1
|
Kong D, Xu L, Dai M, Ye Z, Ma B, Tan X. Deciphering the functional assembly of microbial communities driven by heavy metals in the tidal soils of Hangzhou Bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124671. [PMID: 39116926 DOI: 10.1016/j.envpol.2024.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Understanding the interaction between heavy metals and soil microbiomes is essential for maintaining ecosystem health and functionality in the face of persistent human-induced challenges. This study investigated the complex relationships between heavy metal contamination and the functional characteristics of soil microbial communities in the tidal soils of Hangzhou Bay, a region experiencing substantial environmental pressure due to its proximity to densely populated and industrialized regions. The north-shore sampling site showed moderate contaminations (mg/kg) of total arsenic (16.61 ± 1.13), cadmium (0.3 ± 0.05), copper (31.28 ± 1.23), nickel (37.44 ± 2.74), lead (34.29 ± 5.99), and zinc (120.8 ± 5.96), which are 1.29-2.94 times higher than the geochemical background values in Hangzhou Bay and adjacent areas. In contrast, the south-shore sampling site showed slightly higher levels of total arsenic (13.76 ± 1.35) and cadmium (0.13 ± 0.02) than the background values. Utilizing metagenomic sequencing, we decoded microbial functional genes essential for nitrogen, phosphorus, sulfur, and methane biogeochemical cycles. Although soil available nickel content was relatively low at 1 mg/kg, it exhibited strong associations with diverse microbial genes and biogeochemical pathways. Four key genes-hxlB, glpX, opd, and phny-emerged as pivotal players in the interactions with available nickel, suggesting the adaptability of microbial metabolic responses to heavy metal. Additionally, microbial genera such as Gemmatimonas and Ilumatobacter, which harbored diverse functional genes, demonstrated potential interactions with soil nickel. These findings highlight the importance of understanding heavy metal-soil microbiome dynamics for effective environmental management strategies in the tidal soils of Hangzhou Bay, with the goal of preserving ecosystem health and functionality amidst ongoing anthropogenic challenges.
Collapse
Affiliation(s)
- Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Nantong Cultivated Land Quality Protection Station, Nantong, Jiangsu, 226001, China
| | - Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Vinayagam Y, Rajeswari VD. Genetic Adaptations and Mechanistic Insights Into Bacterial Bioremediation in Ecosystems. J Basic Microbiol 2024; 64:e2400387. [PMID: 39245917 DOI: 10.1002/jobm.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Metal pollution poses significant threats to the ecosystem and human health, demanding effective remediation strategies. Bioremediation, which leverages the unique metal-resistant genes found in bacteria, offers a cost-effective and efficient solution to heavy metal contamination. Genes such as Cad, Chr, Cop, and others provide pathways to improve the detoxification of the ecosystem. Through multiple techniques, genetic engineering makes bacterial genomes more capable of improving metal detoxification; nonetheless, there are still unanswered questions regarding the nature of new metal-resistant genes. This article examines bacteria's complex processes to detoxify toxic metals, including biosorption, bioaccumulation, bio-precipitation, and bioleaching. It also explores essential genes, proteins, signaling mechanisms, and bacterial biomarkers involved in breaking toxic metals.
Collapse
Affiliation(s)
- Yamini Vinayagam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vijayarangan Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
4
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
5
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
6
|
Wang H, Wu R, Zheng H, Gong Y, Yang Y, Zhu Y, Liu L, Cai M, Du S. Enhanced mobilization of soil heavy metals by the enantioselective herbicide R-napropamide compared to its S-isomer: Analyses of abiotic and biotic drivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135954. [PMID: 39353274 DOI: 10.1016/j.jhazmat.2024.135954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chiral herbicides applied to agricultural soils are typically mildly to moderately contaminated with heavy metals (HMs), necessitating a thorough investigation into their effects on soil HMs availability. This study evaluated the effect of the chiral herbicide napropamide (NAP) on HMs bioavailability in different soil types, including weakly alkaline clay in Northeast China, neutral sandy loam in Zhejiang, and weakly acidic clay loam in Sichuan, China. The results demonstrate significant differences in the availability of HMs (Cd, Pb, Zn, and Ni) in the soil following enantiomer treatments, with variation ranges of 4.57-45.67 %, 5.03-96.21 %, 2.92-52.30 %, and 10.57-29.79 %, respectively. Overall, R-NAP enhanced the bioavailability of HMs more effectively than S-NAP, specifically by significantly activating available iron 3.33-191.97 % and markedly affecting soil pH and cation exchange capacity. Additionally, R-NAP influenced biotic processes by enriching dominant microbial communities, such as Chitinophaga, Niabella, and Promicromonospora, and by constructing more stable microbial networks. Notably, bioavailable Fe plays a dual regulatory role, affecting both the abiotic and biotic processes affected by soil NAP. In summary, although R-NAP is commonly used in agriculture, it poses a greater risk of HMs contamination in crops, highlighting the need for careful application and management. This study provides a fundamental theoretical basis for the judicious use of chiral herbicides in agricultural soils with mild-to-moderate HMs contamination.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong Yang
- Zhejiang Zhongyi Testing Research Institute Co. Ltd., Ningbo 315040, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
8
|
Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Mohd Hamzah MAA, Zakaria ZA. Removal of Heavy Metals by Pseudomonas sp. - Model Fitting and Interpretation. Curr Microbiol 2024; 81:312. [PMID: 39155344 DOI: 10.1007/s00284-024-03832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Industrial and urban modernization processes generate significant amounts of heavy metal wastewater, which brings great harm to human production and health. The biotechnology developed in recent years has gained increasing attention in the field of wastewater treatment due to its repeatable regeneration and lack of secondary pollutants. Pseudomonas, being among the several bacterial biosorbents, possesses notable benefits in the removal of heavy metals. These advantages encompass its extensive adsorption capacity, broad adaptability, capacity for biotransformation, potential for genetic engineering transformation, cost-effectiveness, and environmentally sustainable nature. The process of bacterial adsorption is a complex phenomenon involving several physical and chemical processes, including adsorption, ion exchange, and surface and contact phenomena. A comprehensive investigation of parameters is necessary in order to develop a mathematical model that effectively measures metal ion recovery and process performance. The aim of this study was to explore the latest advancements in high-tolerance Pseudomonas isolated from natural environments and evaluate its potential as a biological adsorbent. The study investigated the adsorption process of this bacterium, examining key factors such as strain type, contact time, initial metal concentration, and pH that influenced its effectiveness. By utilizing dynamic mathematical models, the research summarized the biosorption process, including adsorption kinetics, equilibrium, and thermodynamics. The findings indicated that Pseudomonas can effectively purify water contaminated with heavy metals and future research will aim to enhance its adsorption performance and expand its application scope for broader environmental purification purposes.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Nurul Huda Baharuddin
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Siti Aminah Setu
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia
| | - Zainul Akmar Zakaria
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor, Bahru, Johor, Malaysia.
| |
Collapse
|
9
|
Jain R, Majumdar D, Chatterjee S. Antibiotic Indexing and Heavy Metal Reduction Potential of Four Multi-metal Tolerant Bacterial Strains in Real-Time Sanitary Landfill Leachate Matrix. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:3. [PMID: 38965095 DOI: 10.1007/s00128-024-03903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Sanitary leachate from urban landfills is known to be contaminated with multi-metals and residual antibiotics. Current research edges on exploring the multi-metal and antibiotic sensitivity profile of four indigenous strains, "Brevibacillus spp. Leclercia spp. Pseudescherichia spp., and Brucella spp." isolated from the leachate of a sanitary landfill in a tropical region. Indigenous isolates were observed to be antibiotic-resistant and have high tolerance against eight of the ten tested metals except Cu & Co. It was observed that interaction with multi-metals in laboratory conditions significantly altered the cell morphology of bacterial strains, as depicted by Scanning Electron Microscope. Metal adsorption onto the microbial surface was deciphered through Electron Dispersive Spectrometer analysis and elemental mapping. Application of isolated strains into real-time leachate matrix exhibits a complete reduction of Ag and Zn and for other tested metals. Their response to these toxicants may facilitate their application in bioremediation-based treatment technologies for urban landfill leachate.
Collapse
Affiliation(s)
- Rachna Jain
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), i-8, Sector-C, EKDP, E.M. Bypass, Kolkata, 700107, India.
| | - Dipanjali Majumdar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), i-8, Sector-C, EKDP, E.M. Bypass, Kolkata, 700107, India
| | - Sandipan Chatterjee
- RCED-Kolkata, CSIR-Central Leather Research Institute, 3/1C, Matheswartala Road, Kolkata, 700046, India
| |
Collapse
|
10
|
Li J, Xu X, Song L, Na M, Xu S, Zhang J, Huang Y, Li X, Zheng X, Zhou J. Investigating the Mechanism of Cadmium-Tolerant Bacterium Cellulosimicrobium and Ryegrass Combined Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:1657. [PMID: 38931089 PMCID: PMC11207253 DOI: 10.3390/plants13121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd) pollution has been rapidly increasing due to the global rise in industries. Cd not only harms the ecological environment but also endangers human health through the food chain and drinking water. Therefore, the remediation of Cd-polluted soil is an imminent issue. In this work, ryegrass and a strain of Cd-tolerant bacterium were used to investigate the impact of inoculated bacteria on the physiology and biochemistry of ryegrass and the Cd enrichment of ryegrass in soil contaminated with different concentrations of Cd (4 and 20 mg/kg). The results showed that chlorophyll content increased by 24.7% and 41.0%, while peroxidase activity decreased by 56.7% and 3.9%. In addition, ascorbic acid content increased by 16.7% and 6.3%, whereas glutathione content decreased by 54.2% and 6.9%. The total Cd concentration in ryegrass increased by 21.5% and 10.3%, and the soil's residual Cd decreased by 86.0% and 44.1%. Thus, the inoculation of Cd-tolerant bacteria can improve the antioxidant stress ability of ryegrass in Cd-contaminated soil and change the soil's Cd form. As a result, the Cd enrichment in under-ground and above-ground parts of ryegrass, as well as the biomass of ryegrass, is increased, and the ability of ryegrass to remediate Cd-contaminated soil is significantly improved.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Xiaoyang Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Lanping Song
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Meng Na
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Shangqi Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Jie Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Yongjie Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihai Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| |
Collapse
|
11
|
Arenas S, Rivera N, Méndez Casallas FJ, Galvis B. Assessing Diesel Tolerance of Chromobacterium violaceum: Insights from Growth Kinetics, Substrate Utilization, and Implications for Microbial Adaptation. ACS OMEGA 2024; 9:23741-23752. [PMID: 38854507 PMCID: PMC11154896 DOI: 10.1021/acsomega.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to determine the tolerance of Chromobacterium violaceum ATCC 12472 to diesel. The growth of the strain was evaluated through exposure to various diesel concentrations (1, 2.5, 5, 7.5, and 10% v/v), with continuous monitoring of growth via optical density measurements until the death phase was reached. Employing a logistic model, we analyzed the growth kinetics of C. violaceum and compared them with five other models to comprehend substrate utilization dynamics. Our results indicate that optimal bacterial growth occurred at 2.5% (v/v) or 18,125 mg/L diesel, while both higher and lower concentrations manifested inhibitory and increasingly stressful effects. The Aiba model emerged as the most fitting representation of substrate utilization by C. violaceum. In addition, our findings underscore the remarkable diesel tolerance of C. violaceum ATCC 12472, despite the inherently stressful nature of the medium. This study contributes to the understanding of microbial responses to environmental stressors and highlights the pivotal role of the substrate concentration in influencing microbial growth. These insights have implications for bioremediation strategies and enhance our understanding of bacterial ecological resilience in the presence of hydrocarbon pollutants.
Collapse
Affiliation(s)
- Sebastián Arenas
- Programa
de Ingeniería ambiental y Sanitaria, Universidad de La Salle, Bogotá 110231, Colombia
| | - Nathaly Rivera
- Programa
de Ingeniería ambiental y Sanitaria, Universidad de La Salle, Bogotá 110231, Colombia
| | | | - Boris Galvis
- Escuela
de Ingeniería de los Recursos Naturales y del Ambiente—EIDENAR, Universidad del Valle, Cali 760042, Colombia
| |
Collapse
|
12
|
Sharma P, Chandra R. Phytoremediation mechanism and role of plant growth promoting rhizobacteria in weed plants for eco-restoration of hazardous industrial waste polluted site: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42495-42520. [PMID: 38872037 DOI: 10.1007/s11356-024-33910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Plants have numerous strategies for phytoremediation depending upon the characteristic of pollutants. Plant growth promoting rhizobacteria (PGPR) are essential to the process of phytoremediation and play a key part in it. The mechanism of PGPR for phytoremediation is mediated by two methods; under the direct method there is phytohormone production, nitrogen fixation, nutrient mineral solubilization, and siderophore production while the indirect method includes quorum quenching, antibiosis, production of lytic enzyme, biofilm formation, and hydrogen cyanide production. Due to their economic and environmental viability, most researchers have recently concentrated on the potential of weed plants for phytoremediation. Although weed plants are considered unwanted and noxious, they have a high growth rate and adaptability which opens a high scope for its role in phytoremediation of contaminated site. The interaction of plant with rhizobacteria starts from root exudates containing various organic acids and peptides which act as nutrients essential for colonization and siderophore production by the rhizospheric bacteria. The rhizobacteria, while colonizing, tend to promote plant growth and health either directly by providing phytohormones and minerals or indirectly by suppressing growth of possible phytopathogens. Recently, several weed plants have been reported for phytoextraction of heavy metals (Ni, Pb, Zn, Hg, Cd, Cu, As, Fe, and Cr) contaminants from various agro-based industries. These potential native weed plants have high prospect of eco-restoration of polluted site with complex organo-metallic waste for sustainable development.
Collapse
Affiliation(s)
- Pratishtha Sharma
- Department of Environmental Microbiology, School of Earth and Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
13
|
Gogoi B, Acharjee SA, Bharali P, Sorhie V, Walling B, Alemtoshi. A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. ENVIRONMENTAL RESEARCH 2024; 248:118280. [PMID: 38272294 DOI: 10.1016/j.envres.2024.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Heavy metals (HMs) have become a significant concern in the current era, with deleterious effects on diverse living organisms when exposed beyond threshold concentrations. Both nature and human beings have been constantly casting out HMs into environmental matrices through various activities. Innumerable cases of threatened diseases such as cancer, respiratory ailments, reproductive defects, skin diseases, and several others have been a cause of significant concern for humans as the number of instances has been increasing with each decade. HMs migrates via several pathways to infiltrate biological organisms and amass within them. Even though numerous treatment approaches are available for remediating HM pollution, however, they are expensive, along with other setbacks. Due to such constraints, combating HM contamination requires environmentally conscious strategies like bioremediation, which employs an array of biological systems to remove HMs from the environment. Nonetheless, to address the current global HM pollution situation, it is critical to comprehend not only how these hazardous HMs cause toxicity in various living organisms but also the knowledge gaps that currently exist concerning the subject of HM ecotoxicity. In the present investigation, data was extracted from Google Scholar using software program called Harzing's Publish or Perish. The collected information has been subsequently displayed as a network file using the VOSViewer software tool. Thus, the current review presents a significant insight with the inclusion of a readily accessible bibliometric analysis to comprehend the present status of HMs research, global research trends, existing knowledge discrepancies, and research challenges. Further, it also provides an in-depth review of HMs ecotoxicity, with a focus on arsenic (As), cadmium (Cd), and lead (Pb). Thus, as indicated by the bibliometric study, the present review will assist future investigators studying HMs ecotoxicity by providing baseline data concerning a wide range of living organisms and by addressing research gaps.
Collapse
Affiliation(s)
- Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India.
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| |
Collapse
|
14
|
Agrawal K, Ruhil T, Gupta VK, Verma P. Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future. Crit Rev Biotechnol 2024; 44:429-447. [PMID: 36851851 DOI: 10.1080/07388551.2023.2170862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward "sustainable and greener future."
Collapse
Affiliation(s)
- Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Tannu Ruhil
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, SRUC, Edinburgh, UK
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
15
|
Wu H, Wang R, Ma Y, Zhang TC, Yu Y, Lan J, Du Y. Changes of MRGs and ARGs in Acinetobacter sp. SL-1 used for treatment of Cr(VI)-contaminated wastewater with waste molasses as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170770. [PMID: 38340823 DOI: 10.1016/j.scitotenv.2024.170770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Rongxiao Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Yanping Ma
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Yexing Yu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yaguang Du
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
17
|
Sun H, Jin J, Sun Y, Zuo F, Feng R, Wang F. Preparation of microbial agent immobilized composites for Cr(VI) removal from wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38429873 DOI: 10.1080/09593330.2024.2323030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Because of its extreme toxicity and health risks, hexavalent chromium [Cr(VI)] has been identified as a major environmental contaminant. Bioreduction is considered as one of effective techniques for cleaning up Cr(VI)-contaminated sites, but the remediation efficiency needs to be enhanced. Here, a novel immobilized microbial agent was produced by immobilizing Bacillus cereus ZY-2009 with sodium alginate (SA) using polyvinyl alcohol (PVA) and activated carbon (AC). To evaluate the decrease of Cr(VI) by immobilized bacterial agents, batch tests were conducted with varying immobilization conditions, immobilization carriers, and dosages of medication. The removal of Cr(VI) by the agent prepared by the composite immobilization method was better than that by the adsorption and encapsulation methods. The optimal preparation conditions were the fraction of magnetic PVA was 5.00%, the fraction of SA was 4.00%, the fraction of CaCl2 was 4.00%, and the calcification time was 12 h. The experimental results indicated that PVA/SA/AC agents accelerated the reduction rate of Cr(VI). The removal rate of Cr(VI) by immobilized cells (90.5%) under ideal conditions was substantially higher than that of free cells (11.0%). This novel agent had a large specific surface area and a rich pore structure, accounting for its high reduction rate. The results suggest that the PVA/SA/AC immobilized Bacillus cereus ZY-2009 agent has great potential to remove Cr(VI) from wastewater treatment systems.
Collapse
Affiliation(s)
- Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Jianyong Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Ruiqing Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
Wang Z, Zhang Y, Chen Y, Han F, Shi Y, Pan S, Li Z. Competition of Cd(II) and Pb(II) on the bacterial cells: a new insight from bioaccumulation based on NanoSIMS imaging. Appl Environ Microbiol 2024; 90:e0145323. [PMID: 38224623 PMCID: PMC10880600 DOI: 10.1128/aem.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Polymetallic exposure causes complex toxicity to microorganisms. In this study, we investigated the responses of Escherichia coli under co-existence of cadmium (Cd) and lead (Pb), primarily based on biochemical analysis and RNA sequencing. Cd completely inhibited bacterial growth at a concentration of 2.41 mmol/L, with its removal rate as low as <10%. In contrast, the Pb removal rate was >95% under equimolar sole Pb stress. In addition, the Raman analysis confirmed the loss of proteins for the bacterial cells. Under the co-existence of Cd and Pb, the Cd toxicity to E. coli was alleviated. Meanwhile, the biosorption of Pb cations was more intense during the competitive sorption with Cd. Transmission electron microscopy images showed that a few cells were elongated during incubation, i.e., the average cellular length increased from 1.535 ± 0.407 to 1.845 ± 0.620 µm. Moreover, NanoSIMS imaging showed that the intracellular distribution of Cd and Pb was coupled with sulfur. Genes regulating sulfate transporter were also upregulated to promote sulfate assimilation. Then, the subsequent production of biogenic sulfide and sulfur-containing amino acids was enhanced. Although this strategy based on S enrichment could resist the polymetallic stress, not all related genes were induced to upregulate under sole Cd stress. Therefore, the S metabolism might remodel the microbial resistance to variable occurrence of heavy metals. Furthermore, the competitive sorption (in contrast to sole Cd stress) could prevent microbial cells from strong Cd toxicity.IMPORTANCEMicrobial tolerance and resistance to heavy metals have been widely studied under stress of single metals. However, the polymetallic exposure seems to prevail in the environment. Though microbial resistance can alleviate the effects of exogenous stress, the taxonomic or functional response to polymetallic exposure is still not fully understood. We determined the strong cytotoxicity of cadmium (Cd) on growth, and cell elongation would be driven by Cd stress. The addition of appropriate lead (Pb) showed a stimulating effect on microbial bioactivity. Meanwhile, the biosorption of Pb was more intense during co-existence of Pb and Cd. Our work also revealed the spatial coupling of intracellular S and Cd/Pb. In particular, the S assimilation was promoted by Pb stress. This work elucidated the microbial responses to polymetallic exposure and may provide new insights into the antagonistic function during metal stresses.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
| | - Ying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feiyu Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shang Pan
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, Beijing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Zuo C, Li Y, Chen Y, Jiang J, Qiu W, Chen Q. Leaching of heavy metals from polyester microplastic fibers and the potential risks in simulated real-world scenarios. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132639. [PMID: 37778306 DOI: 10.1016/j.jhazmat.2023.132639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Heavy metals have been incorporated as additives into synthetic textiles to enhance their functional properties. However, these fibers are susceptible to shedding due to mechanical wear, and the release of heavy metals from microplastic fibers (MFs) remains largely uncharacterized. Therefore, this study sought to quantify the levels of heavy metals in textiles, evaluate their leaching capabilities under various scenarios, and ultimately assess the potential health risks associated with MFs ingestion. First, we determined the metal content in eight commonly used polyester textiles. Subsequently, we estimated the metal leaching capacities of specific MFs sourced from carpets, curtains, sweaters, and scarves in freshwater, human saliva, human lung fluid, and fish gastric fluid at distinct time intervals. The results indicated that carpets contained the highest amount of total metals, with a concentration of 218 ± 8 mg/kg. Ultraviolet weathering, coupled with longer exposure durations, led to surface coarsening of MFs, which may be the primary reason for the enhanced leaching of metals in freshwater. Furthermore, our findings revealed that carbonyl index was unsuitable for characterizing aging because polyester inherently contains carbonyl groups. Instead, the O/C ratio emerged as a more suitable indicator. The leached concentrations and percentages of metals from MFs exhibited the following order in biofluids: Sb>Mn>Cr and Cr>Mn>Pb in biofluids, respectively. Finally, the estimated daily intake of metals was significantly below the tolerable thresholds (0.0014-0.14 mg/kg/d for fish and 0.0036-1.0 mg/kg/d for humans), indicating a negligible risk of heavy metal exposure through MFs for both fish and humans. ENVIRONMENTAL IMPLICATION: In recent years, the ecological risks posed by heavy metal contaminants loaded onto microplastic fibers have become an increasing concern. Therefore, our study sought to characterize the accumulation of heavy metals on plastic fabrics and the potential for these loaded heavy metals to be released when microplastic fibers originating from these fabrics enter freshwater environments and interact with organisms. This vector-like behavior underscores the importance of investigating the ecological hazards associated with microplastic fibers carrying contaminants in both environmental and organismal contexts.
Collapse
Affiliation(s)
- Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yue Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 200241, China.
| |
Collapse
|
20
|
Li X, Gao Y, Ning X, Li Z. Research progress and hotspots on microbial remediation of heavy metal-contaminated soil: a systematic review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118192-118212. [PMID: 37936038 DOI: 10.1007/s11356-023-30655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Microbial remediation technology has received much attention as a green, ecological, and inexpensive technology, and there is great potential for the application of microbial remediation technology for heavy metals (HMs) contaminated soil alone and in conjunction with other technologies in environmental remediation. To gain an in-depth understanding of the latest research progress, research hotspots, and development trends on microbial remediation of HMs-contaminated soil, and to objectively reflect the scientific contributions and impacts of relevant countries/regions, institutions, and individuals of this field, in this manuscript, ISI Web of Knowledge's Web of Science™ core collection database, data visualization, and analysis software Bibliometrix, VOSviewer, and HistCite Pro were used to collect and analyze the relevant literature from 2000 to 2022, and 1409 publications were subjected to scientometric analyses. It involved 327 journals, 5150 authors, 75 countries/regions, and 2740 keywords. The current progress and hotspots on microbial remediation of HMs-contaminated soil since the twenty-first century were analyzed in terms of the top 10 most productive countries (regions), high-yielding authors, source journals, important research institutions, and hotspots of research directions. Over the past 22 years, China, India, and the USA have been the countries with the most articles. The institution and author with the most publications are the Chinese Acad Sci and Zhu YG, respectively. Journal of Hazardous Materials is the most productive journal. The keywords showed 6 co-occurrence clusters. These findings revealed the research hotspots, knowledge gaps, and future exploration trends related to microbial remediation of HMs-contaminated soil.
Collapse
Affiliation(s)
- Xianhong Li
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Yang Gao
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Xiaolin Ning
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, 100191, China
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
21
|
Haroun M, Xie S, Awadelkareem W, Wang J, Qian X. Influence of biofertilizer on heavy metal bioremediation and enzyme activities in the soil to revealing the potential for sustainable soil restoration. Sci Rep 2023; 13:20684. [PMID: 38001100 PMCID: PMC10673865 DOI: 10.1038/s41598-023-44986-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2023] [Indexed: 11/26/2023] Open
Abstract
Overuse of chemical fertilizer and pesticides in agricultural activity is frequently damaging to soil health and can accumulate heavy metals in the soil environment, causing harm to plants, humans, and the ecosystem. This study was done to evaluate the effectiveness of biofertilizers in reducing heavy metal levels in contaminated soil and enhancing the activity of soil enzymes that are crucial to plant growth and development. Two bacteria strains, Pseudomonas aeruginosa. and Bacillus firmus, were chosen to develop biofertilizers based on molasses. The pot experiment was setup using a completely randomized design with four treatments and five levels; Bacillus firmus and Pseudomonas aeruginosa were used separately, and they were combined for the biofertilizer dose (20, 40, 60, 80, and 100 mL). Utilizing contaminated soils taken from a greenhouse farm the effect of biofertilizer on heavy metal bioremediation and soil enzyme activity was examined. Methods of soil agrochemical analysis were used to determine the soil physiochemical properties and the concentrations of heavy metals Cu, Fe, Zn, Cd, Mo, Mn, were determined by inductively coupled plasma-mass spectrometry ICP-MS, following DTPA extraction methods. In results, soil pH decreased from 8.28 to 7.39, Ec increased from 0.91 to 1.12, organic matter increased from 18.88 to 20.63 g/kg, N increased gradually from 16.7 to 24.4 mg/kg, and K increased from 145.25 to 201.4 mg/kg. The effect of biofertilizer treatment on soil physiochemical characteristics was significantly positive. Application of biofertilizer significantly increased the heavy metal bioavailability and the activities of soil enzymes. Soil pH were positively correlated with soil Zn (0.99819*), APK (0.95869*) activity and negatively correlated with Fe (0.96759*) also statistically significant at (p < 0.05). The soil Cu positively correlated with Fe (0.99645*), Cd (0.97866*), β.D.GLU (0.99769*) and negatively correlated with PAK (- 0.9624*). Soil ARY had positive correlation with soil Mn (0.99683*), Cd (0.95695*), and negative correlation with PAK (- 0.99424*) at (p < 0.05). Soil enzyme activities were negatively correlated to heavy metals at a significant level. Collectively, the study highlights the potential of biofertilizers as a sustainable and effective approach to enhance soil health and remediate heavy metal-contaminated soils in greenhouses.
Collapse
Affiliation(s)
- Mohammed Haroun
- Department of Agriproduct and Environmental Safety, College of Agriculture, Yangzhou University, Yangzhou, 225012, China
- Department of Biotechnology, Africa City of Technology, Khartoum, 11111, Sudan
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
| | - Shifan Xie
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China
| | - Waleed Awadelkareem
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Department of Botany, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Department of Soil Science, College of Agriculture, Red Sea University, Port Sudan, 33319, Sudan
| | - Juanjuan Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China
| | - Xiaoqing Qian
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Yangzhou, 225127, China.
- Environment Science and Engineering College, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
22
|
Tang H, Hassan MU, Nawaz M, Yang W, Liu Y, Yang B. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115583. [PMID: 37862748 DOI: 10.1016/j.ecoenv.2023.115583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Antimony (Sb) is a serious toxic and non-essential metalloid for animals, humans, and plants. The rapid increase in anthropogenic inputs from mining and industrial activities, vehicle emissions, and shoot activity increased the Sb concentration in the environment, which has become a serious concern across the globe. Hence, remediation of Sb-contaminated soils needs serious attention to provide safe and healthy foods to humans. Different techniques, including biochar (BC), compost, manures, plant additives, phyto-hormones, nano-particles (NPs), organic acids (OA), silicon (Si), microbial remediation techniques, and phytoremediation are being used globally to remediate the Sb polluted soils. In the present review, we described sources of soil Sb pollution, the environmental impact of antimony pollution, the multi-faceted nature of antimony pollution, recent progress in remediation techniques, and recommendations for the remediation of soil Sb-pollution. We also discussed the success stories and potential of different practices to remediate Sb-polluted soils. In particular, we discussed the various mechanisms, including bio-sorption, bio-accumulation, complexation, and electrostatic attraction, that can reduce the toxicity of Sb by converting Sb-V into Sb-III. Additionally, we also identified the research gaps that need to be filled in future studies. Therefore, the current review will help to develop appropriate and innovative strategies to limit Sb bioavailability and toxicity and sustainably manage Sb polluted soils hence reducing the toxic effects of Sb on the environment and human health.
Collapse
Affiliation(s)
- Haiying Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Muhammad Umair Hassan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenting Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Binjuan Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
23
|
Mao Q, Xie X, Pinzon-Nuñez DA, Xie Z, Liu T, Irshad S. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118858. [PMID: 37647731 DOI: 10.1016/j.jenvman.2023.118858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | | | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
24
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
25
|
Jiao G, Huang Y, Dai H, Gou H, Li Z, Shi H, Yang J, Ni S. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6177-6198. [PMID: 37269417 DOI: 10.1007/s10653-023-01626-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Hao Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Huibin Shi
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
26
|
Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 2023; 14:1229828. [PMID: 37555069 PMCID: PMC10405491 DOI: 10.3389/fmicb.2023.1229828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Himalayan School of Bio Sciences, Swami Rama Himalayan University, Dehradun, India
| | | | - Deepa Nainwal
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Anju Rani
- Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
- Department of Applied Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
27
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
28
|
Gunjyal N, Rani S, Asgari Lajayer B, Senapathi V, Astatkie T. A review of the effects of environmental hazards on humans, their remediation for sustainable development, and risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:795. [PMID: 37264257 DOI: 10.1007/s10661-023-11353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, IIT Roorkee, Roorkee, 247667, India
| | - Swati Rani
- Department of Biotechnology, Ambala College of Engineering and Applied Research, 133001, Ambala Cantt, Jagadhari Rd, P.O, Sambhalkha, Haryana, India.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
29
|
Huang C, Guo Z, Peng C, Anaman R, Zhang P. Immobilization of Cd in the soil of mining areas by FeMn oxidizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162306. [PMID: 36801403 DOI: 10.1016/j.scitotenv.2023.162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are widely used in large-scale pollution remediation due to their rapid reproduction and low cost. In this study, bioremediation batch experiments and characterization methods were adopted to investigate the mechanism of FeMn oxidizing bacteria on the immobilization of Cd in mining soil. The results showed that the FeMn oxidizing bacteria successfully reduced 36.84 % of the extractable Cd in the soil. The exchangeable forms, carbonate-bound forms, and organic-bound forms of Cd in the soil decreased by 11.4 %, 8 %, and 7.4 %, respectively, due to the addition of FeMn oxidizing bacteria, while FeMn oxides-bound and residual forms of Cd increased by 19.3 % and 7.5 %, as compared to the control treatments. The bacteria promotes the formation of amorphous FeMn precipitates such as lepidocrocite and goethite, which have high adsorption capacity on soil Cd. The oxidation rates of Fe and Mn in the soil treated with the oxidizing bacteria reached 70.32 % and 63.15 %, respectively. Meanwhile, the FeMn oxidizing bacteria increased soil pH and decreased soil organic matter content, further decreasing the extractable Cd in the soil. The FeMn oxidizing bacteria have the potential to be used in large mining areas to assist in the immobilization of heavy metals.
Collapse
Affiliation(s)
- Chiyue Huang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Pan Zhang
- Department of Environment Ecology, School of Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
30
|
Masmoudi F, Alsafran M, Jabri HA, Hosseini H, Trigui M, Sayadi S, Tounsi S, Saadaoui I. Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses-A Review. Microorganisms 2023; 11:1248. [PMID: 37317222 DOI: 10.3390/microorganisms11051248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Abiotic and biotic stresses such as salt stress and fungal infections significantly affect plant growth and productivity, leading to reduced crop yield. Traditional methods of managing stress factors, such as developing resistant varieties, chemical fertilizers, and pesticides, have shown limited success in the presence of combined biotic and abiotic stress factors. Halotolerant bacteria found in saline environments have potential as plant promoters under stressful conditions. These microorganisms produce bioactive molecules and plant growth regulators, making them a promising agent for enhancing soil fertility, improving plant resistance to adversities, and increasing crop production. This review highlights the capability of plant-growth-promoting halobacteria (PGPH) to stimulate plant growth in non-saline conditions, strengthen plant tolerance and resistance to biotic and abiotic stressors, and sustain soil fertility. The major attempted points are: (i) the various abiotic and biotic challenges that limit agriculture sustainability and food safety, (ii) the mechanisms employed by PGPH to promote plant tolerance and resistance to both biotic and abiotic stressors, (iii) the important role played by PGPH in the recovery and remediation of agricultural affected soils, and (iv) the concerns and limitations of using PGHB as an innovative approach to boost crop production and food security.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Alsafran
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hareb Al Jabri
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Hosseini
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
31
|
Wang R, Zhu Z, Cheng W, Chang C, Song X, Huang F. Cadmium accumulation and isotope fractionation in typical protozoa Tetrahymena: A new perspective on remediation of Cd pollution in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131517. [PMID: 37146330 DOI: 10.1016/j.jhazmat.2023.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) pollution threatens water safety and human health, which has raised serious public concern. Tetrahymena is a model protozoan, possessing the potential to remediate Cd contaminated water given the rapid expression of thiols. However, the mechanism of Cd accumulation in Tetrahymena has not been well understood, which hinders its application in environmental remediation. This study elucidated the pathway of Cd accumulation in Tetrahymena using Cd isotope fractionation. Our results showed that Tetrahymena preferentially absorb light Cd isotopes, with Δ114/110CdTetrahymena-solution = -0.20 ± 0.02‰ ∼ - 0.29 ± 0.02‰, which implies that the intracellular Cd is probably in the form of Cd-S. The fractionation generated by Cd complexation with thiols is constant (Δ114/110CdTetrahymena-remaining solution ∼ -0.28 ± 0.02‰), which is not affected by the concentrations of Cd in intracellular and culture medium, nor by the physiological changes in cells. Furthermore, the detoxification process of Tetrahymena results in an increase in cellular Cd accumulation from 11.7% to 23.3% with the elevated Cd concentrations in batch Cd stress culture experiments. This study highlights the promising application of Cd isotope fractionation in Tetrahymena for the remediation of heavy metal pollution in water.
Collapse
Affiliation(s)
- Ruirui Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenhan Cheng
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Chuanyu Chang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory of Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
32
|
Antunović V, Blagojević D, Baošić R, Relić D, Lolić A. Health risk assessment of heavy metals in soil, plant, and water samples near "Gacko" power plant, in Bosnia and Herzegovina. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:596. [PMID: 37079193 DOI: 10.1007/s10661-023-11232-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
This study assesses heavy metal content in soil, water, and plant material from sites located around the lignite mine and the power plant "Gacko", Bosnia and Herzegovina. The samples were collected, prepared, and analyzed for heavy metals content using the flame atomic absorption spectrophotometer. Samples were analyzed for cadmium, lead, copper, zinc, manganese, and iron. To identify the relationship among the metals in samples and their possible sources, Pearson's correlation and principal component analysis were performed. Health risk assessment was applied to establish potential health risks posed to humans caused by contaminants in different environmental compartments. The results of our analyses show that most soil samples contain copper, and one of those samples had a copper concentration of more than 70 µg/g, which is a critical upper value for agricultural use. In the soil samples that were analyzed, cadmium was also detected, and its concentration was greater than 2 µg/g. Lead, on the other hand, had a concentration that was higher than the maximum permissible for unpolluted soils in 40% of the soil samples that were analyzed. Lead and cadmium concentrations in surface waters mostly contribute to a non-carcinogenic risk in the scenario of recreational swimming exposure. The presence of Cd, a highly toxic element in water, may be explained by the leaching of artificial fertilizers used in the study area, whereas Pb's origin may be geological. The results of this study recommend routine heavy metal monitoring in samples of soil, water, and plants from the examined area so that, if metal concentrations continue increasing, remedial action should be advised to prevent accumulation in the food chain.
Collapse
Affiliation(s)
- Vesna Antunović
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, Banja Luka, Bosnia and Herzegovina
| | - Dragana Blagojević
- Department of Chemistry, Faculty of Natural Science and Mathematics, University of Banja Luka, Mladena Stojanovića 2, 78000, Banja Luka, Bosnia and Herzegovina
| | - Rada Baošić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, Belgrade, Serbia
| | - Dubravka Relić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, Belgrade, Serbia.
| | - Aleksandar Lolić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, Belgrade, Serbia.
| |
Collapse
|
33
|
Wei Z, Sixi Z, Xiuqing Y, Guodong X, Baichun W, Baojing G. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114652. [PMID: 36822059 DOI: 10.1016/j.ecoenv.2023.114652] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant tolerance to heavy metal stress in terrestrial ecosystems. However, in wetland ecosystems, AMF can improve the tolerance of wetland plants to heavy metals by changing the structure and composition of rhizosphere bacterial communities, which is still rarely studied. In this study, we investigated the effects of AMF on the structure and composition of bacterial communities in the rhizosphere of plants under different chromium concentrations. The results showed that Cr(Ⅵ) concentration in Acorus calamus. rhizosphere soil decreased by 12.6 % (5.6-21.7 %) on average after AMF inoculation, At the same time, it promoted the uptake of nutrients by A. calamus and increased soil carbon input. In addition, Cr stress decreased the bacterial community diversity and abundance index by 9.8 % (1.6-18.1 %) and 24.5 % (17.3-27.6 %) on average. On the contrary, the rhizosphere soil bacterial diversity and abundance index increased by 7.3 % (2.2-19.1 %) and 13.9 % (6.0-20.9 %) on average after AMF inoculation. Moreover, compared with the non-inoculated AMF group, the bacterial community structure of A. calamus rhizosphere changed by 24.6 % under Cr stress, The common number of species increased by 6.4 %. In addition, after inoculation of AMF significantly promote the growth of a large number of bacteria related to organic degradation, plant growth, and oxidative stress, increased soil carbon input improved the soil microenvironment. Meanwhile, After AMF inoculation, the Number of edges, Number of Nodes, Average degree, and Average Path length in the symbiotic network of rhizosphere soil bacterial community increased by 34.6 %, 10 %, 44.3 %, and 26.4 %, respectively. Therefore, it offers a possibility that AMF can enhance the tolerance of wetland plants to soil Cr pollution by improving the structure and composition of bacterial communities in the rhizosphere soils of wetland plants, which provide a basis for wetland plants to repair soil Cr pollution.
Collapse
Affiliation(s)
- Zhao Wei
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Yang Xiuqing
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xia Guodong
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wang Baichun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Gu Baojing
- College of Environment and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Vuong TX, Stephen J, Nguyen TTT, Cao V, Pham DTN. Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules 2023; 28:molecules28052225. [PMID: 36903469 PMCID: PMC10005082 DOI: 10.3390/molecules28052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Soil heavy metal contamination is a severe issue. The detrimental impact of contaminated heavy metals on the ecosystem depends on the chemical form of heavy metals. Biochar produced at 400 °C (CB400) and 600 °C (CB600) from corn cob was applied to remediate Pb and Zn in contaminated soil. After a one month amendment with biochar (CB400 and CB600) and apatite (AP) with the ratio of 3%, 5%, 10%, and 3:3% and 5:5% of the weight of biochar and apatite, the untreated and treated soil were extracted using Tessier's sequence extraction procedure. The five chemical fractions of the Tessier procedure were the exchangeable fraction (F1), carbonate fraction (F2), Fe/Mn oxide fraction (F3), organic matter (F4), and residual fraction (F5). The concentration of heavy metals in the five chemical fractions was analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). The results showed that the total concentration of Pb and Zn in the soil was 3023.70 ± 98.60 mg kg-1 and 2034.33 ± 35.41 mg kg-1, respectively. These figures were 15.12 and 6.78 times higher than the limit standard set by the United States Environmental Protection Agency (U.S. EPA 2010), indicating the high level of contamination of Pb and Zn in the studied soil. The treated soil's pH, OC, and EC increased significantly compared to the untreated soil (p > 0.05). The chemical fraction of Pb and Zn was in the descending sequence of F2 (67%) > F5 (13%) > F1 (10%) > F3 (9%) > F4 (1%) and F2~F3 (28%) > F5 (27%) > F1 (16%) > F4 (0.4%), respectively. The amendment of BC400, BC600, and apatite significantly reduced the exchangeable fraction of Pb and Zn and increased the other stable fractions including F3, F4, and F5, especially at the rate of 10% of biochar and a combination of 5:5% of biochar and apatite. The effects of CB400 and CB600 on the reduction in the exchangeable fraction of Pb and Zn were almost the same (p > 0.05). The results showed that CB400, CB600, and the mixture of these biochars with apatite applied at 5% or 10% (w/w) could immobilize lead and zinc in soil and reduce the threat to the surrounding environment. Therefore, biochar derived from corn cob and apatite could be promising materials for immobilizing heavy metals in multiple-contaminated soil.
Collapse
Affiliation(s)
- Truong Xuan Vuong
- Faculty of Chemistry, TNU-University of Science, Thai Nguyen City 24000, Vietnam
- Correspondence: (T.X.V.); (D.T.N.P.)
| | - Joseph Stephen
- School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
- Institute of Resources, Ecosystem and Environment of Agriculture, Center of Biochar and Green Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- ISEM and School of Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Thi Thu Thuy Nguyen
- Faculty of Chemistry, TNU-University of Science, Thai Nguyen City 24000, Vietnam
| | - Viet Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City 35120, Vietnam
| | - Dung Thuy Nguyen Pham
- NTT Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Correspondence: (T.X.V.); (D.T.N.P.)
| |
Collapse
|
35
|
Mao Q, Xie Z, Pei F, Irshad S, Issaka S, Randrianarison G. Indigenous cyanobacteria enhances remediation of arsenic-contaminated soils by regulating physicochemical properties, microbial community structure and function in soil microenvironment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160543. [PMID: 36455732 DOI: 10.1016/j.scitotenv.2022.160543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biocrust was widely used for the immobilization and removal of arsenic (As) in drainage systems of rice fields and mining areas. In this study, the role of an indigenous cyanobacteria (Leptolyngbya sp. XZMQ) was explored in the bioremediation of As-contaminated farmland and tailing soil. After 80 d of inoculation with cyanobacteria, total As (As(T)) accumulated in the cyanobacterial crust of farmland and tailing soil was 279.89 mg kg-1 and 269.57 mg kg-1, respectively, and non-EDTA exchangeable fraction was the major fraction of it. The As(T) in farmland and tailing soil of micro-environment decreased by 10.76% and 12.73%, respectively. Meanwhile, the available As (As(a)) decreased by 21.25% and 27.65%, respectively. The XRD results showed that hematite and SiO2 existed in cyanobacterial crust of farmland and tailing soil. FTIR spectra indicated that the adsorption of As in cyanobacterial crust was mediated by OH and CO. After inoculation of Leptolyngbya sp. XZMQ, in subcrust soil, As biotransformation gene aioA was the most abundant, followed by arsM. The dominant phyla of soil biota were Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroiota, which could play critical roles in shaping aioA and arsM harboring microbe communities in soil. Redundancy analysis (RDA) showed that soil organic carbon (OC), pH, and chlorophyll a (Chl a) were the most important environmental factors in altering soil bacterial communities. Correlation analysis showed the Leptolyngbya had a positive correlation with Chl a, effective nitrogen (N(a)), electrical conductivity (EC), OC, pH in the soil, respectively, while it had a significant negative correlation with As(a), As(III) and As(T). These results emphasized on the significance of cyanobacteria in the behavior of As in mine soils and offered a promising strategy for bioremediation of As-contaminated soil in the mining area.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Fuwen Pei
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen 51806, China
| | - Sakinatu Issaka
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Gilbert Randrianarison
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
36
|
Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk. Microorganisms 2023; 11:microorganisms11020526. [PMID: 36838491 PMCID: PMC9965023 DOI: 10.3390/microorganisms11020526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components. Fungal communities were instead impacted only by biotope type. Our findings revealed that the structure of fungal communities was mostly impacted by PAHs whereas bacterial communities were sensitive to metals. Bacteria of the genus Sphingomonas in road and leaf dust as indicators of the ecological state of the urban ecosystems were proposed.
Collapse
|
37
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
38
|
Adewoyin JA, Arimoro FO. Animal manure as a biostimulant in bioremediation of oil-contaminated soil: the role of earthworms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:293. [PMID: 36633716 DOI: 10.1007/s10661-022-10884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Human dire need for environmental sustainability have triggered researchers to seek for organic substrates as an alternative to synthetic fertilizers in order to enhance bioremediation. Presently, nitrogen-rich organic substrate not only proffered the solution but also have proven useful in enhancing the rate of bioremediation. Animal manure is a nitrogen-rich organic substrate which has been found very effective for stimulating plant growth. Some of the animal manure used by researchers are poultry droppings, cow dung, goat manure, and pig manure. In all the papers reviewed, it was gathered that animal manure enhances bioremediation by providing nutrients favoring microbial growth and activities responsible hydrocarbon degradation. However, of the four commonly used animal manure, poultry droppings was severally reported to be a better biostimulant. Also, animal manure when sun-dried and pulverized yielded better results. It was observed that animal manure serves as substrates for earthworms which further accelerates the potential of the earthworms to remediate the soil. Also, the pollution of soil by crude oil causes a surge in its carbon content which may slow down microbial growth and activities. Thorough review of literatures, however, indicates that animal manure is capable of providing appropriate nutrient concentrations to offset such imbalance. Studies continue to lay credence to the efficacy of animal manure in enhancing microbial growth and activities responsible for the biodegradation of hydrocarbons contained in crude oil. Furthermore, the co-application of animal manure with other bioremediation strategies, such as phytoremediation and vermiremediation, should be combined for effective bioremediation of oil-contaminated environment.
Collapse
Affiliation(s)
- John A Adewoyin
- Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria.
| | - Francis O Arimoro
- Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| |
Collapse
|
39
|
Nayeem A, Ali MF, Shariffuddin JH. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114306. [PMID: 36191616 DOI: 10.1016/j.envres.2022.114306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
Collapse
Affiliation(s)
- Abdullah Nayeem
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Mohd Faizal Ali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Jun Haslinda Shariffuddin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia; Centre for Sustainability of Ecosystem & Earth Resources, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
40
|
Fang X, Yuan W, Li Z, Zhang X, Yu J, Chen J, Wang X, Qiu X. Effect of calcination temperatures on the performance of rectorite for cadmium immobilization in soil: Freeze-thaw, plant growth, and microbial diversity. ENVIRONMENTAL RESEARCH 2023; 216:114838. [PMID: 36402188 DOI: 10.1016/j.envres.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The immobilization of cadmium (Cd(II)) in soil using calcined rectorite (REC) was investigated in this research. The results of immobilization show that a small amount of REC calcined at 700 °C (REC-700 °C) could effectively immobilize 90% of Cd(II) in soil, while the immobilization efficiency of REC only reached 42%. Moreover, the immobilization efficiency of REC calcined at 300 °C and 500 °C (REC-300 °C and REC-500 °C) were lower than REC. To investigate the mechanism, the materials before and after immobilization were fully analyzed by Fourier transform infrared spectroscopy (FT-IR), powdery X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The results indicate that the structure of REC has been changed after calcination at different temperatures and Cd(II) was successfully immobilized on materials. Losing free water, structural water and OH groups respectively, the layer spacing of REC-300 °C and REC-500 °C was shrunk. However, the crystal structure of REC was destroyed after calcination at 700 °C, resulting in the generation of new phases. According to the XRD result, more cadmium hydroxide (Cd(OH)2) were produced on REC-700 °C, indicating that more OH groups were formed during immobilization. Furthermore, Tessier test demonstrates that Cd(II) in soil changed from exchangeable state and water soluble state to carbonate bound state and iron manganese oxide bound state during immobilization. The result of microbial community indicates that REC-700 °C can restore the microbial composition of Cd(II)-contaminated soil. The effects of pH, freeze-thaw, REC dosage, and initial heavy metal concentration were also evaluated to provide a theoretical basis for the subsequent application of the material in the remediation of contaminated soil.
Collapse
Affiliation(s)
- Xing Fang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenying Yuan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaoxuan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jinyi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan, 430205, China
| | - Xiaofeng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan, 430205, China.
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan, 430205, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan, 430074, China.
| |
Collapse
|
41
|
Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3200. [PMID: 36501240 PMCID: PMC9740990 DOI: 10.3390/plants11233200] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
42
|
Eltahawy AMAE, Awad ESAM, Ibrahim AH, Merwad ARMA, Desoky ESM. Integrative application of heavy metal-resistant bacteria, moringa extracts, and nano-silicon improves spinach yield and declines its contaminant contents on a heavy metal-contaminated soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1019014. [PMID: 36457524 PMCID: PMC9705991 DOI: 10.3389/fpls.2022.1019014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Microorganism-related technologies are alternative and traditional methods of metal recovery or removal. We identified and described heavy metal-resistant bacteria isolated from polluted industrial soils collected from various sites at a depth of 0-200 mm. A total of 135 isolates were screened from polluted industrial soil. The three most abundant isolate strains resistant to heavy metals were selected: Paenibacillus jamilae DSM 13815T DSM (LA22), Bacillus subtilis ssp. spizizenii DSM 15029T DSM (MA3), and Pseudomonas aeruginosa A07_08_Pudu FLR (SN36). A test was conducted to evaluate the effect of (1) isolated heavy metal-resistant bacteria (soil application), (2) a foliar spray with silicon dioxide nanoparticles (Si-NPs), and (3) moringa leaf extract (MLE) on the production, antioxidant defense, and physio-biochemical characteristics of spinach grown on heavy metal-contaminated soil. Bacteria and MLE or Si-NPs have been applied in single or combined treatments. It was revealed that single or combined additions significantly increased plant height, shoot dry and fresh weight, leaf area, number of leaves in the plant, photosynthetic pigments content, total soluble sugars, free proline, membrane stability index, ascorbic acid, relative water content, α-tocopherol, glycine betaine, glutathione, and antioxidant enzyme activities (i.e., peroxidase, glutathione reductase, catalase, superoxide dismutase, and ascorbate peroxidase) compared with the control treatment. However, applying bacteria or foliar spray with MLE or Si-NPs significantly decreased the content of contaminants in plant leaves (e.g., Fe, Mn, Zn, Pb, Cd, Ni, and Cu), malondialdehyde, electrolyte leakage, superoxide radical ( O 2 · - ) , and hydrogen peroxide (H2O2). Integrative additions had a more significant effect than single applications. It was suggested in our study that the integrative addition of B. subtilis and MLE as a soil application and as a foliar spray, respectively, is a critical approach to increasing spinach plant performance and reducing its contaminant content under contaminated soil conditions.
Collapse
Affiliation(s)
| | - El-Sayed A. M. Awad
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed H. Ibrahim
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
43
|
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. CHEMOSPHERE 2022; 307:135957. [PMID: 35985378 DOI: 10.1016/j.chemosphere.2022.135957] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | | |
Collapse
|
44
|
Mtengai K, Ramasamy S, Msimuko P, Mzula A, Mwega ED. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:887. [PMID: 36239813 DOI: 10.1007/s10661-022-10565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
Abstract
Bacterial biomass may serve as an important environmental cleaning agent to toxic heavy metal ions at the expense of chemical processes which are not environmentally friendly. This study aimed at characterizing bacterial agents which could serve as a potential in situ bioremediation agent at the site of isolation. The characterization was performed using both phenotypic and molecular approaches. A novel Pseudomonas aeruginosa strain Pseudomonas aeruginosa Zambia SZK17 Kabwe1 was successfully isolated, identified, and characterized. The strain showed a promising tolerance to heavy metals such as copper (2 mM), zinc, nickel (2 mM), cobalt (1 mM), and cadmium (0.5 mM) at the laboratory level. The bacterium has shown the bioaccumulation of at least 60% of copper (II) sulfate (0.3655 mg/l) with R = 69.75%, cadmium (II) chloride (0.0241 mg/l) with R = 69.98%, zinc (II) chloride (0.1389 mg/l) with R = 69.91%, nickel (II) chloride (0.1155 mg/l) with R = 69.92%, and cobalt (II) chloride (0.593 mg/l) with R = 69.92%. The highest bioaccumulation has been observed in heavy metals cadmium, zinc, nickel, and cobalt. Characterization of the bacterium on pH has revealed that at a very high pH (≥ 9) and lower (≤ 5.5) pH, the bacterium tended to have reduced growth with optimum growth at pH 8. The high temperature at around 40 °C had a negative effect on the growth performance of the bacterium while optimum growth was observed at 28 °C. This novel P. aeruginosa strain has shown the phenotypic attributes to become a potential bioremediation agent; however, further investigation needs to be done to understand the genes and or molecular mechanisms that drive their tolerance to multiple heavy metals.
Collapse
Affiliation(s)
- Karim Mtengai
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
- The Copperbelt University-Africa Center of Excellence for Sustainable Mining (CBU-ACESM), The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Subbaiya Ramasamy
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Peter Msimuko
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box 21692, Kitwe, Zambia
| | - Alexanda Mzula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3015, Chuo Kikuu, Morogoro, Tanzania.
| | - Elisa Daniel Mwega
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3015, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
45
|
The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary Śląskie and Bukowno (Poland). MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the activity and structure of microbial communities in soils contaminated with heavy metals (HMs). To achieve this goal, soil samples were taken from two contaminated sites (i.e., Piekary Śląskie and Bukowno) in Poland. A wide range of methods were applied, including: total and metal-tolerant culturable bacteria enumeration; microbial community structure analysis using the phospholipid fatty acid method (PLFA); denaturing gradient gel electrophoresis (PCR-DGGE); and metabolic activity using BIOLOG and EcoPlateTM. Our studies showed that HMs negatively affected microbial community structure and activity in polluted soils. Apart from the contamination with HMs, other soil parameters like soil pH and water also impacted microbial community structure and growth. Metal-tolerant bacterial strains were isolated, identified and tested for presence of genes encoding HM tolerance using the polymerase chain reaction (PCR) methodology. Contamination with HMs in the tested areas was found to lead to development of metallotolerant bacteria with multiple tolerances toward Zn, Ni, Cd and Cu. Different genes (e.g., czcA, cadA and nccA) encoding HM efflux pumps were detected within isolated bacteria. Culturable bacteria isolated belonged to Proteobacteria, Actinobacteria and Bacteroidetes genera. Among non-culturable bacteria in soil samples, a significant fraction of the total bacteria and phyla, such as Gemmatimonadetes and Acidobacteria, were found to be present in all studied soils. In addition, bacteria of the Chloroflexi genus was present in soil samples from Piekary Śląskie, while bacteria of the Firmicutes genus were found in soil samples from Bukowno.
Collapse
|
46
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
47
|
Zheng Y, Li Y, Zhang Z, Tan Y, Cai W, Ma C, Chen F, Lu J. Effect of Low-Molecular-Weight Organic Acids on Migration Characteristics of Pb in Reclaimed Soil. Front Chem 2022; 10:934949. [PMID: 35910731 PMCID: PMC9329663 DOI: 10.3389/fchem.2022.934949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The effect of low-molecular-weight organic acids (citric acid and malic acid) on the migration characteristics of Pb in contaminated soils was explored in this study. Reclaimed soil was collected from the coal gangue hill area of the Panyi mine in Huainan City (China). The effect of citric acid and malic acid on the form of Pb present in the reclaimed soil was analyzed by spiking soil samples and simulating Pb-contaminated soil. The results indicate the following. 1) With increased concentration of exogenous Pb, the activity of Pb in the reclaimed soil was effectively improved. 2) The addition of citric acid and malic acid both resulted in an increased fraction of exchangeable Pb in the soil, which effectively promoted the active Pb fraction. As the concentrations of citric acid and malic acid increased, the active Pb fraction of the reclaimed soil increased accordingly. The Pb activation effect of citric acid was observed to be greater than that of malic acid. 3) With extended soil aging time, the activation effect of organic acids on Pb weakened, with the loosely bound Pb gradually transforming into strongly bound Pb. Chelating agents can activate heavy metals in soil, mainly through the combination of chelating agents and heavy metal ions in the soil solution to form soluble metal chelates, so as to increase the bioavailability of heavy metals in soil to plant roots. Therefore, adding citric acid can be considered as a strategy to enhance the efficiency of reclaimed soil remediation because of the ability of Pb activation.
Collapse
Affiliation(s)
- Yonghong Zheng
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
- National Engineering Laboratory for Protection of Colliery Eco-environment, Huainan, China
| | - Yating Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Zhiguo Zhang
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area with High Groundwater Level, Huainan, China
- Hefei Comprehensive National Science Center, Institute of Energy, Hefei, China
- *Correspondence: Zhiguo Zhang,
| | - Yuning Tan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Weiqing Cai
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Chengnan Ma
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Fangling Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Jiangwei Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
48
|
Zhu X, Li X, Shen B, Zhang Z, Wang J, Shang X. Bioremediation of lead-contaminated soil by inorganic phosphate-solubilizing bacteria immobilized on biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113524. [PMID: 35483141 DOI: 10.1016/j.ecoenv.2022.113524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, a bio-composite (IBWS700) was prepared using inorganic phosphate-solubilizing bacteria (iPSB), which were immobilized on biochar produced from wheat straw (WS700). Further, the bio-remediation effects of the composite for lead (Pb) in soil were also investigated. The presence of different Pb species, physicochemical properties, enzyme activities, and immobilization mechanisms of Pb in soil were also evaluated. Compared to free iPSB and biochar, IBWS700 significantly decreased the lead bio-availability whereas increased the residual fraction, also affected available phosphorus (AP), cation exchange capacity (CEC), organic matter (OM) and activity of urease, alkaline phosphatase, sucrase and catalase. Interestingly, the changes in the enzyme activity, AP and OM performed twice increases with increasing Pb concentration, which was rarely reported. The reason might be attributed to the reconstruction of bacteria communities with high Pb load. Further, the immobilization mechanisms mainly included bio-adsorption and bio-precipitation. SEM revealed that the surface of IBWS700 covered with a large number of heterogeneous colonization of iPSB and white stack after Pb2+ adsorption. FTIR spectra showed that O-H, C-O-P, CO, and C =C could play important roles in bio-adsorption. Moreover, XRD analysis indicated that bio-precipitates were mainly Pb5(PO4)3Cl. In general, the use of IBWS700 could effectively immobilize Pb2+ and improve soil quality.
Collapse
Affiliation(s)
- Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China.
| | - Xue Li
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Baoshou Shen
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ziye Zhang
- Xi'an Jinborui Ecological Tech. Co., Ltd, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd, China
| | - Xiaoqing Shang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd, China
| |
Collapse
|
49
|
Khan M, Kamran M, Kadi RH, Hassan MM, Elhakem A, Sakit ALHaithloul HA, Soliman MH, Mumtaz MZ, Ashraf M, Shamim S. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Front Microbiol 2022; 13:878000. [PMID: 35663894 PMCID: PMC9161743 DOI: 10.3389/fmicb.2022.878000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 12/08/2022] Open
Abstract
The contamination of heavy metals is a cause of environmental concern across the globe, as their increasing levels can pose a significant risk to our natural ecosystems and public health. The present study was aimed to evaluate the ability of a copper (Cu)-resistant bacterium, characterized as Bacillus altitudinis MT422188, to remove Cu from contaminated industrial wastewater. Optimum growth was observed at 37°C, pH 7, and 1 mm phosphate, respectively. Effective concentration 50 (EC50), minimum inhibitory concentration (MIC), and cross-heavy metal resistance pattern were observed at 5.56 mm, 20 mm, and Ni > Zn > Cr > Pb > Ag > Hg, respectively. Biosorption of Cu by live and dead bacterial cells in its presence and inhibitors 1 and 2 (DNP and DCCD) was suggestive of an ATP-independent efflux system. B. altitudinis MT422188 was also able to remove 73 mg/l and 82 mg/l of Cu at 4th and 8th day intervals from wastewater, respectively. The presence of Cu resulted in increased GR (0.004 ± 0.002 Ug−1FW), SOD (0.160 ± 0.005 Ug−1FW), and POX (0.061 ± 0.004 Ug−1FW) activity. Positive motility (swimming, swarming, twitching) and chemotactic behavior demonstrated Cu as a chemoattractant for the cells. Metallothionein (MT) expression in the presence of Cu was also observed by SDS-PAGE. Adsorption isotherm and pseudo-kinetic-order studies suggested Cu biosorption to follow Freundlich isotherm as well as second-order kinetic model, respectively. Thermodynamic parameters such as Gibbs free energy (∆G°), change in enthalpy (∆H° = 10.431 kJ/mol), and entropy (∆S° = 0.0006 kJ/mol/K) depicted the biosorption process to a feasible, endothermic reaction. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX) analyses revealed the physiochemical and morphological changes in the bacterial cell after biosorption, indicating interaction of Cu ions with its functional groups. Therefore, these features suggest the potentially effective role of B. altitudinis MT422188 in Cu bioremediation.
Collapse
Affiliation(s)
- Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Roqayah H. Kadi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed M. Hassan,
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Saba Shamim,
| |
Collapse
|
50
|
Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1255. [PMID: 35567256 PMCID: PMC9104525 DOI: 10.3390/plants11091255] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 08/01/2023]
Abstract
Environmental contamination is triggered by various anthropogenic activities, such as using pesticides, toxic chemicals, industrial effluents, and metals. Pollution not only affects both lotic and lentic environments but also terrestrial habitats, substantially endangering plants, animals, and human wellbeing. The traditional techniques used to eradicate the pollutants from soil and water are considered expensive, environmentally harmful and, typically, inefficacious. Thus, to abate the detrimental consequences of heavy metals, phytoremediation is one of the sustainable options for pollution remediation. The process involved is simple, effective, and economically efficient with large-scale extensive applicability. This green technology and its byproducts have several other essential utilities. Phytoremediation, in principle, utilizes solar energy and has an extraordinary perspective for abating and assembling heavy metals. The technique of phytoremediation has developed in contemporary times as an efficient method and its success depends on plant species selection. Here in this synthesis, we are presenting a scoping review of phytoremediation, its basic principles, techniques, and potential anticipated prospects. Furthermore, a detailed overview pertaining to biochemical aspects, progression of genetic engineering, and the exertion of macrophytes in phytoremediation has been provided. Such a promising technique is economically effective as well as eco-friendly, decontaminating and remediating the pollutants from the biosphere.
Collapse
Affiliation(s)
- Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Chhattisgarh, Bilaspur 495009, India;
| | - Bashir Ahmad Ganai
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|