 0.002), tissue caspase-3 (P = 0.001), and Bax (P = 0.030) levels were significantly lower compared to the trauma group. Tissue Bcl-2 levels were also significantly higher (P = 0.019). The combined treatment group demonstrated improved histopathological, ultrastructural, and neurological outcomes. CONCLUSIONS This study shows that CoQ10 + ozone therapy in traumatic SCI demonstrates neuroprotective effects via antioxidant and antiapoptotic mechanisms. The positive effects on functional recovery are supported by data from biochemical, histopathological, ultrastructural, and neurological examinations.
Collapse
Affiliation(s)
- Gulce Gel
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Caner Unluer
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Erdal Resit Yılmaz
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Berrin Imge Erguder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Ata Turker Arıkok
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Serkan Sener
- Department of Emergency, Acibadem University Hospital, Ankara, Turkey
| | - Huseyin Hayri Kertmen
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Erhan Turkoglu
- Department of Neurosurgery, Diskapi Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
9
|
B. Abo-Zalam H, El Denshary EED, A. Abdalsalam R, A. Khalil I, M. Khattab M, A. Hamzawy M. Revolutionizing Hyperlipidemia Treatment: Nanoencapsulated CoQ10 and Selenium Combat Simvastatin-Induced Myopathy and Insulin Resistance in Rats. Adv Pharm Bull 2024; 14:364-377. [PMID: 39206395 PMCID: PMC11347742 DOI: 10.34172/apb.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/04/2024] Open
Abstract
Purpose The objective of this study was to develop a nanoencapsulated platform for coenzyme Q10 nanoparticles (coQNPs) or selenium nanoparticles (SeNPs) and explore their potential therapeutic benefits in treating hyperlipidemia and combating simvastatin (SV)-induced myopathy and adverse reactions in hyperlipidemic rats. Methods The physical and chemical properties of the solid nanoparticles, coQNPs, and SeNPs were characterized, including zeta potential studies. Male Wistar albino rats were treated with various interventions for 112 days, including a nano-vehicle only, high-fat diet (HFD), HFD with SV alone, or with coQNPs or/and SeNPs for the last 30 days. Results The coQNPs and SeNPs exhibited uniform spherical shapes with high encapsulation efficiency (EE% 91.20±2.14 and 94.89±1.54, respectively). The results demonstrated that coQNPs and SeNPs effectively reduced hyperlipidemia, insulin resistance, SV-induced myopathy, and hepatotoxicity. However, combining SV with coQNPs and SeNPs resulted in severe liver and muscle damage. Treatment with SV and SeNPs or SV and coQNPs alone showed significant improvements compared to SV treatment alone. Conclusion These findings suggest that the CoQNPs or SeNPs platforms offer advanced relief for hyperlipidemia and insulin resistance while limiting adverse effects such as myopathy and hepatotoxicity.
Collapse
Affiliation(s)
- Hagar B. Abo-Zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, 6th of October, Giza, Egypt
| | - Ezz El Deen El Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania A. Abdalsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, New Giza University, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza, (12566) Egypt
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
10
|
Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal 2024; 14:100917. [PMID: 38799233 PMCID: PMC11127228 DOI: 10.1016/j.jpha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure (HF), increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus (T2DM) and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Collapse
Affiliation(s)
- Jiani Zhong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hang Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
11
|
Jin M, Zou T, Huang H, Chen M, Zou H, Chen B, Lai C, Li H, Zhang P. The Effect of Coenzyme Q10 Supplementation on Bile Acid Metabolism: Insights from Network Pharmacology, Molecular Docking, and Experimental Validation. Mol Nutr Food Res 2024; 68:e2400147. [PMID: 38643378 DOI: 10.1002/mnfr.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/22/2024]
Abstract
SCOPE Bile acids play a crucial role in lipid absorption and the regulation of lipid, glucose, and energy homeostasis. Coenzyme Q10 (CoQ10), a lipophilic antioxidant, has been recognized for its positive effects on obesity and related glycolipid metabolic disorders. However, the relationship between CoQ10 and bile acids has not yet been evaluated. METHODS AND RESULTS This study assesses the impact of CoQ10 treatment on bile acid metabolism in mice on a high-fat diet using Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry. CoQ10 reverses the reduction in serum and colonic total bile acid levels and alters the bile acid profile in mice that are caused by a high-fat diet. Seventeen potential targets of CoQ10 in bile acid metabolism are identified by network pharmacology, with six being central to the mechanism. Molecular docking shows a high binding affinity of CoQ10 to five of these key targets. Further analyses indicate that farnesoid X (FXR) receptor and Takeda G-protein coupled receptor 5 (TGR5) may be crucial targets for CoQ10 to regulate bile acid metabolism and exert beneficial effects. CONCLUSION This study sheds light on the impact of CoQ10 in bile acids metabolism and offers a new perspective on the application of CoQ10 in metabolic health.
Collapse
Affiliation(s)
- Mengcheng Jin
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Tangbin Zou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China
| | - Hairong Huang
- Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, 400020, China
| | - Ming Chen
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haoqi Zou
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Baoyan Chen
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Chengze Lai
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huawen Li
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Peiwen Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
12
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|
13
|
Daei S, Ildarabadi A, Goodarzi S, Mohamadi-Sartang M. Effect of Coenzyme Q10 Supplementation on Vascular Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press Cardiovasc Prev 2024; 31:113-126. [PMID: 38630421 DOI: 10.1007/s40292-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.
Collapse
Affiliation(s)
- Shahrzad Daei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ildarabadi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Goodarzi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohsen Mohamadi-Sartang
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Pan W, Zhou G, Hu M, Li G, Zhang M, Yang H, Li K, Li J, Liu T, Wang Y, Jin J. Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway. BMC Cardiovasc Disord 2024; 24:76. [PMID: 38281937 PMCID: PMC10822151 DOI: 10.1186/s12872-024-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1β/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1β) signaling pathway. CONCLUSIONS These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1β pathway in macrophages. TRIAL REGISTRATION Date of registration 09/04/2021 (number: ChiCTR2100045256).
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Meiling Hu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jingwei Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ting Liu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
15
|
Balan AI, Halațiu VB, Scridon A. Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants (Basel) 2024; 13:117. [PMID: 38247541 PMCID: PMC10812976 DOI: 10.3390/antiox13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The adipose tissue has long been thought to represent a passive source of triglycerides and fatty acids. However, extensive data have demonstrated that the adipose tissue is also a major endocrine organ that directly or indirectly affects the physiological functions of almost all cell types. Obesity is recognized as a risk factor for multiple systemic conditions, including metabolic syndrome, type 2 diabetes mellitus, sleep apnea, cardiovascular disorders, and many others. Obesity-related changes in the adipose tissue induce functional and structural changes in cardiac myocytes, promoting a wide range of cardiovascular disorders, including atrial fibrillation (AF). Due to the wealth of epidemiologic data linking AF to obesity, the mechanisms underlying AF occurrence in obese patients are an area of rich ongoing investigation. However, progress has been somewhat slowed by the complex phenotypes of both obesity and AF. The triad inflammation, oxidative stress, and mitochondrial dysfunction are critical for AF pathogenesis in the setting of obesity via multiple structural and functional proarrhythmic changes at the level of the atria. The aim of this paper is to provide a comprehensive view of the close relationship between obesity-induced oxidative stress, inflammation, and mitochondrial dysfunction and the pathogenesis of AF. The clinical implications of these mechanistic insights are also discussed.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Vasile Bogdan Halațiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Alina Scridon
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
16
|
Hsu CJ, Lee WT. Epilepsy and Coenzyme Q10 deficiency with COQ4 variants. Epilepsy Behav 2023; 149:109498. [PMID: 37948995 DOI: 10.1016/j.yebeh.2023.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hsin-Chu Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
17
|
Tan B, Chin KY. Potential role of geranylgeraniol in managing statin-associated muscle symptoms: a COVID-19 related perspective. Front Physiol 2023; 14:1246589. [PMID: 38046949 PMCID: PMC10691100 DOI: 10.3389/fphys.2023.1246589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Myopathy is the most common side effect of statins, but it has not been addressed effectively. In anticipation of its wider use as a small molecule to complement the current COVID-19 management, a pharmacological solution to statin-associated muscle symptoms (SAMS) is warranted. Statins act by suppressing the mevalonate pathway, which in turn affects the downstream synthesis of isoprenoids required for normal physiological functions. CoQ10 and geranylgeraniol (GG) syntheses are reduced by statin use. However, CoQ10 supplementation has not been shown to reverse SAMS. GG is an obligatory substrate for CoQ10 synthesis, an endogenous nutrient critical for skeletal muscle protein synthesis. Multiple studies showed GG supplementation is effective in reversing SAMS. This opinion paper proposes employing GG to prevent SAMS in pleiotropic statin use, including usage in the post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Barrie Tan
- American River Nutrition, Hadley, MA, United States
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Zhang Q, Xia M, Zheng C, Yang Y, Bao J, Dai W, Mei X. The Cocrystal of Ubiquinol: Improved Stability and Bioavailability. Pharmaceutics 2023; 15:2499. [PMID: 37896258 PMCID: PMC10610044 DOI: 10.3390/pharmaceutics15102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Coenzyme Q10 (CoQ10) exists in two forms, an oxidized form and a reduced form. Ubiquinol is the fully reduced form of CoQ10. Compared to the oxidized form, ubiquinol has a much higher biological absorption and better therapeutic effect. However, ubiquinol has an important stability problem which hampers its storage and formulation. It can be easily transformed into its oxidized form-ubiquinone-even at low temperature. In this work, we designed, synthesized, and characterized a new cocrystal of ubiquinol with vitamin B3 nicotinamide (UQ-NC). Compared to the marketed ubiquinol form, the cocrystal exhibited an excellent stability, improved dissolution properties, and higher bioavailability. The cocrystal remained stable for a long period, even when stored under stressed conditions. In the dissolution experiments, the cocrystal generated 12.6 (in SIF) and 38.3 (in SGF) times greater maximum ubiquinol concentrations above that of the marketed form. In addition, in the PK studies, compared to the marketed form, the cocrystal exhibited a 2.2 times greater maximum total coenzyme Q10 concentration and a 4.5 times greater AUC than that of the marketed form.
Collapse
Affiliation(s)
- Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Mengyuan Xia
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chenxuan Zheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Yinghong Yang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Junjie Bao
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Wenjuan Dai
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.Z.); (M.X.); (C.Z.); (Y.Y.); (J.B.); (W.D.)
| |
Collapse
|
19
|
Tan X, Yang X, Xu X, Peng Y, Li X, Deng Y, Zhang X, Qiu W, Wu D, Ruan Y, Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem 2023; 11:1280999. [PMID: 37927560 PMCID: PMC10620959 DOI: 10.3389/fchem.2023.1280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3β signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.
Collapse
Affiliation(s)
- Xiaojun Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinyi Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xun Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuwei Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xin Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongxing Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xueyang Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wenlong Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chen Zhi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
20
|
Lei W, Yang J, Wang J, Xiao Z, Zhou P, Zheng S, Zhu P. Synergetic EGCG and coenzyme Q10 DSPC liposome nanoparticles protect against myocardial infarction. Biomater Sci 2023; 11:6862-6870. [PMID: 37646313 DOI: 10.1039/d3bm00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
At the site of myocardial infarction (MI), various phenomena such as oxidative stress and myocardial apoptosis can be observed. Both epigallocatechin gallate (EGCG) and coenzyme Q10 (CoQ10) exhibit antioxidant and anti-inflammatory effects. Macrophages have demonstrated a higher internalization rate of cationic liposomes, thereby increasing their bioavailability. This study utilized EGCG in synergy with CoQ10 as an antioxidant agent and distearyl phosphatidylcholine (DSPC) as the carrier, to create liposome nanoparticles known as CE-LNPs. The CE-LNPs exhibited favorable biocompatibility and were effectively engulfed by macrophages in vitro. In addition, the CE-LNPs effectively eradicated reactive oxygen species (ROS) in hypoxic cardiomyocytes, mitigated myocardial cell apoptosis, and sustained the functionality and proliferation of myocardial cells. The anti-apoptotic effect of the CE-LNPs was further validated through TUNEL and Annexin V FITC/PI experiments. The therapeutic efficacy of CE-LNPs was evaluated in a murine model of MI. CE-LNPs demonstrated a significant reduction in scar area in vivo, facilitating cardiac repair and improving cardiac function. These findings provide evidence that EGCG synergistically combined with CoQ10 in DSPC liposome nanoparticles offers protection against MI.
Collapse
Affiliation(s)
- Wenrui Lei
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jie Yang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Junwei Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Poblete RA, Yaceczko S, Aliakbar R, Saini P, Hazany S, Breit H, Louie SG, Lyden PD, Partikian A. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines 2023; 11:2551. [PMID: 37760993 PMCID: PMC10526443 DOI: 10.3390/biomedicines11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging science continues to establish the detrimental effects of malnutrition in acute neurological diseases such as traumatic brain injury, stroke, status epilepticus and anoxic brain injury. The primary pathological pathways responsible for secondary brain injury include neuroinflammation, catabolism, immune suppression and metabolic failure, and these are exacerbated by malnutrition. Given this, there is growing interest in novel nutritional interventions to promote neurological recovery after acute brain injury. In this review, we will describe how malnutrition impacts the biomolecular mechanisms of secondary brain injury in acute neurological disorders, and how nutritional status can be optimized in both pediatric and adult populations. We will further highlight emerging therapeutic approaches, including specialized diets that aim to resolve neuroinflammation, immunodeficiency and metabolic crisis, by providing pre-clinical and clinical evidence that their use promotes neurologic recovery. Using nutrition as a targeted treatment is appealing for several reasons that will be discussed. Given the high mortality and both short- and long-term morbidity associated with acute brain injuries, novel translational and clinical approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Shelby Yaceczko
- UCLA Health, University of California, 100 Medical Plaza, Suite 345, Los Angeles, CA 90024, USA;
| | - Raya Aliakbar
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Pravesh Saini
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Saman Hazany
- Department of Radiology, Keck School of Medicine, The University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, USA;
| | - Hannah Breit
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Stan G. Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Patrick D. Lyden
- Department of Neurology, Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA;
| | - Arthur Partikian
- Department of Neurology, Department of Pediatrics, Keck School of Medicine, The University of Southern California, 2010 Zonal Avenue, Building B, 3P61, Los Angeles, CA 90033, USA;
| |
Collapse
|
22
|
Kilicaslan B, Akinci SB, Saricaoglu F, Yılbas SO, Ozkaya BA. Effects of coenzyme Q10 in a propofol infusion syndrome model of rabbits. ASIAN BIOMED 2023; 17:173-184. [PMID: 37860674 PMCID: PMC10584382 DOI: 10.2478/abm-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background Coenzyme Q (CoQ) might be the main site of interaction with propofol on the mitochondrial respiratory chain in the propofol infusion syndrome (PRIS) because of the structural similarity between coenzyme Q10 (CoQ10) and propofol. Aim To investigate the effects of CoQ10 on survival and organ injury in a PRIS model in rabbits. Methods Sixteen male New Zealand white rabbits were divided into 4 groups: (1) propofol infusion group, (2) propofol infusion and CoQ10, 100 mg/kg was administered intravenously, (3) sevoflurane inhalation was administered, and (4) sevoflurane inhalation and CoQ10, 100 mg/kg intravenously, was administered. Arterial blood gas and biochemical analyses were repeated every 2 h and every 12 h, respectively. Animals that were alive on the 24th hour after anesthesia induction were euthanized. The organ damages were investigated under light and transmission electron microscopy (TEM). Results The propofol infusion group had the highest troponin T levels when compared with the other three groups at the 12th hour. The propofol + CoQ10 group had lower troponin T levels when compared with the propofol and sevoflurane groups (P < 0.05). Administration of CoQ10 decreased total liver injury scores and total organ injury scores both in the propofol and sevoflurane groups. The propofol and sevoflurane organ toxicities were attenuated with CoQ10 in liver, gallbladder, urinary bladder, and spleen. Conclusion The addition of CoQ10 to propofol and sevoflurane anesthesia prevented the propofol-associated increase in troponin T levels at the 12th hour of infusion and decreased anesthetic-induced total liver and organ injury scores.
Collapse
Affiliation(s)
- Banu Kilicaslan
- Department of Anesthesiology and Intensive Care, Hacettepe University, Ankara06230, Turkey
| | - Seda B Akinci
- Department of Anesthesiology and Intensive Care, Hacettepe University, Ankara06230, Turkey
| | - Fatma Saricaoglu
- Department of Anesthesiology and Intensive Care, Hacettepe University, Ankara06230, Turkey
| | - Savas O Yılbas
- Department of Anesthesiology and Intensive Care, Hacettepe University, Ankara06230, Turkey
| | - Burcu A Ozkaya
- Department of Anesthesiology and Intensive Care, Hacettepe University, Ankara06230, Turkey
| |
Collapse
|
23
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
24
|
Pu TT, Wu W, Liang PD, Du JC, Han SL, Deng XL, Du XJ. Evaluation of Coenzyme Q10 (CoQ10) Deficiency and Therapy in Mouse Models of Cardiomyopathy. J Cardiovasc Pharmacol 2023; 81:259-269. [PMID: 36668724 PMCID: PMC10079299 DOI: 10.1097/fjc.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
ABSTRACT Mitochondrial dysfunction plays a key role in the development of heart failure, but targeted therapeutic interventions remain elusive. Previous studies have shown coenzyme Q10 (CoQ10) insufficiency in patients with heart disease with undefined mechanism and modest effectiveness of CoQ10 supplement therapy. Using 2 transgenic mouse models of cardiomyopathy owing to cardiac overexpression of Mst1 (Mst1-TG) or β 2 -adrenoceptor (β 2 AR-TG), we studied changes in cardiac CoQ10 content and alterations in CoQ10 biosynthesis genes. We also studied in Mst1-TG mice effects of CoQ10, delivered by oral or injection regimens, on both cardiac CoQ10 content and cardiomyopathy phenotypes. High performance liquid chromatography and RNA sequencing revealed in both models significant reduction in cardiac content of CoQ10 and downregulation of most genes encoding CoQ10 biosynthesis enzymes. Mst1-TG mice with 70% reduction in cardiac CoQ10 were treated with CoQ10 either by oral gavage or i.p. injection for 4-8 weeks. Oral regimens failed in increasing cardiac CoQ10 content, whereas injection regimen effectively restored the cardiac CoQ10 level in a time-dependent manner. However, CoQ10 restoration in Mst1-TG mice did not correct mitochondrial dysfunction measured by energy metabolism, downregulated expression of marker proteins, and oxidative stress nor to preserve cardiac contractile function. In conclusion, mouse models of cardiomyopathy exhibited myocardial CoQ10 deficiency likely due to suppressed endogenous synthesis of CoQ10. In contrast to ineffectiveness of oral administration, CoQ10 administration by injection regimen in cardiomyopathy mice restored cardiac CoQ10 content, which, however, failed in achieving detectable efficacy at molecular and global functional levels.
Collapse
Affiliation(s)
- Tian-Tian Pu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Pei-Da Liang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin-Chan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Sheng-Li Han
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| |
Collapse
|
25
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
27
|
Combined Therapy with Simvastatin- and Coenzyme-Q10-Loaded Nanoparticles Upregulates the Akt-eNOS Pathway in Experimental Metabolic Syndrome. Int J Mol Sci 2022; 24:ijms24010276. [PMID: 36613727 PMCID: PMC9820291 DOI: 10.3390/ijms24010276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In addition to their LDL-cholesterol-lowering effect, statins have pleiotropic beneficial effects on the cardiovascular system. However, long-term treatment with statins may be associated with serious side effects. With the aim to make statin therapy more effective, we studied the effects of simvastatin- and coenzyme-Q10-loaded polymeric nanoparticles on the lipid profile and nitric oxide (NO)/reactive oxygen species (ROS) balance in the heart and aorta of adult male obese Zucker rats. The rats were divided into an untreated group, a group treated with empty nanoparticles, and groups treated with simvastatin-, coenzyme Q10 (CoQ10)-, or a combination of simvastatin- and CoQ10-loaded nanoparticles (SIMV+CoQ10). After 6 weeks, the lipid profile in the plasma and the concentration of conjugated dienes in the liver were determined. Nitric oxide synthase (NOS) activity, Akt, endothelial NOS (eNOS), phosphorylated eNOS (p-eNOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and nuclear factor kappaB (NF-kappaB) protein expressions were measured in the heart and aorta. All simvastatin, CoQ10, and SIMV+CoQ10 treatments decreased plasma LDL levels, but only the combined SIMV+CoQ10 treatment increased NOS activity and the expression of Akt, eNOS, and p-eNOS in both the heart and the aorta. Interestingly, NADPH oxidase in the heart and NF-kappaB protein expression in the aorta were decreased by all treatments, including nanoparticles alone. In conclusion, only combined therapy with SIMV- and CoQ10-loaded nanoparticles increased NOS activity and upregulated the Akt-eNOS pathway in obese Zucker rats, which may represent a promising tool for the treatment of cardiometabolic diseases.
Collapse
|
28
|
Liu Z, Tian Z, Zhao D, Liang Y, Dai S, Liu M, Hou S, Dong X, Zhaxinima, Yang Y. Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2022; 108:232-249. [PMID: 36337001 DOI: 10.1210/clinem/dgac585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/09/2022]
Abstract
CONTEXT Previous meta-analyses have suggested that the effects of coenzyme Q10 (CoQ10) on lipid profiles remain debatable. Additionally, no meta-analysis has explored the optimal intake of CoQ10 for attenuating lipid profiles in adults. OBJECTIVE This study conducted a meta-analysis to determine the effects of CoQ10 on lipid profiles and assess their dose-response relationships in adults. METHODS Databases (Web of Science, PubMed/Medline, Embase, and the Cochrane Library) were systematically searched until August 10, 2022. The random effects model was used to calculate the mean differences (MDs) and 95% CI for changes in circulating lipid profiles. The novel single-stage restricted cubic spline regression model was applied to explore nonlinear dose-response relationships. RESULTS Fifty randomized controlled trials with a total of 2794 participants were included in the qualitative synthesis. The pooled analysis revealed that CoQ10 supplementation significantly reduced total cholesterol (TC) (MD -5.53 mg/dL; 95% CI -8.40, -2.66; I2 = 70%), low-density lipoprotein cholesterol (LDL-C) (MD -3.03 mg/dL; 95% CI -5.25, -0.81; I2 = 54%), and triglycerides (TGs) (MD -9.06 mg/dL; 95% CI -14.04, -4.08; I2 = 65%) and increased high-density lipoprotein cholesterol (HDL-C) (MD 0.83 mg/dL; 95% CI 0.01, 1.65; I2 = 82%). The dose-response analysis showed an inverse J-shaped nonlinear pattern between CoQ10 supplementation and TC in which 400-500 mg/day CoQ10 largely reduced TC (χ2 = 48.54, P < .01). CONCLUSION CoQ10 supplementation decreased the TC, LDL-C, and TG levels, and increased HDL-C levels in adults, and the dosage of 400 to 500 mg/day achieved the greatest effect on TC.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxi Dong
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
| | - Zhaxinima
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
| |
Collapse
|
29
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
30
|
Qi X, Zhu Z, Wang Y, Wen Z, Jiang Z, Zhang L, Pang Y, Lu J. Research progress on the relationship between mitochondrial function and heart failure: A bibliometric study from 2002 to 2021. Front Mol Biosci 2022; 9:1036364. [PMID: 36330217 PMCID: PMC9622797 DOI: 10.3389/fmolb.2022.1036364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2022] Open
Abstract
Heart failure is one of the major public health problems in the world. In recent years, more and more attention has been paid to the relationship between heart failure and mitochondrial function. In the past 2 decades, a growing number of research papers in this field have been published. This study conducted a bibliometric analysis of the published literature on the relationship between MF and HF in the past 20 years by utilizing Microsoft Excel 2019, Biblio metric analysis platform, WoSCC database, VosViewer and Citespace. The results show that the papers have increased year by year and China and the United States are the leading countries in this field, as well as the countries with the most cooperation and exchanges. University of california system is the research institution with the greatest impacts on research results, and Yip H.K. is the author with more papers. The American Journal of Physiology-heart and Circulatory Physiology is probably the most popular magazine. At present, most of the published articles on mitochondria and HF are cited from internationally influential journals. The research focus includes oxidative stress, metabolic dysfunction, mitochondrial Ca2+ homeostasis imbalance, mitochondrial quality control and mitochondrial dysfunction mediated by inflammation in the pathogenesis of HF. Targeted regulating of mitochondria will be the keynote of future research on prevention and treatment of HF.
Collapse
Affiliation(s)
- Xiang Qi
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhide Zhu
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuhan Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhihao Wen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
| | - Zhixiong Jiang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liren Zhang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Pang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| | - Jianqi Lu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| |
Collapse
|
31
|
Cicero AFG, Fogacci F, Di Micoli A, Veronesi M, Borghi C. Noninvasive instrumental evaluation of coenzyme Q 10 phytosome on endothelial reactivity in healthy nonsmoking young volunteers: A double-blind, randomized, placebo-controlled crossover clinical trial. Biofactors 2022; 48:1160-1165. [PMID: 35342994 PMCID: PMC9790510 DOI: 10.1002/biof.1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coenzyme Q10 (CoQ10 ) is a natural antioxidant compound that prevents the vascular damage induced by free radicals and the activation of inflammatory signaling pathways. Supplementation with CoQ10 is safe though its bioavailability is generally low, as far as variable depending on the pharmaceutical form of preparation. Recently, the development of phytosome technology has improved the bioavailability of CoQ10 and definitely facilitated its effective use in clinical practice. The present double-blind, randomized, placebo-controlled, crossover clinical study aimed to investigate the effect on endothelial reactivity and total antioxidant capacity (TAC) of either acute and chronic supplementation with CoQ10 phytosome in a sample of 20 healthy young nonsmoking subjects. CoQ10 phytosome supplementation acutely improved endothelial reactivity in comparison with baseline and placebo (+4.7% ± 0.9% vs. -0.1 %± 0.3% p < 0.05). Middle-term supplementation of the tested pharmaceutical formulation of CoQ10 significantly improved mean arterial pressure (-2.2 ± 1.1 mmHg vs. 0.2 ± 0.7 mmHg, p < 0.05 vs. placebo) and TAC (+29.6% ± 3.2% vs. +1.9% ± 0.8%, p < 0.05 vs. placebo). Endothelial reactivity improved compared with baseline following middle-term dietary supplementation with CoQ10 phytosome (+5.7% ± 1.1%, p < 0.05).
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Claudio Borghi
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|
32
|
Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. Adv Nutr 2022; 13:1243-1266. [PMID: 34970669 PMCID: PMC9340985 DOI: 10.1093/advances/nmab141] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 1 in 5 women of reproductive age, and is characterized by menstrual irregularities, clinical or biochemical hyperandrogenism, and the presence of polycystic ovary morphology. One of the recommended treatment strategies in the international evidence-based guidelines is lifestyle modification, which includes diet and exercise, with the aim of improving a range of health outcomes. The incurable nature of PCOS reinforces the importance of developing novel and innovative symptomatic relief strategies, which are currently the only available approaches for improving quality of life for these women. Women with PCOS tend to be nutrient deficient in many common vitamins and minerals, thought to be associated with the psychological (depression, anxiety, etc.) and physiological (insulin resistance, diabetes, infertility, etc.) sequelae of the condition. Nutrient supplementation and the integration of complementary medicine as adjuncts to traditional lifestyle-based therapies in PCOS could therefore provide additional benefits to these women. In this review, we synthesize the evidence regarding nutrient supplementation and complementary therapies in PCOS, predominantly from randomized controlled trials, systematic reviews, and meta-analyses, to provide an overview of the state of knowledge in this field. The evidence to date suggests that specific vitamins (B-12, inositols, folate, vitamins D, E, and K), vitamin-like nutrients (bioflavonoids and α-lipoic acid), minerals (calcium, zinc, selenium, and chromium picolinate), and other formulations (melatonin, ω-3 fatty acids, probiotics, and cinnamon), as well as some complementary approaches such as acupuncture and yoga may be beneficial in PCOS. However, there remain areas of uncertainty and key limitations in the literature that must be overcome before these therapies can be integrated into routine clinical practice.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| | - Carolyn Ee
- The National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| | - Vibhuti Rao
- The National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Effects of Coenzyme Q10 Supplementation on Oxidative Stress Markers, Inflammatory Markers, Lymphocyte Subpopulations, and Clinical Status in Dogs with Myxomatous Mitral Valve Disease. Antioxidants (Basel) 2022; 11:antiox11081427. [PMID: 35892628 PMCID: PMC9394267 DOI: 10.3390/antiox11081427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Scarce data exist on the effects of coenzyme Q10 (CoQ10) supplementation in dogs with myxomatous mitral valve disease (MMVD). The purpose of this study was to investigate the effect of CoQ10 supplementation on oxidative stress markers (glutathione peroxidase, F2-isoprostanes), markers of inflammation (tumor necrosis factor-α, TNF soluble receptor II, leucocytes, and their subtypes), lymphocyte subpopulations (T helper and cytotoxic T lymphocytes, including activated T lymphocytes, and B lymphocytes), and echocardiographic and clinical parameters in dogs with MMVD. In this randomized, controlled, double-blind, longitudinal study, 43 MMVD dogs in stages ACVIM (American College of Veterinary Internal Medicine classification) B2 and ACVIM C and D (congestive heart failure (CHF)) received water-soluble coenzyme Q10 (100 mg twice daily) or placebo for 3 months, and 12 non-supplemented healthy dogs served as controls. All parameters were measured before and after supplementation in MMVD dogs and once in healthy dogs. CoQ10 supplementation had a positive impact on neutrophil percentage, lymphocyte percentage, and lymphocyte concentration in our cohort of dogs with CHF (ACVIM C and D). Conclusion: CoQ10 as an oral supplement may have benefits in terms of decreasing inflammation in dogs with MMVD and CHF.
Collapse
|
34
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
35
|
Sue-Ling CB, Abel WM, Sue-Ling K. Coenzyme Q10 as Adjunctive Therapy for Cardiovascular Disease and Hypertension: A Systematic Review. J Nutr 2022; 152:1666-1674. [PMID: 35348726 DOI: 10.1093/jn/nxac079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mitochondrial ATP production requires a small electron carrier, coenzyme Q10 (CoQ10), which has been used as adjunctive therapy in patients with cardiovascular disease (CVD) and hypertension (HTN) because of its bioenergetics and antioxidant properties. Randomized controlled trials (RCTs) beyond the last 2 decades evaluating CoQ10 added to conventional therapy resulted in mixed results and were underpowered to address major clinical endpoints. OBJECTIVES The objective of this systematic review was to examine the impact of CoQ10 supplementation on older adults with CVD or HTN in the last 2 decades (2000-2020). METHODS PubMed/Medline, Cochrane Database, CINAHL, and Google Scholar databases were searched systematically, and references from selected studies were manually reviewed, to identify RCTs or crossover studies evaluating the efficacy of CoQ10 supplementation. Data extracted from selected studies included trial design and duration, treatment, dose, participant characteristics, study variables, and important findings. RESULTS A total of 14 studies (1067 participants) met the inclusion criteria. The effect of CoQ10 supplementation was examined among predominantly older adult males with heart failure (HF) (n = 6), HTN (n = 4), and ischemic heart disease (n = 3), and preoperatively in patients scheduled for cardiac surgery (n = 1). CoQ10 supplementation in patients with HF improved functional capacity, increased serum CoQ10 concentrations, and led to fewer major adverse cardiovascular events. CoQ10 had positive quantifiable effects on inflammatory markers in patients with ischemic heart disease. Myocardial hemodynamics improved in patients who received CoQ10 supplementation before cardiac surgery. Effects on HTN were inconclusive. CONCLUSIONS In predominantly older adult males with CVD or HTN, CoQ10 supplementation added to conventional therapy is safe and offers benefits clinically and at the cellular level. However, results of the trials need to be viewed with caution, and further studies are indicated before widespread usage of CoQ10 is recommended in all older adults.
Collapse
Affiliation(s)
| | - Willie M Abel
- School of Nursing, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Keith Sue-Ling
- Department of Cardiology, University Hospital, Augusta, GA, USA
| |
Collapse
|
36
|
Kimura I, Kagawa S, Tsuneki H, Tanaka K, Nagashima F. Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol Ther 2022; 235:108159. [DOI: 10.1016/j.pharmthera.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
37
|
Szczepańska E, Białek-Dratwa A, Janota B, Kowalski O. Dietary Therapy in Prevention of Cardiovascular Disease (CVD)—Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD. Nutrients 2022; 14:nu14132649. [PMID: 35807830 PMCID: PMC9268367 DOI: 10.3390/nu14132649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The development of cardiovascular diseases is undoubtedly influenced by improper dietary behavior. The most common mistakes include irregularity of meal consumption, high dietary atherogenicity: snacking on sweets between meals, low supply of dietary fiber, unsaturated fatty acids, legume seeds, and high supply of meat and meat products. Among many food components, some are characterized by a specific cardioprotective effect, which means that their supply of food may prevent the occurrence of cardiovascular disease or improve the health of the sick. Coenzyme Q10 (CoQ10) is one of the ingredients showing cardioprotective effects on the heart and blood vessels. Antioxidant and lipid profile-enhancing effects are also attributed to sitosterol which is one of the plant-derived sterols. A very important argument indicating the necessity of a varied diet rich in a variety of plant products is the beneficial effect of polyphenols, which are most abundant in multicolored vegetables and fruits. Numerous studies show their effectiveness in lowering blood pressure, improving lipid profile, and regeneration of vascular endothelium. The collected publications from the field of lifestyle medicine can be a source of knowledge for dieticians, physicians, and people associated with physical culture and human mental health to prevent the development of cardiovascular diseases and reduce the risk of death from this cause.
Collapse
Affiliation(s)
- Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
| | - Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
- Correspondence: ; Tel.: +48-(0-32)-275-51-95
| | - Barbara Janota
- Doctoral School of the Medical University of Silesia in Katowice, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Piekarska 18, 41-902 Bytom, Poland;
| | - Oskar Kowalski
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, ul. Marii Curie-Skłodowskiej 9, 41-800 Zabrze, Poland
| |
Collapse
|
38
|
Hossain ME, Akter N. Further insights into the prevention of pulmonary hypertension syndrome (ascites) in broiler: a 65-year review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2090305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Md. Emran Hossain
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| | - Nasima Akter
- Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Bangladesh
| |
Collapse
|
39
|
Lee CH, Lee MS, Yang RC, Hsu CS, Su TC, Chang PS, Lin PT, Kao JK. Using a neonatal rat model to explore the therapeutic potential of coenzyme Q10 in prematurity under hyperoxia. ENVIRONMENTAL TOXICOLOGY 2022; 37:1472-1482. [PMID: 35212449 DOI: 10.1002/tox.23499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Hyperoxia, is often used in preterm supportive care, leading to high oxygen exposure in neonates. Coenzyme Q10 (CoQ10) is a free radical scavenger that has been studied in older children but never be investigated for its role in preterm care. We hypothesize that the administration of exogenous CoQ10 would raise serum concentrations of CoQ10 and mitigate the adverse effects of hyperoxia on the organs by reducing oxygen-free radicals and inflammation. The aim of this study was to evaluate the effects of oxidative stress, inflammatory response, and survival in neonatal rats after CoQ10 treatment. Neonatal rats delivered from four pregnant Wistar rats were randomly divided into four groups: (a) control, (b) CoQ10, (c) hyperoxia (O2 group), and (d) treatment (CoQ10 + O2 ) groups. The dose of CoQ10 injected was 30 mg/kg. The CoQ9, CoQ10, cytokines, oxidative stress, and antioxidant enzyme activity were measured. Tissue samples were histologically examined and mortality was monitored for 16 days. The level of CoQ9 significantly increased in the liver, kidney, and plasma, while the level of CoQ10 significantly increased in most organ tissues in the CoQ10 + O2 group. Additionally, CoQ10 decrease oxidative stress in the liver, increase antioxidant enzyme activity in the heart, kidney, and brain, and reverse an inclined level of hematopoietic growth factors. However, CoQ10 had no effect on inflammation, organ damage, or mortality. Therefore, the use of CoQ10 in potential adjuvant therapy for neonatal hyperoxia requires further research.
Collapse
Affiliation(s)
- Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
40
|
Heart Failure—Do We Need New Drugs or Have Them Already? A Case of Coenzyme Q10. J Cardiovasc Dev Dis 2022; 9:jcdd9050161. [PMID: 35621872 PMCID: PMC9143244 DOI: 10.3390/jcdd9050161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Heart failure (HF) is a global epidemic that contributes to the deterioration of quality of life and its shortening in 1–3% of adult people in the world. Pharmacotherapy of HF should rely on highly effective drugs that improve prognosis and prolong life. Currently, the ESC guidelines from 2021 indicate that ACEI, ARNI, BB, and SGLT2 inhibitors are the first-line drugs in HF. It is also worth remembering that the use of coenzyme Q10 brought many benefits in patients with HF. Coenzyme Q10 is a very important compound that performs many functions in the human body. The most important function of coenzyme Q10 is participation in the production of energy in the mitochondria, which determines the proper functioning of all cells, tissues, and organs. The highest concentration of coenzyme Q10 is found in the tissue of the heart muscle. As the body ages, the concentration of coenzyme Q10 in the tissue of the heart muscle decreases, which makes it more susceptible to damage by free radicals. It has been shown that in patients with HF, the aggravation of disease symptoms is inversely related to the concentration of coenzyme Q10. Importantly, the concentration of coenzyme Q10 in patients with HF was an important predictor of the risk of death. Long-term coenzyme Q10 supplementation at a dose of 300 mg/day (Q-SYMBIO study) has been shown to significantly improve heart function and prognosis in patients with HF. This article summarizes the latest and most important data on CoQ10 in pathogenesis.
Collapse
|
41
|
Awad K, Sayed A, Banach M. Coenzyme Q10 Reduces Infarct Size in Animal Models of Myocardial Ischemia-Reperfusion Injury: A Meta-Analysis and Summary of Underlying Mechanisms. Front Cardiovasc Med 2022; 9:857364. [PMID: 35498032 PMCID: PMC9053645 DOI: 10.3389/fcvm.2022.857364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Effective interventions that might limit myocardial ischemia-reperfusion (I/R) injury are still lacking. Coenzyme Q10 (CoQ10) may exert cardioprotective actions that reduce myocardial I/R injury. We conducted this meta-analysis to assess the potential cardioprotective effect of CoQ10 in animal models of myocardial I/R injury. Methods We searched PubMed and Embase databases from inception to February 2022 to identify animal studies that compared the effect of CoQ10 with vehicle treatment or no treatment on myocardial infarct size in models of myocardial I/R injury. Means and standard deviations of the infarct size measurements were pooled as the weighted mean difference with 95% confidence interval (CI) using the random-effects model. Subgroup analyses were also conducted according to animals' species, models' type, and reperfusion time. Results Six animal studies (4 in vivo and 2 ex vivo) with 116 animals were included. Pooled analysis suggested that CoQ10 significantly reduced myocardial infarct size by −11.36% (95% CI: −16.82, −5.90, p < 0.0001, I2 = 94%) compared with the control group. The significance of the pooled effect estimate was maintained in rats, Hartley guinea pigs, and Yorkshire pigs. However, it became insignificant in the subgroup of rabbits −5.29% (95% CI: −27.83, 17.26; I2 = 87%). Furthermore, CoQ10 significantly reduced the myocardial infarct size regardless of model type (either in vivo or ex vivo) and reperfusion time (either ≤ 4 h or >4 h). Conclusion Coenzyme Q10 significantly decreased myocardial infarct size by 11.36% compared with the control group in animal models of myocardial I/R injury. This beneficial action was retained regardless of model type and reperfusion time.
Collapse
Affiliation(s)
- Kamal Awad
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Zagazig University Hospitals, Zagazig, Egypt
- *Correspondence: Kamal Awad
| | - Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Maciej Banach
| |
Collapse
|
42
|
Lamichhane S, Seo JE, Keum T, Noh G, Bashyal S, Cho SW, Lee EH, Lee S. Enhancing solubility and bioavailability of coenzyme Q 10: formulation of solid dispersions using Soluplus ® as a carrier. Arch Pharm Res 2022; 45:29-37. [PMID: 35128573 DOI: 10.1007/s12272-022-01368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Improving the aqueous solubility of poorly soluble compounds have been a major issue in the pharmaceutical industry. In the present study, binary amorphous solid dispersions (SDs) of Coenzyme Q10 (CoQ10), a biopharmaceutics classification system (BCS) II compound and Soluplus® were prepared to enhance the solubility and pharmacokinetic properties compared to crystalline CoQ10. SDs were prepared with different ratios of CoQ10 and Soluplus® (1:3, 1:5, and 1:7) using spray drying technology, and the physicochemical properties of the SDs were evaluated. X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy suggested the conversion of the crystalline form of CoQ10 to a binary amorphous system in the SDs. Fourier transform infrared spectroscopy revealed no potential interactions between CoQ10 and Soluplus®. The solubility of the optimal SD formulation (SD 1:7) was approximately 9000-fold higher than that of crystalline CoQ10, and the increment was Soluplus® concentration dependent. As a result, optimized SD 1:7 also showed significantly enhanced dissolution rate where maximum drug release was observed within 30 min in two different dissolution media. Moreover, in contrast to crystalline CoQ10, CoQ10 SDs showed improved pharmacokinetic parameters. Thus, the SD 1:7 formulation is expected to improve biopharmaceutical properties and therapeutic efficacy of CoQ10.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Santosh Bashyal
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seong-Wan Cho
- Department of Pharmaceutics & Biotechnology, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Eun-Hee Lee
- Department of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Sciences, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
43
|
de la Bella-Garzón R, Fernández-Portero C, Alarcón D, Amián JG, López-Lluch G. Levels of Plasma Coenzyme Q 10 Are Associated with Physical Capacity and Cardiovascular Risk in the Elderly. Antioxidants (Basel) 2022; 11:279. [PMID: 35204162 PMCID: PMC8868547 DOI: 10.3390/antiox11020279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential factor for mitochondrial activity and antioxidant protection of cells, tissues and plasma lipoproteins. Its deficiency has been associated with aging progression in animals and humans. To determine if CoQ10 levels in plasma can be associated with frailty in elderly people (aged > 65), we studied the relationship of CoQ10 levels in blood with other parameters in plasma and with the physical activity and capacity in aged people. Our results indicate that high CoQ10 levels are directly associated with lower cardiovascular risk measured by the quotient total cholesterol/HDL cholesterol. Furthermore, high CoQ10 levels were found in people showing higher physical activity, stronger muscle capacity. CoQ10 also showed a strong inverse relationship with sedentarism and the up and go test, which is considered to be a frailty index. Interestingly, we found gender differences, indicating stronger correlations in women than in men. The importance of the maintenance of CoQ10 levels in elderly people to avoid sarcopenia and frailty in elderly people is discussed.
Collapse
Affiliation(s)
- Rocío de la Bella-Garzón
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Cristina Fernández-Portero
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - David Alarcón
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Josué G. Amián
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U729), Instituto de Salud Carlos III-Madrid, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Centro de Investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
44
|
Tsao CW, Hsu YJ, Tseng XT, Chang TC, Tsao CH, Liu CY. Does Coenzyme Q10 Supplementation Improve Testicular Function and Spermatogenesis in Male Mice with Chronic Kidney Disease? BIOLOGY 2021; 10:biology10080786. [PMID: 34440017 PMCID: PMC8389647 DOI: 10.3390/biology10080786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Chronic kidney disease (CKD) is found to be linked to elevated apoptosis, oxidative stress and inflammation. Moreover, lower testosterone, poorer sperm quality and lower reproductive function have also been observed. Coenzyme Q10 (CoQ10), a widely used antioxidant involved in mitochondrial energy production, is indispensable for maintaining the efficient energy system of spermatozoa and protecting their membranes from lipid peroxidation, yet there are few studies focusing on the effects of CoQ10 on CKD-induced male infertility. This study suggests that CoQ10 increases testosterone levels and improves spermatogenesis in CKD mice. Abstract The aim of the study was to examine the potential effects of coenzyme Q10 (CoQ10) on reproductive function in a chronic kidney disease (CKD) mouse model. Nine-week-old mice were randomly assigned to two groups: sham surgery (n = 18) and CKD surgery (n = 18). After surgery, the study groups received CoQ10 (10 mg/kg body weight dissolved in corn oil by oral gavage) or corn oil as a vehicle daily for 8 weeks. The groups that underwent 5/6 nephrectomy developed significant elevations of serum BUN and creatinine levels. The CoQ10 treatment significantly increased the serum and testicular CoQ10 levels and alleviated the poor semen quality from incomplete spermatogenesis. The testosterone concentration, in addition to the protein expression of enzymes related to testosterone biosynthesis, was also elevated, and the CKD-induced decrease in antioxidant activity in the testes was significantly ameliorated. The results suggest that CoQ10 could act against CKD-induced testicular dysfunction through improvements in the sperm function, testicular morphology, testosterone levels and related biosynthesis pathways, in addition to antioxidant activity.
Collapse
Affiliation(s)
- Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Xiang-Ting Tseng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Centre, Taipei 11490, Taiwan;
| | - Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (X.-T.T.); (T.-C.C.)
- Correspondence:
| |
Collapse
|
45
|
Fox CA, Moschetti A, Ryan RO. Reconstituted HDL as a therapeutic delivery device. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159025. [PMID: 34375767 DOI: 10.1016/j.bbalip.2021.159025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/09/2021] [Accepted: 07/25/2021] [Indexed: 12/27/2022]
Abstract
Studies of "pre β" high density lipoprotein (HDL) and reconstituted HDL (rHDL) have contributed to our understanding of the Reverse Cholesterol Transport pathway. The relative ease with which discoidal rHDL can be generated in vitro has led to novel applications including a) infusion of rHDL into patients to promote regression of atherosclerosis; b) use of rHDL as a miniature membrane for integration of transmembrane proteins in a native-like conformation and c) incorporation of hydrophobic bioactive molecules into rHDL, creating a delivery device. The present review is focused on bioactive agent containing rHDL. The broad array of hydrophobic bioactive molecules successfully incorporated into these particles is discussed, as well as the use of natural lipids and synthetic lipid analogs to confer distinctive binding activity. This technology remains in its infancy with the full potential of these simple, yet elegant, nanoparticles still to be discovered.
Collapse
Affiliation(s)
- Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Anthony Moschetti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America.
| |
Collapse
|
46
|
Costagliola G, Nuzzi G, Spada E, Comberiati P, Verduci E, Peroni DG. Nutraceuticals in Viral Infections: An Overview of the Immunomodulating Properties. Nutrients 2021; 13:nu13072410. [PMID: 34371920 PMCID: PMC8308811 DOI: 10.3390/nu13072410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, including vitamin D, vitamin A, zinc, lactoferrin, polyphenols coenzyme Q, magnesium, and selenium, are implicated in the modulation of the complex molecular pathways involved in the immune response against viral pathogens. A common element of the activity of nutraceuticals is their ability to enhance the innate immune response against pathogens by acting on the major cellular subsets and inducing the release of pro-inflammatory cytokines and antimicrobial peptides. In some cases, this action is accompanied by a direct antimicrobial effect, as evidenced in the specific case of lactoferrin. Furthermore, nutraceuticals act through complex molecular mechanisms to minimize the damage caused by the activation of the immune system against pathogens, reducing the oxidative damage, influencing the antigen presentation, enhancing the differentiation and proliferation of regulatory T cells, driving the differentiation of lymphocyte subsets, and modulating the production of pro-inflammatory cytokines. In this paper, we review the main molecular mechanisms responsible for the immunomodulatory function of nutraceuticals, focusing on the most relevant aspects for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Giulia Nuzzi
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Erika Spada
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, 20142 Milan, Italy;
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Diego G. Peroni
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Correspondence: ; Tel.: +39-50-799-2100
| |
Collapse
|
47
|
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Int J Mol Sci 2021; 22:ijms22147392. [PMID: 34299010 PMCID: PMC8306046 DOI: 10.3390/ijms22147392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Behzad Dadfar
- Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran
| | - Riya Jaleel
- School of International Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jazna Naushad
- Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +973-972-2411; Fax: +973-972-7489
| |
Collapse
|
48
|
Mitochondrial Dysfunction in Atrial Fibrillation-Mechanisms and Pharmacological Interventions. J Clin Med 2021; 10:jcm10112385. [PMID: 34071563 PMCID: PMC8199309 DOI: 10.3390/jcm10112385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the enormous progress in the treatment of atrial fibrillation, mainly with the use of invasive techniques, many questions remain unanswered regarding the pathomechanism of the arrhythmia and its prevention methods. The development of atrial fibrillation requires functional changes in the myocardium that result from disturbed ionic fluxes and altered electrophysiology of the cardiomyocyte. Electrical instability and electrical remodeling underlying the arrhythmia may result from a cellular energy deficit and oxidative stress, which are caused by mitochondrial dysfunction. The significance of mitochondrial dysfunction in the pathogenesis of atrial fibrillation remains not fully elucidated; however, it is emphasized by the reduction of atrial fibrillation burden after therapeutic interventions improving the mitochondrial welfare. This review summarizes the mechanisms of mitochondrial dysfunction related to atrial fibrillation and current pharmacological treatment options targeting mitochondria to prevent or improve the outcome of atrial fibrillation.
Collapse
|
49
|
Testai L, Martelli A, Flori L, Cicero AFG, Colletti A. Coenzyme Q 10: Clinical Applications beyond Cardiovascular Diseases. Nutrients 2021; 13:1697. [PMID: 34067632 PMCID: PMC8156424 DOI: 10.3390/nu13051697] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in oxidative phosphorylation (OXPHOS), present in mitochondria and cell membranes in reduced and oxidized forms. Acting as an energy transfer molecule, it occurs in particularly high levels in the liver, heart, and kidneys. CoQ10 is also an anti-inflammatory and antioxidant agent able to prevent the damage induced by free radicals and the activation of inflammatory signaling pathways. In this context, several studies have shown the possible inverse correlation between the blood levels of CoQ10 and some disease conditions. Interestingly, beyond cardiovascular diseases, CoQ10 is involved also in neuronal and muscular degenerative diseases, in migraine and in cancer; therefore, the supplementation with CoQ10 could represent a viable option to prevent these and in some cases might be used as an adjuvant to conventional treatments. This review is aimed to summarize the clinical applications regarding the use of CoQ10 in migraine, neurodegenerative diseases (including Parkinson and Alzheimer diseases), cancer, or degenerative muscle disorders (such as multiple sclerosis and chronic fatigue syndrome), analyzing its effect on patients' health and quality of life.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
- Department of Science and Drug Technology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
50
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|