1
|
Arélin M, Hornemann F, Merkenschlager A, Biemann R, Ceglarek U, Klinkhammer J, Baber R, Kiess W, Kratzsch J, Vogel M. Pediatric reference values of VEGF-D derived from a German population-based cohort of healthy children. Clin Chim Acta 2025; 571:120241. [PMID: 40068770 DOI: 10.1016/j.cca.2025.120241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Vascular endothelial growth factor D (VEGF-D) is a growth-factor involved in the development of blood vessels and lymphatics in tissues all over the human body. Interestingly, VEGF-D serum levels are increased in certain tumor entities. For tuberous sclerosis complex (TSC), a rare genetic disease associated with (benign) tumor growth, VEGF-D is already implemented as a diagnostic and therapeutic biomarker to monitor onset and progress of lymphangioleiomyomatosis (LAM), one of the noncancerous tumor manifestations in mainly female adult TSC patients. To date only adult VEGF-D serum cut off values are established and used as a diagnostic tool in LAM. Neither cut off nor pediatric reference values for VEGF-D serum levels are known, our study aims to provide reliable pediatric VEGF-D results in samples from healthy children and adolescents. METHODS We analyzed 2003 samples provided by healthy children aged 0.25-18 years participating in the prospective longitudinal population-based cohort study "LIFE Child" in Leipzig, Germany. Serum VEGF-D levels were measured by enzyme-linked immunoassay. RESULTS VEGF-D levels in healthy children and adolescents show age-and gender specific variations. We showed a significant difference between girls and boys in post pubertal VEGF-D levels. Especially the fact, that girls showed higher VEGF-D levels with advancing stages of puberty is underlining the importance of estrogen metabolism in context of VEGF-D mediated cell proliferation, angiogenesis and associated disease mechanisms. CONCLUSION Knowing VEGF-D levels in growing healthy young children and adolescents could help to recognize early disease progression of LAM in individuals at risk especially young women suffering from TSC. Further studies are needed on VEGF-D serum levels in children, especially the impact of estrogen metabolism on VEGF-D should be investigated further.
Collapse
Affiliation(s)
- Maria Arélin
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig 04103 Leipzig, Germany.
| | | | - Andreas Merkenschlager
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig 04103 Leipzig, Germany
| | - Ronald Biemann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig 04103 Leipzig, Germany
| | - Julia Klinkhammer
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig 04103 Leipzig, Germany
| | - Ronny Baber
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig 04103 Leipzig, Germany; LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig 04103 Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig 04103 Leipzig, Germany; LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig 04103 Leipzig, Germany
| | - Juergen Kratzsch
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig 04103 Leipzig, Germany
| | - Mandy Vogel
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig 04103 Leipzig, Germany
| |
Collapse
|
2
|
Liu X, Luo Y, Huang Y, Li M, Guo M, Dong Z, Wu J, Cai G, Zhu H, Wang K, Chen X, Li P, Li Q. Novel Biomarkers as Non-Invasive Diagnostic Tools in IgA Nephropathy: A Comparative Study with Lupus Nephritis and Membranous Nephropathy. J Inflamm Res 2025; 18:4627-4639. [PMID: 40191091 PMCID: PMC11972577 DOI: 10.2147/jir.s512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rationale The diagnostic value of endothelial-associated biomarkers in IgAN and their ability to differentiate it from other kidney diseases have not yet been clarified. Objective This study aimed to investigate the diagnostic value of endothelial-associated biomarkers in IgAN patients. Methods and Results This is a cross-sectional study involving 96 participants, with IgAN, LN, MN, and healthy subjects recruited in a 1:1:1:1 ratio. Seventy-five percent of the sample was used for developing a classification model, and the remaining 25% was used for constructing a validation cohort. Plasma levels of 12 endothelial-associated biomarkers were detected using multiplex immunoassay technology. Among all the biomarkers evaluated, VLA-4 and VEGFD were prioritized for distinguishing IgAN from other groups (p<0.001), with 85% classification accuracy. These two biomarkers also showed significant correlation with eGFR (VLA-4: r = - 0.291, P = 0.021; VEGFD: r = - 0.271, P = 0.031) and Gd-IgA1 (VLA-4: r = 0.403, P = 0.003; VEGFD: r = 0.412, P = 0.002). These two biomarkers also showed superior diagnostic efficacy (AUC=0.952 and 0.945) compared to Gd-IgA1 (AUC=0.736). Subgroup analysis of IgAN patients revealed clinically relevant effect sizes for the IgA and IgA/C3 ratios between high- and low-VLA-4 and VEGFD groups, with Hedges' g values of 0.962 and 0.819, respectively. The diagnostic efficacy of VLA-4 and VEGFD levels in IgAN was further validated in an independent cohort comprising 24 participants. Conclusion VLA-4 and VEGFD emerge as robust, non-invasive biomarkers for IgAN diagnosis and may play significant roles in the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yushuang Luo
- Department of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China
| | - Yiyu Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Kaifa Wang
- Department of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Airola C, Varca S, Del Gaudio A, Pizzolante F. The Covert Side of Ascites in Cirrhosis: Cellular and Molecular Aspects. Biomedicines 2025; 13:680. [PMID: 40149656 PMCID: PMC11940454 DOI: 10.3390/biomedicines13030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Ascites, a common complication of portal hypertension in cirrhosis, is characterized by the accumulation of fluid within the peritoneal cavity. While traditional theories focus on hemodynamic alterations and renin-angiotensin-aldosterone system (RAAS) activation, recent research highlights the intricate interplay of molecular and cellular mechanisms. Inflammation, mediated by cytokines (interleukin-1, interleukin-4, interleukin-6, tumor necrosis factor-α), chemokines (chemokine ligand 21, C-X-C motif chemokine ligand 12), and reactive oxygen species (ROS), plays a pivotal role. Besides pro-inflammatory cytokines, hepatic stellate cells (HSCs), sinusoidal endothelial cells (SECs), and smooth muscle cells (SMCs) contribute to the process through their activation and altered functions. Once activated, these cell types can worsen ascites accumulationthrough extracellular matrix (ECM) deposition and paracrine signals. Besides this, macrophages, both resident and infiltrating, through their plasticity, participate in this complex crosstalk by promoting inflammation and dysregulating lymphatic system reabsorption. Indeed, the lymphatic system and lymphangiogenesis, essential for fluid reabsorption, is dysregulated in cirrhosis, exacerbating ascites. The gut microbiota and intestinal barrier alterations which occur in cirrhosis and portal hypertension also play a role by inducing inflammation, creating a vicious circle which worsens portal hypertension and fluid accumulation. This review aims to gather these aspects of ascites pathophysiology which are usually less considered and to date have not been addressed using specific therapy. Nonetheless, it emphasizes the need for further research to understand the complex interactions among these mechanisms, ultimately leading to targeted interventions in specific molecular pathways, aiming towards the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Carlo Airola
- CEMAD Centro Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.V.); (A.D.G.)
- Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| | - Simone Varca
- CEMAD Centro Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.V.); (A.D.G.)
- Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| | - Angelo Del Gaudio
- CEMAD Centro Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.V.); (A.D.G.)
- Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| | - Fabrizio Pizzolante
- CEMAD Centro Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.V.); (A.D.G.)
| |
Collapse
|
4
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
5
|
Lipkin E, Strillacci MG, Cohen-Zinder M, Eitam H, Yishay M, Soller M, Ferrari C, Bagnato A, Shabtay A. Mapping genomic regions affecting sensitivity to bovine respiratory disease on chromosome X using selective DNA pooling. Sci Rep 2025; 15:4556. [PMID: 39915572 PMCID: PMC11802930 DOI: 10.1038/s41598-025-89020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Bovine respiratory disease is a leading health problem in feedlot cattle. Identification of affecting genes is essential for selection for decrease sensitivity. Chromosome X is a special attractive target for gene mapping in light of reports on both sexual dimorphism in immunity and higher susceptibility of males to this disease. However, diagnosis is challenging and clinical signs often go undetected. Kosher scoring of lung adhesions was used as a cost-effective proxy diagnosis. Selective DNA pooling was applied for cost-effective mapping of regions associated with sensitivity to the disease on chromosome X in Israeli Holstein male calves. A total of 9 regions were found, more than twice of any of the autosomes. All regions overlapped or were very close to previously reported regions. Bioinformatics survey found candidate-by-location genes in these regions. Functional analyses identified candidates-by-function among these genes. Network analyses connected the genes and found possible relations of the genes and the networks with morbidity, and specifically with sensitivity to bovine respiratory disease. The relatively large number of affecting regions and the candidate genes on the sex chromosome may explain part of the higher susceptibility of males and provide genomic and management targets for mitigating this disease.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Maria Giuseppina Strillacci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Miri Cohen-Zinder
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Harel Eitam
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Moran Yishay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Morris Soller
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Ariel Shabtay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
| |
Collapse
|
6
|
Yazib SA, Choo MM, Khaliddin N, Ong CPY, Choo YM, Kamar AA, Lingam GG, Kamalden TA. The association of cytokine levels and postnatal factors with retinopathy of prematurity. Indian J Ophthalmol 2025; 73:S139-S143. [PMID: 39446856 PMCID: PMC11834927 DOI: 10.4103/ijo.ijo_515_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/22/2024] [Accepted: 09/01/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE Prematurity has been known to trigger several cellular pathways, leading to the clinical occurrence of retinopathy of prematurity (ROP). This study compared the levels of a panel of serum cytokines in premature infants with and without ROP. METHODS This is a prospective observational study. Premature infants at 36-38 weeks' gestational age were recruited, their clinical data recorded, and serum samples collected and assayed for 18 cytokines. Based on follow-up examinations, patients were divided into two groups: No ROP and ROP. The ROP group was further divided into two subgroups: non-vision-threatening ROP (non-VTROP), and vision-threatening ROP (VTROP). RESULTS On univariate analysis, among the clinical parameters, gestation age, birth weight, duration of invasive ventilation, and duration of stay in neonatal intensive care unit (NICU) were found to be significant. The univariate analysis also showed an association between raised levels of VEGF-D and IL-8 in the VTROP group. Multiple logistic regression indicated that gestation age was a significant risk factor across all subgroups. Additionally, VEGF-D levels were found to be significantly associated with VTROP. CONCLUSION Higher VEGF-D levels are associated with an increased risk of severe ROP that requires treatment and could potentially be used as a biomarker.
Collapse
Affiliation(s)
- Syatirah Abu Yazib
- Department of Ophthalmology, UM Eye Research Centre, Faculty of Medicine, Universiti Malaya, Malaysia
| | - May May Choo
- Department of Ophthalmology, UM Eye Research Centre, Faculty of Medicine, Universiti Malaya, Malaysia
- Department of Ophthalmology, Central Clinical School, Faculty of Medicine, University of Sydney, Australia
| | - Nurliza Khaliddin
- Department of Ophthalmology, UM Eye Research Centre, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Christine PY Ong
- Department of Ophthalmology, UM Eye Research Centre, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Yao Mun Choo
- Department of Paediatrics, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Azanna Ahmad Kamar
- Department of Paediatrics, Faculty of Medicine, Universiti Malaya, Malaysia
| | - Gopal G Lingam
- National University Health System, Singapore
- Medical Research Foundation, Chennai, India
| | - Tengku A Kamalden
- Department of Ophthalmology, UM Eye Research Centre, Faculty of Medicine, Universiti Malaya, Malaysia
| |
Collapse
|
7
|
Polke M, Polke N, Piel S, Brunnemer E, Wälscher J, Buschulte K, Warth A, Heussel CP, Eichinger M, Frankenstein L, Eichhorn M, Miliauskas S, Herth FJF, Kreuter M. Pulmonary lymphangiomatosis: insights into an ultra-rare disease. Respir Res 2024; 25:416. [PMID: 39593123 PMCID: PMC11600747 DOI: 10.1186/s12931-024-03040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pulmonary lymphangiomatosis (PL) is an ultrarare disease characterized by diffuse infiltration of the lung, pleura and/or mediastinum by abnormal lymphatic proliferation. Consented diagnostic or treatment approaches are not established. We therefore aimed to collect data on diagnostics and treatments in a cohort of patients with PL from a tertiary center for rare lung diseases. METHODS Clinical, radiological and outcome data from PL patients were collected retrospectively. RESULTS 12 patients were diagnosed between 1996 and 2022 in our center. PL was diagnosed more commonly in female (58%), never smokers (75%) and younger patients (mean age 42 years). Main clinical symptoms comprised haem- and chyloptysis (58%) and dyspnea on exertion (83%). Pulmonary function was mostly restrictive (mean VC 59%) with impaired DLCO (mean 65%). Radiological assessment mainly showed mediastinal involvement (83%), and pleural effusion (67%), pleural thickening (67%) and bronchial wall thickening (67%) while interstitial changes were rare. Diagnosis was confirmed by surgical or transbronchial cryobiopsy. 8 patients were treated with sirolimus, 3 of these combined with a surgical intervention and in one case surgical intervention was necessary 9 months after initiation of sirolimus. Clinical and radiological improvement was demonstrated for all patients treated with sirolimus. 1 patient received a lung transplant due disease progression. Survival rates were 90% after a mean follow up of at least 3 months. CONCLUSION This case series illustrates the variability of the clinical presentation of PL. Among our patients, those treated with sirolimus showed significant clinical, functional and radiological improvement. However, further investigation is needed to understand the pathogenesis of lymphangiomatosis in order to establish therapeutic approaches.
Collapse
Affiliation(s)
- M Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany.
- Member of ERN-LUNG, Heidelberg, Germany.
| | - N Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - S Piel
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - E Brunnemer
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - J Wälscher
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany
| | - K Buschulte
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - A Warth
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - C P Heussel
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Dagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - M Eichinger
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Dagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - L Frankenstein
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - M Eichhorn
- Department of Thoracic Surgery, University of Heidelberg, Heidelberg, Germany
| | - S Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - F J F Herth
- Center for Interstitial and Rare Lung Diseases, Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Member of ERN-LUNG, Heidelberg, Germany
| | - M Kreuter
- Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Center for Pulmonary Medicine, Department of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| |
Collapse
|
8
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
9
|
Cai W, Pierzynowska K, Stiernborg M, Xu J, Nilsson IA, Svensson U, Melas PA, Lavebratt C. Multispecies synbiotics alleviate dextran sulfate sodium (DSS)-induced colitis: Effects on clinical scores, intestinal pathology, and plasma biomarkers in male and female mice. Clin Nutr ESPEN 2024; 63:74-83. [PMID: 38923468 DOI: 10.1016/j.clnesp.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by recurrent inflammation of the gastrointestinal tract and has been linked to an imbalance in gut bacteria. Synbiotics, which combine probiotics and prebiotics, are emerging as potential IBD treatments. AIM To examine the effects of four synbiotic formulations on intestinal inflammation and peripheral biomarkers in a rodent IBD model of both sexes. METHODS Colitis was induced in male and female C57BL/6 mice using 1% dextran sulfate sodium (DSS). Concurrently, a non-exposed control group was maintained. Starting on day 4 post-induction, DSS-exposed mice received one of four synbiotic preparations (Synbio1-4 composed of lactic acid bacteria, Bifidobacterium and dietary fibres), an anti-inflammatory drug used to treat IBD (mesalazine), or placebo (water) until day 14. Clinical symptoms and body weight were monitored daily. Blood samples (taken on days -3, 4, and 14, relative to DSS introduction), were used to analyze plasma biomarkers. At the end of the study, intestinal tissues underwent histological and morphological evaluation. RESULTS Compared to placebo, the Synbio1-, 2- and 3-treated groups had improved clinical scores by day 14. Synbio1 was the only preparation that led to clinical improvements to scores comparable to those of controls. The Synbio1-and 3-treated groups also demonstrated histological improvements in the colon. Plasma biomarker analyses revealed significant Synbio1-induced changes in plasma IL17A, VEGFD, and TNFRSF11B levels that correlated with improved clinical or histological scores. Sex-stratified analyses revealed that most therapeutic-like effects were more pronounced in females. CONCLUSION Our findings underscore the potential therapeutic benefits of specific synbiotics for IBD management. However, further research is needed to validate these outcomes in human subjects.
Collapse
Affiliation(s)
- Wenjie Cai
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Miranda Stiernborg
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | - Jingjing Xu
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | - Ida Ak Nilsson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Catharina Lavebratt
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
10
|
Kulkarni V, Tsigelny IF, Kouznetsova VL. Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling. Metabolites 2024; 14:501. [PMID: 39330508 PMCID: PMC11433869 DOI: 10.3390/metabo14090501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background: Feline mammary carcinoma (FMC) is a prevalent and fatal carcinoma that predominantly affects unspayed female cats. FMC is the third most common carcinoma in cats but is still underrepresented in research. Current diagnosis methods include physical examinations, imaging tests, and fine-needle aspiration. The diagnosis through these methods is sometimes delayed and unreliable, leading to increased chances of mortality. Objectives: The objective of this study was to identify the biomarkers, including blood metabolites and genes, related to feline mammary carcinoma, study their relationships, and develop a machine learning (ML) model for the early diagnosis of the disease. Methods: We analyzed the blood metabolites of felines with mammary carcinoma using the pathway analysis feature in MetaboAnalyst software, v. 5.0. We utilized machine-learning (ML) methods to recognize FMC using the blood metabolites of sick patients. Results: The metabolic pathways that were elucidated to be associated with this disease include alanine, aspartate and glutamate metabolism, Glutamine and glutamate metabolism, Arginine biosynthesis, and Glycerophospholipid metabolism. Furthermore, we also elucidated several genes that play a significant role in the development of FMC, such as ERBB2, PDGFA, EGFR, FLT4, ERBB3, FIGF, PDGFC, PDGFB through STRINGdb, a database of known and predicted protein-protein interactions, and MetaboAnalyst 5.0. The best-performing ML model was able to predict metabolite class with an accuracy of 85.11%. Conclusion: Our findings demonstrate that the identification of the biomarkers associated with FMC and the affected metabolic pathways can aid in the early diagnosis of feline mammary carcinoma.
Collapse
Affiliation(s)
- Vidhi Kulkarni
- REHS Program, San Diego Supercomputer Center, University of California, San Diego, CA 92093, USA;
- CureScience, San Diego, CA 92121, USA;
| | - Igor F. Tsigelny
- CureScience, San Diego, CA 92121, USA;
- San Diego Supercomputer Center, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- BiAna, La Jolla, CA 92038, USA
| | - Valentina L. Kouznetsova
- CureScience, San Diego, CA 92121, USA;
- San Diego Supercomputer Center, University of California, San Diego, CA 92093, USA
- BiAna, La Jolla, CA 92038, USA
| |
Collapse
|
11
|
Ou G, Zhao Y, Wang P, Tao S, Li H, Zhao T. The American cockroach (Periplaneta americana) residue could partially replace the dietary puffed soybean meal in the Three-yellow chickens. Poult Sci 2024; 103:103967. [PMID: 38941789 PMCID: PMC11261138 DOI: 10.1016/j.psj.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Periplaneta americana residue is a byproduct of using Periplaneta americana in pharmaceutical research and development for extracting active ingredients. Three hundred Three-yellow chickens were selected for the experiment and randomly divided into 6 groups (5 replications per group, 10 chickens per replicate): the control group (group A) was fed a basal ration, and the experimental groups (groups B, C, D, E, and F) were fed experimental diets in which P. americana residue replaced puffed soybean meal at proportions of 20, 40, 60, 80, and 100%, respectively, for a period of 42 d. The aim was to assess the impact of different levels of P. americana residue on the growth, survival, intestinal morphology, digestive enzyme activity, intestinal flora, and intestinal transcriptional responses of Three-yellow chickens. The results indicated that the increase in P. americana residue levels had a linear and quadratic impact on the average daily gain (ADG) and feed conversion ratio (FCR), respectively. The ADG was notably greater in the 40% group than in the 100% group, while the FCR was significantly lower in the 20% and 40% groups than in the 100% group (P < 0.05). Protease, lipase, and amylase activities exhibited a quadratic increase with increasing concentrations of P. americana residue (P < 0.05). Protease and lipase activities were notably greater in the 20% and 40% groups than in the 0% group (control group), amylase activity was significantly greater in the 40% group than in the 0% group (control group) (P < 0.05). Duodenal crypt depth (CD) decreased quadratically with increasing P. americana residue (P < 0.05). The duodenal villus height/crypt depth ratio (V/C) was significantly lower in the 100% group than in the 60% group (P < 0.05). The intestinal villus height (VH) increased quadratically with increasing levels of P. americana residue. The VH in the 60% group was significantly greater than that in the 0% (control group), 20, 80, and 100% groups (P < 0.05). The Chao and Ace indices demonstrated linear and quadratic increases with increasing levels of P. americana residue, while the Pd index showed a quadratic increase with increasing levels of P. americana residue (P < 0.05). The relative abundance profile of Lactobacillus exhibited a linear and quadratic decrease with increasing levels of P. americana residue, with the 100% group showing a significantly lower abundance than the 0% (control group) and 40% groups (P < 0.05). The transcriptome results showed that P. americana residue could enhance the digestive system by promoting vitamin, fat, carbohydrate digestion and absorption, cholesterol metabolism, etc. In conclusion, P. americana residue can replace puffed soybean meal without negatively affecting the growth performance of three-yellow chickens. The low and medium groups had positive effects on the growth performance, digestive enzyme activity, intestinal morphology, intestinal flora, and substance digestion and absorption of three-yellow chickens. The recommended replacement of P. americana residue for puffed soybean meal in the diets of three-yellow chickens ranged from 20% to 60%.
Collapse
Affiliation(s)
- Guoyu Ou
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Yongfei Zhao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Pingping Wang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Sicai Tao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Huiying Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, China
| | - Tianzhang Zhao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China.
| |
Collapse
|
12
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
13
|
Leitch IM, Gerometta M, Eichenbaum D, Finger RP, Steinle NC, Baldwin ME. Vascular Endothelial Growth Factor C and D Signaling Pathways as Potential Targets for the Treatment of Neovascular Age-Related Macular Degeneration: A Narrative Review. Ophthalmol Ther 2024; 13:1857-1875. [PMID: 38824253 PMCID: PMC11178757 DOI: 10.1007/s40123-024-00973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024] Open
Abstract
The development of treatments targeting the vascular endothelial growth factor (VEGF) signaling pathways have traditionally been firstly investigated in oncology and then advanced into retinal disease indications. Members of the VEGF family of endogenous ligands and their respective receptors play a central role in vasculogenesis and angiogenesis during both development and physiological homeostasis. They can also play a pathogenic role in cancer and retinal diseases. Therapeutic approaches have mostly focused on targeting VEGF-A signaling; however, research has shown that VEGF-C and VEGF-D signaling pathways are also important to the disease pathogenesis of tumors and retinal diseases. This review highlights the important therapeutic advances and the remaining unmet need for improved therapies targeting additional mechanisms beyond VEGF-A. Additionally, it provides an overview of alternative VEGF-C and VEGF-D signaling involvement in both health and disease, highlighting their key contributions in the multifactorial pathophysiology of retinal disease including neovascular age-related macular degeneration (nAMD). Strategies for targeting VEGF-C/-D signaling pathways will also be reviewed, with an emphasis on agents currently being developed for the treatment of nAMD.
Collapse
Affiliation(s)
- Ian M Leitch
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia.
| | - Michael Gerometta
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| | - David Eichenbaum
- Retina Vitreous Associates of Florida, St. Petersburg, FL, 33711, USA
| | - Robert P Finger
- Department of Ophthalmology, Medical Faculty Mannheim, University of Heidelberg, 69117, Heidelberg, Germany
| | | | - Megan E Baldwin
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| |
Collapse
|
14
|
Pinzon-Herrera L, Magness J, Apodaca-Reyes H, Sanchez J, Almodovar J. Surface Modification of Nerve Guide Conduits with ECM Coatings and Investigating Their Impact on Schwann Cell Response. Adv Healthc Mater 2024; 13:e2304103. [PMID: 38400540 DOI: 10.1002/adhm.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, layer-by-layer coatings composed of heparin and collagen are proposed as an extracellular mimetic environment on nerve guide conduits (NGC) to modulate the behavior of Schwann cells (hSCs). The authors evaluated the stability, degradation over time, and bioactivity of six bilayers of heparin/collagen layer-by-layer coatings, denoted as (HEP/COL)6. The stability study reveals that (HEP/COL)6 is stable after incubating the coatings in cell media for up to 21 days. The impact of (HEP/COL)6 on hSCs viability, protein expression, and migration is evaluated. These assays show that hSCs cultured in (HEP/COL)6 have enhanced protein expression and migration. This condition increases the expression of neurotrophic and immunomodulatory factors up to 1.5-fold compared to controls, and hSCs migrated 1.34 times faster than in the uncoated surfaces. Finally, (HEP/COL)6 is also applied to a commercial collagen-based NGC, NeuraGen, and hSC viability and adhesion are studied after 6 days of culture. The morphology of NeuraGen is not altered by the presence of (HEP/COL)6 and a nearly 170% increase of the cell viability is observed in the condition where NeuraGen is used with (HEP/COL)6. Additionally, cell adhesion on the coated samples is successfully demonstrated. This work demonstrates the reparative enhancing potential of extracellular mimetic coatings.
Collapse
Affiliation(s)
- Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - John Magness
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Hector Apodaca-Reyes
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Jesus Sanchez
- Science & Mathematics Division, Northwest Arkansas Community College, 1418 Burns Hall, Bentonville, AR, 72712, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| |
Collapse
|
15
|
Jindal K, Adil MT, Yamaguchi N, Yang X, Wang HC, Kamimoto K, Rivera-Gonzalez GC, Morris SA. Single-cell lineage capture across genomic modalities with CellTag-multi reveals fate-specific gene regulatory changes. Nat Biotechnol 2024; 42:946-959. [PMID: 37749269 PMCID: PMC11180607 DOI: 10.1038/s41587-023-01931-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage-tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics. However, reliance on transcriptional profiling limits adaptation to other single-cell assays. With CellTag-multi, we present an approach that enables direct capture of heritable random barcodes expressed as polyadenylated transcripts, in both single-cell RNA sequencing and single-cell Assay for Transposase Accessible Chromatin using sequencing assays, allowing for independent clonal tracking of transcriptional and epigenomic cell states. We validate CellTag-multi to characterize progenitor cell lineage priming during mouse hematopoiesis. Additionally, in direct reprogramming of fibroblasts to endoderm progenitors, we identify core regulatory programs underlying on-target and off-target fates. Furthermore, we reveal the transcription factor Zfp281 as a regulator of reprogramming outcome, biasing cells toward an off-target mesenchymal fate. Our results establish CellTag-multi as a lineage-tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.
Collapse
Affiliation(s)
- Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohd Tayyab Adil
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Naoto Yamaguchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Malekan M, Haass NK, Rokni GR, Gholizadeh N, Ebrahimzadeh MA, Kazeminejad A. VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sci 2024; 345:122563. [PMID: 38508233 DOI: 10.1016/j.lfs.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is responsible for most skin cancer-associated deaths globally. The progression of melanoma is influenced by a number of pathogenic processes. Understanding the VEGF/VEGFR axis, which includes VEGF-A, PlGF, VEGF-B, VEGF-C, and VEGF-D and their receptors, VEGFR-1, VEGFR-2, and VEGFR-3, is of great importance in melanoma due to its crucial role in angiogenesis. This axis generates multifactorial and complex cellular signaling, engaging the MAPK/ERK, PI3K/AKT, PKC, PLC-γ, and FAK signaling pathways. Melanoma cell growth and proliferation, migration and metastasis, survival, and acquired resistance to therapy are influenced by this axis. The VEGF/VEGFR axis was extensively examined for their potential as diagnostic/prognostic biomarkers in melanoma patients and results showed that VEGF overexpression can be associated with unfavorable prognosis, higher level of tumor invasion and poor response to therapy. MicroRNAs linking to the VEGF/VEGFR axis were identified and, in this review, divided into two categories according to their functions, some of them promote melanoma angiogenesis (promotive group) and some restrict melanoma angiogenesis (protective group). In addition, the approach of treating melanoma by targeting the VEGF/VEGFR axis has garnered significant interest among researchers. These agents can be divided into two main groups: anti-VEGF and VEGFR inhibitors. These therapeutic options may be a prominent step along with the modern targeting and immune therapies for better coverage of pathological processes leading to melanoma progression and therapy resistance.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armaghan Kazeminejad
- Department of Dermatology, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences,Sari, Iran
| |
Collapse
|
17
|
Yoon HY, Moon SJ, Kim SY, Park JS, Choi SM, Kang HK, Song JW. Diagnostic value of serum vascular endothelial growth factor-D in Korean patients with lymphangioleiomyomatosis. Ther Adv Respir Dis 2024; 18:17534666241272928. [PMID: 39148439 PMCID: PMC11329922 DOI: 10.1177/17534666241272928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a rare multisystemic disorder characterized by the proliferation of abnormal smooth muscle-like cells. Although serum vascular endothelial growth factor-D (VEGF-D) is currently used as a diagnostic biomarker for LAM, its diagnostic value in Korean patients is unclear. OBJECTIVES To evaluate the diagnostic value of serum VEGF-D for LAM in Korean patients. DESIGN A multicenter prospective cohort study. METHODS Serum samples were prospectively collected from five medical institutions, from patients with LAM (n = 40) and controls (n = 24; healthy participants = 3, other cystic lung diseases = 13, idiopathic pulmonary fibrosis = 4, idiopathic nonspecific interstitial pneumonia = 4). Serum VEGF-D levels were measured using the enzyme-linked immunosorbent assay, and the diagnostic value was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS The mean age of patients with LAM was 44.5 years, and all were female (controls: 47.8 years; female: 70.8%, p < 0.001). The serum VEGF-D levels were significantly higher in patients with LAM than those in the control group (median: 708.9 pg/mL vs 325.3 pg/mL, p < 0.001). In the ROC curve analysis, serum VEGF-D levels showed good predicting performance for LAM diagnosis (area under the curve = 0.918) with an optimal cut-off value of 432.7 pg/mL (sensitivity = 85.0%, specificity = 87.5%). When 800 pg/mL was used as the cut-off value, the specificity of serum VEGF-D for LAM diagnosis increased to 100.0%. CONCLUSION Our results suggest that serum VEGF-D may be a useful biomarker for diagnosing LAM in Korean patients, similar to previous reports.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Su-jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Jong Sun Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyung Koo Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
18
|
Nashine S, Kenney MC. Effects of Humanin G (HNG) on angiogenesis and neurodegeneration markers in Age-related Macular Degeneration (AMD). Mitochondrion 2024; 74:101818. [PMID: 38029849 DOI: 10.1016/j.mito.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Advanced stages of Age-related Macular Degeneration (AMD) are characterized by retinal neurodegeneration and aberrant angiogenesis, and mitochondrial dysfunction contributes to the pathogenesis of AMD. In this study, we tested the hypothesis that Humanin G (HNG), a cytoprotective mitochondrial-derived peptide, positively regulates cell proliferation, cell death, and the protein levels of angiogenesis and neurodegeneration markers, in normal (control) and AMD RPE transmitochondrial cybrid cell lines. These normal and AMD RPE transmitochondrial cybrid cell lines had identical nuclei derived from mitochondria-deficient ARPE-19 cell line, but differed in mitochondrial DNA (mtDNA) content that was derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal (control) cybrid cell lines, and the Luminex XMAP multiplex assay was used to examine the protein levels of angiogenesis and neurodegeneration markers. Humanin G reduced Caspase-3/7-mediated apoptosis, improved cell proliferation, and normalized the protein levels of angiogenesis and neurodegeneration markers in AMD RPE cybrid cell lines, thereby suggesting Humanin G's positive regulatory role in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Schneider AL, Huie JR, Jain S, Sun X, Ferguson AR, Lynch C, Yue JK, Manley GT, Wang KK, Sandsmark DK, Campbell C, Diaz-Arrastia R. Associations of Microvascular Injury-Related Biomarkers With Traumatic Brain Injury Severity and Outcomes: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study. J Neurotrauma 2023; 40:1625-1637. [PMID: 37021339 PMCID: PMC10458378 DOI: 10.1089/neu.2022.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by heterogeneity in terms of injury severity, mechanism, outcome, and pathophysiology. A single biomarker alone is unlikely to capture the heterogeneity of even one injury subtype, necessitating the use of panels of biomarkers. Herein, we focus on traumatic cerebrovascular injury and investigate associations of a panel of 16 vascular injury-related biomarkers with indices of TBI severity and outcomes using data from 159 participants in the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot Study. Associations of individual biomarkers and clusters of biomarkers identified using non-linear principal components analysis with TBI severity and outcomes were assessed using logistic regression models and Spearman's correlations. As individual biomarkers, higher levels of thrombomodulin, angiopoietin (Ang)-2, von Willebrand factor, and P-selectin were associated with more severe injury; higher levels of Ang-1, Tie2, vascular endothelial growth factor (VEGF)-C, and basic fibroblast growth factor (bFGF) were associated with less severe injury (all p < 0.05 in age-adjusted models). After false discovery rate correction for multiple comparisons, higher levels of Ang-2 remained associated with more severe injury and higher levels of Ang-1, Tie2, and bFGF remained associated with less severe injury at a p < 0.05 level. In principal components analysis, principal component (PC)1, comprised of Ang1, bFGF, P-selectin, VEGF-C, VEGF-A, and Tie2, was associated with less severe injury (age-adjusted odds ratio [OR]: 0.63, 95% confidence interval [CI]: 0.44-0.88 for head computer tomography [CT] positive vs. negative) and PC2 (Ang-2, E-selectin, Flt-1, placental growth factor, thrombomodulin, and vascular cell adhesion protein 1) was associated with greater injury severity (age-adjusted OR: 2.29, 95% CI: 1.49-3.69 for Glasgow Coma Scale [GCS] 3-12 vs. 13-15 and age-adjusted OR 1.59, 95% CI: 1.11-2.32 for head CT positive vs. negative). Neither individual biomarkers nor PCs were associated with outcomes in adjusted models (all p > 0.05). In conclusion, in this trauma-center based population of acute TBI patients, biomarkers of microvascular injury were associated with TBI severity.
Collapse
Affiliation(s)
- Andrea L.C. Schneider
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - J. Russell Huie
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Xiaoying Sun
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Adam R. Ferguson
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Cillian Lynch
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K. Yue
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Geoffrey T. Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Kevin K.W. Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarker Research, Departments of Emergency Medicine, Psychiatry, and Chemistry, University of Florida, Gainesville, Florida, USA
| | - Danielle K. Sandsmark
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Ramon Diaz-Arrastia
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Frommer ML, Langridge BJ, Awad L, Jasionowska S, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Single-Cell Analysis of ADSC Interactions with Fibroblasts and Endothelial Cells in Scleroderma Skin. Cells 2023; 12:1784. [PMID: 37443817 PMCID: PMC10341100 DOI: 10.3390/cells12131784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) as part of autologous fat grafting have anti-fibrotic and anti-inflammatory effects, but the exact mechanisms of action remain unknown. By simulating the interaction of ADSCs with fibroblasts and endothelial cells (EC) from scleroderma (SSc) skin in silico, we aim to unravel these mechanisms. Publicly available single-cell RNA sequencing data from the stromal vascular fraction of 3 lean patients and biopsies from the skin of 10 control and 12 patients with SSc were obtained from the GEO and analysed using R and Seurat. Differentially expressed genes were used to compare the fibroblast and EC transcriptome between controls and SSc. GO and KEGG functional enrichment was performed. Ligand-receptor interactions of ADSCs with fibroblasts and ECs were explored with LIANA. Pro-inflammatory and extracellular matrix (ECM) interacting fibroblasts were identified in SSc. Arterial, capillary, venous and lymphatic ECs showed a pro-fibrotic and pro-inflammatory transcriptome. Most interactions with both cell types were based on ECM proteins. Differential interactions identified included NTN1, VEGFD, MMP2, FGF2, and FNDC5. The ADSC secretome may disrupt vascular and perivascular inflammation hubs in scleroderma by promoting angiogenesis and especially lymphangiogenesis. Key phenomena observed after fat grafting remain unexplained, including modulation of fibroblast behaviour.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
21
|
Brogowska KK, Zajkowska M, Mroczko B. Vascular Endothelial Growth Factor Ligands and Receptors in Breast Cancer. J Clin Med 2023; 12:jcm12062412. [PMID: 36983412 PMCID: PMC10056253 DOI: 10.3390/jcm12062412] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy responsible for the largest number of deaths in women worldwide. The risk of developing BC is predisposed by many factors such as age, presence of genetic mutations or body weight. The diagnosis is mostly made relatively late, which is why patients are exposed to radical surgical treatments, long-term chemotherapy and lower survival rates. There are no sufficiently sensitive and specific screening tests; therefore, researchers are still looking for new diagnostic biomarkers that would indicate the appearance of neoplastic changes in the initial stage of neoplasm. The VEGF family of proteins (VEGF-A, VEGF-B, VEGF-C, VEGF-D, EG-VEGF, PlGF) and their receptors are significant factors in the pathogenesis of BC. They play a significant role in the process of angiogenesis and lymphangiogenesis in both physiological and pathological conditions. The usefulness of these proteins as potential diagnostic biomarkers has been initially proven. Moreover, the blockage of VEGF-related pathways seems to be a valid therapeutic target. Recent studies have tried to describe novel strategies, including targeting pericytes, use of miRNAs and extracellular tumor-associated vesicles, immunotherapeutic drugs and nanotechnology. This indicates their possible contribution to the formation of breast cancer and their usefulness as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
22
|
Identifying predictive biomarkers of apatinib in third-line treatment of advanced colorectal cancer through comprehensive genomic profiling. Anticancer Drugs 2023; 34:431-438. [PMID: 36730496 DOI: 10.1097/cad.0000000000001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apatinib is a selective inhibitor of vascular endothelial growth factor receptor-2. Despite encouraging anticancer activity in different cancer types, some patients may not benefit from apatinib treatment. Herein, we characterized genomic profiles in colorectal cancer (CRC) patients to explore predictive biomarkers of apatinib at molecular level. We retrospectively recruited 19 CRC patients receiving apatinib as third-line treatment. Tissue samples before apatinib treatment were collected and subjected to genomic profiling using a targeted sequencing panel covering 520 cancer-related genes. After apatinib treatment, the patients achieved an objective response rate of 21% (4/19) and disease control rate of 57.9% (11/19). The median progression-free survival (PFS) and overall survival were 5 and 8.7 months, respectively. Genetic alterations were frequently identified in TP53 (95%), APC (53%), KRAS (53%) and PIK3CA (26%). Higher tumor mutation burden levels were significantly observed in patients harboring alterations in ERBB and RAS signaling pathways. Patients harboring FLT1 amplifications ( n = 3) showed significantly worse PFS than wild-type patients. Our study described molecular profiles in CRC patients receiving apatinib treatment and identified FLT1 amplification as a potential predictive biomarker for poor efficacy of apatinib. Further studies are warranted to validate the use of FLT1 amplification during apatinib treatment.
Collapse
|
23
|
Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J Transl Med 2023; 21:133. [PMID: 36810060 PMCID: PMC9942398 DOI: 10.1186/s12967-023-03937-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a major cause of visual impairment and blindness. Anti-vascular endothelial growth factor (VEGF) agents, such as ranibizumab, bevacizumab, aflibercept, brolucizumab and faricimab have revolutionized the clinical management of nAMD. However, there remains an unmet clinical need for new and improved therapies for nAMD, since many patients do not respond optimally, may lose response over time or exhibit sub-optimal durability, impacting on real world effectiveness. Evidence is emerging that targeting VEGF-A alone, as most agents have done until recently, may be insufficient and agents that target multiple pathways (e.g., aflibercept, faricimab and others in development) may be more efficacious. This article reviews issues and limitations that have arisen from the use of existing anti-VEGF agents, and argues that the future may lie in multi-targeted therapies including alternative agents and modalities that target both the VEGF ligand/receptor system as well as other pathways.
Collapse
Affiliation(s)
- Levon M. Khachigian
- grid.1005.40000 0004 4902 0432Vascular Biology and Translational Research, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gerald Liew
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kelvin Y. C. Teo
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Y. Wong
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore ,grid.12527.330000 0001 0662 3178Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Paul Mitchell
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| |
Collapse
|
24
|
Human papillomavirus 16 E6 promotes angiogenesis of lung cancer via SNHG1. Cell Biochem Biophys 2023:10.1007/s12013-022-01121-0. [PMID: 36690880 DOI: 10.1007/s12013-022-01121-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 01/25/2023]
Abstract
Human papillomavirus (HPV) is a risk factor for lung cancer. However, the underlying mechanisms are not known. Long noncoding RNAs (lncRNAs) have been found to play an important role in the occurrence and development of lung cancer due to their particular characteristics. HPV-induced lung carcinogenesis is incompletely defined. We aimed to screen and clarify the functions of lncRNAs that are differentially expressed in HPV-related lung cancer. We found that lncRNA SNHG1 is upregulated in lung cancer cells infected with HPV16 E6 by qRT‒PCR. Further results demonstrated that SNHG1 overexpression facilitates the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Our results also indicated that SNHG1 might function in lung cancer by binding with EGFR. Further studies revealed that SNHG1 overexpression could activate the nuclear factor κb (NF-κB) pathway, which increases the expression of interleukin-6 (IL-6). We also found that IL-6 can activate the STAT3 pathway, which promotes VEGF-D expression. These results expanded our understanding of SNHG1 as a new avenue for therapeutic intervention against lung cancer progression. Upregulation of SNHG1 by HPV infection might be an undefined link between lung cancer and HPV.
Collapse
|
25
|
Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022; 11:cells11213453. [PMID: 36359849 PMCID: PMC9654543 DOI: 10.3390/cells11213453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with a limited understanding of its pathogenesis and the number of patients are all the time increasing. AMD is classified into two main forms: dry and neovascular AMD (nAMD). Dry AMD is the most prevalent form (80–90%) of AMD cases. Neovascular AMD (10–20% of AMD cases) is treated with monthly or more sparsely given intravitreal anti-vascular endothelial growth factor inhibitors, but unfortunately, not all patients respond to the current treatments. A clinical hallmark of nAMD is choroidal neovascularization. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Cellular damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to advanced geographic atrophy and/or choroidal neovascularization and fibrosis. Currently, it is not fully known why different AMD phenotypes develop. In this review, we connect angiogenesis and inflammatory regulators in the development of nAMD and discuss therapy challenges and hopes.
Collapse
Affiliation(s)
- Hanna Heloterä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
26
|
Tu W, Zheng H, Li L, Zhou C, Feng M, Chen L, Li D, Chen X, Hao B, Sun H, Cao Y, Gao Y. Secreted phosphoprotein 1 promotes angiogenesis of glioblastoma through upregulating PSMA expression via transcription factor HIF-1α. Acta Biochim Biophys Sin (Shanghai) 2022; 55:417-425. [PMID: 36305723 PMCID: PMC10160226 DOI: 10.3724/abbs.2022157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized malignant brain tumor. Our previous study showed that prostate-specific membrane antigen (PSMA) promotes angiogenesis of GBM. However, the specific mechanism underlying GBM-induced PSMA upregulation remains unclear. In this study, we demonstrate that the GBM-secreted cytokine phosphoprotein 1 (SPP1) can regulate the expression of PSMA in human umbilical vein endothelial cells (HUVECs). Our mechanistic study further reveals that SPP1 regulates the expression of PSMA through the transcription factor HIF1α. Moreover, SPP1 promotes HUVEC migration and tube formation. In addition, HIF1α knockdown reduces the expression of PSMA in HUVECs and blocks the ability of SPP1 to promote HUVEC migration and tube formation. We further confirm that SPP1 is abundantly expressed in GBM, is associated with poor prognosis, and has high clinical diagnostic value with considerable sensitivity and specificity. Collectively, our findings identify that the GBM-secreted cytokine SPP1 upregulates PSMA expression in endothelial cells via the transcription factor HIF1α, providing insight into the angiogenic process and promising candidates for targeted GBM therapy.
Collapse
|
27
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
28
|
Phowira J, Ahmed FW, Bakhashab S, Weaver JU. Upregulated miR-18a-5p in Colony Forming Unit-Hill’s in Subclinical Cardiovascular Disease and Metformin Therapy; MERIT Study. Biomedicines 2022; 10:biomedicines10092136. [PMID: 36140236 PMCID: PMC9496122 DOI: 10.3390/biomedicines10092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies, CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demonstrated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for future CVD therapies.
Collapse
Affiliation(s)
- Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Fahad W. Ahmed
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Madinah 42522, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: ; Tel.: +44-191-445-2181
| |
Collapse
|
29
|
Abstract
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
Collapse
Affiliation(s)
- Oliver Cucanic
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Rae H Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Evdokimenko AN, Kulichenkova KN, Gulevskaya TS, Tanashyan MM. Defining Characteristics of Angiogenesis Regulation in Advanced Human Carotid Plaques. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kantarcioglu B, Darki A, Siddiqui F, Hoppensteadt D, Lewis J, Krämer R, Adiguzel C, Fareed J. The Relevance of Anti-PF4 Antibody Isotypes and Endogenous Glycosaminoglycans and their Relationship with Inflammatory Biomarkers in Pulmonary Embolism Patients. Clin Appl Thromb Hemost 2022; 28:10760296221091770. [PMID: 35360982 PMCID: PMC8980416 DOI: 10.1177/10760296221091770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction Previous studies have shown that inflammation may contribute to the interplay of endogenous glycosaminoglycans (GAGs) and anti-PF4 antibodies. In this study, we quantified the levels of anti-PF4 antibody isotypes and endogenous GAGs together with inflammatory biomarkers in pulmonary embolism (PE) patients to determine whether there is a relationship in between. Identification of this relationship may provide insight to the complex pathophysiology of PE and HIT and may also be useful for development of potential prognostic, diagnostic and therapeutic interventions. Materials and Methods Plasma samples from PE patients (n: 210) were analyzed for anti-PF4 antibody isotypes and various thrombo-inflammatory cytokines utilizing commercially available biochip array and ELISA methods. The endogenous GAG levels in PE patients’ plasma were quantified using a fluorescence quenching method. The collected data analyzed to demonstrate the relationship between various parameters. Results The endogenous GAG levels were increased in the PE group (P < .05). The levels of anti-PF4 antibody isotypes were higher in varying levels in comparison to the normal group (P < .05). Inflammatory cytokines have shown varying levels of increase with IL-6, IL-8 and IL-10 showing the most pronounced values. Mortality outcome was related to increased GAGs and some of the cytokines. Conclusion In this study, we demonstrated increased levels of anti-PF4 antibody isotypes, endogenous GAGs, and inflammatory biomarkers in a large patient cohort in PE. The levels of the endogenous GAGs and inflammatory biomarkers were associated with PE severity and mortality. More studies are needed to understand this complex pathophysiology.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Amir Darki
- Division of Cardiovascular Disease, Loyola University Medical Center, Loyola Stritch School of Medicine, Maywood, IL, USA
- Department of Internal Medicine, Loyola University Medical Center, Loyola Stritch School of Medicine, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Joseph Lewis
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Roland Krämer
- Institute of Inorganic Chemistry, Heidelberg University, Heidelberg, Germany
| | - Cafer Adiguzel
- Department of Internal Medicine, Division of Hematology, Bahcesehir University, Istanbul, Turkey
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
32
|
Li M, Zhu WY, Wang J, Yang XD, Li WM, Wang G. Diagnostic performance of VEGF-D for lymphangioleiomyomatosis: a meta-analysis. J Bras Pneumol 2022; 48:e20210337. [PMID: 35293487 PMCID: PMC8964149 DOI: 10.36416/1806-3756/e20210337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: VEGF-D is a potential biomarker for lymphangioleiomyomatosis (LAM); however, its diagnostic performance has yet to be systematically studied. Methods: We searched PubMed, EMBASE, Scopus, Web of Science, and Cochrane Library to identify primary studies on VEGF-D in relation to the diagnosis of LAM. The quality of the studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Summary estimates of diagnostic accuracy were pooled using a bivariate random effects model. Subgroup and sensitivity analyses were performed to explore possible heterogeneity. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was applied to rate the quality of evidence and indicate the strength of recommendations. Results: Ten studies involving 945 patients were of high risk in quality, as assessed using the QUADAS-2. The pooled diagnostic parameters were indicated as follows: sensitivity = 0.82 (95% CI, 0.71-0.90); specificity = 0.98 (95% CI, 0.94-0.99); and diagnostic OR = 197 (95% CI, 66-587). The AUC of summary ROC analysis was 0.98. The subgroup and sensitivity analyses revealed that the overall performance was not substantially affected by the composition of the control group, prespecified cutoff value, the country of origin, or different cutoff values (p > 0.05 for all). A strong recommendation for serum VEGF-D determination to aid in the diagnosis of LAM was made according to the GRADE. Conclusions: VEGF-D seems to have great potential implications for the diagnosis of LAM in clinical practice due to its excellent specificity and suboptimal sensitivity.
Collapse
Affiliation(s)
- Min Li
- . Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China.,. Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,. Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Wen-Ye Zhu
- . Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji Wang
- . Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China.,. Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China.,. Pulmonology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Dong Yang
- . Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Min Li
- . Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China.,. Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Gang Wang
- . Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China.,. Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci 2022; 23:ijms23020931. [PMID: 35055117 PMCID: PMC8781560 DOI: 10.3390/ijms23020931] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.
Collapse
|
34
|
Balogun TA, Ige OM, Alausa AO, Onyeani CO, Tiamiyu ZA, Omoboyowa DA, Saibu OA, Abdullateef OT. Receptor tyrosine kinases as a therapeutic target by natural compounds in cancer treatment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Receptor tyrosine kinases (RTKs) are single-pass transmembrane proteins that play significant roles in regulating cellular processes, including cell division and growth. Overexpression and mutations of RTKs have been found in clinical manifestations of different forms of cancer. Therefore, RTKs have received considerable interest as a therapeutic biomarker in the treatment of cancer cells.
Main body of the abstract
Comprehensive data on RTKs, pharmacological and biological properties of natural compounds were systematically searched up to 2021 using relevant keywords from various databases, such as Google Scholar, PubMed, Web of Science, and Scopus. The scientific search by various standard electronic resources and databases unveils the effectiveness of medicinal plants in the treatment of various cancers. In vitro and in vivo studies suggested that bioactive compounds such as flavonoids, phenols, alkaloids, and many others can be used pharmacologically as RTKs inhibitors (RTKI) either by competing with ATP at the ATP binding site of the tyrosine kinase domain or competing for the receptor extracellular domain. Additionally, studies conducted on animal models indicated that inhibition of RTKs catalytic activity by natural compounds is one of the most effective ways to block the activation of RTKs signaling cascades, thereby hampering the proliferation of cancer cells. Furthermore, various pharmacological experiments, transcriptomic, and proteomic data also reported that cancer cells treated with different plants extracts or isolated phytochemicals exhibited better anticancer properties with minimal side effects than synthetic drugs. Clinically, natural compounds have demonstrated significant anti-proliferative effect via induction of cell apoptosis in cancer cell lines.
Short conclusion
An in-depth knowledge of the mechanism of inhibition and structural characterization of RTKs is important to the design of novel and selective RTKIs. This review focuses on the molecular mechanisms and structures of natural compounds RTKI targeting vascular endothelial growth factor, epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor while also giving future directions to ameliorate the scientific burden of cancer.
Graphic abstract
Collapse
|
35
|
Campos-Ferreira D, Visani V, Córdula C, Nascimento G, Montenegro L, Schindler H, Cavalcanti I. COVID-19 challenges: From SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms. Biochem Eng J 2021; 176:108200. [PMID: 34522158 PMCID: PMC8428033 DOI: 10.1016/j.bej.2021.108200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
In January 2020, the World Health Organization (WHO) identified a new zoonotic virus, SARS-CoV-2, responsible for causing the COVID-19 (coronavirus disease 2019). Since then, there has been a collaborative trend between the scientific community and industry. Multidisciplinary research networks try to understand the whole SARS-CoV-2 pathophysiology and its relationship with the different grades of severity presented by COVID-19. The scientific community has gathered all the data in the quickly developed vaccines that offer a protective effect for all variants of the virus and promote new diagnostic alternatives able to have a high standard of efficiency, added to shorter response analysis time and portability. The industry enters in the context of accelerating the path taken by science until obtaining the final product. In this review, we show the principal diagnostic methods developed during the COVID-19 pandemic. However, when we observe the diagnostic tools section of an efficient infection outbreak containment report and the features required for such tools, we could observe a highlight of electrochemical biosensing platforms. Such devices present a high standard of analytical performance, are low-cost tools, easy to handle and interpret, and can be used in the most remote and low-resource regions. Therefore, probably, they are the ideal point-of-care diagnostic tools for pandemic scenarios.
Collapse
Affiliation(s)
- D. Campos-Ferreira
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Corresponding author
| | - V. Visani
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil
| | - C. Córdula
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil
| | - G.A. Nascimento
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Centro Acadêmico do Agreste - CAA/UFPE, Av. Marielle Franco, s/n - Km 59 - Bairro Nova Caruaru, CEP: 55.014-900 Caruaru, PE, Brazil
| | - L.M.L. Montenegro
- Fundação Oswaldo Cruz (Fiocruz), Centro de Pesquisas Instituto Aggeu Magalhães (IAM), Av. Professor Moraes Rego s/n, CEP: 50670-901 Recife, PE, Brazil
| | - H.C. Schindler
- Fundação Oswaldo Cruz (Fiocruz), Centro de Pesquisas Instituto Aggeu Magalhães (IAM), Av. Professor Moraes Rego s/n, CEP: 50670-901 Recife, PE, Brazil
| | - I.M.F. Cavalcanti
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Centro Acadêmico de Vitória – CAV/UFPE, R. Alto do Reservatório, CEP: 55 612-440 Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
36
|
Serrano VB, Montoya JL, Campbell LM, Sundermann EE, Iudicello J, Letendre S, Heaton RK, Moore DJ. The relationship between vascular endothelial growth factor (VEGF) and amnestic mild cognitive impairment among older adults living with HIV. J Neurovirol 2021; 27:885-894. [PMID: 34735690 PMCID: PMC8901513 DOI: 10.1007/s13365-021-01001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 10/27/2022]
Abstract
Older people with HIV (PWH) experience increased risk of age-related neurodegenerative disorders and cognitive decline, such as amnestic mild cognitive impairment (aMCI). The objective of this study was to examine the relationship between aMCI and plasma VEGF biomarkers among older PWH. Data were collected at a university-based research center from 2011 to 2013. Participants were 67 antiretroviral therapy-treated, virally suppressed PWH. Participants completed comprehensive neurobehavioral and neuromedical evaluations. aMCI status was determined using adapted Jak/Bondi criteria, classifying participants as aMCI + if their performance was > 1 SD below the normative mean on at least two of four memory assessments. VEGF family plasma biomarkers (i.e., VEGF, VEGF-C, VEGF-D, and PIGF) were measured by immunoassay. Logistic regression models were conducted to determine whether VEGF biomarkers were associated with aMCI status. Participants were mostly non-Hispanic white (79%) men (85%) with a mean age of 57.7 years. Eighteen (26.9%) participants met criteria for aMCI. Among potential covariates, only antidepressant drug use differed by aMCI status, and was included as a covariate. VEGF-D was significantly lower in the aMCI + group compared to the aMCI - group. No other VEGF levels (VEGF, VEGF-C, PIGF) differed by aMCI classification (ps > .05). In a sample of antiretroviral therapy-treated, virally suppressed PWH, lower levels of VEGF-D were associated with aMCI status. Longitudinal analyses in a larger and more diverse sample are needed to support VEGF-D as a putative biological marker of aMCI in HIV.
Collapse
Affiliation(s)
- Vanessa B Serrano
- Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, La Jolla, CA, USA
| | - Jessica L Montoya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Laura M Campbell
- Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, La Jolla, CA, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Iudicello
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Ye X, Gaucher JF, Vidal M, Broussy S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021; 26:6759. [PMID: 34833851 PMCID: PMC8625919 DOI: 10.3390/molecules26226759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.
Collapse
Affiliation(s)
- Xiaoqing Ye
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| | - Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, 75006 Paris, France;
| | - Michel Vidal
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
- Service Biologie du Médicament, Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Sylvain Broussy
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| |
Collapse
|
38
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
39
|
Chennakesavalu M, Somala SRR, Dommaraju SR, Peesapati MP, Guo K, Rosenblatt MI, Chang JH, Azar DT. Corneal lymphangiogenesis as a potential target in dry eye disease - a systematic review. Surv Ophthalmol 2021; 66:960-976. [PMID: 33811911 PMCID: PMC9991079 DOI: 10.1016/j.survophthal.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Dry eye disease (DED) is a common ocular surface condition causing symptoms of significant discomfort, visual disturbance, and pain. With recent advancements, DED has become recognized as a chronic self-perpetuating inflammatory condition triggered by various internal and environmental factors. DED has been shown to arise from the activation of both the innate and adaptive immune systems, leading to corneal epithelium and lacrimal gland dysfunction. While the cornea is normally avascular and thus imbued with angiogenic and lymphangiogenic privilege, various DED models have revealed activated corneal antigen-presenting cells in regional lymph nodes, suggesting the formation of new corneal lymphatic vessels in DED. The recent availability of reliable lymphatic cell surface markers such as LYVE-1 has made it possible to study lymphangiogenesis. Accordingly, numerous studies have been published within the last decade discussing the role of lymphangiogenesis in DED pathology. We systematically review the literature to identify and evaluate studies presenting data on corneal lymphangiogenesis in DED. There is considerable evidence supporting corneal lymphangiogenesis as a central mediator of DED pathogenesis. These findings suggest that anti-lymphangiogenic therapeutic strategies may be a viable option for the treatment of DED, a conclusion supported by the limited number of reported clinical trials examining anti-lymphangiogenic modalities in DED.
Collapse
Affiliation(s)
- Mohansrinivas Chennakesavalu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sri Raghurama R Somala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sunil R Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Meghna Priyanka Peesapati
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
40
|
Kapoor A, Gaubert A, Marshall A, Meier IB, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Jang JY, Brickman AM, Rodgers K, Nation DA. Increased Levels of Circulating Angiogenic Cells and Signaling Proteins in Older Adults With Cerebral Small Vessel Disease. Front Aging Neurosci 2021; 13:711784. [PMID: 34650423 PMCID: PMC8510558 DOI: 10.3389/fnagi.2021.711784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Cerebral small vessel disease (SVD) is associated with increased risk of stroke and dementia. Progressive damage to the cerebral microvasculature may also trigger angiogenic processes to promote vessel repair. Elevated levels of circulating endothelial progenitor cells (EPCs) and pro-angiogenic signaling proteins are observed in response to vascular injury. We aimed to examine circulating levels of EPCs and proangiogenic proteins in older adults with evidence of SVD. Methods: Older adults (ages 55–90) free of dementia or stroke underwent venipuncture and brain magnetic resonance imaging (MRI). Flow cytometry quantified circulating EPCs as the number of cells in the lymphocyte gate positively expressing EPC surface markers (CD34+CD133+CD309+). Plasma was assayed for proangiogenic factors (VEGF-A, VEGF-C, VEGF-D, Tie-2, and Flt-1). Total SVD burden score was determined based on MRI markers, including white matter hyperintensities, cerebral microbleeds and lacunes. Results: Sixty-four older adults were included. Linear regression revealed that older adults with higher circulating EPC levels exhibited greater total SVD burden [β = 1.0 × 105, 95% CI (0.2, 1.9), p = 0.019], after accounting for age and sex. Similarly, a positive relationship between circulating VEGF-D and total SVD score was observed, controlling for age and sex [β = 0.001, 95% CI (0.000, 0.001), p = 0.048]. Conclusion: These findings suggest that elevated levels of circulating EPCs and VEGF-D correspond with greater cerebral SVD burden in older adults. Additional studies are warranted to determine whether activation of systemic angiogenic growth factors and EPCs represents an early attempt to rescue the vascular endothelium and repair damage in SVD.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Irene B Meier
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.,Chione GmbH, Binz, Switzerland
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Anna E Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Kathleen Rodgers
- Center for Innovation in Brain Science, Department of Pharmacology, The University of Arizona, Tucson, AZ, United States
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
41
|
Kerget B, Erol Afşin D, Aksakal A, Kerget F, Aşkın S, Yılmazel Uçar E, Sağlam L. Could VEGF-D level have a role in clinical risk scoring, estimation of thrombus burden, and treatment in acute pulmonary thromboembolism? Int J Clin Pract 2021; 75:e14601. [PMID: 34228874 DOI: 10.1111/ijcp.14601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/02/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pulmonary embolism (PE) is usually a complication of deep vein thrombosis and is an important cause of mortality and morbidity. Vascular endothelial growth factor D (VEGF-D) is a secretory protein that plays a role in the remodelling of blood vessels and the lymphatic system. This study aimed to determine the relationship between VEGF-D level and clinical risk scoring in patients with PE. METHODS The study included 117 patients admitted for PE that were divided into four groups: high-risk patients (n = 35), high-intermediate-risk patients (n = 30), low-intermediate-risk patients (n = 24), and low-risk patients (n = 28). Plasma VEGF-D was measured from peripheral venous blood samples (5 mL) using a commercial enzyme-linked immunosorbent assay (ELISA) kit. Pulmonary Artery Obstruction Index (PAOI) was calculated from CT angiography imaging. RESULTS There was no significant difference in troponin-I and NT-proBNP levels between the high-intermediate-risk and high-risk PE patients (P = .134, .146). VEGF-D and PAOI levels were found to be statistically significantly higher in high-risk patients compared with high-intermediate-risk patients (P = .016, .001). VEGF-D level was moderately correlated with mean pulmonary artery pressure and PAOI (r = .481, P = .01; r = .404, P = .01). In ROC curve analysis, a cut-off of 370.1 pg/mL for VEGF-D had 91.4% sensitivity and 67% specificity in the differentiation of high-intermediate-risk and high-risk PE patients. CONCLUSION This study showed that plasma VEGF-D level was more reliable than troponin-I and NT-proBNP in clinical risk scoring and demonstrating thrombus burden. VEGF-D can be used as a biomarker in clinical risk scoring and estimation of thrombus burden in patients with acute PE.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| | - Dursun Erol Afşin
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Alperen Aksakal
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Ferhan Kerget
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Seda Aşkın
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Elif Yılmazel Uçar
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| | - Leyla Sağlam
- Department of Pulmonary Diseases, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
42
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
43
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Alonso-Diez Á, Cáceres S, Peña L, Crespo B, Illera JC. Anti-Angiogenic Treatments Interact with Steroid Secretion in Inflammatory Breast Cancer Triple Negative Cell Lines. Cancers (Basel) 2021; 13:3668. [PMID: 34359570 PMCID: PMC8345132 DOI: 10.3390/cancers13153668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Human inflammatory breast cancer (IBC) is a highly angiogenic disease for which antiangiogenic therapy has demonstrated only a modest response, and the reason for this remains unknown. Thus, the purpose of this study was to determine the influence of different antiangiogenic therapies on in vitro and in vivo steroid hormone and angiogenic growth factor production using canine and human inflammatory breast carcinoma cell lines as well as the possible involvement of sex steroid hormones in angiogenesis. IPC-366 and SUM149 cell lines and xenotransplanted mice were treated with different concentrations of VEGF, SU5416, bevacizumab and celecoxib. Steroid hormone (progesterone, dehydroepiandrostenedione, androstenedione, testosterone, dihydrotestosterone, estrone sulphate and 17β-oestradiol), angiogenic growth factors (VEGF-A, VEGF-C and VEGF-D) and IL-8 determinations in culture media, tumour homogenate and serum samples were assayed by EIA. In vitro, progesterone- and 17β-oestradiol-induced VEGF production promoting cell proliferation and androgens are involved in the formation of vascular-like structures. In vivo, intratumoural testosterone concentrations were augmented and possibly associated with decreased metastatic rates, whereas elevated E1SO4 concentrations could promote tumour progression after antiangiogenic therapies. In conclusion, sex steroid hormones could regulate the production of angiogenic factors. The intratumoural measurement of sex steroids and growth factors may be useful to develop preventive and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Sara Cáceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Belén Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
45
|
Regulation of VEGFR Signalling in Lymphatic Vascular Development and Disease: An Update. Int J Mol Sci 2021; 22:ijms22147760. [PMID: 34299378 PMCID: PMC8306507 DOI: 10.3390/ijms22147760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The importance of lymphatic vessels in a myriad of human diseases is rapidly gaining recognition; lymphatic vessel dysfunction is a feature of disorders including congenital lymphatic anomalies, primary lymphoedema and obesity, while improved lymphatic vessel function increases the efficacy of immunotherapy for cancer and neurological disease and promotes cardiac repair following myocardial infarction. Understanding how the growth and function of lymphatic vessels is precisely regulated therefore stands to inform the development of novel therapeutics applicable to a wide range of human diseases. Lymphatic vascular development is initiated during embryogenesis following establishment of the major blood vessels and the onset of blood flow. Lymphatic endothelial progenitor cells arise from a combination of venous and non-venous sources to generate the initial lymphatic vascular structures in the vertebrate embryo, which are then further ramified and remodelled to elaborate an extensive lymphatic vascular network. Signalling mediated via vascular endothelial growth factor (VEGF) family members and vascular endothelial growth factor receptor (VEGFR) tyrosine kinases is crucial for development of both the blood and lymphatic vascular networks, though distinct components are utilised to different degrees in each vascular compartment. Although much is known about the regulation of VEGFA/VEGFR2 signalling in the blood vasculature, less is understood regarding the mechanisms by which VEGFC/VEGFD/VEGFR3 signalling is regulated during lymphatic vascular development. This review will focus on recent advances in our understanding of the cellular and molecular mechanisms regulating VEGFA-, VEGFC- and VEGFD-mediated signalling via VEGFRs which are important for driving the construction of lymphatic vessels during development and disease.
Collapse
|
46
|
Caccuri F, Bugatti A, Zani A, De Palma A, Di Silvestre D, Manocha E, Filippini F, Messali S, Chiodelli P, Campisi G, Fiorentini S, Facchetti F, Mauri P, Caruso A. SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells. Microorganisms 2021; 9:1438. [PMID: 34361874 PMCID: PMC8305478 DOI: 10.3390/microorganisms9071438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells (HL-mECs) in the absence of cytopathic effects and release of infectious particles. Preliminary data point to the role of integrins in SARS-CoV-2 entry into HL-mECs in the absence of detectable ACE2 expression. Following infection, HL-mECs were found to release a plethora of pro-inflammatory and pro-angiogenic molecules, as assessed by microarray analyses. This conditioned microenvironment stimulated HL-mECs to acquire an angiogenic phenotype. Proteome analysis confirmed a remodeling of SARS-CoV-2-infected HL-mECs to inflammatory and angiogenic responses and highlighted the expression of antiviral molecules as annexin A6 and MX1. These results support the hypothesis of a direct role of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early phases of infection. The construction of virus-host interactomes will be instrumental to identify potential therapeutic targets for COVID-19 aimed to inhibit HL-mEC-sustained inflammation and angiogenesis upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Antonella De Palma
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Paola Chiodelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy;
| | - Giovanni Campisi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy;
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| |
Collapse
|
47
|
3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals (Basel) 2021; 14:ph14070614. [PMID: 34206901 PMCID: PMC8308560 DOI: 10.3390/ph14070614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.
Collapse
|
48
|
von Moos S, Segerer S, Davenport A, Sadoune M, Gerritsen K, Pottecher J, Ruschitzka F, Mebazaa A, Arrigo M, Cippà PE. Vascular endothelial growth factor D is a biomarker of fluid overload in haemodialysis patients. Nephrol Dial Transplant 2021; 36:529-536. [PMID: 31923307 DOI: 10.1093/ndt/gfz281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Improved understanding and assessment of the complex physiology of volume regulation in haemodialysis (HD) patients are required to improve patient care and reduce mortality associated with fluid overload (FO). METHODS We searched for FO-related biomarkers among 184 peptides associated with cardiovascular disease in a cohort of 30 HD patients. First, we assessed the direct impact of HD on the peptides of interest by comparing plasma concentrations before and after treatment. Then, we compared cardiovascular peptide profiles between patients with and without FO as defined by bioimpedance analysis (BIA). The plasma concentration of selected candidate biomarkers for FO was determined by enzyme-linked immunosorbent assay (ELISA) and correlated with previously described FO-related clinical and laboratory parameters. For validation, results were confirmed in an independent cohort of 144 HD patients. RESULTS We found seven peptides positively [NT-proBNP, B-type natriuretic peptide (BNP), vascular endothelial growth factor D (VEGFD), tumour necrosis factor-related apoptosis-inducing ligand receptor 2, growth differentiation factor 15, tumour necrosis factor ligand superfamily member 13B, chitinase-3-like protein 1] and five negatively (leptin, renin, epidermal growth factor receptor, interleukin-1 receptor antagonist, myeloblastin) correlated to FO. In addition to natriuretic peptides, VEGFD emerged as third peptide highly correlated with BIA (ρ = 0.619, P < 0.0001). In line with this, VEGFD concentration verified by ELISA correlated with BIA, BNP and soluble CD146 but not with vascular endothelial growth factor C (VEGFC). Notably, levels of VEGFD were unrelated to cardiac systolic function (P = 0.63), contrary to BNP (P = 0.0003). Finally, we observed that 1-year all-cause mortality was higher in patients with high BNP (P = 0.0002), FO (defined by BIA, P = 0.04) and high VEGFD (P = 0.02), but not with high VEGFC (P = 0.48). CONCLUSION VEGFD is a novel FO-related biomarker with unique diagnostic and prognostic properties.
Collapse
Affiliation(s)
- Seraina von Moos
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Segerer
- Department of Nephrology, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, London, UK
| | - Malha Sadoune
- INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France
| | - Kerem Gerritsen
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Pottecher
- Department of Anaesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, EA3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Mebazaa
- INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France.,Department of Anesthesiology and Critical Care Medicine, St Louis and Lariboisière University Hospitals, Paris, France
| | - Mattia Arrigo
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Pietro E Cippà
- Division of Nephrology, Regional Hospital of Lugano, Lugano, Switzerland
| |
Collapse
|
49
|
Wilkinson KA, Schneider-Luftman D, Lai R, Barrington C, Jhilmeet N, Lowe DM, Kelly G, Wilkinson RJ. Antiretroviral Treatment-Induced Decrease in Immune Activation Contributes to Reduced Susceptibility to Tuberculosis in HIV-1/Mtb Co-infected Persons. Front Immunol 2021; 12:645446. [PMID: 33746987 PMCID: PMC7973093 DOI: 10.3389/fimmu.2021.645446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Antiretroviral treatment (ART) reduces the risk of developing active tuberculosis (TB) in HIV-1 co-infected persons. In order to understand host immune responses during ART in the context of Mycobacterium tuberculosis (Mtb) sensitization, we performed RNAseq analysis of whole blood-derived RNA from individuals with latent TB infection coinfected with HIV-1, during the first 6 months of ART. A significant fall in RNA sequence abundance of the Hallmark IFN-alpha, IFN-gamma, IL-6/JAK/STAT3 signaling, and inflammatory response pathway genes indicated reduced immune activation and inflammation at 6 months of ART compared to day 0. Further exploratory evaluation of 65 soluble analytes in plasma confirmed the significant decrease of inflammatory markers after 6 months of ART. Next, we evaluated 30 soluble analytes in QuantiFERON Gold in-tube (QFT) samples from the Ag stimulated and Nil tubes, during the first 6 months of ART in 30 patients. There was a significant decrease in IL-1alpha and IL-1beta (Ag-Nil) concentrations as well as MCP-1 (Nil), supporting decreased immune activation and inflammation. At the same time, IP-10 (Ag-nil) concentrations significantly increased, together with chemokine receptor-expressing CD4 T cell numbers. Our data indicate that ART-induced decrease in immune activation combined with improved antigen responsiveness may contribute to reduced susceptibility to tuberculosis in HIV-1/Mtb co-infected persons.
Collapse
Affiliation(s)
- Katalin A Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Rachel Lai
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Nishtha Jhilmeet
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - David M Lowe
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Gavin Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Leijten E, Tao W, Pouw J, van Kempen T, Olde Nordkamp M, Balak D, Tekstra J, Muñoz-Elías E, DePrimo S, Drylewicz J, Pandit A, Boes M, Radstake T. Broad proteomic screen reveals shared serum proteomic signature in patients with psoriatic arthritis and psoriasis without arthritis. Rheumatology (Oxford) 2021; 60:751-761. [PMID: 32793974 PMCID: PMC7850582 DOI: 10.1093/rheumatology/keaa405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify novel serum proteins involved in the pathogenesis of PsA as compared with healthy controls, psoriasis (Pso) and AS, and to explore which proteins best correlated to major clinical features of the disease. METHODS A high-throughput serum biomarker platform (Olink) was used to assess the level of 951 unique proteins in serum of patients with PsA (n = 20), Pso (n = 18) and AS (n = 19), as well as healthy controls (HC, n = 20). Pso and PsA were matched for Psoriasis Area and Severity Index (PASI) and other clinical parameters. RESULTS We found 68 differentially expressed proteins (DEPs) in PsA as compared with HC. Of those DEPs, 48 proteins (71%) were also dysregulated in Pso and/or AS. Strikingly, there were no DEPs when comparing PsA with Pso directly. On the contrary, hierarchical cluster analysis and multidimensional scaling revealed that HC clustered distinctly from all patients, and that PsA and Pso grouped together. The number of swollen joints had the strongest positive correlation to ICAM-1 (r = 0.81, P < 0.001) and CCL18 (0.76, P < 0.001). PASI score was best correlated to PI3 (r = 0.54, P < 0.001) and IL-17 receptor A (r = -0.51, P < 0.01). There were more proteins correlated to PASI score when analysing Pso and PsA patients separately, as compared with analysing Pso and PsA patients pooled together. CONCLUSION PsA and Pso patients share a serum proteomic signature, which supports the concept of a single psoriatic spectrum of disease. Future studies should target skin and synovial tissues to uncover differences in local factors driving arthritis development in Pso.
Collapse
Affiliation(s)
- Emmerik Leijten
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Weiyang Tao
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Juliette Pouw
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Tessa van Kempen
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Michel Olde Nordkamp
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Deepak Balak
- Department of Dermatology, UMC Utrecht, Utrecht, The Netherlands
| | - J Tekstra
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands
| | - Ernesto Muñoz-Elías
- Immunology Biomarkers, Janssen Research & Development LLC, San Diego, CA, USA
| | - Samuel DePrimo
- Immunology Biomarkers, Janssen Research & Development LLC, San Diego, CA, USA
| | - Julia Drylewicz
- Center for Translational Immunology, Utrecht, The Netherlands
| | - Aridaman Pandit
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, Utrecht, The Netherlands.,Department of Pediatrics, UMC Utrecht, Utrecht, The Netherlands
| | - Timothy Radstake
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| |
Collapse
|