1
|
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:267. [PMID: 39861620 PMCID: PMC11768469 DOI: 10.3390/plants14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. Azospirillum is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions. Different species of Bacillus spp. can increase the growth, yield, and biomass of plants by increasing the availability of nutrients; enhancing the solubilization and subsequent uptake of nutrients; synthesizing indole-3-acetic acid; fixing nitrogen; solubilizing phosphorus; promoting the production of phytohormones; enhancing the growth, production, and quality of fruits and crops via enhancing the production of carotenoids, flavonoids, phenols, and antioxidants; and increasing the synthesis of indoleacetic acid (IAA), gibberellins, siderophores, carotenoids, nitric oxide, and different cell surface components. The aim of this manuscript is to survey the effects of Azospirillum spp. and Bacillus spp. by presenting case studies and successful paradigms in several horticultural and agricultural plants.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-4260-83836
| | | | | |
Collapse
|
2
|
Wang X, Yang Z, Zeng Q, Wang X, Liu S, Wang E, Wu Y, Zeng Y, He M, Wang Y, Shen G, Jing X, Ping R, Zhang X, Chen B. Chitosan hydrogel microspheres loaded with Bacillus subtilis promote plant growth and reduce chromium uptake. Int J Biol Macromol 2025; 286:138401. [PMID: 39643173 DOI: 10.1016/j.ijbiomac.2024.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Cr contamination can lead to reduced crop yields and threaten food security. Eliminating soil Cr contamination or improving crop resistance to Cr is challenging in terms of costly, environment and biodiversity risk. Here, we used chitosan hydrogel microspheres loaded with Bacillus subtilis to cope with plant stress caused by Cr contamination. The addition of chitosan hydrogel microspheres loaded with Bacillus subtilis increased shoot biomass by 88 % and decreased the plant Cr concentration by 17 %. The bacterial chitosan hydrogel microsphere treatment enhanced the decomposition of organic matter and facilitated the uptake of nutrients by the plants. It also significantly increased the abundance of anti-heavy metal stress functional bacteria (Proteobacteria, Actinobacteria, and Chloroflexi), strongly promoting interactions and correlations between microbes. This technology of bacterial-chitosan hydrogel microspheres presents promising opportunities for sustainable strategies for addressing heavy metal pollution and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Xia Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhonglin Yang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Qin Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xueli Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Song Liu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Engui Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangjin Wu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Yinan Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Maolin He
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Yan Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Guoqiang Shen
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xuemin Jing
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ren Ping
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baodong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Argentel-Martínez L, Peñuelas-Rubio O, Amador CÁ, Steiner F, Aguilera JG, Shin JH, Zuffo AM, Ratke RF, Teodoro PE, Azizoglu U. Mitigating salinity stress on tomato growth, water regime, gas exchange, and yield with the application of QuitoMax. Sci Rep 2024; 14:31755. [PMID: 39738321 DOI: 10.1038/s41598-024-82211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
This study assessed the intensity of salt stress in the two tomato varieties by measuring variables associated with the water regime, chlorophyll content, normalized difference vegetation index, gas exchange, and yield. The cultivars Amalia and Claudia, which represent tolerance and susceptibility to salinity, were evaluated. Three treatments were established in plastic pots, using a completely randomized design: T1, saline soil (ECse = 6.9 dS m-1 without QuitoMax application); T2, nonsaline soil (ECse = 0.95 dS m -1 with QuitoMax application); and T3, saline soil (ECse = 6.9 dS m-1) with QuitoMax application. The QuitoMax was applied at a rate of 300 mg L-1, during the flowering phenophase. QuitoMax caused an increase in the variables evaluated in both varieties (tolerant and susceptible) of tomato, with a lower contribution of QuitoMax to the variables related to water regime and the greatest contributions to chlorophyll content and photosynthetic activity. QuitoMax contributed positively to all variables and was superior to stress intensity for most of the variables evaluated in the tolerant variety (Amalia), except for stem thickness and the number of flowers per bunch. In the susceptible variety (Claudia), the five variables of stress intensity exceeded the contribution of QuitoMax, with the strongest effects on osmotic potential, fruit mass, and yield per plant. The present work demonstrates the feasibility of using this biostimulant to increase the tolerance of tolerant varieties and maintain tolerance in tomato varieties susceptible to salinity, reducing the intensity of saline stress and increasing plant performance under salinity conditions.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, Bácum, CP 85260, Sonora, Mexico
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, Bácum, CP 85260, Sonora, Mexico
| | - Carlos Ávila Amador
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, Bácum, CP 85260, Sonora, Mexico
| | - Fábio Steiner
- Department of Agronomy, Universidad Estadual de Mato Grosso do Sul (UEMS), Cassilândia, 79540-000, MS, Brazil
| | - Jorge González Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso do Sul (UEMS), Cassilândia, 79540-000, MS, Brazil
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Alan Mario Zuffo
- Agronomic Department, State University of Maranhão, Campus de Balsas, Balsas, 65800-000, MA, Brazil
| | - Rafael Felippe Ratke
- Agronomic Department, Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul, 79650-000, Mato Grosso do Sul, Brazil
| | - Paulo Eduardo Teodoro
- Agronomic Department, Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul, 79650-000, Mato Grosso do Sul, Brazil
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
4
|
Ben Sedrine I, Werghi S, Hachef A, Maalaoui A, Zarkouna R, Akriche S, Hannachi H, Zehdi S, Fakhfakh H, Gorsane F. Alleviation of drought stress in tomato by foliar application of seafood waste extract. Sci Rep 2024; 14:30572. [PMID: 39706919 DOI: 10.1038/s41598-024-80798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants. Along with changes in morphological parameters, the accumulation of chlorophyll and carotenoids was improved. The biostimulant also mediates the accumulation of osmoprotectants and an increased leaf water content. Furthermore, the biostimulant effectively promotes tolerance by increasing drought-stress SIERF84 Transcription factor and decreasing both SIARF4 and SlWRKY81 transcript levels, which in turn, mediates stomatal closure. In addition, the up-regulation of key genes related to NO3- uptake (NTR1.1/2) and assimilation (NR) coupled with the downregulation of ammonium transporters' genes (AMT1.1/2), allowed the uptake of NO3- over NH4+ in the tolerant genotype which is likely to be associated with drought tolerance. Overall, the biostimulant was effective in alleviating water stress and showed similar effects to commercial chitosan. Besides the benefits of a circular economy framework, this biostimulant-based approach is innovative to promote a sustainable eco-agriculture, in the face of persistent water scarcity.
Collapse
Grants
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
Collapse
Affiliation(s)
- Imen Ben Sedrine
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Afifa Hachef
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Ahlem Maalaoui
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Rahma Zarkouna
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Samah Akriche
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Hedia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint (LR18ES04), University of Tunis El Manar, Tunis, Tunisia
| | - Salwa Zehdi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia.
| |
Collapse
|
5
|
Zagoskina N. Special Issue "Advances in the Physiology of Primary and Secondary Plant Metabolism Under Abiotic and Biotic Stress". Int J Mol Sci 2024; 25:12339. [PMID: 39596403 PMCID: PMC11595043 DOI: 10.3390/ijms252212339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
One of the most relevant areas of biology is the study of plant adaptation processes to the action of various stress factors of abiotic and biotic nature, which is reflected in the works of molecular biologists, geneticists, microbiologists, plant physiologists, and biochemists, as well as biotechnologists [...].
Collapse
Affiliation(s)
- Natalia Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
6
|
Rojas-Pirela M, Carillo P, Lárez-Velásquez C, Romanazzi G. Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1423949. [PMID: 39582624 PMCID: PMC11581901 DOI: 10.3389/fpls.2024.1423949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
The agricultural use of synthetic pesticides, fertilizers, and growth regulators may represent a serious public health and environmental problem worldwide. All this has prompted the exploration of alternative chemical compounds, leading to exploring the potential of chitosan and PGPB in agricultural systems as a potential biotechnological solution to establish novel agricultural production practices that not only result in fewer adverse impacts on health and the environment but also improve the resilience and growth of the plants. In this work, an analysis of the impact of plant growth-promoting bacteria (PGPB) and chitosan on plant growth and protection has been conducted, emphasizing the crucial bioactivities of the resistance of the plants to both biotic and abiotic stressors. These include inducing phytohormone production, mobilization of insoluble soil nutrients, biological nitrogen fixation, ethylene level regulation, controlling soil phytopathogens, etc. Moreover, some relevant aspects of chitin and chitosan are discussed, including their chemical structures, sources, and how their physical properties are related to beneficial effects on agricultural applications and mechanisms of action. The effects of PGPB and chitosan on photosynthesis, germination, root development, and protection against plant diseases have been compared, emphasizing the intriguing similarities and synergistic effects observed in some of these aspects. Although currently there are limited studies focused on the combined application of PGPB and chitosan, it would be important to consider the similarities highlighted in this work, and those that may emerge in future studies or through well-designed investigations, because these could permit advancing towards a greater knowledge of these systems and to obtain better formulations by combining these bioproducts, especially for use in the new contexts of sustainable agriculture. Thus, it seems feasible to augur a promising near future for these combinations, considering the wide range of possibilities offered by chitinous biomaterials for the development of innovative formulations, as well as allowing different application methods. Likewise, the studies related to the PGPB effects on plant growth appear to be expanding due to ongoing research to test on plants the impacts of microorganisms derived from different environments, whether known or recently discovered, making it a very exciting field of research.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | | | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
7
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
8
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
9
|
Göbel M, Dulal S, Sommer L, Weinmann M, Mamun AA, Ahmed A, Sujeeth N, Mai K, Neumann G, Müller T, Bradáčová K. Protective potential of selected microbial and non-microbial biostimulants against Zymoseptoria tritici leaf blotch in winter wheat as affected by the form of N supply. FRONTIERS IN PLANT SCIENCE 2024; 15:1407585. [PMID: 39399536 PMCID: PMC11467867 DOI: 10.3389/fpls.2024.1407585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024]
Abstract
Introduction The production of high-quality food for the growing world population on the one hand and the reduction of chemical-synthetic pesticides on the other hand represents a major challenge for agriculture worldwide. The effectiveness of a combination of microbial and non-microbial biostimulants (BSs) with various nitrogen (N) forms in pathogen defense is discussed as a promising, but still poorly understood bio-based alternative for crop protection. Methods For this reason, nitrate and stabilized ammonium fertilizer both combined with a consortium of Pseudomonas brassicacearum, Bacillus amyloliquefaciens, and Trichoderma harzianum as soil treatment or with a mixture of seaweed extract (Ascophyllum nodosum) together with chitosan-amended micronutrient fertilizer as foliar spray application were compared under controlled greenhouse conditions. Furthermore, a combination of microbial and different non-microbial BSs (seaweed extracts + chitosan) and micronutrients with nitrate or with stabilized ammonium fertilizer was tested under field conditions to improve nutrient availability, promote plant growth, and suppress Zymoseptoria tritici (Zt) in winter wheat. Results and discussion While plant-protective effects against Zt by the microbial consortium application could be observed particularly under ammonium fertilization, the application of seaweed extract-chitosan mixture expressed plant defense against Zt more strongly under nitrate fertilization. In the field trial, the combination of microbial consortium with the seaweed extract-chitosan mixture together with micronutrients zinc (Zn) and manganese (Mn) showed positive effects against Zt under ammonium fertilization, associated with increased levels of defense metabolites. Furthermore, the additional input of Zn and copper (Cu) from the chitosan application improved the micronutrient status by minimizing the risk of Zn and Cu deficiency under controlled and field conditions. The use of BSs and the inoculation of Zt did not show any effects on plant growth and yield neither under controlled greenhouse conditions nor in the field. Summarized, microbial and non-microbial BSs separately applied or even combined together as one treatment did not influence plant growth or yield but made a positive contribution to an N form-dependent promotion of pathogen defense.
Collapse
Affiliation(s)
- Markus Göbel
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Samiksha Dulal
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Lea Sommer
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Markus Weinmann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Abdullah Al Mamun
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Aneesh Ahmed
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Neerakkal Sujeeth
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, County Kerry, Ireland
| | - Karin Mai
- SP Sourcon Padena GmbH, Research and Development, Tübingen, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Torsten Müller
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Klára Bradáčová
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Shahrajabian MH, Petropoulos SA. Editorial for the Special Issue on Plant Biostimulants in Sustainable Horticulture and Agriculture: Development, Function, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2342. [PMID: 39273826 PMCID: PMC11396779 DOI: 10.3390/plants13172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The growing need for food production through sustainable cultivation practices, without reducing crop yield and producer income, is a major objective due to increased environmental pollution and the gradual degradation of cultivated soils [...].
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
11
|
Ben Slimene Debez I, Houmani H, Mahmoudi H, Mkadmini K, Garcia-Caparros P, Debez A, Tabbene O, Djébali N, Urdaci MC. Response Surface Methodology-Based Optimization of the Chitinolytic Activity of Burkholderia contaminans Strain 614 Exerting Biological Control against Phytopathogenic Fungi. Microorganisms 2024; 12:1580. [PMID: 39203422 PMCID: PMC11356717 DOI: 10.3390/microorganisms12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.
Collapse
Affiliation(s)
- Imen Ben Slimene Debez
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Hayet Houmani
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai P.O. Box 14660, United Arab Emirates
| | - Khaoula Mkadmini
- Useful Materials Valorization Laboratory, National Centre of Research in Materials Science, Technologic Park of Borj Cedria, BP 073, Soliman 8027, Tunisia;
| | - Pedro Garcia-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, 04120 Almeria, Spain;
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Naceur Djébali
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Maria-Camino Urdaci
- Laboratoire de Microbiologie, Université de Bordeaux-Bordeaux Sciences Agro, UMR 5248, 1 Cours du Général de Gaulle, 33175 Gradignan, France;
| |
Collapse
|
12
|
Xie J, Yin D, Ou J, Lu B, Liao S, Yang D, Zhang H, Shen N. A new strain of Rhodococcus indonesiensis T22.7.1 T and its functional potential for deacetylation of chitin and chitooligsaccharides. Front Microbiol 2024; 15:1427143. [PMID: 39113839 PMCID: PMC11303147 DOI: 10.3389/fmicb.2024.1427143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Chitin, abundant in marine environments, presents significant challenges in terms of transformation and utilization. A strain, T22.7.1T, with notable chitin deacetylation capabilities, was isolated from the rhizosphere of Acanthus ebracteatus in the North Sea of China. Comparative 16S rDNA sequence analysis showed that the new isolate had the highest sequence similarity (99.79%) with Rhodococcus indonesiensis CSLK01-03T, followed by R. ruber DSM 43338T, R. electrodiphilus JC435T, and R. aetherivorans 10bc312T (98.97%, 98.81%, and 98.83%, respectively). Subsequent genome sequencing and phylogenetic analysis confirmed that strain T22.7.1T belongs to the R. indonesiensis species. However, additional taxonomic characterization identified strain T22.7.1T as a novel type strain of R. indonesiensis distinct from CSLK01-03T. Methods This study refines the taxonomic description of R. indonesiensis and investigates its application in converting chitin into chitosan. The chitin deacetylase (RiCDA) activity of strain T22.7.1T was optimized, and the enzyme was isolated and purified from the fermentation products. Results Through optimization, the RiCDA activity of strain T22.7.1T reached 287.02 U/mL, which is 34.88 times greater than the original enzyme's activity (8.0 U/mL). The natural CDA enzyme was purified with a purification factor of 31.83, and the specific activity of the enzyme solution reached 1200.33 U/mg. RiCDA exhibited good pH and temperature adaptability and stability, along with a wide range of substrate adaptabilities, effectively deacetylating chitin, chitooligosaccharides, N-acetylglucosamine, and other substrates. Discussion Product analysis revealed that RiCDA treatment increased the deacetylation degree (DD) of natural chitin to 83%, surpassing that of commercial chitosan. Therefore, RiCDA demonstrates significant potential as an efficient deacetylation tool for natural chitin and chitooligosaccharides, highlighting its applicability in the biorefining of natural polysaccharides.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Junchao Ou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Bo Lu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
13
|
Steglińska A, Nowak A, Janas R, Grzesik M, Śmigielski K, Kręgiel D, Gutarowska B. Chitosan as an Antimicrobial, Anti-Insect, and Growth-Promoting Agent for Potato ( Solanum tuberosum L.) Plants. Molecules 2024; 29:3313. [PMID: 39064892 PMCID: PMC11280303 DOI: 10.3390/molecules29143313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
A growing trend in plant protection is replacing chemical preparations with environmentally friendly biological compositions. Chitosan, due to its biocompatibility, biodegradability, and bioactivity, is an effective agent against plant diseases. The purpose of the study was to evaluate chitosan as a potential biopesticide for potato plants. Three variants of chitosan were tested: high (310-375 kDa, >75% deacetylated), medium (190-310 kDa, 75-85% deacetylated), and low (50-190 kDa, 75-85% deacetylated) molecular weight. The chitosan variants were dissolved in lactic and succinic acids and tested for antibacterial and antifungal properties against eight strains of mould and two strains of bacteria responsible for potato diseases. The possible cytotoxicity of chitosan was evaluated against different cell lines: insect Sf-9, human keratinocyte HaCaT, and human colon carcinoma Caco-2. The bioprotective activities of the chitosan were also evaluated in situ on potato tubers. Chitosan inhibited the growth of almost all the selected phytopathogens. The most active was medium molecular chitosan in lactic acid. This formula was characterized by low toxicity towards human cells and high toxicity towards Sf-9 cells. It was also found to have positive effects on the growth of stems and roots, gas exchange, and chlorophyll index in potato plants. Selected chitosan formulation was proposed as a functional biopesticide for potato protection against phytopathogens.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| |
Collapse
|
14
|
Kong M, He J, Wang J, Gong M, Huo Q, Bai W, Song J, Song J, Han W, Lv G. Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:1699. [PMID: 38931130 PMCID: PMC11207311 DOI: 10.3390/plants13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led to a substantial increase in root dry weight (30.77%), total root length (29.40%), volume (21.58%), and surface area (25.44%) compared to the water-treated control. These enhancements were on par with those induced by IBAP. Comprehensive phytohormone profiling disclosed marked increases in indole-3-acetic acid (IAA), zeatin riboside (ZR), methyl jasmonate (JA-ME), and brassinosteroids (BRs) following XOS application. Through RNA sequencing, we identified 3807 differentially expressed genes (DEGs) in the roots of XOS-treated plants, which were significantly enriched in pathways associated with manganese ion homeostasis, microtubule motor activity, and carbohydrate metabolism. Intriguingly, approximately 62.7% of the DEGs responsive to XOS also responded to IBAP, underscoring common regulatory mechanisms. However, XOS uniquely influenced genes related to cutin, suberine, and wax biosynthesis, as well as plant hormone signal transduction, hinting at novel mechanisms of stress tolerance. Prominent up-regulation of genes encoding beta-glucosidase and beta-fructofuranosidase highlights enhanced carbohydrate metabolism as a key driver of XOS-induced root enhancement. Collectively, these results position XOS as a promising, sustainable option for agricultural biostimulation.
Collapse
Affiliation(s)
- Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Juan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jianbin Song
- Station of Dawenliu, Shandong Yellow River Delta Nature Reserve, Dongying 257509, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan 250013, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| |
Collapse
|
15
|
de Azevedo MIG, Souza PFN, Monteiro Júnior JE, Grangeiro TB. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chem Biodivers 2024; 21:e202400044. [PMID: 38591818 DOI: 10.1002/cbdv.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.
Collapse
Affiliation(s)
| | - Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Foratelza, Ceará, Brazil
| | - José Edvar Monteiro Júnior
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Brulé L, Misery B, Baudouin G, Yan X, Guidou C, Trespeuch C, Foltyn C, Anthoine V, Moriceau N, Federighi M, Boué G. Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods 2024; 13:1587. [PMID: 38790886 PMCID: PMC11120926 DOI: 10.3390/foods13101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In the context of climate change and depletion of natural resources, meeting the growing demand for animal feed and human food through sufficient, nutritious, safe, and affordable sources of protein is becoming a priority. The use of Hermetia illucens, the black soldier fly (BSF), has emerged as a strategy to enhance the circularity of the agri-food chain, but its microbiological safety remains a concern. The aim of the present study was to systematically review available data on the microbiological quality of BSF and to investigate the impact of using four different rearing substrates including classic options allowed by the EU regulation (cereals, fruits, vegetables) and options not allowed by EU regulations regarding vegetable agri-food (co-products, food at shelf life, and meat). A total of 13 studies were collected and synthesized, including 910 sample results, while 102 new sample results were collected from the present experiments in three farms. Both datasets combined revealed a high level of contamination of larvae, potentially transmitted through the substrate. The main pathogenic bacteria identified were Bacillus cereus, Clostridium perfringens, Cronobacter spp., Escherichia coli, Salmonella spp., and Staphylococcus aureus coagulase-positive, while Campylobacter spp. and Listeria monocytogenes were not detected. Any of these four substrates were excluded for their use in insect rearing; however, safety concerns were confirmed and must be managed by the operators of the sector using microbial inactivation treatment after the harvest of the larvae in order to propose safe products for the market. The results obtained will guide the definition of the control criteria and optimize the following manufacturing steps.
Collapse
Affiliation(s)
- Lenaïg Brulé
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Boris Misery
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Guillaume Baudouin
- Cycle Farms, 6 Boulevard des Entrepreneurs, 49250 Beaufort en Anjou, France;
| | - Xin Yan
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Côme Guidou
- MUTATEC—1998, Chemin du Mitan, 84300 Cavaillon, France; (C.G.); (C.T.)
| | | | - Camille Foltyn
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Valérie Anthoine
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Nicolas Moriceau
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Michel Federighi
- EnvA/Anses, Laboratoire de Sécurité des Aliments, 94700 Maisons-Alfort, France;
| | - Géraldine Boué
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| |
Collapse
|
17
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
18
|
Ferrer-Villasmil V, Fuentealba C, Reyes-Contreras P, Rubilar R, Cabrera-Barjas G, Bravo-Arrepol G, Escobar-Avello D. Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:789. [PMID: 38592776 PMCID: PMC10975318 DOI: 10.3390/plants13060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry.
Collapse
Affiliation(s)
- Víctor Ferrer-Villasmil
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| | - Cecilia Fuentealba
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| | - Pablo Reyes-Contreras
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Centro de Excelencia en Nanotecnología (CEN), LEITAT Chile, Santiago 7500618, Chile
| | - Rafael Rubilar
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Cooperativa de Productividad Forestal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile
| | - Danilo Escobar-Avello
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| |
Collapse
|
19
|
Zhang Z, Ma Z, Song L, Farag MA. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 2024; 57:59-76. [PMID: 37931655 PMCID: PMC10918363 DOI: 10.1016/j.jare.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt.
| |
Collapse
|
20
|
Yu H, Su L, Jia W, Jia M, Pan H, Zhang X. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in Cochliobolus heterostrophus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3926-3936. [PMID: 38365616 DOI: 10.1021/acs.jafc.3c07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Chitosan, as a natural nontoxic biomaterial, has been demonstrated to inhibit fungal growth and enhance plant defense against pathogen infection. However, the antifungal pattern and mechanism of how chitosan application evokes plant defense are poorly elucidated. Herein, we provide evidence that chitosan exposure is fungicidal to C. heterostrophus. Chitosan application impairs conidia germination and appressorium formation of C. heterostrophus and has a pronounced effect on reactive oxygen species production, thereby preventing infection in maize. In addition, the toxicity of chitosan to C. heterostrophus requires Mkk1 and Mps1, two key components in the cell wall integrity pathway. The Δmkk1 and Δmps1 mutants were more tolerant to chitosan than the wild-type. To dissect chitosan-mediated plant defense response to C. heterostrophus, we conducted a metabolomic analysis, and several antifungal compounds were upregulated in maize upon chitosan treatment. Taken together, our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated infection of C. heterostrophus, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wantong Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mengjiao Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
21
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
22
|
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8917-8929. [PMID: 38182953 DOI: 10.1007/s11356-023-31768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.
Collapse
Affiliation(s)
- Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waqas Maqsood
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Sun W, Shahrajabian MH, Kuang Y, Wang N. Amino Acids Biostimulants and Protein Hydrolysates in Agricultural Sciences. PLANTS (BASEL, SWITZERLAND) 2024; 13:210. [PMID: 38256763 PMCID: PMC10819947 DOI: 10.3390/plants13020210] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The effects of different types of biostimulants on crops include improving the visual quality of the final products, stimulating the immune systems of plants, inducing the biosynthesis of plant defensive biomolecules, removing heavy metals from contaminated soil, improving crop performance, reducing leaching, improving root development and seed germination, inducing tolerance to abiotic and biotic stressors, promoting crop establishment and increasing nutrient-use efficiency. Protein hydrolysates are mixtures of polypeptides and free amino acids resulting from enzymatic and chemical hydrolysis of agro-industrial protein by-products obtained from animal or plant origins, and they are able to alleviate environmental stress effects, improve growth, and promote crop productivity. Amino acids involve various advantages such as increased yield and yield components, increased nutrient assimilation and stress tolerance, and improved yield components and quality characteristics. They are generally achieved through chemical or enzymatic protein hydrolysis, with significant capabilities to influence the synthesis and activity of some enzymes, gene expression, and redox-homeostasis. Increased yield, yield components, and crop quality; improved and regulated oxidation-reduction process, photosynthesis, and physiological activities; decreased negative effects of toxic components; and improved anti-fungal activities of plants are just some of the more important benefits of the application of phenols and phenolic biostimulants. The aim of this manuscript is to survey the impacts of amino acids, different types of protein hydrolysates, phenols, and phenolic biostimulants on different plants by presenting case studies and successful paradigms in several horticultural and agricultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | | | | | |
Collapse
|
24
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
25
|
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and Natural Remedies for Treatment of the Common Cold and Flu. Rev Recent Clin Trials 2024; 19:91-100. [PMID: 38047364 DOI: 10.2174/0115748871275500231127065053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Traditional Iranian medicine is usually used for both prevention and relief of cold and flu symptoms in China, Iran, and many other Asian countries all over the world. There are 4 kinds of influenza viruses. Unlike type B, which may cause seasonal epidemics, type A viruses can cause pandemics, and influenza C may lead to mild human infection with little public health effects. A literature review was done by using multiple databases such as ISI Web of knowledge, PubMed, Science Direct and Google Scholar. The most notable antiviral medicinal plants for flu and cold are honeysuckle flowers, thyme leaf, green chiretta, andrographis, peppermint oil and leaf and calendula. The most important expectorant medicinal plants for cold and flu are snake root, tulsi, licorice root, slippery elm, clove, and sage leaf. Recommended immunostimulant medicinal plants for cold and flu are eucalyptus, Echinacea root, ginseng, garlic, slippery elm, marshmallow, Usnea lichen, Isatis root, ginger root, and myrrh resin. Iranian traditional medicine, which is one of the oldest schools of traditional medicine, is one of the main concepts of disease and health, and it can be considered as an important complementary and alternative medicine, as in some cases, modern medicine has many side effects, low efficiency, and high costs. Medicinal plants and herbs, which are included in many traditional systems, have significant and promising bioactive components in organic life.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Zhang J, Akyol Ç, Meers E. Nutrient recovery and recycling from fishery waste and by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119266. [PMID: 37844400 DOI: 10.1016/j.jenvman.2023.119266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The circular bio-based economy offers great untapped potential for the food industry as possible valuable products and energy can be recovered from food waste. This can promote more sustainable and resilient food systems in Europe in follow-up of the European Commission's Farm to Fork strategy and support the global transition to more sustainable agri-food systems with the common agricultural and fisheries policies. With its high nutrient content, waste and by-products originating from fish and seafood industry (including aquaculture) are one of the most promising candidates to produce alternative fertilising products which can play a crucial role to replace synthetic mineral fertilisers. Whereas several studies highlighted the opportunities to recover valuable compounds from fishery waste, study towards their potential for the production of fertilising products is still scarce. This study presents an extensive overview of the characteristics of fishery waste and by-products (i.e., fish processing waste, fish sludge, seafood waste/by-products), the state-of-the-art nutrient recovery technologies and recovered nutrients as fertilising products from these waste streams. The European Commission has already adopted a revised Fertilising Products Regulation (EU) 2019/1009 providing opportunities for fertilising products from various bio-based origins. In frame of this opportunity, we address the quality and safety aspects of the fishery waste-derived fertilising products under these criteria and highlight possible obstacles on their way to the market in the future. Considering its high nutrient content and vast abundance, fish sludge has a great potential but should be treated/refined before being applied to soil. In addition to the parameters currently regulated, it is crucial to consider the salinity levels of such fertilising products as well as the possible presence of other micropollutants especially microplastics to warrant their safe use in agriculture. The agronomic performance of fishery waste-derived fertilisers is also compiled and reported in the last section of this review paper, which in most cases perform equally to that of conventional synthetic fertilisers.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Çağrı Akyol
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Erik Meers
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Ibrahim EA, Ebrahim NES, Mohamed GZ. Effect of water stress and foliar application of chitosan and glycine betaine on lettuce. Sci Rep 2023; 13:17274. [PMID: 37828035 PMCID: PMC10570298 DOI: 10.1038/s41598-023-43992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The present study investigated the effect of foliar application of chitosan at 150 ppm and glycine betaine at 700 ppm on lettuce plants cv. Balady grown under well-watered and water deficit conditions in terms of growth, yield, quality, and water usage efficiency. The study was conducted in Qalubia Governorate, Egypt, during the two seasons of 2020/2021 and 2021/2022 on clay soil. Results indicated that water-stressed plants had a reduction in plant fresh weight, plant height, leaf area, and total yield, chlorophyll content and relative water content, while they exhibited an increase in total soluble solids, nitrate, and proline contents as well as water-use efficiency in both seasons. The foliar application of chitosan or glycine betaine to lettuce significantly improved plant performance under limited and normal irrigation conditions in comparison with untreated plants. The maximum positive effect was for chitosan foliar application. Overall, the results of this study indicated that foliar application of chitosan or glycine betaine was a substitute technology for improving the lettuce yield and quality as well as increasing water use efficiency under both irrigation regimes, but may be more efficient in lettuce plants subjected to a water deficit.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| | - Noura E S Ebrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt
| | - Gehan Z Mohamed
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt
| |
Collapse
|
29
|
Toffolatti SL, Davillerd Y, D’Isita I, Facchinelli C, Germinara GS, Ippolito A, Khamis Y, Kowalska J, Maddalena G, Marchand P, Marcianò D, Mihály K, Mincuzzi A, Mori N, Piancatelli S, Sándor E, Romanazzi G. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:3152. [PMID: 37687399 PMCID: PMC10490370 DOI: 10.3390/plants12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Yann Davillerd
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Ilaria D’Isita
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Chiara Facchinelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Giacinto Salvatore Germinara
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Youssef Khamis
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt;
| | - Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Wêgorka 20, 60-318 Poznañ, Poland;
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Patrice Marchand
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Demetrio Marcianò
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Kata Mihály
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Annamaria Mincuzzi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| |
Collapse
|
30
|
Wang Y, Xu P, Wang W, Jia X, Zhu L, Yin H. Oligosaccharides increased both leaf biomass and steviol glycosides content of Stevia rebaudiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107937. [PMID: 37566994 DOI: 10.1016/j.plaphy.2023.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/08/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Steviol glycosides (SGs) are a variety of important natural sweeteners. They are 200-350 times sweeter than sucrose without calories. Currently, their production is still mainly dependent on extraction from Stevia rebaudiana Bertoni (stevia). Oligosaccharides are environmentally friendly elicitors that promote plant growth and accumulation of secondary metabolites. In the present study, different concentrations of chitosan oligosaccharides (COS) and alginate oligosaccharides (AOS) were applied to stevia to explore their effect on growth and SGs biosynthesis. It was found that both COS and AOS promoted biomass production by increasing the leaf number and photosynthetic efficiency, which may be related to the decreased content of abscisic acid. The content of SGs was significantly increased after 50 mg/L AOS treatment, which not only increased the contents of stevioside (STV) and rebaudioside A (Reb A) significantly, but some important minority glucosides, like Reb E, Reb D, and Reb M. The increased SGs contents were the combined effect of the higher expression of SGs biosynthesis related genes, including KAH, UGT74G1, UGT85C2, and UGT91D2. The geometry changes of stem induced by COS and AOS may help to increase the lodging resistance of stevia. Thus, COS and AOS can be used in the field planting of stevia to increase the yield of SGs for industrial purposes.
Collapse
Affiliation(s)
- Yu Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyu Xu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liping Zhu
- Zhucheng Haotian Pharm Co., Ltd, Shandong, 262200, China; Dongtai Hirye Biotechnology Co., Ltd, Jiangsu, 224200, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
32
|
El-Gazzar N, El-Hai KMA, Teama SAM, Rabie GH. Enhancing Vicia faba 's immunity against Rhizoctonia solani root rot diseases by arbuscular mycorrhizal fungi and nano chitosan. BMC PLANT BIOLOGY 2023; 23:403. [PMID: 37620786 PMCID: PMC10463857 DOI: 10.1186/s12870-023-04407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The spreading of root rot disease of faba bean plant (Vichia faba L, VF) in Egypt is still of great challenge faced researchers since VF is an important legume in Egypt, because their seeds are used for human feeding. Fungicides are used for treatment of either seeds or soil; unfortunately they cause environmental pollution. Therefore, there is a need to continue research to find out safe natural solutions. In this regard, Arbuscular mycorrhizal fungi (AMF) and chitosan (micro or nanoform) were used as an inhibitory product against Rhizoctonia solani OM918223 (R.solani) either singly or in combinations. RESULTS The results employed herein have exhibited that R.solani caused root rot disease of VF plants in more than 80% of the plants under investigation. Chitosan nanoparticles (Chitosan NPs) were prepared by ionic gelatin method and characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) imaging and Fourier transform infra-red (FTIR). Chitosan NPs are spherical with a diameter of 78.5 nm and exhibited the presence of different functional groups. The inhibitory natural products against R.solani were arranged according to their ability to inhibit the pathogen used in the following descending manner; combination of AMF with Chitosan NPs, AMF with micro chitosan and single AMF, respectively. Where, Chitosan NPs showed a potent influence on R.solani pathogen and reduced the pre-and post-emergence of R. solani. In addition, Chitosan NPs reduced Disease Incidence (DI %) and Disease Severity (DS %) of root rot disease and are widely functional through mixing with AMF by about 88% and 89%. Further, Chitosan NPs and micro chitosan were proved to increase the growth parameters of VF plants such as nutritional status (mineral, soluble sugar, and pigment content), and defense mechanisms including total phenol, peroxidase, and polyphenol oxidase in mycorrhizal plants more than non-mycorrhizal one either in infected or healthy plants. Moreover, activity of AMF as an inhibitory against R.solani and improvement natural agent for VF growth parameters was enhanced through its fusing with Chitosan NPs. CONCLUSIONS The use of AMF and Chitosan NPs increased faba bean plant resistance against the infection of root rot R. solani, with both prevention and cure together. Therefore, this research opens the door to choose natural and environmental friendly treatments with different mechanisms of plant resistance to disease.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | | | - Safaa A M Teama
- Plant Pathology Research Institute, Agric., Res., Cent, Giza, Egypt
| | - Gamal H Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Sharkia, Egypt
| |
Collapse
|
33
|
Mincuzzi A, Picciotti U, Sanzani SM, Garganese F, Palou L, Addante R, Ragni M, Ippolito A. Postharvest Diseases of Pomegranate: Alternative Control Means and a Spiderweb Effect. J Fungi (Basel) 2023; 9:808. [PMID: 37623578 PMCID: PMC10456121 DOI: 10.3390/jof9080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The pomegranate is a fruit known since ancient times for its beneficial properties. It has recently aroused great interest in the industry and among consumers, leading to a significant increase in demand. Consequently, its cultivation has been boosted all over the world. The pomegranate crop suffers considerable yield losses, especially at the postharvest stage, because it is a "minor crop" with few permitted control means. To control latent (Alternaria spp., Botrytis spp., Coniella spp., Colletotrichum spp., and Cytospora spp.) and wound (Aspergillus spp., Penicillium spp., and Talaromyces spp.) fungal pathogens, different alternative compounds, previously evaluated in vitro, were tested in the field on pomegranate cv. Wonderful. A chitosan solution, a plant protein hydrolysate, and a red seaweed extract were compared with a chemical control treatment, all as preharvest (field application) and postharvest treatments and their combinations. At the end of the storage period, the incidence of stamen infections and external and internal rots, and the severity of internal decay were evaluated. Obtained data revealed that pre- and postharvest application of all substances reduced the epiphytic population on stamens. Preharvest applications of seaweed extract and plant hydrolysate were the most effective treatments to reduce the severity of internal pomegranate decays. Furthermore, the influence of spider (Cheiracanthium mildei) cocoons on the fruit calyx as a possible barrier against postharvest fungal pathogens was assessed in a 'Mollar de Elche' pomegranate organic orchard. Compared to no-cocoon fruit (control), the incidence of infected stamens and internal molds in those with spiderwebs was reduced by about 30%, and the mean severity of internal rots was halved. Spiderwebs analyzed via Scanning Electron Microscopy (SEM) disclosed a layered, unordered structure that did not allow for the passage of fungal spores due to its mean mesh size (1 to 20 µm ca). The aims of this research were (i) to evaluate alternative compounds useful to control postharvest pomegranate decays and (ii) to evaluate the effectiveness of spiders in reducing postharvest fungal infections by analyzing related mechanisms of action. Alternative control means proposed in the present work and calyx spider colonization may be helpful to reduce postharvest pomegranate diseases, yield losses, and waste production in an integrated control strategy, satisfying organic agriculture and the planned goals of Zero Hunger Challenge launched by the United Nations.
Collapse
Affiliation(s)
- Annamaria Mincuzzi
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Ugo Picciotti
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Simona Marianna Sanzani
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Francesca Garganese
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Lluís Palou
- Pathology Laboratory, Postharvest Technology Center (CTP), Valencian Institute of Agrarian Research (IVIA), CV-315, Km 10.7, Montcada, 46113 Valencia, Spain;
| | - Rocco Addante
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Marco Ragni
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Antonio Ippolito
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| |
Collapse
|
34
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
35
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
36
|
Ibrahim MA, Alhalafi MH, Emam EAM, Ibrahim H, Mosaad RM. A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications. Polymers (Basel) 2023; 15:2820. [PMID: 37447465 DOI: 10.3390/polym15132820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is produced by deacetylating the abundant natural chitin polymer. It has been employed in a variety of applications due to its unique solubility as well as its chemical and biological properties. In addition to being biodegradable and biocompatible, it also possesses a lot of reactive amino side groups that allow for chemical modification and the creation of a wide range of useful derivatives. The physical and chemical characteristics of chitosan, as well as how it is used in the food, environmental, and medical industries, have all been covered in a number of academic publications. Chitosan offers a wide range of possibilities in environmentally friendly textile processes because of its superior absorption and biological characteristics. Chitosan has the ability to give textile fibers and fabrics antibacterial, antiviral, anti-odor, and other biological functions. One of the most well-known and frequently used methods to create nanofibers is electrospinning. This technique is adaptable and effective for creating continuous nanofibers. In the field of biomaterials, new materials include nanofibers made of chitosan. Numerous medications, including antibiotics, chemotherapeutic agents, proteins, and analgesics for inflammatory pain, have been successfully loaded onto electro-spun nanofibers, according to recent investigations. Chitosan nanofibers have several exceptional qualities that make them ideal for use in important pharmaceutical applications, such as tissue engineering, drug delivery systems, wound dressing, and enzyme immobilization. The preparation of chitosan nanofibers, followed by a discussion of the biocompatibility and degradation of chitosan nanofibers, followed by a description of how to load the drug into the nanofibers, are the first issues highlighted by this review of chitosan nanofibers in drug delivery applications. The main uses of chitosan nanofibers in drug delivery systems will be discussed last.
Collapse
Affiliation(s)
- Marwan A Ibrahim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Mona H Alhalafi
- Department of Chemistry, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, Cairo 11795, Egypt
| | - Hassan Ibrahim
- Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab M Mosaad
- Department of Biology, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
37
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
38
|
Fan Z, Wang L, Qin Y, Li P. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydr Polym 2023; 306:120592. [PMID: 36746583 DOI: 10.1016/j.carbpol.2023.120592] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Chemical nematicide is the most common method of controlling plant-parasitic nematodes (PPN). Given the negative impact of chemical nematicides on the environment and ecosystem, it is necessary to seek their alternatives and novel modes of application. Chitin oligo/polysaccharide (COPS), including chitosan and chitosan oligosaccharide, has unique biological properties. By producing ammonia, encouraging the growth of antagonistic bacteria, and enhancing crop tolerance, COPSs help suppress PPN growth during soil remediation. COPS is also an effective sustained-release carrier that can be used to overcome the shortcomings of nematicidal substances. This review summarizes the advancements of COPS research in nematode control from three perspectives of action mechanism as well as in slow-release carrier-loaded nematicides. Further, it discusses potential agricultural applications for nematode disease management.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
39
|
Shahrajabian MH, Sun W. The Importance of Traditional Chinese Medicine in the Intervention and Treatment of HIV while Considering its Safety and Efficacy. Curr HIV Res 2023; 21:331-346. [PMID: 38047360 DOI: 10.2174/011570162x271199231128092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins. Terpenes inhibit virus fusion, lectins and flavonoids have an inhibitory impact on viral binding, curcumin and flavonoids inhibit viral DNA integration. The most important medicinal plants which have been used in traditional Chinese medicinal sciences with anti-HIV properties are Convallaria majalis, Digitalis lanata, Cassia fistula, Croton macrostachyus, Dodonaea angustifolia, Ganoderma lucidum, Trametes versicolor, Coriolus versicolor, Cordyceps sinensis, Gardenia jasminoides, Morus alba, Scutellaria baicalensis, Ophiopogon japonicus, Platycodon grandiflorus, Fritillaria thunbergii, Anemarrhena asphodeloides, Trichosanthes kirilowii, Citrus reticulata, Glycyrrhiza uralensis, Rheum officinale, Poria cocos, Rheum palmatum, Astragalus membranaceus, Morinda citrifolia, Potentilla kleiniana, Artemisia capillaris, Sargassum fusiforme, Piperis longi fructus, Stellera chamaejasme, Curcumae rhizoma, Dalbergia odorifera lignum, Arisaematis Rhizoma preparatum, and Phellodendron amurense. The information provided is gathered from randomized control experiments, review articles, and analytical studies and observations, which are obtained from different literature sources, such as Scopus, Google Scholar, PubMed, and Science Direct from July 2000 to August 2023. The aim of this review article is to survey and introduce important medicinal plants and herbs that have been used for the treatment of HIV, especially the medicinal plants that are common in traditional Chinese medicine, as research to date is limited, and more evidence is required to confirm TCM,s efficacy.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
40
|
Yin L, Wang Q, Sun J, Mao X. Expression and Molecular Modification of Chitin Deacetylase from Streptomyces bacillaris. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010113. [PMID: 36615307 PMCID: PMC9822392 DOI: 10.3390/molecules28010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chitin deacetylase can be used in the green and efficient preparation of chitosan from chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at 35 °C and pH 8.0. The enzyme activity is enhanced by Mn2+ and prominently inhibited by Zn2+, SDS, and EDTA. SbCDA showed better deacetylation activity on colloidal chitin, (GlcNAc)5, and (GlcNAc)6 than other forms of the substrate. Molecular modification of SbCDA was conducted based on sequence alignment and homology modeling. A mutant SbCDA63G with higher activity and better temperature stability was obtained. The deacetylation activity of SbCDA63G was increased by 133% compared with the original enzyme, and the optimal reaction temperature increased from 35 to 40 °C. The half-life of SbCDA63G at 40 °C is 15 h, which was 5 h longer than that of the original enzyme. The improved characteristics of the chitin deacetylase SbCDA63G make it a potential candidate to industrially produce chitosan from chitin.
Collapse
Affiliation(s)
- Lili Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Qi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| |
Collapse
|
41
|
Kumari M, Swarupa P, Kesari KK, Kumar A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010012. [PMID: 36675961 PMCID: PMC9860928 DOI: 10.3390/life13010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Modern agriculture systems are copiously dependent on agrochemicals such as chemical fertilizers and pesticides intended to increase crop production and yield. The indiscriminate use of these chemicals not only affects the growth of plants due to the accumulation of toxic compounds, but also degrades the quality and life-supporting properties of soil. There is a dire need to develop some green approach that can resolve these issues and restore soil fertility and sustainability. The use of plant biostimulants has emerged as an environmentally friendly and acceptable method to increase crop productivity. Biostimulants contain biological substances which may be capable of increasing or stimulating plant growth in an eco-friendly manner. They are mostly biofertilizers that provide nutrients and protect plants from environmental stresses such as drought and salinity. In contrast to the protection of crop products, biostimulants not only act on the plant's vigor but also do not respond to direct actions against pests or diseases. Plant biostimulants improve nutrient mobilization and uptake, tolerance to stress, and thus crop quality when applied to plants directly or in the rhizospheric region. They foster plant growth and development by positively affecting the crop life-cycle starting from seed germination to plant maturity. Legalized application of biostimulants causes no hazardous effects on the environment and primarily provides nutrition to plants. It nurtures the growth of soil microorganisms, which leads to enhanced soil fertility and also improves plant metabolism. Additionally, it may positively influence the exogenous microbes and alter the equilibrium of the microfloral composition of the soil milieu. This review frequently cites the characterization of microbial plant biostimulants that belong to either a high-risk group or are closely related to human pathogens such as Pueudomonas, Klebsiella, Enterobacter, Acinetobacter, etc. These related pathogens cause ailments including septicemia, gastroenteritis, wound infections, inflammation in the respiratory system, meningitis, etc., of varied severity under different conditions of health status such as immunocompromized and comorbidity. Thus it may attract the related concern to review the risk status of biostimulants for their legalized applications in agriculture. This study mainly emphasizes microbial plant biostimulants and their safe application concerns.
Collapse
Affiliation(s)
- Menka Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
| | - Preeti Swarupa
- Department of Microbiology, Patna Women’s College, Patna 800001, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (K.K.K.); (A.K.)
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand Cheri-Manatu, Kamre, Kanke, Rachi 835222, India
- Correspondence: or (K.K.K.); (A.K.)
| |
Collapse
|
42
|
Ji H, Wang J, Chen F, Fan N, Wang X, Xiao Z, Wang Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158212. [PMID: 36028025 DOI: 10.1016/j.scitotenv.2022.158212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chitosan, as a natural non-toxic biomaterial, has been demonstrated to enhance plant defense against oxidative stress. However, the general pattern and mechanism of how chitosan application modifies the amelioration of oxidative stress in plants have not been elucidated yet. Herein, we performed a meta-analysis of 58 published articles up to January 2022 to fill this knowledge gap, and found that chitosan application significantly increased the antioxidant enzyme activity (by 40.6 %), antioxidant metabolites content (by 24.6 %), defense enzyme activity (by 77.9 %), defense-related genes expression (by 103.2 %), phytohormones (by 26.9 %), and osmotic regulators (by 23.2 %) under stress conditions, which in turn notably reduced oxidative stress (by 32.2 %), and increased plant biomass (by 28.1 %) and yield (by 15.7 %). Moreover, chitosan-mediated effects on the amelioration of oxidative stress depended on the properties and application methods of chitosan. Our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated oxidative stress, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Garza-Alonso CA, Olivares-Sáenz E, González-Morales S, Cabrera-De la Fuente M, Juárez-Maldonado A, González-Fuentes JA, Tortella G, Valdés-Caballero MV, Benavides-Mendoza A. Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:3463. [PMID: 36559576 PMCID: PMC9784621 DOI: 10.3390/plants11243463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.
Collapse
Affiliation(s)
| | - Emilio Olivares-Sáenz
- Protected Agriculture Center, Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico
| | - Susana González-Morales
- National Council of Science and Technology (CONACYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | | | | | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment, CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
44
|
Farooq T, Akram MN, Hameed A, Ahmed T, Hameed A. Nanopriming-mediated memory imprints reduce salt toxicity in wheat seedlings by modulating physiobiochemical attributes. BMC PLANT BIOLOGY 2022; 22:540. [PMID: 36414951 PMCID: PMC9682780 DOI: 10.1186/s12870-022-03912-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Around the globe, salinity is one of the serious environmental stresses which negatively affect rapid seed germination, uniform seedling establishment and plant developments restricting sustainable agricultural productivity. In recent years, the concepts of sustainable agriculture and cleaner production strategy have emphasized the introduction of greener agrochemicals using biocompatible and natural sources to maximize crop yield with minimum ecotoxicological effects. Over the last decade, the emergence of nanotechnology as a forefront of interdisciplinary science has introduced nanomaterials as fast-acting plant growth-promoting agents. RESULTS Herein, we report the preparation of nanocomposite using chitosan and green tea (CS-GTE NC) as an ecofriendly nanopriming agent to elicit salt stress tolerance through priming imprints. The CS-GTE NC-primed (0.02, 0.04 and 0.06%), hydroprimed and non-primed (control) wheat seeds were germinated under normal and salt stress (150 mM NaCl) conditions. The seedlings developed from aforesaid seeds were used for physiological, biochemical and germination studies. The priming treatments increased protein contents (10-12%), photosynthetic pigments (Chl a (4-6%), Chl b (34-36%), Total Chl (7-14%) and upregulated the machinery of antioxidants (CAT (26-42%), POD (22-43%)) in wheat seedlings under stress conditions. It also reduced MDA contents (65-75%) and regulated ROS production resulting in improved membrane stability. The priming-mediated alterations in biochemical attributes resulted in improved final germination (20-22%), vigor (4-11%) and germination index (6-13%) under both conditions. It reduced mean germination time significantly, establishing the stress-insulating role of the nanocomposite. The improvement of germination parameters validated the stimulation of priming memory in composite-treated seeds. CONCLUSION Pre-treatment of seeds with nanocomposite enables them to counter salinity at the seedling development stage by means of priming memory warranting sustainable plant growth and high crop productivity.
Collapse
Affiliation(s)
- Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
45
|
Dmitrović S, Pajčin I, Lukić N, Vlajkov V, Grahovac M, Grahovac J, Jokić A. Taguchi Grey Relational Analysis for Multi-Response Optimization of Bacillus Bacteria Flocculation Recovery from Fermented Broth by Chitosan to Enhance Biocontrol Efficiency. Polymers (Basel) 2022; 14:polym14163282. [PMID: 36015554 PMCID: PMC9413004 DOI: 10.3390/polym14163282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Degradation of environment is a challenge to crop production around the world. Biological control of various plant diseases using antagonistic bacteria is an encouraging alternative to traditionally used chemical control strategies. Chitosan as a well-known natural flocculation agent also exhibits antimicrobial activity. The goal of this study was to investigate a dual nature of chitosan in flocculation of Bacillus sp. BioSol021 cultivation broth intended for biocontrol applications. Experiments were performed based on L18 standard Taguchi orthogonal array design with five input parameters (chitosan type and dosage, pH value, rapid and slow mixing rates). In this study, the grey relational analysis was used to perform multi-objective optimization of the chosen responses, i.e., flocculation efficiency and four inhibition zone diameters against the selected phytopathogens. The results have indicated a great potential of a highly efficient method for removal of the Bacillus bacteria from the cultivation broth using chitosan. The good flocculation efficiency and high precipitate antimicrobial activity against the selected phytopathogens were achieved. It has been shown that multiple flocculation performance parameters were improved, resulting in slightly improved response values.
Collapse
Affiliation(s)
- Selena Dmitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Nataša Lukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
46
|
Dutta R, K. J, Nadig SM, Manjunathagowda DC, Gurav VS, Singh M. Anthracnose of Onion ( Allium cepa L.): A Twister Disease. Pathogens 2022; 11:pathogens11080884. [PMID: 36015005 PMCID: PMC9415854 DOI: 10.3390/pathogens11080884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The onion (Allium cepa L.) is a lucrative and high-value vegetable–spice crop in India, but it is sensitive to several of diseases caused by fungi, bacteria, viruses, and nematodes, of which a fungal disease, anthracnose, caused by Colletotrichum spp., is a major issue for both onion producers and researchers since it severely affects the bulb production. Twister disease is currently one of the most common problems in onion production, particularly in humid regions, and it reduces productivity while also lowering the value and profitability. Twister disease is visualised by white or pale-yellow water-soaked oval depressed lesions on leaf blades, which are the first symptoms. Lesions expand as the disease advances, and numerous black-coloured, slightly elevated structures/fruiting bodies appear in the middle area, arranged in concentric rings. Curling, twisting, chlorosis of the leaves, and aberrant extension of the neck or pseudo-stem occurs, followed by rotting of the bulb. In an unmanaged crop, an excess gibberellin production by Colletotrichum gloeosporioides and Gibberella moniliformis is suspected to induce twisting and aberrant neck elongation, which will ruin onion productivity. It is difficult and environmentally unfriendly to control these infections. Since, to the best of our knowledge, this is the first review on onion anthracnose, we tried to consolidate information. This review updates our knowledge of the pathogen, including the disease cycle, infection pathways, and disease management techniques. As a result, growers will be benefit from the application of cultural, biological, and chemical measures and the use of resistant varieties.
Collapse
Affiliation(s)
- Ram Dutta
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
- Correspondence: (R.D.); (J.K.)
| | - Jayalakshmi K.
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
- Correspondence: (R.D.); (J.K.)
| | - Sharath M. Nadig
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
| | - Dalasanuru Chandregowda Manjunathagowda
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 530068, KA, India
| | - Vishal S. Gurav
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Pune 410505, MH, India
- Plant Sciences, Agricultural Scientists Recruitment Board, DARE, Ministry of Agriculture and Farmers Welfare, Government of India, Krishi Anusandhan Bhavan-I, Pusa 110012, ND, India
| |
Collapse
|
47
|
Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NANOIMPACT 2022; 27:100411. [PMID: 35803478 DOI: 10.1016/j.impact.2022.100411] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 05/21/2023]
Abstract
Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.
Collapse
Affiliation(s)
- Ali Murad Jakhar
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jiahua Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China.
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
48
|
Sun J, Li S, Fan C, Cui K, Tan H, Qiao L, Lu L. N-Acetylglucosamine Promotes Tomato Plant Growth by Shaping the Community Structure and Metabolism of the Rhizosphere Microbiome. Microbiol Spectr 2022; 10:e0035822. [PMID: 35665438 PMCID: PMC9241905 DOI: 10.1128/spectrum.00358-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
Communication between plants and microorganisms is vital because it influences their growth, development, defense, propagation, and metabolism in achieving maximal fitness. N-acetylglucosamine (N-GlcNAc), the building block of bacterial and fungal cell walls, was first reported to promote tomato plant growth via stimulation of microorganisms typically known to dominate the tomato root rhizosphere, such as members of Proteobacteria and Actinobacteria. Using KEGG pathway analysis of the rhizosphere microbial operational taxonomic units, the streptomycin biosynthesis pathway was enriched in the presence of N-GlcNAc. The biosynthesis of 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol, two foremost types of plant growth promotion-related volatile organic compounds, were activated in both Bacillus subtilis and Streptomyces thermocarboxydus strains when they were cocultured with N-GlcNAc. In addition, the application of N-GlcNAc increased indole-3-acetic acid production in a dose-dependent manner in strains of Bacillus cereus, Proteus mirabilis, Pseudomonas putida, and S. thermocarboxydus that were isolated from an N-GlcNAc-treated tomato rhizosphere. Overall, this study found that N-GlcNAc could function as microbial signaling molecules to shape the community structure and metabolism of the rhizosphere microbiome, thereby regulating plant growth and development and preventing plant disease through complementary plant-microbe interactions. IMPORTANCE While the benefits of using plant growth-promoting rhizobacteria (PGPRs) to enhance crop production have been recognized and studied extensively under laboratory conditions, the success of their application in the field varies immensely. More fundamentally explicit processes of positive, plant-PGPRs interactions are needed. The utilization of organic amendments, such as chitin and its derivatives, is one of the most economical and practical options for improving soil and substrate quality as well as plant growth and resilience. In this study, we observed that the chitin monomer N-GlcNAc, a key microbial signaling molecule produced through interactions between chitin, soil microbes, and the plants, positively shaped the community structure and metabolism of the rhizosphere microbiome of tomatoes. Our findings also provide a new direction for enhancing the benefits and stability of PGPRs in the field.
Collapse
Affiliation(s)
- Jiuyun Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Chunyang Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Kangjia Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Hongxiao Tan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| |
Collapse
|
49
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
50
|
Disease resistance and growth promotion activities of chitin/cellulose nanofiber from spent mushroom substrate to plant. Carbohydr Polym 2022; 284:119233. [DOI: 10.1016/j.carbpol.2022.119233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 11/20/2022]
|