1
|
Zhang D, Wang Y, Yu P, Sun J, Li J, Hu Y, Meng X, Li J, Xiang L. Scutellarein inhibits lung cancer growth by inducing cell apoptosis and inhibiting glutamine metabolic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118999. [PMID: 39490431 DOI: 10.1016/j.jep.2024.118999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi, a widely used Chinese medicinal herb, has shown effectiveness against lung cancer. Scutellarein, a key component of Scutellaria baicalensis, also demonstrates anticancer properties in lung cancer. However, the underlying mechanisms have not yet been clarified. AIM OF THE STUDY This study aimed to investigate the effects of scutellarein in the treatment of NSCLC and its underlying mechanisms. METHODS This study explored the effects of scutellarein on non-small cell lung cancer (NSCLC) and its mechanisms. A Lewis lung cancer mouse model was established to assess scutellarein's anticancer activity in vivo. Additionally, the compound's effects on cell proliferation, colony formation, migration, and apoptosis were evaluated in vitro using A549 and H1299 lung cancer cells. Metabolomics analysis was conducted to identify changes in cellular metabolism due to scutellarein, while molecular docking and western blotting techniques were employed to elucidate the molecular mechanisms of its anti-lung cancer effects. RESULTS Scutellarein significantly inhibited lung cancer xenograft tumor growth. In vitro studies showed that scutellarein suppressed migration and colony formation in A549 and H1299 cells, induced cell cycle arrest, and triggered cell apoptosis. Notably, scutellarein profoundly altered amino acid metabolism, particularly affecting glutamine metabolites. It affected key glutamine transporters ASCT2 and LAT1, as well as glutaminase GLS1, leading to their reduced expression. CONCLUSION Scutellarein effectively inhibits lung cancer growth both in vivo and in vitro by inducing cell apoptosis and downregulating the glutamine metabolic pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apigenin/pharmacology
- Apigenin/therapeutic use
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Glutamine/metabolism
- Cell Proliferation/drug effects
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- A549 Cells
- Cell Line, Tumor
- Mice, Inbred C57BL
- Cell Movement/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Mice
- Molecular Docking Simulation
- Xenograft Model Antitumor Assays
- Scutellaria baicalensis/chemistry
- Minor Histocompatibility Antigens/metabolism
- Male
- Amino Acid Transport System ASC/metabolism
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yingfan Hu
- The School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Morante-Carriel J, Nájera H, Samper-Herrero A, Živković S, Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S, Obrebska A, Bru-Martínez R. Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review. Int J Mol Sci 2024; 25:13036. [PMID: 39684747 DOI: 10.3390/ijms252313036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Much attention has been paid to the potential biological activities of prenylated flavonoids (PFs) in various plant families over the last decade. They have enormous potential for biological activities, such as anti-cancer, anti-diabetic, antimicrobial, anti-inflammatory, anti-Alzheimer's, and neuroprotective activities. Medicinal chemists have recently shown a strong interest in PFs, as they are critical to the development of new medicines. PFs have been rapidly prepared by isolation and semi- or full synthesis, demonstrating their significant utility in medicinal chemistry research. This study encompasses the research progress on PFs in the last decade, including their pharmacological activities in the Fabaceae family. This information demonstrates the bioactive potential of PF compounds and their role in the control and treatment of various human health problems.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsáchilas, Quevedo 120501, Ecuador
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Suzana Živković
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
3
|
Zhao XY, Zhong QH, Tan HW, Yan R, Wang XY, Cai NL, Ji YC, Lau ATY, Xu YM. Non-cytotoxic levels of resveratrol enhance the anticancer effects of cisplatin by increasing the methyltransferase activity of CARM1 in human cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156127. [PMID: 39476485 DOI: 10.1016/j.phymed.2024.156127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Resveratrol (RSVL) is a plant-derived polyhydroxyphenolic compound with excellent anticancer properties, alone or in combination with other chemotherapeutic drugs. However, the anticancer mechanism of RSVL is diverse and high concentrations are often required for RSVL to exert its anticancer effect, which would also adversely affect normal cells. PURPOSE The main objective of this study is to investigate the molecular mechanism of how non-cytotoxic concentrations of RSVL enhance the anticancer effect of cisplatin involving a newly identified RSVL-binding protein. METHODS Cell viability of cell lines from three cancer types exposed to RSVL and/or cisplatin was measured by NBB staining assay. RSVL-binding proteins were identified using RSVL-bound CNBr-activated Sepharose 4B beads coupled with LC-MS/MS, and the binding between RSVL and novel RSVL-binding protein was further confirmed with an in vitro pull-down assay. The expression of proteins was examined by immunoblot analysis, and the activity of methyltransferase was evaluated by in vitro methylation assay. The methylation level of H3R17 in the gene promoter was investigated using ChIP-qPCR. Bioinformatics analysis was conducted to identify pathway enrichment of genes, predict drug sensitivity, and analyze the survival of cancer patients. RESULTS Low doses of RSVL might promote cancer cell growth whereas high doses of RSVL showed cytotoxic effects on normal cells. When co-treated with a lower cisplatin dose, non-cytotoxic RSVL levels showed synergistic anticancer effects. Here, coactivator-associated arginine methyltransferase 1 (CARM1) was identified as a novel RSVL-binding protein, and we showed that the upregulation of CARM1 increased the sensitivity of cancer cells to RSVL. Interestingly, we found that CARM1 was essential in the RSVL-induced sensitivity of cisplatin. Further molecular mechanistic studies revealed that RSVL could stabilize CARM1 protein, resulting in the upregulation and increased methyltransferase activity of CARM1. Additionally, we showed that the methylation levels of H3R17 in the promoter of p21, a downstream gene of CARM1 involving cell cycle arrest, were significantly increased after RSVL treatment. Finally, data from our bioinformatics analysis suggested that CARM1 could be utilized as a potential biomarker for chemotherapeutic drug sensitivity and prognosis in cancers. CONCLUSIONS This study identified CARM1 as a RSVL-binding protein for the first time and elucidated the potential roles of CARM1 in enhancing the efficacy of cisplatin by low doses of RSVL, which could have important clinical implications.
Collapse
Affiliation(s)
- Xiao-Yun Zhao
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Qiu-Hua Zhong
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Heng Wee Tan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Rui Yan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Xiu-Yun Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Na-Li Cai
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yan-Chen Ji
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Andy T Y Lau
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Yan-Ming Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
4
|
Lin FT, Tu KX, Ou QJ, Deng XQ, Fang YJ, Zhang CX. Association of low-carbohydrate diet score and carbohydrate quality index with colorectal cancer risk: a large-scale case-control study. Eur J Nutr 2024; 64:15. [PMID: 39567404 DOI: 10.1007/s00394-024-03533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Carbohydrate intake has been linked to colorectal cancer (CRC) risk, with variations depending on the quantity and quality of carbohydrates consumed. This study aimed to investigate the association between carbohydrate quantity and quality, using the low-carbohydrate diet score (LCD) and carbohydrate quality index (CQI), and the risk of CRC in the Chinese population. METHODS We conducted a case-control study in Guangzhou, China, with 2,799 CRC cases and an equal number of sex- and age-matched controls. Dietary data were collected using a validated food frequency questionnaire to derive the LCD and CQI, assessing the quantity and quality of carbohydrate intake separately. Odds ratios (OR) and 95% confidence interval (CI) for CRC risk were estimated using unconditional logistic regression models, and restricted cubic splines were used to explore potential non-linear relationships. RESULTS The results demonstrated that higher adherence to the overall LCD score, plant-based LCD score, and CQI was associated with a lower risk of CRC. The adjusted ORs (95%CIs) for the highest quintile of intake in comparison with the lowest quintile were 0.76 (0.63, 0.91) for the overall LCD score, 0.61 (0.50, 0.74) for the plant-based LCD score, and 0.70 (0.58,0.84) for the CQI, respectively. However, the animal-based LCD did not show a significant association with CRC risk, with the adjusted OR (95%CI) for the highest quintile compared to the lowest being 0.98 (0.81, 1.18). Restricted cubic splines analysis showed non-linear associations of the overall LCD score, animal-based LCD score, and plant-based LCD score with CRC risk. In contrast, a linear relationship was observed between CQI and CRC risk (Pnonlinear = 0.594). CONCLUSIONS Our findings indicate that the overall LCD score, the plant-based LCD score, and the CQI were inversely associated with the risk of CRC.
Collapse
Affiliation(s)
- Fang-Ting Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ke-Xin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xue-Qing Deng
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Sitthisuk P, Innajak S, Poorahong W, Samosorn S, Dolsophon K, Watanapokasin R. Effect of Acacia concinna Extract on Apoptosis Induction Associated with Endoplasmic Reticulum Stress and Modulated Intracellular Signaling Pathway in Human Colon HCT116 Cancer Cells. Nutrients 2024; 16:3764. [PMID: 39519596 PMCID: PMC11547357 DOI: 10.3390/nu16213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) stands as one of the most prevalent cancer types and among the most frequent causes of cancer-related death globally. Acacia concinna (AC) is a medicinal and edible plant that exhibits a multitude of biological properties, including anticancer properties. This study aimed to investigate the impact of the AC extract on apoptosis induction and the underlying mechanisms associated with this effect in KRAS-mutated human colon HCT116 cells. METHODS The effect of AC extract on cell cytotoxicity was evaluated using MTT assay. Nuclear morphological changes were visualized with Hoechst 33342 staining, while mitochondrial membrane potential (MMP) was assessed via JC-1 staining. Flow cytometry was employed for cell cycle analysis, and intracellular ROS levels were determined using DCFH-DA staining. RESULTS The results showed that HCT116 cells exposed to AC extract showed reduced cell growth and prompted apoptosis, as indicated by an increase in chromatin condensation, apoptotic bodies, the sub-G1 apoptotic cell population, and disrupted MMP. Expression levels of apoptosis mediator proteins determined by Western blot analysis showed an increase in pro-apoptotic proteins (Bak and Bax) while decreasing anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1), leading to caspase-7 activation and PARP inactivation. AC extract was also found to enhance intracellular reactive oxygen species (ROS) levels and stimulate endoplasmic reticulum (ER) stress. Furthermore, AC extract increases the phosphorylation of ERK1/2, p38, and c-Jun while downregulating PI3K, Akt, β-catenin, and their downstream target proteins. CONCLUSIONS These results demonstrate that AC extract could inhibit cancer cell growth via ROS-induced ER stress associated with apoptosis and regulate the MAPK, PI3K/Akt, and Wnt/β-catenin signaling pathways in HCT116 cells. Therefore, AC extract may be a novel candidate for natural anticancer resources for colon cancer treatment.
Collapse
Affiliation(s)
- Pornnapa Sitthisuk
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Watcharaporn Poorahong
- Department of Biochemistry, Faculty of Medicine, Bangkok Thonburi University, Bangkok 10170, Thailand;
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| |
Collapse
|
7
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
9
|
Evren AE, Nuha D, Dawbaa S, Karaduman AB, Sağlik BN, Yurttaş L. Novel oxadiazole-thiadiazole derivatives: synthesis, biological evaluation, and in silico studies. J Biomol Struct Dyn 2024; 42:8688-8700. [PMID: 37587853 DOI: 10.1080/07391102.2023.2247087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
In the search for new anticancer agents, we synthesized a new series of thiazole derivatives carried on thiadiazole-oxadiazole hybrid. Final compounds (5a-5i) were analyzed via 1H NMR, 13C NMR, and HRMS. The pharmacokinetic profile of the targeted compounds was predicted via in silico calculations. Their anticancer properties were determined using MTT method against MCF7 and A549 cell lines. Compounds 5a, 5b and 5c were found more active against MCF7 cells than A549 cells while they were not cytotoxic on L929 healthy cells. Generally, it can be summarized that acetamide moiety has a pivotal role in anticancer activity. For further studies, their aromatase inhibitory activity was evaluated. After determination all these features, the binding modes of the active compounds and the stability and relation of the ligand-enzyme complex were investigated using molecular docking and molecular dynamics simulation studies, respectively. In vitro and in silico studies suggest two important structure-activity relationship (SAR) points that at least one azole ring is essential, and if there is approximately 8.0 ± 0.5 Å distance between the H-bond rich zone of ligand and the heteroaryl ring system of ligand has a major impact on aromatase inhibitory activity. Compounds with small group substitution on thiazole are found potentially may be used for the treatment of anti-breast cancer orally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Pharmacy Services, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Sam Dawbaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Doctor of Pharmacy (PharmD), Faculty of Medical Sciences, Thamar University, Dhamar, Yemen
- Department of Pharmacy, Faculty of Medical Sciences, Al-Hikma University, Dhamar, Yemen
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
10
|
Prabakaran NN, Prasad S, Krishnan K, Venkatabalasubramanian S. Geraniin: A dietary ellagitannin as a modulator of signalling pathways in cancer progression. Fitoterapia 2024; 177:106107. [PMID: 38950635 DOI: 10.1016/j.fitote.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Cancer remains a global health challenge, necessitating the exploration of novel therapeutic agents. Current treatment options are unable to overwhelm and cure the cancer burden. Hence, identifying new bioactive molecular entities with potent anticancer activity is the need of the hour. Ellagitannin Geraniin (GN) is one such evidence-based novel bioactive molecular entity (BME) available from different natural sources that can effectively combat cancer. This narrative review attempts to investigate the potential of BME-GN from 2005 to 2023 as an efficient molecular anti-cancer therapeutic against diverse cancers. We provide information on GN's pharmacological advantages, metabolite profile, and capacity to modulate multiple molecular targets involved in the hallmarks of cancer. Using the search terms "Geraniin," "Gallic acid," "Ellagitannin," "pharmacological properties," "health," "antioxidant," "apoptosis," "disease management," "anti-proliferative," "in vitro," "anti-inflammatory," "anti-angiogenic," "in vivo," and "clinical trials," We searched the scientific literature using Scopus, Web of Science, Google Scholar, and PubMed. We removed publications that included overlap or equivalent content and used the most recent review on each issue as our primary reference. From an initial pool of 430 articles, 52 studies met the search criteria. These studies collectively provide substantial in vitro, in vivo, and clinical evidence of GN's potential to combat diverse cancers. Mechanistic insights revealed its involvement in fostering apoptosis, anti-inflammatory, and modulation of key signalling pathways implicated in the hallmarks of cancer. GN's pleiotropic pharmacological and molecular therapeutic properties strongly suggest its potential as a promising anticancer agent.
Collapse
Affiliation(s)
- Naresh Narayanan Prabakaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Suvaasni Prasad
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Kiruthigaa Krishnan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | |
Collapse
|
11
|
Macrì R, Maiuolo J, Scarano F, Musolino V, Fregola A, Gliozzi M, Carresi C, Nucera S, Serra M, Caminiti R, Cardamone A, Coppoletta AR, Ussia S, Ritorto G, Mazza V, Bombardelli E, Palma E, Muscoli C, Mollace V. Evaluation of the Potential Beneficial Effects of Ferula communis L. Extract Supplementation in Postmenopausal Discomfort. Nutrients 2024; 16:2651. [PMID: 39203788 PMCID: PMC11357168 DOI: 10.3390/nu16162651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Peri-menopausal discomfort can have a detrimental effect on the physical health of women due to physiological and behavioral changes. Estrogen and progesterone-based hormone therapy can alleviate menopausal symptoms, but estrogen supplementation may have negative health effects. The effectiveness of hormone replacement therapy using natural compounds for peri-menopausal disorders is still uncertain. Evidence from in vivo experiments indicates that Ferula L. extract in ovariectomized rats leads to better sexual behavior. The effect seems to be linked to the phytoestrogenic properties of ferutinin, the primary bioactive compound in the extract. The purpose of this study was to assess the clinical impact of Ferula communis L. extract (titrated at 20% ferutinin, and given at doses of 100 mg/die for 90 days) on the quality of life of 64 menopausal women. The clinical trial was randomized, double-blind, and placebo controlled. Our data showed that Ferula communis L. extract reduced by 67 + 9% all symptoms associated to postmenopausal discomfort and enhanced significantly sexual behavior. In addition, the supplement led to a significant improvement of BMI and oxidative stress decrease in the women who received it, while also keeping platelet aggregation within normal levels. Overall, these results could point to the potential use of supplementation with Ferula communis L. extract to revert or mitigate menopause dysfunction.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Annalisa Fregola
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Sara Ussia
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Giovanna Ritorto
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Valeria Mazza
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ezio Bombardelli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
- Renato Dulbecco Institute, 88046 Lamezia Terme, Italy
| |
Collapse
|
12
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Auti A, Tathode M, Marino MM, Vitiello A, Ballini A, Miele F, Mazzone V, Ambrosino A, Boccellino M. Nature's weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024; 11:747-772. [PMID: 39416904 PMCID: PMC11474324 DOI: 10.3934/publichealth.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer represents a major global health burden, prompting continuous research for effective therapeutic strategies. Natural compounds derived from plants have emerged as potential strategies for preventing cancer and treatment because of their inherent pharmacological properties. This comprehensive review aimed to evaluate the therapeutic potential of five key natural compounds: apigenin, quercetin, piperine, curcumin, and resveratrol in cancer prevention and therapy. By examining their molecular mechanisms and preclinical evidence, this review seeks to elucidate their role as potential adjuvants or stand-alone therapies in cancer management. The exploration of natural compounds as cancer therapeutics offers several advantages, including low toxicity, wide availability, and compatibility with conventional chemotherapeutic agents. We highlighted the current understanding of their anticancer mechanisms and clinical applications for advancing personalized cancer care to improve patient outcomes. We discussed the empirical findings from in vitro, in vivo, and clinical studies reporting biological activity and therapeutic efficacy in antioxidant, immunomodulatory, anti-carcinogenic, and chemo-sensitizing modes. Innovative delivery systems and personalized treatment approaches may further enhance their bioavailability and therapeutic utility in a synergistic approach with chemo- and radiotherapeutic disease management. This review underscores the importance of natural compounds in cancer prevention and treatment, promoting a multidisciplinary approach to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Madhura Tathode
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, 00144 Rome, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122, Foggia, Italy
| | - Francesco Miele
- General Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valeria Mazzone
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessia Ambrosino
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
14
|
Cordeiro-Massironi K, Soares Freitas RAM, Vieira da Silva Martins IC, de Camargo AC, Torres EAFDS. Bioactive compounds of peanut skin in prevention and adjunctive treatment of chronic non-communicable diseases. Food Funct 2024; 15:6304-6323. [PMID: 38812411 DOI: 10.1039/d4fo00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The global prevalence of cancer continues to increase, so does its mortality. Strategies that can prevent/treat this condition are therefore required, especially low-cost and low-toxicity strategies. Bioactive compounds of plant origin have been presented as a good alternative. In this scenario, due to its abundant polyphenolic content (around 60 to 120 times greater than that of the grain), peanut skin by-products stand out as a sustainable source of food bioactives beneficial to human health. Investigated studies highlighted the importance of peanut skin for human health, its phytochemical composition, bioactivity and the potential for prevention and/or adjuvant therapy in cancer, through the advanced search for articles in the Virtual Health Library (VHL), Science direct and the Mourisco platform of the FioCruz Institute, from 2012 to 2022. Using the keywords, "peanut skin" AND "cancer" AND NOT "allergy", the words "peanut testa" and "peanut peel" were included replacing "peanut skin". 18 articles were selected from Plataforma Mourisco, 26 from Science Direct and 26 from VHL. Of these, 7 articles evaluated aspects of cancer prevention and/or treatment. Promising benefits were found in the prevention/treatment of chronic non-communicable diseases in the use of peanut and peanut skin extracts, such as cholesterolemia and glucose control, attenuation of oxidative stress and suppressive action on the proliferation and metabolism of cancer cells.
Collapse
|
15
|
Edalatian Tavakoli S, Motavalizadehkakhky A, Homayouni Tabrizi M, Mehrzad J, Zhiani R. Study of the anti-cancer activity of a mesoporous silica nanoparticle surface coated with polydopamine loaded with umbelliprenin. Sci Rep 2024; 14:11450. [PMID: 38769394 PMCID: PMC11106065 DOI: 10.1038/s41598-024-62409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
16
|
Capodici A, Mocciaro G, Gori D, Landry MJ, Masini A, Sanmarchi F, Fiore M, Coa AA, Castagna G, Gardner CD, Guaraldi F. Cardiovascular health and cancer risk associated with plant based diets: An umbrella review. PLoS One 2024; 19:e0300711. [PMID: 38748667 PMCID: PMC11095673 DOI: 10.1371/journal.pone.0300711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 05/19/2024] Open
Abstract
CONTEXT Cardiovascular diseases (CVDs) and cancer are the two main leading causes of death and disability worldwide. Suboptimal diet, poor in vegetables, fruits, legumes and whole grain, and rich in processed and red meat, refined grains, and added sugars, is a primary modifiable risk factor. Based on health, economic and ethical concerns, plant-based diets have progressively widespread worldwide. OBJECTIVE This umbrella review aims at assessing the impact of animal-free and animal-products-free diets (A/APFDs) on the risk factors associated with the development of cardiometabolic diseases, cancer and their related mortalities. DATA SOURCES PubMed and Scopus were searched for reviews, systematic reviews, and meta-analyses published from 1st January 2000 to 31st June 2023, written in English and involving human subjects of all ages. Primary studies and reviews/meta-analyses based on interventional trials which used A/APFDs as a therapy for people with metabolic diseases were excluded. DATA EXTRACTION The umbrella review approach was applied for data extraction and analysis. The revised AMSTAR-R 11-item tool was applied to assess the quality of reviews/meta-analyses. RESULTS Overall, vegetarian and vegan diets are significantly associated with better lipid profile, glycemic control, body weight/BMI, inflammation, and lower risk of ischemic heart disease and cancer. Vegetarian diet is also associated with lower mortality from CVDs. On the other hand, no difference in the risk of developing gestational diabetes and hypertension were reported in pregnant women following vegetarian diets. Study quality was average. A key limitation is represented by the high heterogeneity of the study population in terms of sample size, demography, geographical origin, dietary patterns, and other lifestyle confounders. CONCLUSIONS Plant-based diets appear beneficial in reducing cardiometabolic risk factors, as well as CVDs, cancer risk and mortality. However, caution should be paid before broadly suggesting the adoption of A/AFPDs since the strength-of-evidence of study results is significantly limited by the large study heterogeneity alongside the potential risks associated with potentially restrictive regimens.
Collapse
Affiliation(s)
- Angelo Capodici
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- Interdisciplinary Research Center for Health Science, Sant’Anna School of Advanced Studies, Pisa, Tuscany, Italy
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Davide Gori
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Matthew J. Landry
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Alice Masini
- Department of Translational Medicine, University of Eastern Piedmont, (UNIUPO), Novara, Italy
| | - Francesco Sanmarchi
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Matteo Fiore
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Angela Andrea Coa
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gisele Castagna
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Federica Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi—Pituitary Unit, Bologna, Italy
| |
Collapse
|
17
|
Chen J, Lin Z, Fan J, Monzavi-Karbassi B, Kelly T, Post SR, Dai L, Qin Z. Identification of new microtubule small-molecule inhibitors and microtubule-associated genes against triple negative breast cancer. Am J Cancer Res 2024; 14:1545-1560. [PMID: 38726264 PMCID: PMC11076258 DOI: 10.62347/lydf1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer represents the leading cancer type and leading cause of cancer-related death among women in the world. Triple-negative breast cancer (TNBC) is a subset of breast cancer with the poorest prognosis and still lacking of effective therapeutic options. We recently screened a natural product library and identified 3 new hit compounds with selective and prominent anti-TNBC activities on different subtype of TNBC cell lines. Interestingly, all of these 3 hit compounds belong to "cytoskeletal drugs" that target tubulin and microtubule function. Our data also showed that these hit compounds showed consistently effective on TNBC cells which are resistant to those currently used antimicrotubule agents such as Paclitaxel. RNA-Sequencing analyses revealed the anti-TNBC mechanisms of these hit compounds and identified a subset of new cellular factors commonly affected by hit compounds in different subtypes of TNBC cells. Among them, we demonstrated AHCYL1 and SPG21 as new microtubule-associated proteins, which were required for TNBC cell survival with clinical implication through tissue array analysis. Our studies provide new insights into the mechanisms of TNBC pathogenesis and offer promising therapeutic directions for this aggressive breast cancer.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Jiaojiao Fan
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Thomas Kelly
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences4301 W. Markham St., Little Rock, AR 72205, USA
| |
Collapse
|
18
|
Muxfeldt Paim TODA, Simas NF, Abreu JP, Rosa L, Lima TPB, Teodoro AJ. Antiproliferative and Apoptotic Effects of Murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and Taperebá (Spondias mombin L.) Extracts in Human Prostate Cell Line (PC-3). Asian Pac J Cancer Prev 2024; 25:1339-1347. [PMID: 38679995 PMCID: PMC11162719 DOI: 10.31557/apjcp.2024.25.4.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE The present study aimed to evaluate the antiproliferative and apoptotic effects of extracts obtained from the murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and taperebá (Spondias mombin L.) pulps, on cell proliferation, cell cycle and apoptosis on human prostate cell line (PC-3). METHODS Four extract was produced from the pulps: murici aqueous extract (MA), taperebá aqueous extract (TA), murici ethanolic extract (ME) and taperebá ethanolic extract (TE). In the present study, the analysis of cell viability, cell cycle and apoptosis analyze were performed using the MTT method and flow cytometry. RESULTS The results showed that murici and taperebá extracts proved to be inhibitors of cell growth, modulation of cell cycle promoters and capable of enhancing the death in prostate carcinoma cells PC-3; suggesting a regulatory effect in prostate cell line, depending on type of extract and dosage used. CONCLUSION These results open a series of perspectives on the use of these bioactive extracts in the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
| | - Nayara Frauches Simas
- Laboratory of Functional Foods, University of State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Joel Pimentel Abreu
- Laboratory of Functional Foods, University of State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Lana Rosa
- Laboratory of Functional Foods, University of State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Thuane Passos Barbosa Lima
- Laboratory of Functional Foods, University of State of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
- Fluminense Federal University, Food and Nutrition Department of Nutrition and Dietetics, Integrated Food and Nutrition Center (CIAN), Rio de Janeiro, Brazil.
| | - Anderson Junger Teodoro
- Fluminense Federal University, Food and Nutrition Department of Nutrition and Dietetics, Integrated Food and Nutrition Center (CIAN), Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Simón L, Mariotti-Celis MS. Bioactive compounds as potential alternative treatments to prevent cancer therapy-induced male infertility. Front Endocrinol (Lausanne) 2024; 14:1293780. [PMID: 38303979 PMCID: PMC10831851 DOI: 10.3389/fendo.2023.1293780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
About 8-12% of couples experience infertility, with male infertility being the cause in 50% of cases. Several congenital and acquired conditions, including chronic diseases and their treatments, can contribute to male infertility. Prostate cancer incidence increases annually by roughly 3%, leading to an increment in cancer treatments that have adverse effects on male fertility. To preserve male fertility post-cancer survival, conventional cancer treatments use sperm cryopreservation and hormone stimulation. However, these techniques are invasive, expensive, and unsuitable in prepubertal patients lacking mature sperm cells. Alternatively, nutritional therapies enriched with bioactive compounds are highlighted as non-invasive approaches to prevent male infertility that are easily implementable and cost-effective. In fact, curcumin and resveratrol are two examples of bioactive compounds with chemo-preventive effects at the testicular level. In this article, we summarize and discuss the literature regarding bioactive compounds and their mechanisms in preventing cancer treatment-induced male infertility. This information may lead to novel opportunities for future interventions.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | |
Collapse
|
20
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
21
|
Onnis V. Special Issue "Novel Anti-Proliferative Agents". Pharmaceuticals (Basel) 2023; 16:1437. [PMID: 37895908 PMCID: PMC10610072 DOI: 10.3390/ph16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a disease that can affect any organ and spread to other nearby or distant organs [...].
Collapse
Affiliation(s)
- Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
22
|
Wang Y, Liu B, Han H, Hu Y, Zhu L, Rimm EB, Hu FB, Sun Q. Associations between plant-based dietary patterns and risks of type 2 diabetes, cardiovascular disease, cancer, and mortality - a systematic review and meta-analysis. Nutr J 2023; 22:46. [PMID: 37789346 PMCID: PMC10548756 DOI: 10.1186/s12937-023-00877-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Plant-based dietary patterns are gaining more attention due to their potential in reducing the risk of developing major chronic diseases, including type 2 diabetes (T2D), cardiovascular disease (CVD), cancer, and mortality, while an up-to-date comprehensive quantitative review is lacking. This study aimed to summarize the existing prospective observational evidence on associations between adherence to plant-based dietary patterns and chronic disease outcomes. METHODS We conducted a systematic review and meta-analysis of evidence across prospective observational studies. The data sources used were PubMed and MEDLINE, Embase, Web of Science, and screening of references. We included all prospective observational studies that evaluated the association between adherence to plant-based dietary patterns and incidence of T2D, CVD, cancer, and mortality among adults (≥ 18 years). RESULTS A total of 76 publications were identified, including 2,230,443 participants with 60,718 cases of incident T2D, 157,335 CVD cases, 57,759 cancer cases, and 174,435 deaths. An inverse association was observed between higher adherence to a plant-based dietary pattern and risks of T2D (RR, 0.82 [95% CI: 0.77-0.86]), CVD (0.90 [0.85-0.94]), cancer (0.91 [0.87-0.96]), and all-cause mortality (0.84 [0.78-0.92]) with moderate to high heterogeneity across studies (I2 ranged: 47.8-95.4%). The inverse associations with T2D, CVD and cancer were strengthened when healthy plant-based foods, such as vegetables, fruits, whole grains, and legumes, were emphasized in the definition of plant-based dietary patterns (T2D: 0.79 [0.72-0.87]; CVD: 0.85 [0.80-0.92]; cancer: 0.86 [0.80-0.92]; I2 ranged: 53.1-84.1%). Association for mortality was largely similar when the analyses were restricted to healthy plant-based diets (0.86 [0.80-0.92], I2 = 91.9%). In contrast, unhealthy plant-based diets were positively associated with these disease outcomes. Among four studies that examined changes in dietary patterns, increased adherence to plant-based dietary patterns was associated with a significantly reduced risk of T2D (0.83 [0.71-0.96]; I2 = 71.5%) and a marginally lower risk of mortality (0.95 [0.91-1.00]; I2 = 0%). CONCLUSIONS Better adherence to plant-based dietary patterns, especially those emphasizing healthy plant-based foods, is beneficial for lowering the risks of major chronic conditions, including T2D, CVD, cancer, as well as premature deaths. REGISTRATION OF REVIEW PROTOCOL This review was registered at the PROSPERO International Prospective Register of Systematic Reviews ( https://www.crd.york.ac.uk/PROSPERO/ ) with the registration number CRD42022290202.
Collapse
Affiliation(s)
- Yeli Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Han Han
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Lu Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Martínez CF, Di Castelnuovo A, Costanzo S, Panzera T, Esposito S, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Bonaccio M. Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort. Nutrients 2023; 15:3976. [PMID: 37764762 PMCID: PMC10535500 DOI: 10.3390/nu15183976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Besides the Mediterranean diet, there is a paucity of studies examining plant-based diets in relation to cancer outcomes in Mediterranean populations. We analyzed 22,081 apparently cancer-free participants (mean age 55 ± 12 year) from the Moli-sani study (enrollment period 2005-2010; Italy). A general pro-vegetarian food pattern was computed by assigning positive or negative scores to plant- or animal-derived foods, respectively from a 188-item FFQ. A priori healthful or unhealthful pro-vegetarian food patterns distinguished between healthy plant foods (e.g., fruits, vegetables) and less-healthy plant foods (e.g., fruit juices, refined grains). Cancer incidence was defined as the earliest diagnosis of cancer from hospital discharge records over a median follow-up of 12.9 years. In multivariable-adjusted analyses, a general pro-vegetarian food pattern was associated with a lower rate of cancer incidence (HR = 0.85; 95%CI 0.75-0.97 for Q5 vs. Q1); no association was observed between the healthful or unhealthful pro-vegetarian food patterns and overall cancer incidence. A healthful pro-vegetarian pattern, however, was inversely associated with digestive cancer (HR = 0.76; 95%CI 0.58-0.99 for Q5 vs. Q1), while the unhealthful pro-vegetarian pattern was directly linked to respiratory cancer (HR = 1.68; 95%CI 1.06-2.68 for Q5 vs. Q1). Our findings in a Mediterranean population support the hypothesis that some, but not all pro-vegetarian diets, might prevent some cancers.
Collapse
Affiliation(s)
- Claudia Francisca Martínez
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
- Population Health Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Teresa Panzera
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Simona Esposito
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (C.F.M.); (S.C.); (T.P.); (S.E.); (C.C.); (M.B.D.); (G.d.G.); (M.B.)
| | | |
Collapse
|
24
|
Radziejewska I, Supruniuk K, Jakimiuk K, Tomczyk M, Bielawska A, Galicka A. Tiliroside Combined with Anti-MUC1 Monoclonal Antibody as Promising Anti-Cancer Strategy in AGS Cancer Cells. Int J Mol Sci 2023; 24:13036. [PMID: 37685842 PMCID: PMC10487805 DOI: 10.3390/ijms241713036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Katarzyna Supruniuk
- Department of Medical Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland;
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
25
|
Macrì R, Bava I, Scarano F, Mollace R, Musolino V, Gliozzi M, Greco M, Foti D, Tucci L, Maiuolo J, Carresi C, Tavernese A, Palma E, Muscoli C, Mollace V. In Vitro Evaluation of Ferutinin Rich- Ferula communis L., ssp. glauca, Root Extract on Doxorubicin-Induced Cardiotoxicity: Antioxidant Properties and Cell Cycle Modulation. Int J Mol Sci 2023; 24:12735. [PMID: 37628916 PMCID: PMC10454821 DOI: 10.3390/ijms241612735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Daniela Foti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Luigi Tucci
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
26
|
Begdache L, Marhaba R. Bioactive Compounds for Customized Brain Health: What Are We and Where Should We Be Heading? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6518. [PMID: 37569058 PMCID: PMC10418716 DOI: 10.3390/ijerph20156518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Many strides have been made in the field of nutrition that are making it an attractive field not only to nutrition professionals but also to healthcare practitioners. Thanks to the emergence of molecular nutrition, there is a better appreciation of how the diet modulates health at the cellular and molecular levels. More importantly, the advancements in brain imaging have produced a greater appreciation of the impact of diet on brain health. To date, our understanding of the effect of nutrients on brain health goes beyond the action of vitamins and minerals and dives into the intracellular, molecular, and epigenetic effects of nutrients. Bioactive compounds (BCs) in food are gaining a lot of attention due to their ability to modulate gene expression. In addition, bioactive compounds activate some nuclear receptors that are the target of many pharmaceuticals. With the emergence of personalized medicine, gaining an understanding of the biologically active compounds may help with the customization of therapies. This review explores the prominent BCs that can impact cognitive functions and mental health to deliver a potentially prophylactic framework for practitioners. Another purpose is to identify potential gaps in the literature to suggest new research agendas for scientists.
Collapse
Affiliation(s)
- Lina Begdache
- Health and Wellness Studies Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rani Marhaba
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
27
|
Klaophimai S, Pouyfung P, Chairatvit K. Enhancing the Effective Chemotherapy: The Combined Inhibition of Rhinacanthin-C, 5-Fluorouracil, and Etoposide on Oral Cancer Cells. Asian Pac J Cancer Prev 2023; 24:2405-2412. [PMID: 37505773 PMCID: PMC10676484 DOI: 10.31557/apjcp.2023.24.7.2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE To investigate the effects of rhinacanthin-C (Rh-C), 5-FU, and etoposide on growth inhibition, as well as the effects of a combination of these inhibitors on the oral cell lines SCC9 and HSC4. METHODS Cancer cell growth inhibition and inhibition combination were determined using the SRB assay. Cell viability and early apoptosis were determined using flow cytometry on cells stained with Annexin 5 and PI. Western blotting was performed to study the molecular mechanism of these inhibitors on oral cancer cells. RESULTS The results showed that etoposide, 5-FU, and Rh-C exhibited more potent anti-proliferative effects on HSC4 cells compared to SCC9 cells in a time- and concentration-dependent manner. The combination of Rh-C and 5-FU was more effective in inhibiting cell growth than the drugs used alone. The combination of 5-FU and Rh-C resulted in a decrease in live HSC4 cells, with the highest percentage of cell death observed at a ratio of 40:6 μM. Furthermore, the combination of 5-FU and Rh-C reduced P-Akt levels leading to a decrease in cell survival. CONCLUSIONS HSC4 cells were found to be more sensitive to the inhibitory effect of these drugs compared to SCC9 cells. These findings suggest that the use of Rh-C as a complementary therapy with 5-FU may have the potential for the treatment of oral cancer. the underlying mechanisms responsible for this difference in sensitivity between the two cell lines need to be further investigated.
Collapse
Affiliation(s)
- Sirinthip Klaophimai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Ratchathevi, Bangkok 10400, Thailand.
| | - Phisit Pouyfung
- Department of Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Ratchathevi, Bangkok 10400, Thailand.
| |
Collapse
|
28
|
Farhan M. Insights on the Role of Polyphenols in Combating Cancer Drug Resistance. Biomedicines 2023; 11:1709. [PMID: 37371804 PMCID: PMC10296548 DOI: 10.3390/biomedicines11061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment, and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters, have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic dysfunction in cancer cells highlights the importance of further investigating the effects of dietary polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a result of a variety of different mechanisms.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
29
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128, Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052, USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Zhao L, Kase B, Zheng J, Steck SE. Dietary Patterns and Risk of Lung Cancer: A Systematic Review and Meta-Analyses of Observational Studies. Curr Nutr Rep 2023:10.1007/s13668-023-00469-w. [PMID: 37097371 DOI: 10.1007/s13668-023-00469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW Previous literature reviews summarized the associations between individual foods or food groups and lung cancer risk, but the relationship between dietary patterns and lung cancer risk has received less attention. We conducted a systematic review and meta-analyses of observational studies on the associations between dietary patterns and lung cancer risk. RECENT FINDINGS PubMed, Embase, and Web of Science were systematically searched from inception to February 2023. Random-effects models were used to pool relative risks (RR) on associations with at least two studies. Twelve studies reported on data-driven dietary patterns, and 17 studies reported on a priori dietary patterns. A prudent dietary pattern (high in vegetables, fruit, fish, and white meat) tended to be associated with a lower risk of lung cancer (RR = 0.81, 95% confidence interval [CI] = 0.66-1.01, n = 5). In contrast, Western dietary patterns, characterized by higher intakes of refined grains and red and processed meat, were significantly positively associated with lung cancer (RR = 1.32, 95% CI = 1.08-1.60, n = 6). Healthy dietary scores were consistently associated with a lower risk of lung cancer (Healthy Eating Index [HEI]: RR = 0.87, 95% CI = 0.80-0.95, n = 4; Alternate HEI: RR = 0.88, 95% CI = 0.81-0.95, n = 4; Dietary Approaches to Stop Hypertension: RR = 0.87, 95% CI = 0.77-0.98, n = 4; Mediterranean diet: RR = 0.87, 95% CI = 0.81-0.93, n = 10) while the dietary inflammatory index was associated with a higher risk of lung cancer (RR = 1.14, 95% CI = 1.07-1.22, n = 6). Our systematic review indicates dietary patterns characterized by a higher intake of vegetables and fruits, a lower intake of animal products, and anti-inflammation may be associated with a reduced risk of lung cancer.
Collapse
Affiliation(s)
- Longgang Zhao
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Bezawit Kase
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jiali Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Susan E Steck
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
31
|
Aldossari RM, Ali A, Rehman MU, Rashid S, Ahmad SB. Computational Approaches for Identification of Potential Plant Bioactives as Novel G6PD Inhibitors Using Advanced Tools and Databases. Molecules 2023; 28:molecules28073018. [PMID: 37049781 PMCID: PMC10096328 DOI: 10.3390/molecules28073018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In glucose metabolism, the pentose phosphate pathway (PPP) is the major metabolic pathway that plays a crucial role in cancer growth and metastasis. Although it has been pointed out that blockade of the PPP is a promising approach against cancer, in the clinical setting, effective anti-PPP agents are still not available. Dysfunction of the G6PD enzyme in this pathway leads to cancer development as this enzyme possesses oncogenic activity. In the present study, an attempt was made to identify bioactive compounds that can be developed as potential G6PD inhibitors. In the present study, 11 natural compounds and a controlled drug were taken. The physicochemical and toxicity properties of the compounds were determined via ADMET and ProTox-II analysis. In the present study, the findings of docking studies revealed that staurosporine was the most effective compound with the highest binding energy of −9.2 kcal/mol when docked against G6PD. Homology modeling revealed that 97.56% of the residues were occupied in the Ramachandran-favored region. The modeled protein gave a quality Z-score of −10.13 by ProSA tool. iMODS server provided significant insights into the mobility, stability and flexibility of the G6PD protein that described the collective functional protein motion. In the present study, the physical and functional interactions between proteins were determined by STRING. CASTp server determined the topological and geometric properties of the G6PD protein. The findings of the present study revealed that staurosporine could be developed as a potential G6PD inhibitor; however, further in vivo and in vitro studies are needed for further validation of these results.
Collapse
Affiliation(s)
- Rana M. Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, Jammu & Kashmir, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, Jammu & Kashmir, India
| |
Collapse
|
32
|
Zhang J, Qi H, Wang M, Wei Y, Liang H. Enzymatically hydrolyzed sodium caseinate nanoparticles efficiently enhancing the solubility, stability, and antioxidant and anti-biofilm activities of hydrophobic Tanshinone IIA. J Mater Chem B 2023; 11:2440-2454. [PMID: 36810656 DOI: 10.1039/d2tb02263j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enzymatic hydrolysis has been validated as an appropriate strategy for improving the properties of natural protein. Here, we used enzymatic hydrolysis sodium caseinate (Eh NaCas) as a nano-carrier for enhancing the solubility, stability, and antioxidant and anti-biofilm activities of hydrophobic encapsulants. Tanshinone IIA (TA) was loaded into the hydrophobic regions of Eh NaCas by self-assembly, and the encapsulation efficiency could reach 96.54 ± 0.14% under an optimized host-guest ratio. After Eh NaCas packed, the TA-loaded Eh NaCas nanoparticles (Eh NaCas@TA) showed regular spheres, uniform particle size distribution and more optimal drug release. Moreover, the solubility of TA in aqueous solution increased over 2.4 × 105 times, and the TA guest molecules displayed excellent stability under light and other harsh environments. Interestingly, the vehicle protein and TA exhibited synergistic antioxidant effects. Furthermore, Eh NaCas@TA forcefully restrained the growth and destroyed the biofilm construction of Streptococcus mutans compared to free TA, showing positive antibacterial activity. The establishment of these results demonstrated the feasibility and functionality of edible protein hydrolysates as nano-carriers for loading natural plant hydrophobic extracts.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Haole Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yongqin Wei
- Shenqi Ethnic Medicine College of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao 066000, China
| |
Collapse
|
33
|
Rodríguez-Martín NM, Córdoba P, Sarriá B, Verardo V, Pedroche J, Alcalá-Santiago Á, García-Villanova B, Molina-Montes E. Characterizing Meat- and Milk/Dairy-like Vegetarian Foods and Their Counterparts Based on Nutrient Profiling and Food Labels. Foods 2023; 12:1151. [PMID: 36981078 PMCID: PMC10048389 DOI: 10.3390/foods12061151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Vegetarian foods are plant-based (PB) foods, often perceived as healthier foods than animal-based (AB) foods. The objective of this study was to analyze the nutritional quality of a set of PB foods (meat, milk and dairy products) marketed in Spain, and to compare their nutrient profiles with respect to some AB counterparts. Nutritional information per 100 g or mL, ingredients, and nutritional declarations, as well as the Nutri-Score, NOVA, and Eco-Score of each food were collected from Open Food Facts. Differences in the nutrient compositions between PB foods and their counterparts, and between the different groups of PB foods, were assessed at a 5% significance level. A total of 544 PB foods and 373 AB foods were identified. Overall, PB foods had a higher median content of fiber and carbohydrates, but a lower amount of proteins (except PB "meat" analogues: 14 g) and saturated fats (except PB "cheese alternatives": 12.5 g), than the AB counterparts (p < 0.05). PB "milk alternatives", particularly oat "milk", showed a higher median content of total carbohydrates (8 g) and sugars (5.5 g) compared to cow milks (4.7 g carbohydrates/sugars, on average; p < 0.001). PB "meat alternatives" also had a significantly higher value of carbohydrates (9 g) than AB meats (2 g, on average; p < 0.001). PB foods were mostly classified as Nutri-Score A and B (86%). However, more than half of them were of NOVA groups 3 and 4. Thus, there is a great diversity of PB meat and milk/dairy product alternatives on the Spanish market. Despite being products of good nutritional quality compared to AB foods, they also carry drawbacks that could have an impact on nutritional health.
Collapse
Affiliation(s)
- Noelia María Rodríguez-Martín
- Group of Plant Protein, Department of Food and Health, Instituto de la Grasa-CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
| | - Patricia Córdoba
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
| | - Justo Pedroche
- Group of Plant Protein, Department of Food and Health, Instituto de la Grasa-CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
| | - Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
34
|
Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161:114460. [PMID: 36870282 DOI: 10.1016/j.biopha.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.
Collapse
|
35
|
Yang HL, Lin YA, Pandey S, Liao JW, Way TD, Yeh YL, Chen SJ, Hseu YC. In vitro and in vivo anti-tumor activity of Antrodia salmonea against twist-overexpressing HNSCC cells: Induction of ROS-mediated autophagic and apoptotic cell death. Food Chem Toxicol 2023; 172:113564. [PMID: 36563924 DOI: 10.1016/j.fct.2022.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 μg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Lyu Yeh
- Department of Healthcare Administration, Asia University, Taichung, 41354, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 40402, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
36
|
Specian AFL, Tuttis K, Serpeloni JM, Ribeiro DL, Nunes HL, Tangerina M, Sannomiya M, Varanda EA, Vilegas W, Cólus CM. Chemical characterization of Brazilian savannah Byrsonima species (muricis) and their impact on genomic instability and chemopreventive effects. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503586. [PMID: 37003647 DOI: 10.1016/j.mrgentox.2023.503586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The identification of new drugs with few or no adverse effects is of great interest worldwide. In cancer therapy, natural products have been used as chemopreventive and chemotherapeutic agents. Plants from the Brazilian savannah belonging to the Byrsonima genus are popularly known as muricis and have attracted much attention due to their various pharmacological activities. However, there are currently no data on these plants concerning their use as chemopreventive or chemotherapeutic agents in human cell lines. The present study assessed the potential of B. correifolia, B. verbascifolia, B. crassifolia, and B. intermedia extracts as natural alternatives in the prevention and/or treatment of cancer. The chemical constituents present in each extract were analyzed by electrospray ionization-mass spectrometry (ESI-MSN). The mutagenic/antimutagenic (micronucleus assay), genotoxic/antigenotoxic (comet assay), apoptotic/necrotic (acridine orange/ethidium bromide uptake), and oxidative/antioxidative (CM-H2DCFDA) effects of the extracts and their influence on gene expression (RTqPCR) were investigated in nonmetabolizing gastric (MNP01) and metabolizing hepatocarcinoma (HepG2) epithelial cells to evaluate the effects of metabolism on the biological activities of the extracts. The genotoxicity, mutagenicity, and apoptotic effects observed in HepG2 cells with B. correifolia and B. verbascifolia extracts are probably associated with the presence of proanthocyanidins and amentoflavone. In MNP01 cells, none of the four extracts showed mutagenic effects. B. crassifolia and B. intermedia extracts exhibited strong antimutagenicity and enhanced detoxification in HepG2 cells and antioxidant capacities in both types of cells, possibly due to the presence of gallic and quinic acids, which possess chemopreventive properties. This study identifies for the first time B. correifolia and B. verbascifolia extracts as potential agents against hepatocarcinoma and B. crassifolia and B. intermedia extracts as putative chemopreventive agents.
Collapse
|
37
|
Hu B, Yang Y, Tu J, Cai H, Yang S, Chen X, Chen G. Berbamine Exerts an Anti-oncogenic Effect on Pancreatic Cancer by Regulating Wnt and DNA Damage-related Pathways. Anticancer Agents Med Chem 2023; 23:201-209. [PMID: 35579129 DOI: 10.2174/1871520622666220509174306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to determine the effects of berbamine on pancreatic cancer as well as the underlying mechanisms. METHODS The pancreatic cancer cells were treated with different concentrations of berbamine and then subjected to cell viability assay, colony formation assay, cell cycle analysis, and apoptosis detection. Western blotting and immunofluorescence analyses were performed to investigate the mechanisms underlying the biological effects of berbamine on the pancreatic cancer cells. Furthermore, the in vivo anti-pancreatic cancer effect of berbamine was examined using a mouse xenograft model. RESULTS Berbamine significantly inhibited the proliferation and colony-forming ability of BxPC3 and PANC-1 pancreatic cancer cells while inducing a cell cycle arrest and apoptosis. Moreover, berbamine decreased the expression of β- catenin and phosphorylation of GSK3β but increased the expression of γ-H2AX and 53BP1. Meanwhile, in vivo studies revealed that berbamine attenuated the growth of xenograft tumors derived from PANC-1 cells. Notably, berbamine treatment led to an increase in the expression of Cleaved Caspase 3 and γ-H2AX, as well as a decrease in the expression of Ki-67 and β-catenin in the tumor xenografts. CONCLUSION Berbamine exerts an anti-pancreatic cancer effect, possibly by regulating Wnt and DNA damage-related pathways, suggestive of its therapeutic potential for pancreatic cancer.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Yingnan Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Jinfu Tu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Huajie Cai
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Shouzhang Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Xinwei Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou 325000, China
| |
Collapse
|
38
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Ahmad G, Khan SU, Mir SA, Iqbal MJ, Pottoo FH, Dhiman N, Malik F, Ali A. Myrica esculenta Buch.-Ham. (ex D. Don): A Review on its Phytochemistry, Pharmacology and Nutritional Potential. Comb Chem High Throughput Screen 2022; 25:2372-2386. [PMID: 36330658 DOI: 10.2174/1386207325666220428105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Sameer Ullah Khan
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sameer Ahmad Mir
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mir Javid Iqbal
- Department of Pharmacy, Northeastern University, 360 Huntington Avenue-140TF, Boston, Massachusetts MA, 02115, USA
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Asif Ali
- Natural Product Laboratory, CSIR-IIIM, Jammu, J&K 180001, India
| |
Collapse
|
40
|
Chan L, Pang Y, Wang Y, Zhu D, Taledaohan A, Jia Y, Zhao L, Wang W. Genistein-induced mitochondrial dysfunction and FOXO3a/PUMA expression in non-small lung cancer cells. PHARMACEUTICAL BIOLOGY 2022; 60:1876-1883. [PMID: 36200643 PMCID: PMC9553144 DOI: 10.1080/13880209.2022.2123933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023]
Abstract
CONTEXT Genistein is a multifunctional natural compound. OBJECTIVE In this study, we demonstrate the activity of genistein on non-small lung cancer A549 and 95D cells. MATERIALS AND METHODS A CCK8 assay was used to detect the cytotoxicity of genistein (0, 25, 50, 100, 150, 200 and 250 μM) on A549 and 95D cells for 48 h. AnnexinV-FITC/PI and TUNEL assay were performed to examine the apoptotic cell death induced by genistein (0, 50, 100 and 150 μM, 48 h). Intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential were measured by flow cytometry. Mitochondrial activity in A549 and 95D cells, treated with 0, 50, 100 and 150 μM genistein for 48 h was detected by MitoTracker Orange staining. Western blot analysis was performed to evaluate the expression of the mitochondrial apoptosis-related proteins. Meanwhile, the expression level of FOXO3a/PUMA signalling was measured by flow cytometry and Western blot assay. RESULTS IC50 value of genistein against 95D cells and A549 cells was 32.96 ± 2.91 and 110.6 ± 2.41 μM, respectively. The percentage of apoptotic death cells was 20.03%, 29.26% and 27.14% in 95D cells, and 41.62%, 55.24% and 43.45% in A549 cells when treated with 50, 100 and 150 μM genistein, respectively. Our observations also revealed that genistein could elevate intracellular ROS generation, decrease mitochondrial membrane potential, decrease mitochondrial activity (MitoTracker Orange staining), and up-regulate the expression of mitochondrial apoptosis-related proteins. Further examinations revealed that the expression level of FOXO3a and PUMA in NSCLC was significantly increased by genistein. DISCUSSION AND CONCLUSIONS Our data may provide basic information for further development of genistein as a promising lead compound targeting NSCLC by inducing mitochondrial apoptosis.
Collapse
Affiliation(s)
- Liujia Chan
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, PR China
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China
- Department of breast cancer surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, PR China
| | - Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Di Zhu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Ayijinag Taledaohan
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Yijiang Jia
- College of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Lichun Zhao
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, PR China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
41
|
Gianfredi V, Ferrara P, Dinu M, Nardi M, Nucci D. Diets, Dietary Patterns, Single Foods and Pancreatic Cancer Risk: An Umbrella Review of Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14787. [PMID: 36429506 PMCID: PMC9691178 DOI: 10.3390/ijerph192214787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer (PC) represents the third leading cause of cancer death in 2020. Despite the fact that, in 2018, the World Cancer Research Fund report concluded that there is still a lack of evidence on the role of foods or diets and risk for PC, a flourishing body of evidence has been published and needs to be analyzed. For this reason, we conducted an umbrella review on the association between different dietary patterns/food components and PC. Data sources PubMed/MEDLINE, Scopus, Web of Science, EMBASE, and the Cochrane Collaboration were searched. The Joanna Briggs Institute Umbrella Review Methodology was used. The protocol was registered in PROSPERO. A total of 23 articles were included, covering a wide range of dietary patterns/food components: healthy/prudent dietary patterns (n = 4), Mediterranean diets (MedDiet) (n = 1), plant-based diets (n = 2), the Dietary Inflammatory Index (DII) (n = 2), western diets (n = 2), and, lastly, unhealthy diets (n = 2). Regarding dietary components, the following were assessed: total fruit (n = 2), citrus fruit (n = 1), total vegetables (n = 2), cruciferous vegetables (n = 1), red meat (n = 6), processed meat (n = 4), poultry (n = 2), eggs (n = 1), fish (n = 5), whole grain (n = 2), potato (n = 1), and nuts (n = 2). The methodological quality of the included meta-analyses was generally low or critically low. Although the strength of evidence was generally weak, convincing or suggestive evidence was found for a healthy/prudent, plant-based diet, fruit and vegetables, and lower risk of PC, whereas a high intake of red meat was associated with a higher risk of PC at a convincing level of evidence. Further studies are needed to confirm the role of the other dietary patterns/food components and the risk of PC.
Collapse
Affiliation(s)
- Vincenza Gianfredi
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal, 36, 20133 Milan, Italy
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan-Bicocca, 20900 Monza, Italy
- IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mariateresa Nardi
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| | - Daniele Nucci
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| |
Collapse
|
42
|
Zhang X, Wang J, Fan Y, Zhao Z, Paraghamian SE, Hawkins GM, Buckingham L, O'Donnell J, Hao T, Suo H, Yin Y, Sun W, Kong W, Sun D, Zhao L, Zhou C, Bae-Jump VL. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and -resistant ovarian cancer cells. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04276-8. [PMID: 36006482 DOI: 10.1007/s00432-022-04276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Although paclitaxel is a promising first-line chemotherapeutic drug for ovarian cancer, acquired resistance to paclitaxel is one of the leading causes of treatment failure, limiting its clinical application. Asparagus officinalis has been shown to have anti-tumorigenic effects on cell growth, apoptosis, cellular stress and invasion of various types of cancer cells and has also been shown to synergize with paclitaxel to inhibit cell proliferation in ovarian cancer. METHODS Human ovarian cancer cell lines MES and its PTX-resistant counterpart MES-TP cell lines were used and were treated with Asparagus officinalis and paclitaxel alone as well as in combination. Cell proliferation, cellular stress, invasion and DMA damage were investigated and the synergistic effect of a combined therapy analyzed. RESULTS In this study, we found that Asparagus officinalis combined with low-dose paclitaxel synergistically inhibited cell proliferation, induced cellular stress and apoptosis and reduced cell invasion in paclitaxel-sensitive and -resistant ovarian cancer cell lines. The combined treatment effects were dependent on DNA damage pathways and suppressing microtubule dynamics, and the AKT/mTOR pathway and microtubule-associated proteins regulated the inhibitory effect through different mechanisms in paclitaxel-sensitive and -resistant cells. CONCLUSION These findings suggest that the combination of Asparagus officinalis and paclitaxel have potential clinical implications for development as a novel ovarian cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Sarah E Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Gabrielle M Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Lindsey Buckingham
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jillian O'Donnell
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Hongyan Suo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Delin Sun
- Shandong Juxinyuan Asparagus Industry Development Research Institute, HeZe, 274400, Shandong, People's Republic of China
| | - Luyu Zhao
- Shandong Juxinyuan Agricultural Technology Co. LTD, HeZe, 274400, Shandong, People's Republic of China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
Kousar R, Naeem M, Jamaludin MI, Arshad A, Shamsuri AN, Ansari N, Akhtar S, Hazafa A, Uddin J, Khan A, Al-Harrasi A. Exploring the anticancer activities of novel bioactive compounds derived from endophytic fungi: mechanisms of action, current challenges and future perspectives. Am J Cancer Res 2022; 12:2897-2919. [PMID: 35968347 PMCID: PMC9360238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023] Open
Abstract
Cancer is the second leading cause of death all around the world. The natural compounds derived from the endophytic flora of fungi are possible solutions to cancer treatment because they are safe for health, cost-effective, biocompatible and have fewer toxicity issues. The active ingredients in endophytic fungi that are responsible for anti-cancer activities are alkaloids, terpenoids, glycosides, saponin, peptides, steroids, phenols, quinones, and flavonoids. This review highlights the anti-cancer activities of entophytic fungus against human papillary thyroid carcinoma (IHH4), human pancreatic (PANC-1), ovarian (OVCAR-3), hepatic (HepG2), lung (A-549), human lymphoma (U937), human skin carcinoma (A431), breast (MCF-7), and Kaposi's sarcoma. The emerging evidence suggested that bioactive compounds isolated from endophytic fungi showed their anti-cancer activities by revealing the disturbance of the microtubule network caused by increased levels of Bax and Bcl-2 proteins that triggers cell cycle arrest at the G2-M phase, by inhibiting the DNA replication via binding with topoisomerase II, by regulating the activity of extracellular signal-regulated kinase and NF-kB, by evaluating the levels of p21, p27, and cyclins B/D1/E that led to cell death by apoptosis and cell cycle arrest. This review will assist readers in better comprehending bioactive chemicals and the beneficial interaction between the fungal endophytes and medicinal plants.
Collapse
Affiliation(s)
- Rubina Kousar
- Collage of Life Science, Department of Biological Sciences and Technology, China Medical UniversityTaichung 406040, Taiwan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi MalaysiaJohor Bahru 81310, Johor, Malaysia
| | - Ammara Arshad
- Department of Nutrition Sciences, School of Health Sciences, University of Management & Technology LahorePakistan
| | - Aisyah Nazirah Shamsuri
- Johor Pharmaceutical Services Division, Hospital Permai LamaJalan Persiaran Permai, Johor Bahru 81200, Johor, Malaysia
| | - Nelofar Ansari
- Department of Botany, University of BalochistanQuetta, Pakistan
| | | | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of AgricultureFaisalabad 38040, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid UniversityAbha 62529, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of NizwaPO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of NizwaPO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| |
Collapse
|
44
|
Hsing MT, Hsu HT, Chang CH, Chang KB, Cheng CY, Lee JH, Huang CL, Yang MY, Yang YC, Liu SY, Yen CM, Yang SF, Hung HS. Improved Delivery Performance of n-Butylidenephthalide-Polyethylene Glycol-Gold Nanoparticles Efficient for Enhanced Anti-Cancer Activity in Brain Tumor. Cells 2022; 11:cells11142172. [PMID: 35883615 PMCID: PMC9325228 DOI: 10.3390/cells11142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
n-butylidenephthalide (BP) has been verified as having the superior characteristic of cancer cell toxicity. Furthermore, gold (Au) nanoparticles are biocompatible materials, as well as effective carriers for delivering bio-active molecules for cancer therapeutics. In the present research, Au nanoparticles were first conjugated with polyethylene glycol (PEG), and then cross-linked with BP to obtain PEG-Au-BP nanodrugs. The physicochemical properties were characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) to confirm the combination of PEG, Au, and BP. In addition, both the size and structure of Au nanoparticles were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), where the size of Au corresponded to the results of DLS assay. Through in vitro assessments, non-transformed BAEC and DBTRG human glioma cells were treated with PEG-Au-BP drugs to investigate the tumor-cell selective cytotoxicity, cell uptake efficiency, and mechanism of endocytic routes. According to the results of MTT assay, PEG-Au-BP was able to significantly inhibit DBTRG brain cancer cell proliferation. Additionally, cell uptake efficiency and potential cellular transportation in both BAEC and DBTRG cell lines were observed to be significantly higher at 2 and 24 h. Moreover, the mechanisms of endocytosis, clathrin-mediated endocytosis, and cell autophagy were explored and determined to be favorable routes for BAEC and DBTRG cells to absorb PEG-Au-BP nanodrugs. Next, the cell progression and apoptosis of DBTRG cells after PEG-Au-BP treatment was investigated by flow cytometry. The results show that PEG-Au-BP could remarkably regulate the DBTRG cell cycle at the Sub-G1 phase, as well as induce more apoptotic cells. The expression of apoptotic-related proteins in DBTRG cells was determined through Western blotting assay. After treatment with PEG-Au-BP, the apoptotic cascade proteins p21, Bax, and Act-caspase-3 were all significantly expressed in DBTRG brain cancer cells. Through in vivo assessments, the tissue morphology and particle distribution in a mouse model were examined after a retro-orbital sinus injection containing PEG-Au-BP nanodrugs. The results demonstrate tissue integrity in the brain (forebrain, cerebellum, and midbrain), heart, liver, spleen, lung, and kidney, as they did not show significant destruction due to PEG-Au-BP treatment. Simultaneously, the extended retention period for PEG-Au-BP nanodrugs was discovered, particularly in brain tissue. The above findings identify PEG-Au-BP as a potential nanodrug for brain cancer therapies.
Collapse
Affiliation(s)
- Ming-Tai Hsing
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chih-Hsuan Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
| | - Chun-Yuan Cheng
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Jae-Hwan Lee
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Chien-Li Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (C.-Y.C.); (J.-H.L.); (C.-L.H.)
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Szu-Yuan Liu
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Chun-Ming Yen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (S.-Y.L.); (C.-M.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-T.H.); (H.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (C.-H.C.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (S.-F.Y.); (H.-S.H.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-4-22052121 (ext. 7827) (H.-S.H.); Fax: +886-4-22333641 (H.-S.H.)
| |
Collapse
|
45
|
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022; 27:molecules27123863. [PMID: 35744986 PMCID: PMC9230627 DOI: 10.3390/molecules27123863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Nousheen Yousaf
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Correspondence: or (A.D.); (M.N.)
| | - Zamri Rosli
- Department of Forestry Science, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Muhammad Nawaz Rajpar
- Department of Forestry, Faculty of Life Sciences, SBBU Sheringal, Dir Upper 18000, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or (A.D.); (M.N.)
| |
Collapse
|
46
|
Potočnjak I, Šimić L, Vukelić I, Batičić L, Domitrović R. Oleanolic acid induces HCT116 colon cancer cell death through the p38/FOXO3a/Sirt6 pathway. Chem Biol Interact 2022; 363:110010. [PMID: 35690101 DOI: 10.1016/j.cbi.2022.110010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 12/08/2022]
Abstract
Oleanolic acid (OA) is a natural compound that possesses numerous beneficial health effects, including anticancer activity. The current study aimed to investigate the role of forkhead box O3a (FOXO3a) in autophagy/mitophagy by OA in HCT116 cell line. OA dose-dependently reduced viability of HCT116 cells, with IC50 = 29.8 μΜ. The expression of cleaved caspase-3 and poly (ADP-ribose) polymerase 1 increased after OA treatment, suggesting induction of apoptosis. Concurrently, OA induced autophagy, evidenced by increased expression of Beclin-1, autophagy-related protein 5 and microtubule-associated protein1A/1B-light chain 3 beta (LC3B), which played a prosurvival role. The induction of mitophagy was suggested by increased expression of p62 and PTEN-induced kinase 1 and reduced expression of translocase of outer mitochondrial membrane 20, which colocalized with LC3B. OA also induced nuclear accumulation of forkhead box O3a (FOXO3a). The cytotoxic activity of OA coincided with upregulation of p38. Inhibition of p38 led to increase in FOXO3a and NAD+-dependent deacetylase sirtuin 6 expression. In vivo, OA inhibited tumor growth in colon cancer xenograft mice. Our results suggest concomitant induction of apoptosis and prosurvival mitophagy by OA in colon cancer via p38/FOXO3a/Sirt6 signaling. Additionally, our data demonstrate that OA can chemosensitize colon cancer cells to 5-fluorouracil (5-FU).
Collapse
Affiliation(s)
- Iva Potočnjak
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Croatia
| | - Lidija Šimić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Croatia
| | - Iva Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Croatia.
| |
Collapse
|
47
|
Zhao Y, Zhan J, Wang Y, Wang D. The Relationship Between Plant-Based Diet and Risk of Digestive System Cancers: A Meta-Analysis Based on 3,059,009 Subjects. Front Public Health 2022; 10:892153. [PMID: 35719615 PMCID: PMC9204183 DOI: 10.3389/fpubh.2022.892153] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Objectives Diets containing red or processed meat are associated with a growing risk of digestive system cancers. Whether a plant-based diet is protective against cancer needs a high level of statistical evidence. Methods We performed a meta-analysis of five English databases, including PubMed, Medline, Embase, Web of Science databases, and Scopus, on October 24, 2021 to identify published papers. Cohort studies or case-control studies that reported a relationship between plant-based diets and cancers of the digestive system were included. Summary effect-size estimates are expressed as Risk ratios (RRs) or Odds ratios (ORs) with 95% confidence intervals and were evaluated using random-effect models. The inconsistency index (I2) and τ2 (Tau2) index were used to quantify the magnitude of heterogeneity derived from the random-effects Mantel-Haenszel model. Results The same results were found in cohort (adjusted RR = 0.82, 95% CI: 0.78–0.86, P < 0.001, I2 = 46.4%, Tau2 = 0.017) and case-control (adjusted OR = 0.70, 95% CI: 0.64–0.77, P < 0.001, I2 = 83.8%, Tau2 = 0.160) studies. The overall analysis concluded that plant-based diets played a protective role in the risk of digestive system neoplasms. Subgroup analyses demonstrated that the plant-based diets reduced the risk of cancers, especially pancreatic (adjusted RR = 0.71, 95% CI: 0.59–0.86, P < 0.001, I2 = 55.1%, Tau2 = 0.028), colorectal (adjusted RR = 0.76, 95% CI: 0.69–0.83, P < 0.001, I2 = 53.4%, Tau2 = 0.023), rectal (adjusted RR = 0.84, 95% CI: 0.78–0.91, P < 0.001, I2 = 1.6%, Tau2 = 0.005) and colon (adjusted RR = 0.88, 95% CI: 0.82–0.95, P < 0.001, I2 = 0.0%, Tau2 = 0.000) cancers, in cohort studies. The correlation between vegan and other plant-based diets was compared using Z-tests, and the results showed no difference. Conclusions Plant-based diets were protective against cancers of the digestive system, with no significant differences between different types of cancer. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022322276, Identifier: CRD42022322276.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyi Zhan
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongsen Wang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongli Wang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Dongli Wang
| |
Collapse
|
48
|
Fan L, Liao W, Chen Z, Li S, Yang A, Chen MM, Liu H, Liu F. In vitro and in vivo anti-lymphoma effects of Ophiorrhiza pumila extract. Aging (Albany NY) 2022; 14:3801-3812. [PMID: 35504024 PMCID: PMC9134945 DOI: 10.18632/aging.204041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
Background: Current therapeutic strategies on patients with lymphomas remains limited. Previously we found the suppressive effect of Ophiorrhiza pumila (OPE) on hepatocarcinoma. In present study, the effect of OPE on lymphoma in vitro and in vivo were investigated. Methods: CCK-8 assay was applied to detect the effect of OPE on cell proliferation. Flow cytometry was used to analyze the effect of OPE on cell cycle distribution and apoptosis. Xenograft mouse model was conducted to determine the anti-tumor activity of OPE. TNUEL assay was performed to detect the apoptosis in tumor tissues. Western blot and immuno-histochemistry were used to determine protein expression. Results: In vitro tests indicate that OPE suppressed A20 cell proliferation in a dose- and time-dependent manner. OPE treatment induced cell cycle arrest at S phase and elevated apoptosis in A20 cells. OPE displayed a significant inhibition in tumor growth in a mouse xenograft model. OPE promoted apoptosis of tumor cell in the mouse model Cleaved caspase 3 expression and Bax/Bcl2 ratio were also enhanced. In addition, OPE suppressed A20 cell viability partially by reducing phosphorylation of EGFR. Conclusions: Our data showed that OPE suppressed the proliferation of lymphoma cells and promoted apoptosis in vitro and in vivo, which might be partially mediated by inactivating EGFR signaling.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Wanqin Liao
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Zezhen Chen
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Shaojing Li
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Min-Min Chen
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Hui Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
49
|
Chen J, Barrett L, Lin Z, Kendrick S, Mu S, Dai L, Qin Z. Identification of natural compounds tubercidin and lycorine HCl against small-cell lung cancer and BCAT1 as a therapeutic target. J Cell Mol Med 2022; 26:2557-2565. [PMID: 35318805 PMCID: PMC9077304 DOI: 10.1111/jcmm.17246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Although small-cell lung cancer (SCLC) accounts for a small fraction of lung cancer cases (~15%), the prognosis of patients with SCLC is poor with an average overall survival period of a few months without treatment. Current treatments include standard chemotherapy, which has minimal efficacy and a newly developed immunotherapy that thus far, benefits a limited number of patients. In the current study, we screened a natural product library and identified 5 natural compounds, in particular tubercidin and lycorine HCl, that display prominent anti-SCLC activities in vitro and in vivo. Subsequent RNA-sequencing and functional validation assays revealed the anti-SCLC mechanisms of these new compounds, and further identified new cellular factors such as BCAT1 as a potential therapeutic target with clinical implication in SCLC patients. Taken together, our study provides promising new directions for fighting this aggressive lung cancer.
Collapse
Affiliation(s)
- Jungang Chen
- Department of PathologyWinthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Lindsey Barrett
- Department of PathologyWinthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zhen Lin
- Department of PathologyTulane University Health Sciences CenterTulane Cancer CenterNew OrleansLouisinaUSA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Shengyu Mu
- Department of Pharmacology & ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Lu Dai
- Department of PathologyWinthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zhiqiang Qin
- Department of PathologyWinthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
50
|
Phytochemical-based nanodrug delivery in cancer therapy. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns1.6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are estimated to be 13.1 million cancer deaths by 2030, with 7.6 million deaths occurring each year. Phytochemicals have long been used in traditional medicine to cure cancer. However, conventional therapy for metastatic illness may fail if cancer cells become resistant to multiple anticancer drugs. Phytochemicals encapsulated in nano-based medication delivery devices were studied for their cancer- and chemo-preventive properties. Nanocarriers containing phytoconstituents have been studied in terms of loading efficiency, nanocarrier size, the release profile of the drug, and cell inhibition and treatment tests.
Collapse
|