1
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Zazuli Z, Hartati R, Rowa CR, Asyarie S, Satrialdi. The Potential Application of Nanocarriers in Delivering Topical Antioxidants. Pharmaceuticals (Basel) 2025; 18:56. [PMID: 39861119 PMCID: PMC11769529 DOI: 10.3390/ph18010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy.
Collapse
Affiliation(s)
- Zulfan Zazuli
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Cornelia Rosasepti Rowa
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Sukmadjaja Asyarie
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| |
Collapse
|
3
|
Amist N, Khare S, Azim Z, Singh NB. Protective Role of Polyethylene Glycol Towards the Damaging Effects of Cadmium. Appl Biochem Biotechnol 2025; 197:113-136. [PMID: 39102083 DOI: 10.1007/s12010-024-05010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to evaluate the role of drought-induced changes in the effects of cadmium (Cd) in plants. Cd is the most hazardous and important environmental pollutant. Water deficit is the most common environmental stress encountered by plants and affects most of the plant functions. The present study assessed the effect of Cd and water deficit on Capsicum frutescens seedlings in single and combined treatments. The seedlings of Capsicum were grown in a hydroponic solution and treated with Cd. The seedlings were subjected to water deficit with the help of polyethylene glycol (PEG). The other set of seedlings was treated with combined Cd + PEG. In the absence of PEG, maximum Cd accumulation was observed. The root and shoot growth of the seedlings were affected under all treatments with maximum inhibition in Cd. Pigment, protein and sugar contents and nitrate reductase activity decreased significantly in all treatments, while proline content increased. Induction of oxidative damage occurred through the formation of free radicals which caused alteration in electrolyte leakage, lipid peroxidation and activities of antioxidant enzymes, viz. superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase and non-enzymatic non-protein thiol content and ascorbic acid in the stressed seedlings. Water deficit buttressed the toxic effect of Cd on chilli seedlings.
Collapse
Affiliation(s)
- Nimisha Amist
- Department of Botany, Ewing Christian College, University of Allahabad, Prayagraj, 211003, India
| | - Shubhra Khare
- Department of Applied Sciences and Humanities, Invertis University, Bareilly, 234123, India
| | - Zeba Azim
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Uttar Pradesh, Allahabad, 211002, India
| | - Narsingh Bahadur Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Uttar Pradesh, Allahabad, 211002, India.
| |
Collapse
|
4
|
Cheng X, Sun Y, Wang Y, Liu X, Cao J, Li D, Yang D, Zhuo C, Wan X, Liu L. CsCBF2 contributes to cold repression of chlorophyll and carotenoid biosynthesis in albino Camellia sinensis cv. Baiye 1. TREE PHYSIOLOGY 2024; 44:tpae149. [PMID: 39566078 DOI: 10.1093/treephys/tpae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/27/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
C-repeat binding factors (CsCBFs) play a pivotal role in regulating cold response in higher plants. Camellia sinensis cv. Baiye 1, a representative albino tea cultivar, has been identified as temperature-sensitive based on long-term observations by tea farmers. However, it remains unclear whether CsCBFs are involved in temperature-mediated albinism and seasonal greening in 'Baiye 1', and the mechanisms by which CBFs regulate cold responses in albino leaves are unknown. In this study, we demonstrate that CsCBF2 suppresses the seasonal greening of albino leaves by inhibiting chlorophyll and carotenoid biosynthesis under cold stress. In tea plantations, the accumulation of chlorophylls and carotenoids in the albino shoots of 'Baiye 1' is closely correlated with the effective accumulated temperature during its seasonal greening process. Weighted Gene Co-expression Network Analysis revealed negative associations between CsCBF expression and chlorophylls, carotenoids, as well as their biosynthetic genes REVEILLE 1 (CsRVE1) and Zeaxanthin epoxidase 1 (CsZEP1) under temperature fluctuations during seasonal greening. Cold-induced upregulation of CsCBF2 expression and decreased chlorophyll and carotenoids under controlled climate conditions. Transient suppression of CsCBF2 by antisense oligodeoxynucleotides elevated expressions of target genes and increased chlorophylls and carotenoids. CBF-binding cis-elements were identified in CsRVE1, Protochlorophyllide oxidoreductase A (CsPORA) and CsZEP1 promoters. Luciferase assays suggested CsCBF2 binding to the CRT/DRE cis-elements and repressing expression of CsRVE1, CsPORA and CsZEP1. These findings highlight CsCBF2 as a key transcriptional repressor involved in the seasonal greening of albino 'Baiye 1' under cold stress by modulating cold responses and inhibiting genes associated with chlorophyll and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Xin Cheng
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ying Sun
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yijia Wang
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xuyang Liu
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jingjie Cao
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Dandan Li
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Dan Yang
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Chao Zhuo
- Summit Angeltea Company, Dipu Town, Anji, 313300, Zhejiang, China
| | - Xiaochun Wan
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| | - Linlin Liu
- Anhui Agricultural Universtiy, No. 130 of Changjiang West Road, Hefei, 230036, Anhui, China
| |
Collapse
|
5
|
Ferrando BO, Baenas N, Periago MJ. Changes in Carotenoids and Quality Parameters of Sweet Paprika ( Capsicum annuum) After an Accelerated Heat Treatment. Antioxidants (Basel) 2024; 13:1492. [PMID: 39765820 PMCID: PMC11673966 DOI: 10.3390/antiox13121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Paprika, obtained from dried red pepper (C. annuum), is valued for its characteristic colour and flavour. Its carotenoid content, which is important for both sensory and nutritional quality, varies depending on several factors (agronomic conditions and technological treatment with special attention to the drying methods) that influence the colour and antioxidant capacity of the samples. This study investigated the effect of an accelerated thermal treatment (80 °C for 8 h) applied to evaluate the oxidative stability of the carotenoids and the colour of ground paprika depending on its origin (Peru or China). Changes in quality parameters (ASTA index and CIELAB colour), carotenoid content and profile (HPLC-DAD) and lipophilic antioxidant capacity (FRAP and ABTS•+ methods) were evaluated. Untreated Chinese samples had 30% more total carotenoids than Peruvian samples, but this was not reflected in ASTA units, indicating that at least a 50% carotenoid variation is required for significant differences. Treatment resulted in a carotenoid loss of 70% in Peruvian and 30% in Chinese samples, with changes in total carotenoids correlating positively with antioxidant capacity. Both origins had similar carotenoid profiles, with β-carotene being the predominant carotenoid, while distinct contents were observed between the origins. The higher content of esterified carotenoids in Chinese peppers resulted in better thermal stability. The results highlight the necessity for tailored production processes to maintain nutritional integrity and antioxidant capacity.
Collapse
Affiliation(s)
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, University of Murcia, Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain; (B.O.F.); (M.J.P.)
| | | |
Collapse
|
6
|
Kajszczak D, Sosnowska D, Frąszczak B, Podsędek A. Composition, Anti-Diabetic, and Antioxidant Potential of Raphanus sativus Leaves. Molecules 2024; 29:5689. [PMID: 39683848 DOI: 10.3390/molecules29235689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Limiting and/or slowing down the starch digestion process and consequently the release of glucose can be an important strategy for the prevention of type 2 diabetes (T2D). The aim of the current in vitro study was to assess the anti-diabetic and antioxidant potential of red radish leaves of the Carmen, Jutrzenka, Saxa, and Warta cultivars. In the context of anti-diabetic activity, the effect of leaves on potato starch digestion and free glucose binding, as well as inhibitory effects of leaf extracts against α-amylase and α-glucosidase and non-enzymatic glycation (AGEs) were determined. The basic chemical composition, quantitative composition of phenolic compounds, and antioxidant activity of leaves were also estimated. This study showed that all radish leaves inhibited the breakdown of potato starch and showed their ability to bind glucose. This activity was correlated with the content of hydroxycinnamic acids, protein and dietary fiber while flavones was probably responsible for glucose binding. Leaf extracts inhibited α-glucosidase activity and formation of AGEs but were practically inactive towards α-amylase. Inhibition of α-glucosidase activity was related to the content of proanthocyanidins and inhibition of AGEs formation to flavonols. These results point to radish leaves, especially the Warta and Jutrzenka cultivars, as a potential natural remedy for treating T2D.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| |
Collapse
|
7
|
Wang Z, Sun X, Xu X, Zhou D, Wen C. Effect of microencapsulated canthaxanthin and apo-ester on egg yolk color and antioxidant capacity in laying hens. Poult Sci 2024; 103:104302. [PMID: 39306952 PMCID: PMC11447402 DOI: 10.1016/j.psj.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
This study was conducted to evaluate the effects of common canthaxanthin (CC) or microencapsulated canthaxanthin (MC) combined with apo-ester (AE) on productive performance, egg yolk color and antioxidant capacity in laying hens. A total of 270 Hyline Brown laying hens at 56 wk of age were allocated to 3 groups with 6 replicates, and fed a wheat-soybean meal basal diet or the same diet supplemented with CC+AE or MC+AE at 5 mg/kg feed for each supplement. The productive performance was not affected by dietary treatments. The 2 test groups had higher (P < 0.05) yolk color score in fresh eggs than the control group, but the yolk color score of CC+AE group significantly declined (P < 0.05) with time, and a slight decline was also observed in the MC+AE group at 36 d. The MC+AE group had higher (P < 0.05) yolk color score of fried and boiled eggs than the other 2 groups. Higher (P < 0.05) feed canthaxanthin concentration was found in the MC+AE group at the end of experiment, which also had higher yolk canthaxanthin concentration in fresh eggs at 24 and 36 d as well as in fried, boiled and stored (4°C and 25°C) eggs. The 2 test groups had higher (P < 0.05) total antioxidant capacity in serum than the control group, and lower (P < 0.05) MDA content was observed in the MC+AE group. The mRNA level of cluster determinant 36 in jejunum was increased by the 2 test groups, and the same increase was also found in liver only in the MC+AE group. In conclusion, MC was more efficient in promoting yolk color and antioxidant capacity than CC when combined with AE.
Collapse
Affiliation(s)
- Zhaoping Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowei Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinde Xu
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Di Zhou
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Chao Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Lopes A, Correia-Sá L, Vieira M, Delerue-Matos C, Soares C, Grosso C. Sustainable Carotenoid Extraction from Macroalgae: Optimizing Microwave-Assisted Extraction Using Response Surface Methodology. Life (Basel) 2024; 14:1573. [PMID: 39768280 PMCID: PMC11676899 DOI: 10.3390/life14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed at optimizing carotenoid extraction using the macroalga Himanthalia elongata (L.) S.F.Gray as a model. Firstly, traditional extraction procedures were employed, using various solvents and temperatures to enhance the extraction conditions. Once the most effective extraction conditions were identified, the study transitioned to a more efficient and environmentally friendly approach, microwave-assisted extraction (MAE). By applying a three-parameter (solid-to-solvent ratio, temperature, and time) Box-Behnken design, the optimal extraction conditions were found to be a solid-to-solvent ratio of 1/13.6 g/mL at 60 °C for 15 min. Under these conditions, the predicted and experimental carotenoid contents were 2.94 and 2.12 µg/mL, respectively. Furthermore, an HPLC-DAD method was developed and validated for the characterization of carotenoids. β-Carotene was the predominant carotenoid in H. elongata, alongside fucoxanthin. The optimized MAE method was applied to other seaweeds, including Fucus vesiculosus L., Codium tomentosum Stackhouse, Gracilaria gracilis (Stackhouse) Steentoft, L.M.Irvine & Farnham, and Eiseinia bicyclis (Kjellman) Setchell. Among all, F. vesiculosus exhibited the highest carotenoid content compared to the others. This study concludes that MAE under optimized conditions is an effective and sustainable approach for carotenoid extraction, providing significant yields of bioactive compounds such as β-carotene and fucoxanthin, which have promising applications in enhancing human health and nutrition.
Collapse
Affiliation(s)
- Andreia Lopes
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Mónica Vieira
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| |
Collapse
|
9
|
Canazza E, Tessari P, Mayr Marangon C, Lante A. Nutritional Profile and Chlorophyll Intake of Collard Green as a Convenience Food. Nutrients 2024; 16:4015. [PMID: 39683408 DOI: 10.3390/nu16234015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Collard green (Brassica oleracea var. viridis) is widely cultivated for its adaptability and nutritional benefits. This study examines the nutritional composition and chlorophyll content of the "Couve-Manteiga" cultivar grown in Italy, emphasizing its potential application in convenience foods, such as fresh-cut, fifth-range, and freeze-dried products, to enhance chlorophyll intake in the population. Methods: The leaves of collard greens were analyzed for proximate composition, mineral content, amino acid and fatty acid profiles, and chlorophyll levels. Chlorophyll retention was measured after sous vide cooking and freeze-drying to assess the efficacy of these preservation methods. The chlorophyll content of different product formats was quantified, and potential dietary contributions were estimated based on consumption data. Results: Collard greens exhibited a low caloric value (30.66 kcal/100 g), with high levels of dietary fiber (3.39 g/100 g), protein (3.01 g/100 g), calcium (333.09 mg/100 g), and potassium (215.53 mg/100 g). The amino acid profile revealed an essential to non-essential amino acid ratio of 0.72. Chlorophyll retention was notably high in both freeze-dried (97.66%) and sous-vide cooked products (83.5%), indicating the effectiveness of these methods in preserving chlorophyll content compared to fresh-cut leaves. Conclusions: The results suggest that convenience foods made from collard green leaves provide an accessible means to boost chlorophyll intake and enhance daily nutrition, offering a practical solution for increasing the consumption of this nutrient-rich vegetable.
Collapse
Affiliation(s)
- Elisa Canazza
- Dipartimento di Agronomia, Alimenti, Risorse Naturali, Animali e Ambiente-DAFNAE, Università di Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Paolo Tessari
- Senior Associate, University of Padova, Via Giustiniani 2, 35128 Padova, PD, Italy
| | - Christine Mayr Marangon
- Dipartimento di Agronomia, Alimenti, Risorse Naturali, Animali e Ambiente-DAFNAE, Università di Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Anna Lante
- Dipartimento di Agronomia, Alimenti, Risorse Naturali, Animali e Ambiente-DAFNAE, Università di Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
10
|
Balbuena E, Milhem F, Kiremitci BZ, Williams TI, Collins L, Shu Q, Eroglu A. The biochemical effects of carotenoids in orange carrots on the colonic proteome in a mouse model of diet-induced obesity. Front Nutr 2024; 11:1492380. [PMID: 39588046 PMCID: PMC11587903 DOI: 10.3389/fnut.2024.1492380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine. The gastrointestinal barrier acts as a line of defense against the systemic invasion of pathogenic bacteria, especially at the colonic level. Methods To test whether carotenoids in orange carrots can alleviate obesity-associated gut inflammation and strengthen the intestinal barrier function, male C57BL/6J mice were randomized to one of four experimental diets for 20 weeks (n = 20 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 45% calories from fat), HFD with white carrot powder (HFD+WC), or HFD with orange carrot powder (HFD + OC). Colon tissues were harvested to analyze the biochemical effects of carotenoids in carrots. The distal sections were subjected to isobaric labeling-based quantitative proteomics in which tryptic peptides were labeled with tandem mass tags, followed by fractionation and LC-MS/MS analysis in an Orbitrap Eclipse Tribrid instrument. Results High-performance liquid chromatography results revealed that the HFD+WC pellets were carotenoid-deficient, and the HFD+OC pellets contained high concentrations of provitamin A carotenoids, specifically α-carotene and β-carotene. As a result of the quantitative proteomics, a total of 4410 differentially expressed proteins were identified. Intestinal barrier-associated proteins were highly upregulated in the HFD+OC group, particularly mucin-2 (MUC-2). Upon closer investigation into mucosal activity, other proteins related to MUC-2 functionality and tight junction management were upregulated by the HFD+OC dietary intervention. Discussion Collectively, our findings suggest that carotenoid-rich foods can prevent high-fat diet-induced intestinal barrier disruption by promoting colonic mucus synthesis and secretion in mammalian organisms. Data are available via ProteomeXchange with identifier PXD054150.
Collapse
Affiliation(s)
- Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Buse Zeren Kiremitci
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Qingbo Shu
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
11
|
Pereira ASADP, Magalhães IB, Silva TA, Reis AJDD, Couto EDAD, Calijuri ML. Municipal and industrial wastewater blending: Effect of the carbon/nitrogen ratio on microalgae productivity and biocompound accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122760. [PMID: 39383743 DOI: 10.1016/j.jenvman.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.
Collapse
Affiliation(s)
| | - Iara Barbosa Magalhães
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | - Thiago Abrantes Silva
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | | | | | - Maria Lucia Calijuri
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Tragkola V, Anestopoulos I, Kyriakou S, Amery T, Franco R, Pappa A, Panayiotidis MI. Naturally-derived phenethyl isothiocyanate modulates apoptotic induction through regulation of the intrinsic cascade and resulting apoptosome formation in human malignant melanoma cells. Toxicol Mech Methods 2024; 34:985-999. [PMID: 38919011 DOI: 10.1080/15376516.2024.2369666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Malignant melanoma is the most aggressive type of skin cancer with increasing incidence rates worldwide. On the other hand, watercress is a rich source of phenethyl isothiocyanate (PEITC), among others, which has been widely investigated for its anticancer properties against various cancers. In the present study, we evaluated the role of a watercress extract in modulating apoptotic induction in an in vitro model of human malignant melanoma consisting of melanoma (A375, COLO-679, COLO-800), non-melanoma epidermoid carcinoma (A431) and immortalized, non-tumorigenic keratinocyte (HaCaT) cells. Moreover, the chemical composition of the watercress extract was characterized through UPLC MS/MS and other analytical methodologies. In addition, cytotoxicity was assessed by the alamar blue assay whereas apoptosis was determined, initially, by a multiplex activity assay kit (measuring levels of activated caspases -3, -8 and -9) as well as by qRT-PCR for the identification of major genes regulating apoptosis. In addition, protein expression levels were evaluated by western immunoblotting. Our data indicate that the extract contains various phytochemicals (e.g. phenolics, flavonoids, pigments, etc.) while isothiocyanates (ITCs; especially PEITC) were the most abundant. In addition, the extract was shown to exert a significant time- and dose-dependent cytotoxicity against all malignant melanoma cell lines while non-melanoma and non-tumorigenic cells exhibited significant resistance. Finally, expression profiling revealed a number of genes (and corresponding proteins) being implicated in regulating apoptotic induction through activation of the intrinsic apoptotic cascade. Overall, our data indicate the potential of PEITC as a promising anti-cancer agent in the clinical management of human malignant melanoma.
Collapse
Affiliation(s)
- Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
13
|
Waqas M, Ali N, Zaib-Un-Nisa, Ashraf MY, Usman S, Shah AA, Raja V, El-Sheikh MA. Impact of iron sulfate (FeSO 4) foliar application on growth, metabolites and antioxidative defense of Luffa cylindrica (Sponge gourd) under salt stress. Sci Rep 2024; 14:26001. [PMID: 39472478 PMCID: PMC11522464 DOI: 10.1038/s41598-024-77182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Salt stress is becoming a major issue for the world's environment and agriculture economy. Different iron [Fe] sources can give an environmentally friendly alternative for salt-affected soil remediation. In this study the effects of Iron sulfate on Luffa cylindrica (Sponge gourd) cultivated in normal and saline water irrigated soil were examined. When FeSO4 (0.01, 0.025, 0.05, 0.1 ppm) were applied to salt affected soil, the length, fresh and dry biomass of sponge gourd plant roots and shoots inclined by an average of 33, 28, 11, 21, 18 and 22%, respectively. In plants irrigated with saline water, leaf count was raised successively (23-115%) with increasing concentration of FeSO4 (0.025-0.1 ppm) compared to stress only plants. The use of FeSO4 boosted sponge gourd growth characteristics in both normal and salt-affected soils compared to respective controls. The application of Iron sulfate under salt stress boosted photosynthetic indices such as chlorophyll a (22%), chlorophyll b (34%), carotenoids (16%), and total chlorophyll levels (22%). Iron sulfate application also exhibited incline in primary (total free amino acids, 50%; total soluble proteins, 46%) and secondary (total phenolics, 9%; flavonoid content, 51%) metabolites in salt-affected soils. Oxidative enzymatic activities such as catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and DPPH scavenging activity (36%) were also increased by foliar spray of FeSO4 in control and salt stressed L. cylindrica plants. FeSO4 had a considerable impact on the growth and development of Luffa cylindrica in normal and salt-affected soils. It is concluded that FeSO4 application can effectively remediate salt affected soil and improve the production of crop plants.
Collapse
Affiliation(s)
- Muhammad Waqas
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| | - Zaib-Un-Nisa
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology , University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology , University of Education, Lahore, Pakistan.
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Trisonthi P, Pan-Utai W, Siriwan D, Suttisansanee U. Bioactive compounds and in vitro biological properties of Arthrospira platensis and Athrospira maxima: a comparative study. Sci Rep 2024; 14:23786. [PMID: 39390067 PMCID: PMC11467430 DOI: 10.1038/s41598-024-74492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Cyanobacteria, especially Arthrospira, are valuable resources of nutrients and natural pigments with many beneficial health-related properties. This study optimized the extraction conditions of Arthrospira to achieve high phenolic contents and antioxidant activities. Under optimized extraction conditions, the bioactive compounds (phenolics and pigment components), antioxidant activities, and inhibitions of the key enzymes relevant to some non-communicable diseases were compared between Arthrospira platensis and Arthrospira maxima. Optimized extraction conditions were determined as 2 h shaking time, 50 °C extraction temperature, and 1% (w/v) solid-to-liquid ratio, giving effective phenolic and phycocyanin contents using aqueous extraction, while 80% (v/v) aqueous ethanolic extraction provided high total chlorophyll content. Most antioxidant activities were higher using 80% (v/v) aqueous ethanolic extracts. Both Arthrospira species inhibited the key enzymes involved in controlling non-communicable diseases including hyperlipidemia (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (acetylcholinesterase, butyrylcholinesterase and β-secretase), and hypertension (angiotensin-converting enzyme). High inhibitory activities were detected against β-secretase (BACE-1), the enzyme responsible for β-amyloid plaque formation in the brain that acts as a significant hallmark of Alzheimer's disease. Arthrospira extract and donepezil (Alzheimer's disease drug) synergistically inhibited BACE-1, suggesting the potential of Arthrospira extracts as effective BACE-1 inhibitors. Interestingly, A. maxima exhibited higher bioactive compound contents, antioxidant activities, and key enzyme inhibitions than A. platensis, indicating high potential for future food and medicinal applications.
Collapse
Affiliation(s)
- Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Wanida Pan-Utai
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand.
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
15
|
Abu-Zeid EH, El-Hady EW, Ahmed GA, Abd-Elhakim YM, Ibrahim D, Abd-Allah NA, Arisha AH, Sobh MS, Abo-Elmaaty AMA. Nicotine exacerbates liver damage in a mice model of Ehrlich ascites carcinoma through shifting SOD/NF-κB/caspase-3 pathways: ameliorating role of Chlorella vulgaris. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7767-7783. [PMID: 38722343 PMCID: PMC11450007 DOI: 10.1007/s00210-024-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco's life cycle. This study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, CAT, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Eman W El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gehan A Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed S Sobh
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Kumar P, Dwivedi P, Upadhyay SK. Optimization of polyamine and mycorrhiza in sorghum plant for removal of hazardous cadmium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108846. [PMID: 38945095 DOI: 10.1016/j.plaphy.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.
Collapse
Affiliation(s)
- Prasann Kumar
- Department of Agronomy, School of Agriculture, Lovely Professional University, Jalandhar, Punjab, 144411, India; Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| |
Collapse
|
17
|
Chen K, Li Y, Zhou C, Wang Y, Zalán Z, Cai T. Inhibitory effects of chlorophyll pigments on the bioaccessibility of β-carotene: Influence of chlorophyll structure and oil matrix. Food Chem 2024; 451:139457. [PMID: 38703726 DOI: 10.1016/j.foodchem.2024.139457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Chlorophylls and β-carotene are fat-soluble phytochemicals in daily diets, while their bioaccessibility interaction remains unknown. Eight dietary chlorophylls and their derivatives (chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, chlorophyllide a, chlorophyllide b, pheophorbide a, pheophorbide b) were combined with β-carotene in six different oil matrices (corn oil, coconut oil, medium-chain triglycerides, peanut oil, olive oil and fish oil) and were subjected to in vitro digestion. Generally, chlorophylls significantly decreased β-carotene bioaccessibility by competitive incorporation into micelles. Dephytylated chlorophylls had a greater inhibitory effect on the micellarization and bioaccessibility of β-carotene compared to phytylated chlorophylls. In their co-digestion system, olive oil group exhibited the smallest particle size and biggest zeta potential in both digesta and micelles. For chlorophylls, the phytol group and their levels are key factors, which was also buttressed by the mice model where additional supplementation of pheophorbide a significantly hindered the accumulation of β-carotene and retinoids compounds.
Collapse
Affiliation(s)
- Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Chunjie Zhou
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2nd Road, Yubei District, Chongqing 401121, PR China
| | - Yuankai Wang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Zhu J, Xiao X, Du W, Cai Y, Yang Z, Yin Y, Wakisaka M, Wang J, Zhou Z, Liu D, Fang W. Leveraging microalgae as a sustainable ingredient for meat analogues. Food Chem 2024; 450:139360. [PMID: 38640528 DOI: 10.1016/j.foodchem.2024.139360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
As the world's population and income levels continue to rise, there is a substantial increase in the demand for meat, which poses significant environmental challenges due to large-scale livestock production. This review explores the potential of microalgae as a sustainable protein source for meat analogues. The nutritional composition, functional properties, and environmental advantages of microalgae are analyzed. Additionally, current obstacles to large-scale microalgal food production are addressed, such as strain development, contamination risks, water usage, and downstream processing. The challenges associated with creating meat-like textures and flavors using techniques like extrusion and emulsion formation with microalgae are also examined. Lastly, considerations related to consumer acceptance, marketing, and regulation are summarized. By focusing on improvements in cultivation, structure, sensory attributes, and affordability, microalgae demonstrate promise as a transformative and eco-friendly protein source to enhance the next generation of meat alternatives.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China.
| | - Xue Xiao
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Weihua Du
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yifei Cai
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Minato Wakisaka
- Food Study Centre, Fukuoka Women's University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zixin Zhou
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Dongqin Liu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| |
Collapse
|
19
|
Hatami M, Ghorbanpour M. Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108847. [PMID: 38889532 DOI: 10.1016/j.plaphy.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
20
|
Morón-Ortiz Á, Karamalegkos AA, Mapelli-Brahm P, Ezcurra M, Meléndez-Martínez AJ. Phytoene and Phytoene-Rich Microalgae Extracts Extend Lifespan in C. elegans and Protect against Amyloid-β Toxicity in an Alzheimer's Disease Model. Antioxidants (Basel) 2024; 13:931. [PMID: 39199177 PMCID: PMC11351246 DOI: 10.3390/antiox13080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Phytoene is a colourless carotenoid widely available from dietary sources and a precursor for the synthesis of other carotenoids. Although present at high concentrations across different tissues, phytoene is largely viewed as not having physiological activity. Here, we utilize the model organism C. elegans to show that phytoene is bioactive and has anti-ageing properties. Supplementation with phytoene protects against oxidative damage and amyloid-β42 proteotoxicity (a major pathology of Alzheimer's disease), and extends lifespan. We also examine extracts from two microalgae, Chlorella sorokiniana and Dunaliella bardawil. We show that the extracts contain high levels of phytoene, and find that these phytoene-rich extracts have protective effects similar to pure phytoene. Our findings show that phytoene is a bioactive molecule with positive effects on ageing and longevity. Our work also suggests that phytoene-rich microalgae extracts can utilized to produce foods or supplements that promote healthy ageing and prevent the development of chronic age-related diseases.
Collapse
Affiliation(s)
- Ángeles Morón-Ortiz
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (P.M.-B.); (A.J.M.-M.)
| | | | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (P.M.-B.); (A.J.M.-M.)
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (P.M.-B.); (A.J.M.-M.)
| |
Collapse
|
21
|
Varzaru I, Untea AE, Panaite TD, Turcu R, Saracila M, Vlaicu PA, Oancea AG. Chlorella vulgaris as a Nutraceutical Source for Broilers: Improving Meat Quality and Storage Oxidative Status. Foods 2024; 13:2373. [PMID: 39123564 PMCID: PMC11312065 DOI: 10.3390/foods13152373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to assess the impact of Chlorella vulgaris supplementation in broilers' diet, alone or in combination with vitamin E, on meat quality parameters, nutritional value, and oxidative stability during storage time. An experiment was conducted on 180 COBB 500 broiler chickens (14 days old), assigned into six treatments, following a 2 × 3 factorial arrangement. A corn-soybean meal diet was supplemented with three levels of C. vulgaris (0% in group C1, 1% in E1, 2% in E2), two levels of vitamin E (0% in C1, 250 ppm in C2), and a combination of them (1% C. vulgaris + 250 ppm vitamin (E3), 2% C. vulgaris + 250 ppm vitamin (E4)). Dietary incorporation of C. vulgaris, including those supplemented with vitamin E, resulted in a significant increase in meat protein content. DPA and DHA levels increased by 2.01-fold and 1.60-fold in the 2% C. vulgaris + vitamin E group. The PUFA/SFA ratio was increased across all dietary treatments (p < 0.0001). HPI and h/H registered the highest values as a result of 2% C. vulgaris supplementation, being linked with a positive effect in lowering cholesterol levels. Supplementation with 2% C. vulgaris and vitamin E exhibited a 1.45-fold increase in vitamin E concentration in thigh meat compared to the control group, being the highest level registered in thigh meat in this experiment. Metmyoglobin concentrations registered lower values in the thigh meat of the experimental groups, while deoxymyoglobin increased in the same groups when compared to the control group. The inclusion of C. vulgaris (1% and 2%) in combination with vitamin E (250 mg/kg) in broiler diets exhibited the best prevention of lipid oxidation after 7 days of refrigerated storage, defined by the highest efficiency factors assessed in terms of secondary oxidation products.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Tatiana Dumitra Panaite
- Department of Nutrition Physiology, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania;
| | - Raluca Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Alexandra Gabriela Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| |
Collapse
|
22
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
23
|
Maslennikova D, Knyazeva I, Vershinina O, Titenkov A, Lastochkina O. Contribution of Antioxidant System Components to the Long-Term Physiological and Protective Effect of Salicylic Acid on Wheat under Salinity Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1569. [PMID: 38891377 PMCID: PMC11174383 DOI: 10.3390/plants13111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) plays a crucial role in regulating plant growth and development and mitigating the negative effects of various stresses, including salinity. In this study, the effect of 50 μM SA on the physiological and biochemical parameters of wheat plants under normal and stress conditions was investigated. The results showed that on the 28th day of the growing season, SA pretreatment continued to stimulate the growth of wheat plants. This was evident through an increase in shoot length and leaf area, with the regulation of leaf blade width playing a significant role in this effect. Additionally, SA improved photosynthesis by increasing the content of chlorophyll a (Chl a) and carotenoids (Car), resulting in an increased TAP (total amount of pigments) index in the leaves. Furthermore, SA treatment led to a balanced increase in the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) in the leaves, accompanied by a slight but significant accumulation of ascorbic acid (ASA), hydrogen peroxide (H2O2), proline, and the activation of glutathione reductase (GR) and ascorbate peroxidase (APX). Exposure to salt stress for 28 days resulted in a reduction in length and leaf area, photosynthetic pigments, and GSH and ASA content in wheat leaves. It also led to the accumulation of H2O2 and proline and significant activation of GR and APX. However, SA pretreatment exhibited a long-term growth-stimulating and protective effect under stress conditions. It significantly mitigated the negative impacts of salinity on leaf area, photosynthetic pigments, proline accumulation, lipid peroxidation, and H2O2. Furthermore, SA reduced the salinity-induced depletion of GSH and ASA levels, which was associated with the modulation of GR and APX activities. In small-scale field experiments conducted under natural growing conditions, pre-sowing seed treatment with 50 μM SA improved the main indicators of grain yield and increased the content of essential amino acids in wheat grains. Thus, SA pretreatment can be considered an effective approach for providing prolonged protection to wheat plants under salinity and improving grain yield and quality.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| | - Inna Knyazeva
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Vershinina
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Andrey Titenkov
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Lastochkina
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| |
Collapse
|
24
|
Valdez-Miranda JI, Guitiérrez-López GF, Robles-de la Torre RR, Hernández-Sánchez H, Robles-López MR. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:260-269. [PMID: 38761282 DOI: 10.1007/s11130-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.
Collapse
Affiliation(s)
- Jose Irving Valdez-Miranda
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - Gustavo Fidel Guitiérrez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México.
| | - Raúl René Robles-de la Torre
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| | - Humberto Hernández-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - María Reyna Robles-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| |
Collapse
|
25
|
Suhail N, Aftab T, Alruwaili A, Alruwaili D. Effects of Multivitamin-Mineral Supplementation on Chronic Stress-Induced Oxidative Damage in Swiss Albino Mice. Cureus 2024; 16:e61896. [PMID: 38975563 PMCID: PMC11227871 DOI: 10.7759/cureus.61896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
OBJECTIVE Stress is a hazardous occurrence that causes a variety of physiological and behavioral responses in a person. It increases energy metabolism and enhances oxidative stress, both of which are implicated in the pathophysiology of several diseases. Numerous vitamins and minerals have the ability to modulate oxidative stress. The present investigation aimed to evaluate the effectiveness of a multivitamin-mineral (MM) supplement in addressing oxidative imbalances caused by chronic stress in the plasma, hepatic, and renal tissues of Swiss albino mice. METHODS Thirty healthy male Swiss albino mice were randomly assigned to one of the three groups, with 10 animals each: control, unpredictable chronic stress (UCS), and MM + UCS. The experiment lasted for four weeks, after which all the animals underwent cervical decapitation, and samples of their blood, liver, and kidney were taken for biochemical studies. DNA damage analysis was performed on lymphocytes. RESULTS Exposure to UCS negatively affected all biochemical markers, as indicated by reduced levels of antioxidants (superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and reduced glutathione) in the plasma, liver, and kidney tissues, along with enhanced levels of lipid peroxidation and marker enzymes. MM supplementation normalized the deranged biochemical markers in stress-exposed mice. The results of DNA damage supported the biochemical findings mentioned above. CONCLUSION The findings suggest that MM supplementation could help reduce oxidative disturbances caused by stress in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, SAU
| | - Tehreem Aftab
- Department of Physiology, Faculty of Medicine, Northern Border University, Arar, SAU
| | - Anwar Alruwaili
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, SAU
| | - Daliyah Alruwaili
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, SAU
| |
Collapse
|
26
|
Rocha HR, Pintado ME, Gomes AM, Coelho MC. Carotenoids and Intestinal Harmony: Exploring the Link for Health. Foods 2024; 13:1599. [PMID: 38890828 PMCID: PMC11171705 DOI: 10.3390/foods13111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Carotenoids, prominent lipid-soluble phytochemicals in the human diet, are responsible for vibrant colours in nature and play crucial roles in human health. While they are extensively studied for their antioxidant properties and contributions to vitamin A synthesis, their interactions with the intestinal microbiota (IM) remain poorly understood. In this study, beta (β)-carotene, lutein, lycopene, a mixture of these three pigments, and the alga Osmundea pinnatifida were submitted to simulated gastrointestinal digestion (GID) and evaluated on human faecal samples. The results showed varying effects on IM metabolic dynamics, organic acid production, and microbial composition. Carotenoid exposure influenced glucose metabolism and induced the production of organic acids, notably succinic and acetic acids, compared with the control. Microbial composition analysis revealed shifts in phyla abundance, particularly increased Pseudomonadota. The α-diversity indices demonstrated higher diversity in β-carotene and the pigments' mixture samples, while the β-diversity analysis indicated significant dissimilarity between the control and the carotenoid sample groups. UPLC-qTOF MS analysis suggested dynamic changes in carotenoid compounds during simulated fermentation, with lutein exhibiting distinct mass ion fragmentation patterns. This comprehensive research enhances our understanding of carotenoid-IM interactions, shedding light on potential health implications and the need for tailored interventions for optimal outcomes.
Collapse
Affiliation(s)
| | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (H.R.R.); (M.E.P.); (A.M.G.)
| |
Collapse
|
27
|
Spínola MP, Alfaia CM, Costa MM, Pinto RMA, Lopes PA, Pestana JM, Tavares JC, Mendes AR, Mourato MP, Tavares B, Carvalho DFP, Martins CF, Ferreira JI, Lordelo MM, Prates JAM. Impact of high Spirulina diet, extruded or supplemented with enzymes, on blood cells, systemic metabolites, and hepatic lipid and mineral profiles of broiler chickens. Front Vet Sci 2024; 11:1342310. [PMID: 38596464 PMCID: PMC11002084 DOI: 10.3389/fvets.2024.1342310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
The impact of 15% dietary inclusion of Spirulina (Arthrospira platensis) in broiler chickens was explored, focusing on blood cellular components, systemic metabolites and hepatic lipid and mineral composition. From days 14 to 35 of age, 120 broiler chickens were divided and allocated into four dietary treatments: a standard corn and soybean meal-based diet (control), a 15% Spirulina diet, a 15% extruded Spirulina diet, and a 15% Spirulina diet super-dosed with an enzyme blend (0.20% porcine pancreatin plus 0.01% lysozyme). The haematological analysis revealed no significant deviations (p > 0.05) in blood cell counts across treatments, suggesting that high Spirulina inclusion maintains haematological balance. The systemic metabolic assessment indicated an enhanced antioxidant capacity in birds on Spirulina diets (p < 0.001), pointing toward a potential reduction in oxidative stress. However, the study noted a detrimental impact on growth performance metrics, such as final body weight and feed conversion ratio (both p < 0.001), in the Spirulina-fed treatments, with the super-dosed enzyme blend supplementation failing to alleviate these effects but with extrusion mitigating them. Regarding hepatic composition, birds on extruded Spirulina and enzyme-supplemented diets showed a notable increase in n-3 fatty acids (EPA, DPA, DHA) (p < 0.001), leading to an improved n-6/n-3 PUFA ratio (p < 0.001). Despite this positive shift, a reduction in total hepatic lipids (p = 0.003) was observed without a significant change in cholesterol levels. Our findings underscore the need for further exploration into the optimal inclusion levels, processing methods and potential enzymatic enhancements of Spirulina in broiler diets. Ultimately, this research aims to strike a balance between promoting health benefits and maintaining optimal growth performance in poultry nutrition.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Mónica M. Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Rui M. A. Pinto
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Avenida General Norton de Matos, Algés, Portugal
- iMED.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, Lisbon, Portugal
| | - Paula A. Lopes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - José M. Pestana
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - João C. Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R. Mendes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Miguel P. Mourato
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Beatriz Tavares
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela F. P. Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Cátia F. Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - Joana I. Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Madalena M. Lordelo
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Associated Laboratory TERRA, Lisbon, Portugal
| | - José A. M. Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
28
|
Wijesekara T, Xu B. A critical review on the stability of natural food pigments and stabilization techniques. Food Res Int 2024; 179:114011. [PMID: 38342519 DOI: 10.1016/j.foodres.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
29
|
Tombuloglu G, Aldahnem A, Tombuloglu H, Slimani Y, Akhtar S, Hakeem KR, Almessiere MA, Baykal A, Ercan I, Manikandan A. Uptake and bioaccumulation of iron oxide nanoparticles (Fe 3O 4) in barley (Hordeum vulgare L.): effect of particle-size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22171-22186. [PMID: 38403831 DOI: 10.1007/s11356-024-32378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.
Collapse
Affiliation(s)
- Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Anwar Aldahnem
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Istanbul, 34295, Türkiye
| | - Ismail Ercan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81010, Duzce, Türkiye
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
30
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Yip LX, Wang J, Xue Y, Xing K, Sevencan C, Ariga K, Leong DT. Cell-derived nanomaterials for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315013. [PMID: 38476511 PMCID: PMC10930141 DOI: 10.1080/14686996.2024.2315013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.
Collapse
Affiliation(s)
- Li Xian Yip
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jinping Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
32
|
Zhang Y, Li S, Kong L, Tan L. Developing biopolymer-stabilized emulsions for improved stability and bioaccessibility of lutein. Int J Biol Macromol 2024; 259:129202. [PMID: 38184046 DOI: 10.1016/j.ijbiomac.2024.129202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Lutein is essential for infant visual and cognitive development but has low stability and solubility. This study aimed to enhance the stability and bioaccessibility of lutein using oil-in-water emulsions stabilized with biopolymers. Commercially available octenylsuccinylated (OS) starches, including capsule TA® (CTA), HI-CAP®100 (HC), and Purity Gum® 2000 (PG), along with gum Arabic (GA) variants Ticaloid acacia Max® (TAM), TICAmulsion® 3020 (TM), and pre-hydrate gum Arabic (PHGA), were chosen as emulsifiers. By screening the effect of biopolymer concentration and oil volume fraction (Φ), emulsions stabilized with CTA, HC, or TM at 20% and 30% (w/v) concentration and 70% Φ exhibited a gel-like structure and were selected for further assessments. After a week at 25 °C, emulsions stabilized by CTA and HC showed no significant change in droplet size, while TM emulsion exhibited a 1.58-fold increase. At 45 °C, all emulsions exhibited increase in droplet size. Lutein retention is higher in CTA emulsions at both storage temperatures than free lutein. In vitro bioaccessibility of all lutein emulsions was higher than that of free lutein. These findings highlight the superior stability and bioaccessibility of the lutein emulsion stabilized by OS starch, positioning it as a promising carrier to broaden lutein applications in infant foods.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
33
|
Zhang Y, Kong L, Lawrence JC, Tan L. Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats. Nutrients 2024; 16:422. [PMID: 38337704 PMCID: PMC10857328 DOI: 10.3390/nu16030422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Newborns' eyes and brains are prone to oxidative stress. Lutein has antioxidant properties and is the main component of macular pigment essential for protecting the retina, but has low bioavailability, thereby limiting its potential as a nutritional supplement. Oil-in-water emulsions have been used as lutein delivery systems. In particular, octenylsuccinated (OS) starch is a biopolymer-derived emulsifier safe to use in infant foods, while exhibiting superior emulsifying capacity. This study determined the effects of an OS starch-stabilized lutein emulsion on lutein bioavailability in Sprague-Dawley neonatal rats. In an acute study, 10-day-old pups received a single oral dose of free lutein or lutein emulsion, with subsequent blood sampling over 24 h to analyze pharmacokinetics. The lutein emulsion group had a 2.12- and 1.91-fold higher maximum serum lutein concentration and area under the curve, respectively, compared to the free lutein group. In two daily dosing studies, oral lutein was given from postnatal day 5 to 18. Blood and tissue lutein concentrations were measured. The results indicated that the daily intake of lutein emulsion led to a higher lutein concentration in circulation and key tissues compared to free lutein. The OS starch-stabilized emulsion could be an effective and safe lutein delivery system for newborns.
Collapse
Affiliation(s)
| | | | | | - Libo Tan
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL 35487, USA; (Y.Z.); (L.K.); (J.C.L.)
| |
Collapse
|
34
|
Sun D, Wu S, Li X, Ge B, Zhou C, Yan X, Ruan R, Cheng P. The Structure, Functions and Potential Medicinal Effects of Chlorophylls Derived from Microalgae. Mar Drugs 2024; 22:65. [PMID: 38393036 PMCID: PMC10890356 DOI: 10.3390/md22020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.
Collapse
Affiliation(s)
- Danni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Songlin Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
35
|
Botella MÁ, Hellín P, Hernández V, Dabauza M, Robledo A, Sánchez A, Fenoll J, Flores P. Chemical Composition of Wild Collected and Cultivated Edible Plants ( Sonchus oleraceus L. and Sonchus tenerrimus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:269. [PMID: 38256822 PMCID: PMC10819898 DOI: 10.3390/plants13020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The present work investigates the nutritional and bioactive composition, as well as the organoleptic and sensory properties, of S. oleraceus and S. tenerrimus, two wild plant species traditionally used in the gastronomy of the Mediterranean area. Additionally, the effect of cultivation on leaf composition was assessed to explore their potential for large-scale production and commercialization from the point of view of possible losses or gains in quality. Both species were characterized as a good source of bioactive compounds, such as vitamins, pro-vitamins and carotenoids, with health-promoting and antioxidant properties that are highly appreciated. The sensory profile revealed a good general acceptance of S. oleraceus and S. tenerrimus, indicating that they could be included in the diet. Although the cultivation of S. oleraceus resulted in a decrease in the concentration of phenolic compounds when compared to wild-harvested plants, the opposite occurred for vitamin C. In S. tenerrimus, cultivation also increased the concentration of other compounds with important nutritional and healthy properties, such as sugars, organic acids and β-carotene. The results of the composition, organoleptic and sensory properties of S. oleraceus and S. tenerrimus support the idea of their potential to be used as edible leafy vegetables and as promising assets for functional foods.
Collapse
Affiliation(s)
- M. Ángeles Botella
- Departamento de Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), CIAGRO-Universidad Miguel Hernández, 03312 Orihuela, Alicante, Spain;
| | - Pilar Hellín
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| | - Virginia Hernández
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| | - Mercedes Dabauza
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| | - Antonio Robledo
- ISLAYA Consultoría Ambiental, S.L., c/Ntra. Sra. de Fátima 34, 30151 Santo Ángel, Murcia, Spain;
| | - Alicia Sánchez
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| | - Pilar Flores
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), c/Mayor s/n, La Alberca, 30150 Murcia, Murcia, Spain; (P.H.); (V.H.); (M.D.); (A.S.); (J.F.)
| |
Collapse
|
36
|
Bisconti F, Leoncini M, Gambino S, Vanni N, Carallo S, Russo F, Armenise V, Listorti A, Colella S, Valastro S, Alberti A, Mannino G, Rizzo A. Mimicking Natural Antioxidant Systems for Improved Photostability in Wide-Band-Gap Perovskite Solar Cells. ACS NANO 2024; 18:1573-1581. [PMID: 38157489 DOI: 10.1021/acsnano.3c09437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Fostered by the top power conversion efficiencies (PCEs) of lab-scale devices, industrialization of perovskite solar cells is underway. Nevertheless, the intrinsically poor stability of these materials still represents a major concern. Herein, inspired by Nature, the use of β-carotene in perovskite solar cells is proposed to mimic its role as a protective pigment, as occurs in natural photosynthesis. Laser-mediated photostability (LMPS) assessment, Fourier-transform infrared spectra analysis acquired in attenuate total reflectance (ATR-FTIR), spectroscopy ellipsometry (SE), and time-resolved photoluminescence (TRPL) measurements under stress conditions prove that the inclusion of a thin β-carotene interlayer promotes a high improvement in the photostability of the perovskite films against photooxidation. Importantly, this is accompanied by an improvement of the solar cell PCE that approaches 20% efficiency with no hysteresis, which is among the highest values reported for a mixed halide (I-Br) perovskite with a band gap of 1.74 eV, relevant for coupling with silicon in tandem cells.
Collapse
Affiliation(s)
- Francesco Bisconti
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Mauro Leoncini
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Campus Ecotekne, via Arnesano, 73100 Lecce, Italy
| | - Salvatore Gambino
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Nadir Vanni
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Campus Ecotekne, via Arnesano, 73100 Lecce, Italy
| | - Sonia Carallo
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Russo
- Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Vincenza Armenise
- Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Andrea Listorti
- Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Silvia Colella
- CNR NANOTEC-c/o Dipartimento di Chimica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | | | - Giovanni Mannino
- CNR-IMM, Ottava strada 5 (Zona industriale), 95121 Catania, Italy
| | - Aurora Rizzo
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
37
|
Torbati S, Yekan Motlagh P, Khataee A. Toxicity of ZnFe-SO 4 layered double hydroxide in Tetradesmus obliquus and evaluation of some physiological responses of the microalgae for stress management. Sci Rep 2024; 14:975. [PMID: 38200201 PMCID: PMC10782017 DOI: 10.1038/s41598-023-51042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Layered double hydroxides (LDHs), regarding their physical and structural properties, have different and wide applications industry and their increasing use may raise ecological and human health concerns. However, the potential toxicity mechanisms of LDHs in different organisms are still unclear. In the present work, after synthesizing of ZnFe-SO4 LDH and studying of its characterization by XRD, FT-IR, SEM, EDX-mapping, TEM and Raman, its toxicity in Tetradesmus obliquus was evaluated. According to experimental results, the growth of the algae and content of photosynthetic pigments were significantly decreased after treatment with 100 mg/L of ZnFe-SO4 LDH. The high dose exposure to the LDH also inhibited the activity of SOD and POD enzymes, possibly due to the LDH- catalyzed reactive oxygen species production. In addition, lipid peroxidation and the content of phenolic compounds, as no-enzymatic antioxidants were increased by enhancement of the LDH concentration. The rise of phenol, flavonoids and MDA contents could be regarded as some manifestations and responses to the toxic effects of the contaminant in the algae cells. The results provided a better understanding of the undesirable effects and toxicity of LDHs in aquatic organisms.
Collapse
Affiliation(s)
- Samaneh Torbati
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquacultur Research Institute, Urmia University, Urmia, 5756151818, Iran.
| | - Parisa Yekan Motlagh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
38
|
Fariz-Salinas EA, Limón-Rodríguez B, Beltrán-Rocha JC, Guajardo-Barbosa C, Cantú-Cárdenas ME, Martínez-Ávila GCG, Castillo-Zacarías C, López-Chuken UJ. Effect of light stress on lutein production with associated phosphorus removal from a secondary effluent by the autoflocculating microalgae consortium BR-UANL-01. 3 Biotech 2024; 14:23. [PMID: 38156038 PMCID: PMC10751278 DOI: 10.1007/s13205-023-03810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2023] [Indexed: 12/30/2023] Open
Abstract
Microalgae have become promising microorganisms for generating high-value commercial products and removing pollutants in aquatic systems. This research evaluated the impact of sunlight intensity on intracellular pigment generation and phosphorus removal from secondary effluents by autoflocculating microalgae consortium BR-UANL-01 in photobioreactor culture. Microalgae were grown in a secondary effluent from a wastewater treatment plant, using a combination of low and high light conditions (photon irradiance; 44 μmol m-2 s-1 and ≈ 1270 μmol m-2 s-1, respectively) and 16:8 h light:dark and 24:0 h light:dark (subdivided into 18:6 LED:sunlight) photoperiods. The autoflocculant rate by consortium BR-UANL-01 was not affected by light intensity and achieved 98% in both treatments. Microalgae produced significantly more lutein, (2.91 mg g-1) under low light conditions. Phosphate removal by microalgae resulted above 85% from the secondary effluent, due to the fact that phosphorus is directly associated with metabolic and replication processes and the highest antioxidant activity was obtained in ABTS•+ assay by the biomass under low light condition (51.71% μmol ET g-1). In conclusion, the results showed that the autoflocculating microalgae consortium BR-UANL-01 is capable of synthesizing intracellular lutein, which presents antioxidant activity, using secondary effluents as a growth medium, without losing its autoflocculating activity and assimilating phosphorus.
Collapse
Affiliation(s)
- Edwin Alexis Fariz-Salinas
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Benjamín Limón-Rodríguez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Julio Cesar Beltrán-Rocha
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda, El Canadá, 66050 General Escobedo, Nuevo León Mexico
| | - Claudio Guajardo-Barbosa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, 66450 San Nicolás de los Garza, Nuevo León Mexico
| | - María Elena Cantú-Cárdenas
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| | | | - Carlos Castillo-Zacarías
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Ulrico Javier López-Chuken
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| |
Collapse
|
39
|
Tagauov YD, Abdrassulova ZT, Tulindinova G, Korogod NP, Salybekova NN, Shaimerdenova GZ, Kenzheyeva ZK, Ashirova ZB, Tuleukhanov ST, Ghoneim MMI, Saadeldin WI, Abu-Elsaoud AM. Comparative effects of different supplemented dietary doses of chlorophyll on blood parameters of experimental male rats. BRAZ J BIOL 2023; 83:e274608. [PMID: 38055503 DOI: 10.1590/1519-6984.274608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
Chlorophylls are organic pigments that are a part of our daily diet, particularly in light of the increased popularity of more eco-friendly and healthy practices. Since altering oxidative equilibrium seems to be connected to the emergence of numerous illnesses, the antioxidant capacities of both groups of lipophilic compounds have been studied. The objective was to evaluate adding dietary chlorophyll at two concentrations-30 and 60 mg/ml-would improve blood characteristics in rats. Supplemented dietary chlorophyll showed significantly increased WBCs, RBCs, granulocytes, lymphocytes, HGB, HCT MCHC, and Platelets. it nonsignificant effect on RDW, MPV, and Eosinophil. These findings support a significant rise in critical hematological parameters at two separate time intervals, 14 and 28 days following dietary chlorophyll supplementation, at dosages of 30 and 60 mg/ml. After 30 and 60 mg/ml, platelet count, PCT, lymphocytes, and monocytes substantially (p0.001) rose. In light of these findings, critical hematological indicators markedly rise in response to exogenous dietary chlorophyll. To strengthen blood parameters and enhance blood features and prevent anemia, dietary chlorophyll is advised.
Collapse
Affiliation(s)
- Y D Tagauov
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
| | - Z T Abdrassulova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - G Tulindinova
- Pavlodar Pedagogical University, Higher School of Natural Sciences, Almaty, Kazakhstan
| | - N P Korogod
- Pavlodar Pedagogical University, Higher School of Natural Sciences, Almaty, Kazakhstan
| | - N N Salybekova
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Natural Sciences, Department Biology, Turkistan, Kazakhstan
| | - G Z Shaimerdenova
- Taraz Regional University Named After Mokhamed Khaydar Dulaty, Taraz, Kazakhstan
| | - Z K Kenzheyeva
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - Z B Ashirova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - S T Tuleukhanov
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
| | - M M I Ghoneim
- Sinai University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, El-Arish, Egypt
| | | | - A M Abu-Elsaoud
- Imam Muhammad Ibn Saud Islamic University, College of Science, Department of Biology, Riyadh, Saudi Arabia
- Suez Canal University, Faculty of Science, Department of Botany and Microbiology, Ismailia, Egypt
| |
Collapse
|
40
|
Dujmović M, Opačić N, Radman S, Fabek Uher S, Čoga L, Petek M, Voća S, Šic Žlabur J. How to Increase the Nutritional Quality of Stinging Nettle Through Controlled Plant Nutrition §. Food Technol Biotechnol 2023; 61:451-464. [PMID: 38205052 PMCID: PMC10775789 DOI: 10.17113/ftb.61.04.23.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/28/2023] [Indexed: 01/12/2024] Open
Abstract
Research background As food production faces major challenges, modern agricultural practices are increasingly focused on conserving resources, reducing negative environmental impacts and sustainably producing food with a high content of health-promoting phytochemicals. During production, many factors can affect the quality and chemical composition of a final food product. Proper selection of cultivating conditions, especially a balanced nutrition, can significantly increase nutritional value and result in foods with strong biological and functional properties. Stinging nettle is a rich source of minerals, vitamins, pigments, phenols and other bioactive compounds and can be consumed as a green leafy vegetable with beneficial effects on human health. Therefore, the aim of this study is to determine the nutritional quality and antioxidant capacity of stinging nettle leaves under the influence of different nutrient solution (NS) treatments and three harvest cycles. Experimental approach The experiment was conducted in a floating hydroponic system in which treatments with different nutrient solutions were applied and three harvest cycles were carried out. After each harvest, the following treatments were applied: treatment 1 - depletion of nutrient solution by adding water, treatment 2 - supplementation of nutrient solution by adding initial nutrient solution and treatment 3 - correction of nutrient solution by adding nutrients. Among the bioactive compounds, minerals, ascorbic acid, phenols and photosynthetic pigments content, as well as antioxidant capacity were analysed spectrophotometrically, while individual phenols were determined by liquid chromatography. Results and conclusions Different nutrition solution treatments and the number of harvest cycles had a significant effect on the content of the analysed bioactive compounds. The highest mass fraction (on fresh mass basis) of total phenols expressed as gallic acid equivalents (377.04 mg/100 g), total flavonoids expressed as catechol equivalents (279.54 mg/100 g), ascorbic acid (112.37 mg/100 g) and pigments (total chlorophylls 1.84, and total carotenoids 0.36 mg/g) as well as the highest antioxidant capacity expressed as Trolox equivalents (35.47 µmol/g) were recorded in the samples supplemented with nutrient solution (treatment NS2) and analysed after the third harvest. Novelty and scientific contribution This is the first time that stinging nettle leaves have been produced in a floating hydroponic system by controlled plant nutrition. We have set this type of nutritional manipulation with multiple harvest cycles as an innovative technique for the production of novel food with improved nutritional value that can be consumed as green leafy vegetables.
Collapse
Affiliation(s)
- Mia Dujmović
- University of Zagreb Faculty of Agriculture, Department of Agricultural Technology, Storage and Transport, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- University of Zagreb Faculty of Agriculture, Department of Vegetable Crops, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- University of Zagreb Faculty of Agriculture, Department of Vegetable Crops, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Fabek Uher
- University of Zagreb Faculty of Agriculture, Department of Vegetable Crops, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Lepomir Čoga
- University of Zagreb Faculty of Agriculture, Department of Plant Nutrition, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Marko Petek
- University of Zagreb Faculty of Agriculture, Department of Plant Nutrition, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- University of Zagreb Faculty of Agriculture, Department of Agricultural Technology, Storage and Transport, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- University of Zagreb Faculty of Agriculture, Department of Agricultural Technology, Storage and Transport, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Panova GG, Krasnopeeva EL, Laishevkina SG, Kuleshova TE, Udalova OR, Khomyakov YV, Mirskaya GV, Vertebny VE, Zhuravleva AS, Shevchenko NN, Yakimansky AV. Polymer Gel Substrate: Synthesis and Application in the Intensive Light Artificial Culture of Agricultural Plants. Gels 2023; 9:937. [PMID: 38131923 PMCID: PMC10743194 DOI: 10.3390/gels9120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work is devoted to the description of the synthesis of hydrogels in the process of cryotropic gel formation based on copolymerization of synthesized potassium 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate (SPMA-co-HEMA) and assessing the potential possibility of their use as substrates for growing plants in intensive light culture in a greenhouse. Gel substrates based on the SPMA-co-HEMA were created in two compositions, differing from each other in the presence of macro- and microelements, and their effects were studied on the plants' physiological state (content of chlorophylls a and b, activity of catalase and peroxidase enzymes, intensity of lipid peroxidation, elemental compositions) at the vegetative period of their development and on the plants' growth, productivity and quality of plant production at the final stages of development. Experiments were carried out under controlled microclimate conditions. Modern and standard generally accepted methods of gels were employed (ATR-FTIR and 13C NMR spectral studies, scanning electron microscopy, measurement of specific surface area and pore volume), as well as the methods of the physiological and chemical analysis of plants. The study demonstrated the swelling ability of the created gel substrates. Hydrogels' structure, their specific surface area, porosity, and pore volume were investigated. Using the example of representatives of leaf, fruit and root vegetable crops, the high biological activity of gel substrates was revealed throughout the vegetation period. Species specificity in the reaction of plants to the presence of gel substrates in the root-inhabited environment was revealed. Lettuce, tomato and cucumber plants were more responsive to the effect of the gel substrate, and radish plants were less responsive. At the same time, more pronounced positive changes in plant growth, quality and productivity were observed in cucumber and lettuce in the variant of gel substrates with macro- and microelements and in tomato plants in both variants of gel substrates. Further research into the mechanisms of the influence of gel substrates on plants, as well as the synthesis of new gel substrates with more pronounced properties to sorb and retain moisture is promising.
Collapse
Affiliation(s)
- Gayane G. Panova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Svetlana G. Laishevkina
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Tatiana E. Kuleshova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Olga R. Udalova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Yuriy V. Khomyakov
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Galina V. Mirskaya
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Vitaly E. Vertebny
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Anna S. Zhuravleva
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Natalia N. Shevchenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| |
Collapse
|
42
|
Stoica R, Ganciarov M, Constantinescu-Aruxandei D, Capră L, Șuică-Bunghez IR, Senin RM, Pricope GD, Ivan GR, Călin C, Oancea F. Sustainable Recovery of Anthocyanins and Other Polyphenols from Red Cabbage Byproducts. Foods 2023; 12:4157. [PMID: 38002214 PMCID: PMC10669996 DOI: 10.3390/foods12224157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.
Collapse
Affiliation(s)
- Rusăndica Stoica
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Mihaela Ganciarov
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Diana Constantinescu-Aruxandei
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Luiza Capră
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Ioana-Raluca Șuică-Bunghez
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Raluca-Mădălina Senin
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgiana Diana Pricope
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgeta-Ramona Ivan
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Costin Călin
- Iprint3D Design & Consulting Srl, Str. George Enescu No.5, Sector 3, 030167 Bucharest, Romania;
| | - Florin Oancea
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
43
|
Wu T, Li M, Li T, Zhao Y, Yuan J, Zhao Y, Tian X, Kong R, Zhao Y, Kong H, Zhang Y, Qu H. Natural biomass-derived carbon dots as a potent solubilizer with high biocompatibility and enhanced antioxidant activity. Front Mol Biosci 2023; 10:1284599. [PMID: 38028549 PMCID: PMC10652762 DOI: 10.3389/fmolb.2023.1284599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous natural compounds exhibit low bioavailability due to suboptimal water solubility. The solubilization methods of the modern pharmaceutical industry in contemporary pharmaceutical research are restricted by low efficiency, sophisticated technological requirements, and latent adverse effects. There is a pressing need to elucidate and implement a novel solubilizer to ameliorate these challenges. This study identified natural biomass-derived carbon dots as a promising candidate. We report on natural fluorescent carbon dots derived from Aurantia Fructus Immatures (AFI-CDs), which have exhibited a remarkable solubilization effect, augmenting naringin (NA) solubility by a factor of 216.72. Subsequent analyses suggest that the solubilization mechanism is potentially contingent upon the oration of a nanostructured complex (NA-AFI-CDs) between AFI-CDs and NA, mediated by intermolecular non-covalent bonds. Concomitantly, the synthesized NA-AFI-CDs demonstrated high biocompatibility, exceptional stability, and dispersion. In addition, NA-AFI-CDs manifested superior free radical scavenging capacity. This research contributes foundational insights into the solubilization mechanism of naringin-utilizing AFI-CDs and proffers a novel strategy that circumvents the challenges associated with the low aqueous solubility of water-insoluble drugs in the field of modern pharmaceutical science.
Collapse
Affiliation(s)
- Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingrong Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Zamudio-Chávez L, Suesca E, López GD, Carazzone C, Manrique-Moreno M, Leidy C. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. Int J Mol Sci 2023; 24:14906. [PMID: 37834354 PMCID: PMC10573160 DOI: 10.3390/ijms241914906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococcus aureus membranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of S. aureus under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS. At oxygen-restrictive levels, the staphyloxanthin precursor 4,4-diapophytofluene accumulates, indicating that the dehydrogenation reaction catalyzed by 4,4'-diapophytoene desaturases (CrtN) is inhibited. An increase in lysyl-phosphatidylglycerol is observed under oxygen-restrictive conditions in planktonic cells, and high levels of cardiolipin are detected in biofilms compared to planktonic cells. Under oxygen-restriction conditions, the biophysical parameters of S. aureus membranes show an increase in lipid headgroup spacing, as measured with Laurdan GP, and decreased bilayer core order, as measured with DPH anisotropy. An increase in the liquid-crystalline to gel phase melting temperature, as measured with FTIR, is also observed. S. aureus membranes are therefore less condensed under oxygen-restriction conditions at 37 °C. However, the lack of carotenoids leads to a highly ordered gel phase at low temperatures, around 15 °C. Carotenoids are therefore likely to be low in S. aureus found in tissues with low oxygen levels, such as abscesses, leading to altered membrane biophysical properties.
Collapse
Affiliation(s)
- Laura Zamudio-Chávez
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Gerson-Dirceu López
- PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá 111211, Colombia;
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111211, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| |
Collapse
|
45
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
46
|
Sun C, Li H, Hui X, Ma Y, Yin Z, Chen Q, Chen C, Wu H, Wu X. Protective Effects of Mulberry ( Morus atropurpurea Roxb.) Leaf Protein Hydrolysates and Their In Vitro Gastrointestinal Digests on AAPH-Induced Oxidative Stress in Human Erythrocytes. Foods 2023; 12:3468. [PMID: 37761177 PMCID: PMC10528887 DOI: 10.3390/foods12183468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mulberry leaf protein hydrolysates (HMP), and their in vitro gastrointestinal digests (GHMP), have shown favorable chemical antioxidant activities. The aim of this study is to investigate the potential protective effects of HMP and GHMP against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in human erythrocytes. The inhibition rate of hemolysis, the reactive oxygen species (ROS) level, the concentration of malondialdehyde (MDA), the reduced glutathione (GSH) and oxidized glutathione (GSSH), and the enzymatic activities of total superoxide dismutase (SOD), catalase (CAT), and cellular glutathione peroxidase (GSH-Px) were evaluated as the biomarkers of oxidative status in human erythrocytes. The results showed that HMP and GHMP effectively inhibit the occurrence of erythrocyte hemolysis in the range of 0.025-1.0 mg/mL, and the inhibition rates of HMP and GHMP reached 92% and 90% at concentrations of 0.4 mg/mL and 1.0 mg/mL, respectively. HMP and GHMP reduced the AAPH-induced oxidative hemolysis damage via suppressing the generation of ROS by inhibiting the formation of MDA, maintaining the balance of GSH/GSSG, and preserving the activities of the antioxidant enzymes, including SOD, GSH-Px, and CAT. Our findings revealed that both HMP and GHMP could be used as natural antioxidants, and have the potential for further application in the development of functional foods.
Collapse
Affiliation(s)
- Chongzhen Sun
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Hongyan Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Xiaodan Hui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Yurong Ma
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Zhina Yin
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Cong Chen
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China;
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China;
| |
Collapse
|
47
|
Jurja S, Negreanu-Pirjol T, Vasile M, Hincu MM, Coviltir V, Negreanu-Pirjol BS. Xanthophyll pigments dietary supplements administration and retinal health in the context of increasing life expectancy trend. Front Nutr 2023; 10:1226686. [PMID: 37637949 PMCID: PMC10450221 DOI: 10.3389/fnut.2023.1226686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Medicine faces nowadays the trend of increasing life expectancy of human population, with the resulting increase of degenerative age related diseases prevalence, combined with the risks of less tempered sun radiations environment exposure. Under these circumstances, our work pointed out on evaluating the effect of some xanthophyll pigments dietary supplements, actually widely recommended, for prevention of retinal degenerative damages and for slowing down the progression of such age related changes if they have already occurred. These dietary supplements are already well known for their total antioxidant activity, proven by photochemiluminescence method using Total Antioxidant Capacity in Lipid soluble-substances procedure. Materials and methods The study recruited a number of 120 subjects equally divided on genders. The lot included a first group of 60 patients with comparable ages (all of them over 50 years and divided in 2 segments of age: 50-60 and over 60) and suffering from comparable retinal age-related degenerative abnormalities (mild/medium severity age-related macular degeneration according to Wisconsin Age-Related Maculopathy Grading System), and a second group, considered control, including a similar number of healthy, normal retina subjects belonging to same age and gender categories. There were evaluated at baseline the eye medical status and the retinal risk by specific methods: complete eye check-up, Amsler grid, specific standardized questionnaires focused on visual function and its impact on the quality of current life. Both groups, patients and control, received similar dosages of xanthophyll pigments dietary supplements including lutein and zeaxanthin during 18 months after baseline; at the end of this supplementation period a new evaluation was conducted. In the second part of the research all subjects involved received a new dietary supplement in which the same xanthophylls were enriched with C and E vitamins and oligo-elements Zinc and Copper. At the end of three years duration supplementation, the subjects were reevaluated and the paper presents the conclusions on the matter, pointing on the impact of xanthophyll supplements on visual health. Results Correlation tests were applied to the complete set of data. Correlation tests have values between -1 and +1. The value -1 represents the negative correlation (reverse proportionality) meanwhile the value +1 represents the positive correlation (direct proportionality). The charts show the curves that are fitting experimental data. The dependence is linear in nature, and the value R2, as it approaches more the value 1, represents a better match with the experimental data (the data are in a percentage of approximately 99% on these straight lines of type y = ax + b). In the charts, there were noted the average values of the scores for healthy control patients with "Control", and the average values of the scores for the patients with existing age related degenerative retinal pathology at baseline with "Patients". Discussion The retinal function and the impact of visual condition on health were both evaluated at baseline, 18 months and 36 months after baseline, by visual acuity, ophthalmoscopy fundus examination, Amsler test and by asking the subjects to answer the visual function questionnaires: EQ-5D, NEI-VFQ-25, as measures of health status quality and of the influence on welfare. The study revealed that under supplementation both control healthy subjects and patients with known degenerative retinal pathology included in the 50-60 years of age group evolved almost the same way, leading to the conclusion that administered xanthophyll pigments-based supplements, simple or enriched, managed to slow down the progression of abnormal degenerative vision loss to a rate comparable to physiological aging-related vision loss. It was also observed that intake of xanthophyll pigments dietary supplements preserved the general health condition and maintained relatively constant vision on the entire 36th months follow-up research duration in patients presented with existing age related degenerative retinal pathology at baseline. For healthy subjects, evaluation showed an improvement in results after dietary supplementation, with maintenance of constant vision and a significantly increase of general condition, in a positive sense. For subjects over the age of 60 dietary supplements intake was even more effective compared to younger group in providing better control of degenerative processes.
Collapse
Affiliation(s)
- Sanda Jurja
- Department of Ophthalmology, Faculty of Medicine, “Ovidius” University, Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Ovidius” University, Constanta, Romania
| | - Monica Vasile
- Department of Preclinical Sciences, Faculty of Medicine, “Ovidius” University, Constanta, Romania
| | | | - Valeria Coviltir
- Department of Ophthalmology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
48
|
Bouchab H, Essadek S, El Kamouni S, Moustaid K, Essamadi A, Andreoletti P, Cherkaoui-Malki M, El Kebbaj R, Nasser B. Antioxidant Effects of Argan Oil and Olive Oil against Iron-Induced Oxidative Stress: In Vivo and In Vitro Approaches. Molecules 2023; 28:5924. [PMID: 37570894 PMCID: PMC10420636 DOI: 10.3390/molecules28155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Soukaina Essadek
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Soufiane El Kamouni
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco;
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| |
Collapse
|
49
|
Gosselin-Monplaisir T, Dagkesamanskaya A, Rigal M, Floch A, Furger C, Martin-Yken H. A New Role for Yeast Cells in Health and Nutrition: Antioxidant Power Assessment. Int J Mol Sci 2023; 24:11800. [PMID: 37511557 PMCID: PMC10380906 DOI: 10.3390/ijms241411800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
As the use of antioxidant compounds in the domains of health, nutrition and well-being is exponentially rising, there is an urgent need to quantify antioxidant power quickly and easily, ideally within living cells. We developed an Anti Oxidant Power in Yeast (AOPY) assay which allows for the quantitative measurement of the Reactive Oxygen Species (ROS) and free-radical scavenging effects of various molecules in a high-throughput compatible format. Key parameters for Saccharomyces cerevisiae were investigated, and the optimal values were determined for each of them. The cell density in the reaction mixture was fixed at 0.6; the concentration of the fluorescent biosensor (TO) was found to be optimal at 64 µM, and the strongest response was observed for exponentially growing cells. Our optimized procedure allows accurate quantification of the antioxidant effect in yeast of well-known antioxidant molecules: resveratrol, epigallocatechin gallate, quercetin and astaxanthin added in the culture medium. Moreover, using a genetically engineered carotenoid-producing yeast strain, we realized the proof of concept of the usefulness of this new assay to measure the amount of β-carotene directly inside living cells, without the need for cell lysis and purification.
Collapse
Affiliation(s)
- Thomas Gosselin-Monplaisir
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
- Anti Oxidant Power AOP, 31000 Toulouse, France
| | | | | | | | | | | |
Collapse
|
50
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Biochemical Compounds, Antioxidant Capacity, Leaf Color Profile and Yield of Basil (Ocimum sp.) Microgreens in Floating System. PLANTS (BASEL, SWITZERLAND) 2023; 12:2652. [PMID: 37514265 PMCID: PMC10386441 DOI: 10.3390/plants12142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Basil is a great source of phytochemicals such as polyphenols, vitamin C, anthocyanin, and flavonoids. In this work, the biochemical compounds, antioxidant capacity, leaf color profile, and yield of 21 cultivars and genotypes of basil microgreen were investigated. Results showed that the highest antioxidant potential composite index (APCI) was measured in Persian Ablagh genotype (70.30). Twenty-one basil genotypes were classified into four clusters, including cluster 1 (lowest antioxidant capacity and total phenolic compounds), cluster 2 (lowest anthocyanin, vitamin C and APCI index), cluster 3 (highest vitamin C, total phenolic compounds, antioxidant capacity and APCI index), and cluster 4 (highest levels of anthocyanin). The principal components analysis (PCA) of basil genotypes showed diversity in terms of phytochemical components, and F1, F2, F3, and F4 explained the variation at the rate of 78.12%. The average annual temperature of the origin of basil seeds plays an important role in the synthesis of antioxidant content. Most of the seeds with moderate origin had a higher APCI index. The Persian Ablagh genotype, Violeto, and Kapoor cultivars can be recommended, according to their APCI index and yield. These cultivars can be used individually or in different ratios to produce different biochemical substances with different concentrations for various purposes.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Mohammad Mahmoudi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|