1
|
Makhlouf EA, AlamElDeen YK, El-Shiekh RA, Okba MM. Unveilling the antidiabetic potential of ashwagandha ( Withania somnifera L.) and its withanolides-a review. Nat Prod Res 2024:1-16. [PMID: 39671378 DOI: 10.1080/14786419.2024.2439009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Withania somnifera, commonly known as Ashwagandha, is a prominent herb in Ayurvedic medicine, recognised for its diverse pharmacological properties, particularly its potential anti-diabetic effects. With the global incidence of diabetes mellitus (DM) surpassing 366 million, interest in herbal remedies like Ashwagandha has surged. Active compounds known as withanolides have demonstrated efficacy in modulating glucose homeostasis and enhancing insulin sensitivity. Systematic reviews indicate that Ashwagandha effectively restores altered blood glucose and glycosylated haemoglobin (HbA1c) levels without significant safety concerns. Animal studies reveal hypoglycaemic effects from both root and leaf extracts, improving metabolic parameters. Although clinical evidence remains limited, existing trials suggest that Ashwagandha may enhance insulin sensitivity and overall metabolic profiles in diabetic patients. This review underscores the potential of Ashwagandha as a complementary approach in DM management, warranting further research to confirm its therapeutic benefits and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Eman A Makhlouf
- Clinical Pharmacy PharmD Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Youmna K AlamElDeen
- Clinical Pharmacy PharmD Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Ma R, Prigge AD, Ortiz Serrano TP, Cheng Y, Davis JM, Lou KF, Wood WA, Do HC, Ren Z, Fulcer MM, Lotesto MJ, Singer BD, Coates BM, Ridge KM. Vimentin modulates regulatory T cell receptor-ligand interactions at distal pole complex, leading to dysregulated host response to viral pneumonia. Cell Rep 2024; 43:115056. [PMID: 39645657 DOI: 10.1016/j.celrep.2024.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) resolve acute inflammation and repair the injured lung after viral pneumonia. Vimentin is a critical protein in the distal pole complex (DPC) of Tregs. This study reveals the inhibitory effect of vimentin on the suppressive and reparative capacity of Tregs. Treg-specific deletion of vimentin increases Helios+interleukin-18 receptor (IL-18R)+ Tregs, suppresses inflammatory immune cells, and enhances tissue repair, protecting Vimfl/flFoxp3YFP-cre mice from influenza-induced lung injury and mortality. Mechanistically, vimentin suppresses the induction of amphiregulin, an epidermal growth factor receptor (EGFR) ligand necessary for tissue repair, by sequestering IL-18R to the DPC and restricting receptor-ligand interactions. We propose that vimentin in the DPC of Tregs functions as a molecular switch, which could be targeted to regulate the immune response and enhance tissue repair in patients with severe viral pneumonia.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Andrew D Prigge
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karen F Lou
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Walter A Wood
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanh Chi Do
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - McKenzie M Fulcer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mary J Lotesto
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bria M Coates
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Speers AB, Lozano-Ortiz A, Soumyanath A. Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods. Nutrients 2024; 16:3836. [PMID: 39599622 PMCID: PMC11597739 DOI: 10.3390/nu16223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Withania somnifera (common name: ashwagandha; WS) is an Ayurvedic botanical that has become popular for its reputed effects on stress and insomnia. Research into the bioactive compounds responsible for the biological effects of WS has largely focused on withanolides, a group of steroidal lactones commonly found in the Solanaceae family. Until recently, however, it was unclear which, if any, withanolides were present in the plasma after the ingestion of WS products. The aim of this review is to summarize current knowledge regarding the plasma pharmacokinetics of withanolides found in WS and the analytical methods developed to detect them in plasma. Twenty studies (sixteen animal, four human) were identified in which isolated withanolides or withanolide-containing products were administered to animals or humans and quantified in plasma. Withanolides were commonly analyzed using reversed-phase liquid chromatography coupled to mass spectrometry. Plasma concentrations of withanolides varied significantly depending on the substance administered, withanolide dose, and route of administration. Plasma pharmacokinetics of withaferin A, withanolide A, withanolide B, withanoside IV, 12-deoxywithastramonolide, and withanone have been reported in rodents (Cmax range: 5.6-8410 ng/mL), while withaferin A, withanolide A, 12-deoxywithastramonolide, and withanoside IV pharmacokinetic parameters have been described in humans (Cmax range: 0.1-49.5 ng/mL).
Collapse
Affiliation(s)
- Alex B Speers
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Axel Lozano-Ortiz
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Nithyasree V, Magdalene P, Praveen Kumar PK, Preethi J, Gromiha MM. Role of HSP90 in Type 2 Diabetes Mellitus and Its Association with Liver Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01251-1. [PMID: 39162909 DOI: 10.1007/s12033-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Non-alcoholic fatty acid liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) are the fatal liver diseases which encompass a spectrum of disease severity associated with increased risk of type 2 diabetes mellitus (T2DM), a metabolic disorder. Heat shock proteins serve as markers in early prognosis and diagnosis of early stages of liver diseases associated with metabolic disorder. This review aims to comprehensively investigate the significance of HSP90 isoforms in T2DM and liver diseases. Additionally, we explore the collective knowledge on plant-based drug compounds that regulate HSP90 isoform targets, highlighting their potential in treating T2DM-associated liver diseases. Furthermore, this review focuses on the computational systems' biology and next-generation sequencing technology approaches that are used to unravel the potential medicine for the treatment of pleiotropy of these 2 diseases and to further elucidate the mechanism.
Collapse
Affiliation(s)
- V Nithyasree
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P Magdalene
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - J Preethi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
5
|
P. S, S. GK, KT. N, Selvaraj C, K. L. Explication of Pharmacological Proficiency of Phytoconstituents from Adansonia digitata Bark: An In Vitro and In Silico Approaches. SCIENTIFICA 2024; 2024:6645824. [PMID: 39184813 PMCID: PMC11343629 DOI: 10.1155/2024/6645824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Compared to other drug discovery sources, traditional medicine has significantly contributed to developing innovative therapeutic molecules for preventive and curative medicine. The Baobab tree, also known as Adansonia digitata L., is significant in Africa due to its multitude of benefits and various parts that serve different purposes, providing economic support to rural communities. The analysis of a plant sample using Fourier transform infrared (FT-IR) spectroscopy detected multiple functional groups, such as carboxyl and aromatic groups. Additionally, gas chromatography-mass spectroscopy (GC-MS) was utilized to identify various compounds present in the sample, including tetrachloroethylene and octyl ester. The results of different assays, such as α-diphenyl-β-picrylhydrazyl (DPPH), superoxide, nitric oxide scavenging assays, and total antioxidant by thiobarbituric acid method (TBA) and ferric thiocyanate (FTC) method, demonstrated a substantial scavenging of free radicals and an effective antioxidant efficacy. The bark's antimicrobial activity was tested through agar diffusion, resulting in a range of zone of inhibition from 10.1 ± 0.36 mm to 20.85 ± 0.76 mm. The minimum inhibitory concentration (MIC) value was observed to be approximately 0.625 µg/mL. The biofilm inhibition percentage ranged from 9.89% to 57.92%, with the highest percentage being 57.92%. The GC-MS and FT-IR studies revealed phytocompounds, which were then analyzed for their potential therapeutic properties. Computational studies were conducted on the phytocompounds against Pseudomonas aeruginosa and C2 kinase (antioxidant). The study concluded that the Adansonia digitata bark extract and its phytocompound have potential therapeutic efficacy against the target proteins. The best docking scores were about -7.053 kcal/mol and -7.573 kcal/mol for Pseudomonas aeruginosa and C2 kinase (antioxidant), respectively. The interaction patterns with the crucial amino acid residues elucidate the inhibitory efficacy of the phytocompounds.
Collapse
Affiliation(s)
- Sangavi P.
- Department of BioinformaticsAlagappa University, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar S.
- Faculty of Allied Health SciencesChettinad Hospital & Research InstituteChettinad Academy of Research and Education (Deemed to be University), Kelambakkam, Tamil Nadu, India
| | - Nachammai KT.
- Department of BiotechnologyAlagappa University, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD LAB, Center for Global Health ResearchSaveetha Medical CollegeSaveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Langeswaran K.
- Department of Biomedical ScienceAlagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
6
|
Aihaiti Y, Zheng H, Cai Y, Tuerhong X, Kaerman M, Wang F, Xu P. Exploration and validation of therapeutic molecules for rheumatoid arthritis based on ferroptosis-related genes. Life Sci 2024; 351:122780. [PMID: 38866217 DOI: 10.1016/j.lfs.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
AIMS This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China; Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Xiadiye Tuerhong
- Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Minawaer Kaerman
- Department of Rheumatology, Immunology and Endocrinology, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Fan Wang
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China.
| |
Collapse
|
7
|
Elsayed AMA, Oweda M, Abushady AM, Alhelf M, Khalil SRM, Tawfik MS, Al-Atabany W, El-Hadidi M. Identification of Differentially Expressed Genes in Human Colorectal Cancer Using RNASeq Data Validated on the Molecular Level with Real-Time PCR. Biochem Genet 2024; 62:3260-3284. [PMID: 38097858 PMCID: PMC11289010 DOI: 10.1007/s10528-023-10593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
Colorectal cancer (CRC) is a prevalent cancer with high morbidity and mortality rates worldwide. Late diagnosis is a significant contributor to low survival rates in a minority of cases. The study aimed to perform a robust pipeline using integrated bioinformatics tools that will enable us to identify potential diagnostic and prognostic biomarkers for early detection of CRC by exploring differentially expressed genes (DEGs). In addition to, testing the capability of replacing chemotherapy with plant extract in CRC treatment by validating it using real-time PCR. RNA-seq data from cancerous and adjacent normal tissues were pre-processed and analyzed using various tools such as FastQC, Kallisto, DESeq@ R package, g:Profiler, GNEMANIA-CytoScape and CytoHubba, resulting in the identification of 1641 DEGs enriched in various signaling routes. MMP7, TCF21, and VEGFD were found to be promising diagnostic biomarkers for CRC. An in vitro experiment was conducted to examine the potential anticancer properties of 5-fluorouracile, Withania somnifera extract, and their combination. The extract was found to exhibit a positive trend in gene expression and potential therapeutic value by targeting the three genes; however, further trials are required to regulate the methylation promoter. Molecular docking tests supported the findings by revealing a stable ligand-receptor complex. In conclusion, the study's analysis workflow is precise and robust in identifying DEGs in CRC that may serve as biomarkers for diagnosis and treatment. Additionally, the identified DEGs can be used in future research with larger sample sizes to analyze CRC survival.
Collapse
Affiliation(s)
- Aya M A Elsayed
- School of Biotechnology, Nile University, Giza, Egypt
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Mariam Oweda
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Asmaa M Abushady
- School of Biotechnology, Nile University, Giza, Egypt
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Maha Alhelf
- School of Biotechnology, Nile University, Giza, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa R M Khalil
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamaa Street, Giza, 12619, Egypt
| | - Mohamed S Tawfik
- Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamaa Street, Giza, 12619, Egypt
| | - Walid Al-Atabany
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham Dubai Campus, Dubai, United Arab Emirates.
| |
Collapse
|
8
|
Vaidya VG, Naik NN, Ganu G, Parmar V, Jagtap S, Saste G, Bhatt A, Mulay V, Girme A, Modi SJ, Hingorani L. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117603. [PMID: 38122911 DOI: 10.1016/j.jep.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal; (Solanaceae), commonly known as Ashwagandha, is one of the most significant medicinal herbs in 'Ayurveda', a traditional Indian medicine used for centuries with evidence in scriptures. Ashwagandha was mentioned in old Ayurvedic medical literature such as Charaka Samhita and Sushruta Samhita for improving weight and strength, with multiple citations for internal and exterior usage in emaciation and nourishing the body. Ethnopharmacological evidence revealed that it was used to relieve inflammation, reduce abdominal swelling, as a mild purgative, and treat swollen glands. The root was regarded as a tonic, aphrodisiac, and emmenagogue in the Unani tradition of the Indian medicinal system. Further, Ashwagandha has been also described as an Ayurvedic medicinal plant in the Ayurvedic Pharmacopoeia of India extending informed therapeutic usage and formulations. Despite the widespread ethnopharmacological usage of Ashwagandha, clinical pharmacokinetic parameters are lacking in the literature; hence, the findings of this study will be relevant for calculating doses for future clinical evaluations of Ashwagandha root extract. AIM This study aimed to develop a validated and highly sensitive bioanalytical method for quantifying withanosides and withanolides of the Ashwagandha root extract in human plasma to explore its bioaccessibility. Further to apply a developed method to perform pharmacokinetics of standardized Withania somnifera (L.) Dunal root extract (WSE; AgeVel®/Witholytin®) capsules in healthy human volunteers. METHODS A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of five major withanosides and withanolides (withanoside IV, withanoside V, withanolide A, withaferin A, and 12-deoxy-withastramonolide) in human plasma. Further for the study, eighteen healthy male volunteers (18-45 years) were enrolled in a non-randomized, open-label, single period, single treatment, clinical pharmacokinetic study and given a single dose (500 mg) of WSE (AgeVel®/Witholytin®) capsules containing not less than 7.5 mg of total withanolides under fasting condition. Later, pharmacokinetic profiles were assessed using the plasma concentration of each bioactive constituent Vs. time data. RESULTS For all five constituents, the bioanalytical method demonstrated high selectivity, specificity, and linearity. There was no carryover, and no matrix effect was observed. Furthermore, the inter-day and intra-day precision and accuracy results fulfilled the acceptance criteria. Upon oral administration of WSE capsules, Cmax was found to be 0.639 ± 0.211, 2.926 ± 1.317, 2.833 ± 0.981, and 5.498 ± 1.986 ng/mL for withanoside IV, withanolide A, withaferin A, and 12-deoxy-withastramonolide with Tmax of 1.639 ± 0.993, 1.361 ± 0.850, 0.903 ± 0.273, and 1.375 ± 0.510 h respectively. Further, withanoside V was also detected in plasma; but its concentration was found below LLOQ. CONCLUSION The novel and first-time developed bioanalytical method was successfully applied for the quantification of five bio-active constituents in human volunteers following administration of WSE capsules, indicating that withanosides and withanolides were rapidly absorbed from the stomach, have high oral bioavailability, and an optimum half-life to produce significant pharmacological activity. Further, AgeVel®/Witholytin® was found safe and well tolerated after oral administration, with no adverse reaction observed at a 500 mg dose.
Collapse
Affiliation(s)
- Vidyadhar G Vaidya
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Ninad N Naik
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Gayatri Ganu
- Mprex Healthcare Pvt. Ltd., Pune, 411057, Maharashtra, India.
| | - Vijay Parmar
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Shubham Jagtap
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ankit Bhatt
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | | | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| |
Collapse
|
9
|
Lerose V, Ponticelli M, Benedetto N, Carlucci V, Lela L, Tzvetkov NT, Milella L. Withania somnifera (L.) Dunal, a Potential Source of Phytochemicals for Treating Neurodegenerative Diseases: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:771. [PMID: 38592845 PMCID: PMC10976061 DOI: 10.3390/plants13060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Withania somnifera (L.) Dunal is a medicinal plant belonging to the traditional Indian medical system, showing various therapeutic effects such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and hepatoprotective activity. Of great interest is W. somnifera's potential beneficial effect against neurodegenerative diseases, since the authorized medicinal treatments can only delay disease progression and provide symptomatic relief and are not without side effects. A systematic search of PubMed and Scopus databases was performed to identify preclinical and clinical studies focusing on the applications of W. somnifera in preventing neurodegenerative diseases. Only English articles and those containing the keywords (Withania somnifera AND "neurodegenerative diseases", "neuroprotective effects", "Huntington", "Parkinson", "Alzheimer", "Amyotrophic Lateral Sclerosis", "neurological disorders") in the title or abstract were considered. Reviews, editorials, letters, meta-analyses, conference papers, short surveys, and book chapters were not considered. Selected articles were grouped by pathologies and summarized, considering the mechanism of action. The quality assessment and the risk of bias were performed using the Cochrane Handbook for Systematic Reviews of Interventions checklist. This review uses a systematic approach to summarize the results from 60 investigations to highlight the potential role of W. somnifera and its specialized metabolites in treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Lerose
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Nadia Benedetto
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Ludovica Lela
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| |
Collapse
|
10
|
Kumar P, Banik SP, Goel A, Chakraborty S, Bagchi M, Bagchi D. Revisiting the Multifaceted Therapeutic Potential of Withaferin A (WA), a Novel Steroidal Lactone, W-ferinAmax Ashwagandha, from Withania Somnifera (L) Dunal. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:115-130. [PMID: 37410676 DOI: 10.1080/27697061.2023.2228863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Withania somnifera (L.) Dunal, abundant in the Indian subcontinent as Ashwagandha or winter cherry, is a herb of unprecedented therapeutic value. The number of ailments for which crude Ashwagandha extract can be used as a preventive or curative is practically limitless; and this explains why its use has been in vogue in ancient Ayurveda since at-least about four thousand years. The therapeutic potential of Ashwagandha mainly owes from its reservoir of alkaloids (isopelletierine, anaferine), steroidal lactones (withanolides) and saponins with an extra acyl group (sitoindoside VII and VIII). Withaferin A is an exceptionally potent withanolide which is found in high concentrations in W. somnifera plant extracts. The high reactivity of Withaferin A owes to the presence of a C-28 ergostane network with multiple sites of unsaturation and differential oxygenation. It interacts with the effectors of multiple signaling pathways involved in inflammatory response, oxidative stress response, cell cycle regulation and synaptic transmission and has been found to be significantly effective in inducing programmed cell death in cancer cells, restoring cognitive health, managing diabetes, alleviating metabolic disorders, and rejuvenating the overall body homeostasis. Additionally, recent studies suggest that Withaferin A (WA) has the potential to prevent viral endocytosis by sequestering TMPRSS2, the host transmembrane protease, without altering ACE-2 expression. The scope of performing subtle structural modifications in this multi-ring compound is believed to further expand its pharmacotherapeutic horizon. Very recently, a novel, heavy metal and pesticide free formulation of Ashwagandha whole herb extract, with a significant amount of WA, termed W-ferinAmax Ashwagandha, has been developed. The present review attempts to fathom the present and future of this wonder molecule with comprehensive discussion on its therapeutic potential, safety and toxicity.Key teaching pointsWithania somnifera (L.) Dunal is a medicinal plant with versatile therapeutic values.The therapeutic potential of the plant owes to the presence of withanolides such as Withaferin A.Withaferin A is a C-28 ergostane based triterpenoid with multiple reactive sites of therapeutic potential.It is effective against a broad spectrum of ailments including neurodegenerative disorders, cancer, inflammatory and oxidative stress disorders and it also promotes cardiovascular and sexual health.W-ferinAmax Ashwagandha, is a heavy metal and pesticide free Ashwagandha whole herb extract based formulation with significant amount of Withaferin A.
Collapse
Affiliation(s)
- Pawan Kumar
- Research and Development Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Manashi Bagchi
- Research & Development Department, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, Adelphi University, Garden City, New York, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
11
|
Omidifar N, Pazoki N, Shokripour M, Fattahi MR, Safarpour AR, Fallahzadeh Abarghooee E, Nikmanesh N, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. The Effect of Coronavirus Disease 2019 on the Quality of Associated Care in Patients with Gastric Cancer. Middle East J Dig Dis 2024; 16:12-22. [PMID: 39050096 PMCID: PMC11264831 DOI: 10.34172/mejdd.2024.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/09/2023] [Indexed: 07/27/2024] Open
Abstract
Coronavirus is a new virus that has affected human life on a large scale; it has infected millions of people and killed hundreds of thousands of people. In contrast, among cancers, stomach neoplasia is the most common cancer of the upper gastrointestinal (UGI) tract. COVID-19 disease has disrupted the optimal management of patients with cancer. Metastasis, deterioration of the patient's nutritional status, UGI bleeding, and increased surgical complications are all consequences of delayed treatment of patients with gastric cancer. However, there is still insufficient evidence on the immunogenicity of the vaccine and the protection provided by coronavirus vaccines in patients with cancer, especially those with immunodeficiency or those who are treated for certain types of cancers. Also, as part of the prevention and control of COVID-19 disease, nutritional support for patients with gastrointestinal cancer is particularly important, and the psychological and physiological limitations caused by the disease duration are hurting the well-being of patients. Therefore, the assessment of the impact of the coronavirus on cancer should be treated as an important issue, and healthcare professionals should be prepared to deal with the long-term effects of the coronavirus disease.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center and Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Pazoki
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Zhang J, Song J, Liu S, Zhang Y, Qiu T, Jiang L, Bai J, Yao X, Wang N, Yang G, Sun X. m 6A methylation-mediated PGC-1α contributes to ferroptosis via regulating GSTK1 in arsenic-induced hepatic insulin resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167202. [PMID: 37730054 DOI: 10.1016/j.scitotenv.2023.167202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yuhan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
13
|
Kim SK, Venkatesan J, Rathi P, Antony B. Pharmacokinetics and bioequivalence of Withania somnifera (Ashwagandha) extracts - A double blind, crossover study in healthy adults. Heliyon 2023; 9:e22843. [PMID: 38144272 PMCID: PMC10746415 DOI: 10.1016/j.heliyon.2023.e22843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Withania somnifera (WS) or ashwagandha is an adaptogenic plant used extensively in traditional medicines and as a food supplement. Despite a long history of use and numerous clinical trials, the human pharmacokinetics of withanolides, the active phytochemicals in WS extracts, have not been fully evaluated. This study evaluated the oral pharmacokinetics and bioequivalence of active withanolides in human plasma after administration of a single dose of two commercial ashwagandha extracts containing equal amounts of total withanolides. Methods This randomized, double-blind, single-dose crossover study of 16 healthy human volunteers evaluated the acute oral bioavailability of withanolides and the bioequivalence of two WS extracts, WS-35 and WS-2.5. WS-35 was standardized to total withanolides not less than 40% comprising not less than 35% withanolide glycosides and WS-2.5 was standardized to 2.5% withanolides. The clinical dosages were normalized to 185 mg of total withanolide in each extract at the bioequivalent dosages. The pharmacokinetic parameters of withanolide A, withanoside IV, withaferin A, and total withanolides were quantified in the blood plasma using a validated LC-MS/MS method. Results The half-life, C-max, and mean residence time of the total withanolides were 5.18, 5.62 and 4.13 times significantly higher and had lower systemic clearance with WS-35 than with WS-2.5 extract. Considering the plasma AUC 0-inf of total withanolides per mg of each WS extract administered orally, WS-35 was 280.74 times more bioavailable than WS-2.5. Conclusion The results of this study highlight the importance of withanolide glycosides in improving the pharmacokinetics of WS extracts. Owing to its superior pharmacokinetic profile, WS-35, with 35% withanolide glycosides, is a promising candidate for further studies on Withania somnifera. Clinical trial registration CTRI/2020/10/028397 [registered on:13/10/2020] (Trial prospectively registered) http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=42149&EncHid=&userName=CTRI/2020/10/028397.
Collapse
Affiliation(s)
- Se-Kwon Kim
- College of Science & Technology, Hanyang University, ERICA Campus, Ansan, 11558, Republic of Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Priyank Rathi
- Synergen Bio Private Limited, Sai Chambers, Shivajinagar, Pune, Maharashtra, 411003, India
| | - Benny Antony
- Arjuna Natural Pvt. Ltd., Innovation Centre, Behind ISRO, Erumathala P.O., Keezhmad, Kerala, 683 112, India
| |
Collapse
|
14
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Kurant D, Gryczka K, Falkowski M, Wiśniewska M, Słupski M, Ohla J, Zabrzyński J. Can Ashwagandha Benefit the Endocrine System?-A Review. Int J Mol Sci 2023; 24:16513. [PMID: 38003702 PMCID: PMC10671406 DOI: 10.3390/ijms242216513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Withania somnifera, also known as Ashwagandha, has been used in traditional medicine for thousands of years. Due to the wide range of its activities, there has been interest in its possible beneficial effects on the human body. It is proved that, among others, Ashwagandha has anti-stress, anti-inflammatory, antimicrobial, anti-cancer, anti-diabetic, anti-obesity, cardioprotective, and hypolipidemic properties. Particularly interesting are its properties reported in the field of psychiatry and neurology: in Alzheimer's disease, Parkinson's disease, multiple sclerosis, depression, bipolar disorder, insomnia, anxiety disorders and many others. The aim of this review is to find and summarize the effect that Ashwagandha root extract has on the endocrine system and hormones. The multitude of active substances and the wide hormonal problems faced by modern society sparked our interest in the topic of Ashwagandha's impact on this system. In this work, we also attempted to draw conclusions as to whether W. somnifera can help normalize the functions of the human endocrine system in the future. The search mainly included research published in the years 2010-2023. The results of the research show that Ashwagandha can have a positive effect on the functioning of the endocrine system, including improving the secretory function of the thyroid gland, normalizing adrenal activity, and multidirectional improvement on functioning of the reproductive system. The main mechanism of action in the latter appears to be based on the hypothalamus-pituitary-adrenal (HPA) axis, as a decrease in cortisol levels and an increase in hormones such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in men were found, which results in stress level reduction and improvement in fertility. In turn, other studies prove that active substances from W. somnifera, acting on the body, cause an increase in the secretion of triiodothyronine (T3) and thyroxine (T4) by the thyroid gland and a subsequent decrease in the level of thyroid-stimulating hormone (TSH) in accordance with the hypothalamus-pituitary-thyroid (HPT) axis. In light of these findings, it is clear that Ashwagandha holds significant promise as a natural remedy for various health concerns, especially those related to the endocrine system. Future research may provide new insights into its mechanisms of action and expand its applications in both traditional and modern medicine. The safety and toxicity of Ashwagandha also remain important issues, which may affect its potential use in specific patient groups.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Magdalena Wiśniewska
- Department of Oncology and Brachytherapy, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr I. Romanowskiej 2, 85-796 Bydgoszcz, Poland;
- Department of Clinical Oncology, Professor Franciszek Lukaszczyk Oncology Center, Dr I. Romanowskiej 2, 85-796 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Jakub Ohla
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (J.O.); (J.Z.)
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (J.O.); (J.Z.)
| |
Collapse
|
15
|
Zafar A, Wasti Y, Majid M, Muntaqua D, Bungau SG, Haq IU. Artemisia brevifolia Wall. Ex DC Enhances Cefixime Susceptibility by Reforming Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1553. [PMID: 37887253 PMCID: PMC10604168 DOI: 10.3390/antibiotics12101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: A possible solution to antimicrobial resistance (AMR) is synergism with plants like Artemisia brevifolia Wall. ex DC. (2) Methods: Phytochemical quantification of extracts (n-hexane (NH), ethyl acetate (EA), methanol (M), and aqueous (Aq)) was performed using RP-HPLC and chromogenic assays. Extracts were screened against resistant clinical isolates via disc diffusion, broth dilution, the checkerboard method, time-kill, and protein quantification assays. (3) Results: M extract had the maximum phenolic (15.98 ± 0.1 μg GAE/mgE) and flavonoid contents (9.93 ± 0.5 μg QE/mgE). RP-HPLC displayed the maximum polyphenols in the M extract. Secondary metabolite determination showed M extract to have the highest glycosides, alkaloids, and tannins. Preliminary resistance profiling indicated that selected isolates were resistant to cefixime (MIC 20-40 µg/mL). Extracts showed moderate antibacterial activity (MIC 60-100 µg/mL). The checkerboard method revealed a total synergy between EA extract and cefixime with 10-fold reductions in cefixime dose against resistant P. aeruginosa and MRSA. Moreover, A. brevifolia extracts potentiated the antibacterial effect of cefixime after 6 and 9 h. The synergistic combination was non- to slightly hemolytic and could inhibit bacterial protein in addition to cefixime disrupting the cell wall, thus making it difficult for bacteria to survive. (4) Conclusion: A. brevifolia in combination with cefixime has the potential to inhibit AMR.
Collapse
Affiliation(s)
- Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
- Cadson College of Pharmacy, Kharian 50090, Pakistan
| | - Yusra Wasti
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan;
| | - Durdana Muntaqua
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| |
Collapse
|
16
|
Foghis M, Tit DM, Bungau SG, Ghitea TC, Pallag CR, Foghis AM, Behl T, Bustea C, Pallag A. Highlighting the Use of the Hepatoprotective Nutritional Supplements among Patients with Chronic Diseases. Healthcare (Basel) 2023; 11:2685. [PMID: 37830722 PMCID: PMC10572698 DOI: 10.3390/healthcare11192685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Cross-sectional studies, while not considered glamorous endeavors, are firmly anchored in data and statistics, providing essential insights about public health. The aim of the study is to see the frequency of hepatoprotective (HP) nutritional supplement consumption among patients with chronic diseases (other than chronic liver disorders) and analyzes the habits related to the consumption of nutritional supplements among these patients. A total of 954 patients, seeking medical prescriptions for chronic diseases under various payment arrangements (compensated, gratuity, or full payment) were carefully selected over a 12-month period from four private pharmaceutical facilities. We examined the frequency of HP consumption in relation with a number of prescribed medications for chronic conditions. All these patients were invited to complete a questionnaire about their supplement consumption habits and were provided the option to participate in a nutritional status assessment. One hundred ninety-five patients consented to participate in the survey, and 65 patients agreed to undergo a nutritional status evaluation. Of the 954 patients, 77.2% incorporate HP into their regimen. The most frequent consumption (83.33%) was recorded in a group with seven drugs, followed by a group with three drugs (82.84%). Women have a higher usage rate of HP (80.58%; 444 from 551) compared to men (62.60%; 293 from 383), and most of the patients (59.5%) used extracts of Silybum marianum L. In the survey, 64.61% of participants were using supplements, with most (59.52%) consuming HP. Only 32.54% of patients rely on recommendations from healthcare professionals. Of the patients who use supplements, 55.56% reported improvements in their health status. Furthermore, patients who integrate supplements into their daily routine tend to achieve better overall nutritional status.
Collapse
Affiliation(s)
- Monica Foghis
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.F.); (A.P.)
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.F.); (A.P.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.F.); (A.P.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Csaba Robert Pallag
- MSc International Economy and Business Program of Study, Corvinus University of Budapest, 1093 Budapest, Hungary;
| | - Andreea Monica Foghis
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248007, India;
| | - Cristian Bustea
- Department of Surgery, Oradea County Emergency Clinical Hospital, 410169 Oradea, Romania;
| | - Annamaria Pallag
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.F.); (A.P.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
17
|
Haș IM, Vodnar DC, Bungau AF, Tarce AG, Tit DM, Teleky BE. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023; 12:3544. [PMID: 37835197 PMCID: PMC10572914 DOI: 10.3390/foods12193544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Interest in functional foods is continuously increasing, having the potential to be an ally in reducing cardiometabolic risk factors. This study focuses on developing and evaluating oat- and millet-based snack bars enriched with freeze-dried elderberry powder (FDEBP), aiming to combine great taste with enhanced nutritional value, antioxidant properties, and prebiotic potential. The research encompassed a sensory evaluation, nutritional assessment, and rheological analysis of the snack bars. A hedonic test was conducted to gauge consumer preferences and overall liking, providing insights into taste, texture, and acceptance. Sensory evaluation revealed positive feedback from participants, and acceptance rating scores ranged from 7 to 8.04, the best score recorded by one of the enhanced bars with 1% FDEBP. The rheological analysis determined the bars' dynamic storage modulus (G') and loss modulus (G″), assessing the material's elasticity and mechanical properties. Results showed that the incorporation of 0.5% and 1% FDEBP in the oat and millet snack bars significantly impacted their rheological properties, enhancing structural strength. Nutritional analysis demonstrated that the snack bars provided a complete mix of macronutrients required in a daily diet. The study sheds light on the potential of functional snack bars enriched with FDEBP, offering a delectable way to access essential nutrients and bioactive compounds in a minimally processed form, without the addition of sweeteners or additives, friendly to the gut microbiota.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
19
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
20
|
Sharma PK, Kumar L, Goswami Y, Pujani M, Dikshit M, Tandon R. The aqueous root extract of Withania somnifera ameliorates LPS-induced inflammatory changes in the in vitro cell-based and mice models of inflammation. Front Pharmacol 2023; 14:1139654. [PMID: 37377934 PMCID: PMC10291246 DOI: 10.3389/fphar.2023.1139654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: Most critically ill COVID-19 patients have bronchitis, pneumonia, and acute respiratory distress syndrome (ARDS) due to excessive inflammatory conditions. Corticosteroids have largely been prescribed for the management of inflammation in these patients. However, long-term use of corticosteroids in patients with comorbidities such as metabolic, cardiovascular, and other inflammatory disorders is ideally not recommended due to safety issues. A potential and safer anti-inflammatory therapy is therefore the need of the hour. Withania somnifera (WS), a well-known herbal medicine used during the pandemic in India to prevent SARS-CoV2 infection, also possesses anti-inflammatory properties. Methods: In the present study, we, therefore, evaluated the effect of the aqueous extract of the roots of W. somnifera in the cell-based assays and in the experimental animal models of LPS-induced inflammation. Results: In the NCI-H460, A549 cells and human peripheral blood mononuclear cells (PBMCs) pre-treatment with W. somnifera reduced the LPS-induced expression of the pro-inflammatory cytokines. In addition, W. somnifera extract also showed potent anti-inflammatory activity in the lung tissues of BALB/c mice challenged intranasally with LPS. We observed a marked reduction in the neutrophil counts in the broncho-alveolar lavage (BAL) fluid, inflammatory cytokines, and fibrosis in the mice lungs pre-treated with W. somnifera. Results obtained thus suggest the potential utility of W. somnifera extract in reducing airway inflammation and recommend the clinical evaluation of W. somnifera extract in COVID-19 patients with a high propensity for lung inflammation.
Collapse
Affiliation(s)
| | - Lokesh Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Yamini Goswami
- Translational Health Science and Technology Institute, Faridabad, India
| | - Mukta Pujani
- ESIC Medical College and Hospital, Faridabad, India
| | - Madhu Dikshit
- Translational Health Science and Technology Institute, Faridabad, India
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | - Ruchi Tandon
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
21
|
Abeesh P, Guruvayoorappan C. Inhibition of tumor-specific angiogenesis by AS1411 aptamer functionalized Withaferin A loaded PEGylated nanoliposomes by targeting nucleolin. Biochem Biophys Res Commun 2023; 673:106-113. [PMID: 37379799 DOI: 10.1016/j.bbrc.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Angiogenesis is a vital process for tumor growth and metastasis. Inhibition of angiogenesis is a promising strategy in cancer treatment. In this study, we analyzed the anti-angiogenic activity of AS1411 functionalized Withaferin A encapsulated PEGylated nanoliposomes (ALW) using both in vitro and in vivo models. AS1411 aptamer functionalized nanoliposomes are an efficient drug delivery system for carrying chemotherapeutic agents to target cancer cells, and Withaferin A (WA) is a steroidal lactone known for potent anti-angiogenic activity. ALW showed significant inhibition in the migration and tube formation of endothelial cells, which are critical events in angiogenesis. In vivo angiogenesis study using ALW showed remarkable inhibition of tumor-directed capillary formation by altered serum cytokines, VEGF, GM-CSF, and NO levels. ALW treatment downregulated the gene expression of Matrix metalloproteinase (MMP)-2, MMP-9, VEGF, NF-kB and upregulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1. Our results demonstrate that ALW inhibits tumor-specific angiogenesis by gene expression of NF-κB, VEGF, MMP-2, and MMP-9. The present study shows that using ALW can offer an attractive strategy for inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India.
| |
Collapse
|
22
|
Trifan DF, Tirla AG, Moldovan AF, Moș C, Bodog F, Maghiar TT, Manole F, Ghitea TC. Can Vitamin D Levels Alter the Effectiveness of Short-Term Facelift Interventions? Healthcare (Basel) 2023; 11:healthcare11101490. [PMID: 37239776 DOI: 10.3390/healthcare11101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Facelifting is increasingly popular among the population. It exceeded the limits of post-traumatic facia-reconstruction. Both the demand and the methods available are getting increasingly diverse. The minimally invasive technique revolutionized the facelift, although it took some time to completely comprehend the mechanics. The roles of vitamin D in numerous physiological processes in which it is involved have mostly been elucidated in the last decade. Our hypothesis is based on one of these roles, that is, vitamin D intervenes in changing the type of collagen by changing its location; therefore, collagen will have a supporting role for the subcutaneous tissue. A group of 156 patients with different facelifting methods was followed: 93 minimally invasive (NC), 49 classical surgery (C) and 14 with the combined technique (NC + C). The change in the subcutaneous tissue was monitored by an elastograph. The level of vitamin D was monitored in order to assess the immediate and long-term effects of vitamin D on the progression of subcutaneous fibrosis. It was proven that an optimal level of vitamin D has a beneficial effect in maintaining the volume of subcutaneous tissue in patients from the NC and NC + C groups, the best results being in the NC + C group. An increase in the subcutaneous volume was recorded, which leads to a decrease in elasticity (statistical significance p < 0.05) and the lowering of the subcutaneous tissue, and an increased amount of lowering corresponds to a lowering of vitamin D levels.
Collapse
Affiliation(s)
- Daniela Florina Trifan
- Faculty of Medicine and Pharmacy, Doctoral School, University of Oradea, 410068 Oradea, Romania
| | - Adrian Gheorghe Tirla
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Andrada Florina Moldovan
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Calin Moș
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Florian Bodog
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Teodor Traian Maghiar
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Felicia Manole
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| | - Timea Claudia Ghitea
- Faculty of Medicine and Pharmacy, Department of Pharmacy, University of Oradea, 10, 410068 Oradea, Romania
| |
Collapse
|
23
|
San Nicolás-Hernández D, Hernández-Álvarez E, Bethencourt-Estrella CJ, López-Arencibia A, Sifaoui I, Bazzocchi IL, Lorenzo-Morales J, Jiménez IA, Piñero JE. Multi-target withaferin-A analogues as promising anti-kinetoplastid agents through the programmed cell death. Biomed Pharmacother 2023; 164:114879. [PMID: 37210899 DOI: 10.1016/j.biopha.2023.114879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Leishmaniasis and Chagas disease, two of the most prevalent neglected tropical diseases, are a world health problem. The harsh reality of these infective diseases is the absence of effective and safe therapies. In this framework, natural products play an important role in overcoming the current need to development new antiparasitic agents. The present study reports the synthesis, antikinetoplastid screening, mechanism study of fourteen withaferin A derivatives (2-15). Nine of them (2-6, 8-10 and 12) showed a potent dose-dependent inhibitory effect on the proliferation of Leishmania amazonensis and L. donovani promastigotes and Trypanosoma cruzi epimastigotes with IC50 values ranging from 0.19 to 24.01 µM. Outstandingly, the fully acetylated derivative 10 (4,27-diacetylwithaferin A) was the most potent compound showing IC50 values of 0.36, 2.82 and 0.19 µM against L. amazonensis, L. donovani and T. cruzi, respectively. Furthermore, analogue 10 exhibited approximately 18 and 36-fold greater antikinetoplastid activity, on L. amazonensis and T. cruzi, than the reference drugs. The activity was accompanied by significantly lower cytotoxicity on the murine macrophage cell line. Moreover, compounds 2, 3, 5-7, 9 and 10 showed more potent activity than the reference drug against the intracellular amastigotes forms of L. amazonensis and T.cruzi, with a good selectivity index on a mammalian cell line. In addition, withaferin A analogues 3, 5-7, 9 and 10 induce programmed cell death through a process of apoptosis-like and autophagy. These results strengthen the anti-parasitic potential of withaferin A-related steroids against neglected tropical diseases caused by Leishmania spp. and T. cruzi parasites.
Collapse
Affiliation(s)
- Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
24
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
25
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:microorganisms11041000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Subash C B Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
26
|
Bashir A, Nabi M, Tabassum N, Afzal S, Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front Pharmacol 2023; 14:1049334. [PMID: 37063285 PMCID: PMC10090468 DOI: 10.3389/fphar.2023.1049334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Withania somnifera (L.) Dunal belongs to the nightshade family Solanaceae and is commonly known as Ashwagandha. It is pharmacologically a significant medicinal plant of the Indian sub-continent, used in Ayurvedic and indigenous systems of medicine for more than 3,000 years. It is a rich reservoir of pharmaceutically bioactive constituents known as withanolides (a group of 300 naturally occurring C-28 steroidal lactones with an ergostane-based skeleton). Most of the biological activities of W. somnifera have been attributed to two key withanolides, namely, withaferin-A and withanolide-D. In addition, bioactive constituents such as withanosides, sitoindosides, steroidal lactones, and alkaloids are also present with a broad spectrum of therapeutic potential. Several research groups worldwide have discovered various molecular targets of W. somnifera, such as inhibiting the activation of nuclear factor kappa-B and promoting apoptosis of cancer cells. It also enhances dopaminergic D2 receptor activity (relief in Parkinson’s disease). The active principles such as sitoindosides VII-X and withaferin-A possess free radical properties. Withanolide-D increases the radio sensitivity of human cancer cells via inhibiting deoxyribonucleic acid (DNA) damage to non-homologous end-joining repair (NHEJ) pathways. Withanolide-V may serve as a potential inhibitor against the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to combat COVID. The molecular docking studies revealed that the withanolide-A inhibits acetyl-cholinesterase in the brain, which could be a potential drug to treat Alzheimer’s disease. Besides, withanolide-A reduces the expression of the N-methyl-D-aspartate (NMDA) receptor, which is responsible for memory loss in epileptic rats. This review demonstrates that W. somnifera is a rich source of withanolides and other bioactive constituents, which can be used as a safe drug for various chronic diseases due to the minimal side effects in various pre-clinical studies. These results are interesting and signify that more clinical trials should be conducted to prove the efficacy and other potential therapeutic effects in human settings.
Collapse
Affiliation(s)
- Arsalan Bashir
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
- *Correspondence: Nahida Tabassum,
| | - Suhaib Afzal
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mehrose Ayoub
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
27
|
Costa G, Serra M, Maccioni R, Casu MA, Kasture SB, Acquas E, Morelli M. Withania somnifera influences MDMA-induced hyperthermic, cognitive, neurotoxic and neuroinflammatory effects in mice. Biomed Pharmacother 2023; 161:114475. [PMID: 36905810 DOI: 10.1016/j.biopha.2023.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Withania somnifera (WS) is utilized in Ayurvedic medicine owing to its central and peripheral beneficial properties. Several studies have accrued indicating that the recreational amphetamine-related drug (+/-)- 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) targets the nigrostriatal dopaminergic system in mice, inducing neurodegeneration and gliosis, causing acute hyperthermia and cognitive impairment. This study aimed to investigate the effect of a standardized extract of W. somnifera (WSE) on MDMA-induced neurotoxicity, neuroinflammation, memory impairment and hyperthermia. Mice received a 3-day pretreatment with vehicle or WSE. Thereafter, vehicle- and WSE-pretreated mice were randomly divided into four groups: saline, WSE, MDMA alone, WSE plus MDMA. Body temperature was recorded throughout treatment, and memory performance was assessed by a novel object recognition (NOR) task at the end of treatment. Thereafter, immunohistochemistry was performed to evaluate in the substantia nigra pars compacta (SNc) and striatum the levels of tyrosine hydroxylase (TH), as marker of dopaminergic degeneration, and of glial fibrillary acidic protein (GFAP) and TMEM119, as markers of astrogliosis or microgliosis, respectively. MDMA-treated mice showed a decrease in TH-positive neurons and fibers in the SNc and striatum respectively, an increase in gliosis and body temperature, and a decrease in NOR performance, irrespective of vehicle or WSE pretreatment. Acute WSE plus MDMA counteracted the modifications in TH-positive cells in SNc, GFAP-positive cells in striatum, TMEM in both areas and NOR performance, as compared to MDMA alone, while no differences were observed as compared to saline. Results indicate that WSE acutely administered in combination with MDMA, but not as pretreatment, protects mice against the noxious central effects of MDMA.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sanjay B Kasture
- Rajarshi Shahu College of Pharmacy, Buldhana, Maharashtra, India
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
28
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
29
|
Mir SA, Wani RA, Maqbool MS, Singh D, Bharitkar YP, Malik FA, Yousuf SK. TFA-mediated stereoselective aza-Michael addition for the synthesis of 3β-arylamine derivatives of withaferin A and evaluation of their anticancer potential. Steroids 2023; 191:109172. [PMID: 36574871 DOI: 10.1016/j.steroids.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
A simple and efficient protocol for the aza-Michael addition of various aromatic anilines to ring A of withaferin A has been developed. Stereoselectivity, functional group tolerance, broad substrate scope, short reaction time and moderate to high yield are the merits of the protocol. One of the synthesized compounds 11 shows an IC 50 value of 3.8 μM against aggressive, highly metastatic triple-negative breast cancer cell line MDA-MB-231.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Rafiq Ahmad Wani
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Mir Shahid Maqbool
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India; Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Deepika Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India; Quality Management & Instrumentation Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu 180001, India
| | - Yogesh P Bharitkar
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Fayaz A Malik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India; Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India
| | - Syed Khalid Yousuf
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
30
|
Checker R, Bhilwade HN, Nandha SR, Patwardhan RS, Sharma D, Sandur SK. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicol Appl Pharmacol 2023; 461:116389. [PMID: 36716864 DOI: 10.1016/j.taap.2023.116389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Increasing use of ionizing radiation (IR) in medicine, industry, agriculture and research ensues potential health hazards if not used properly or contained effectively. However, radioprotectors which are effective in clinical and/or accidental radiation exposures are still elusive. In this direction, we have explored the radioprotective potential of Withaferin A, a plant withanolide, which was recently shown to be safe and well tolerated in cancer patients in a clinical trial and is also known to be a radio-sensitizer in cancer cells. Our results show that, Withaferin A (WA) protected only normal lymphocytes, but not cancer cells, against IR-induced apoptosis and offered radioprotection even when added post-radiation exposure. WA treatment led to significant inhibition of IR-induced caspase-3 activation and decreased IR-induced DNA damage to lymphocytes and bone-marrow cells. WA reduced intracellular ROS and GSH levels and only thiol based anti-oxidants could abrogate the radio-protective effects of WA, indicating a crucial role of cellular/protein thiols in its biological activity. The inability of WA-glutathione adduct to offer radioprotection further underscored the role of cellular thiols. WA induced pro-survival transcription factor, Nrf-2, and expression of cytoprotective genes HO-1, catalase, SOD, peroxiredoxin-2 via ERK. Further, WA administration could rescue mice against radiation induced mortality, DNA damage, increase in micro-nucleated polychromatic erythrocytes (mn-PCEs) and increased ratio of polychromatic erythrocytes (PCEs) to Normochromatic Erythrocytes (NCEs) in bone-marrow, demonstrating its potent in vivo the radio-protective efficacy. In conclusion, WA selectively protects normal cells against IR-induced apoptosis via activation of cytoprotective Nrf-2 pathway.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - H N Bhilwade
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
31
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
32
|
Thazhathuputhenpurayil SM, Natarajan M. Effect of propolis on membrane bound enzymes linked with breast cancer. Bioinformation 2022; 18:1192-1195. [PMID: 37701506 PMCID: PMC10492913 DOI: 10.6026/973206300181192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 09/14/2023] Open
Abstract
According to estimates from the World Health Organization [WHO], in 2020, 685000 people worldwide died and 2.3 million women were diagnosed with breast cancer. Breast cancer will be the most common cancer in the world by the end of 2020, when 7.8 million women will still be living who had received a diagnosis within the previous five years. The current study was formulated to note the effects of ethanolic extract of Propolis and Withaferin-A on Breast tumor initiation by benzo(a)pyrene [B(a)p], and its effects on ATPase enzyme levels. Na+/ K+-ATPase, Mg2+-ATPase, and calcium ATPase enzyme activities were decreased in the erythrocyte membrane and tissues of breast cancer-bearing animals compared with control groups. The levels of enzyme activities were near normal in Propolis treated animals. It wasapparent that the beneficial effect of Propolis was primarily exerted during the initiation and post-initiation stage of B(a)p-induced breast carcinogenesis. Overall, the data indicated that Propolis has modulating effects when administered intra-peritoneally on breast cancer-bearing animals.
Collapse
Affiliation(s)
- Sadhasivan Meghalatha Thazhathuputhenpurayil
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi academy of higher education and research (MAHER), Kanchipuram Tamil Nadu, India-631552
| | - Muninathan Natarajan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi academy of higher education and research (MAHER), Kanchipuram Tamil Nadu, India-631552
| |
Collapse
|
33
|
Electrically Polarized Withaferin A and Alginate-Incorporated Biphasic Calcium Phosphate Microspheres Exhibit Osteogenicity and Antibacterial Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010086. [PMID: 36615281 PMCID: PMC9821985 DOI: 10.3390/molecules28010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Biphasic calcium phosphate microspheres were synthesized by the water on oil emulsion method and, subsequently, withaferin A was incorporated in the microspheres to evaluate their efficacy in biomedical applications. These withaferin A and alginate-incorporated biphasic calcium phosphate (BCP-WFA-ALG) microspheres were then negatively polarized, and the formation of biphasic calcium phosphates was validated by X-ray diffraction study. Although the TSDC measurement of the BCP-WFA-ALG microspheres showed the highest current density of 5.37 nA/cm2, the contact angle of the specimen was found to be lower than the control BCP microspheres in all the media. The water uptake into BCP-WFA-ALG microspheres was significantly higher than in the pure BCP microspheres. MTT assay results showed that there was a significant enhancement in cell proliferation rate with the BCP-WFA-ALG composite microspheres. The osteogenic differentiation of MG 63 cells on BCP-WFA-ALG microspheres exhibited an increased expression of osteogenic marker genes in the case of the BCP-WFA-ALG composite microspheres.
Collapse
|
34
|
Atteeq M. Evaluating anticancer properties of Withaferin A—a potent phytochemical. Front Pharmacol 2022; 13:975320. [PMID: 36339589 PMCID: PMC9629854 DOI: 10.3389/fphar.2022.975320] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Withaferin A is a C28 steroidal lactone derived from the plant Withania somnifera, commonly known as Ashwagandha. Withaferin A has received great attention for its anticancer properties noted in cancer cells of various origins. Extracts of Withania somnifera have been used in traditional Ayurvedic and Unani Indian medicine for their various pharmacological benefits. In recent years, Withania somnifera or Ashwagandha extract has become popularized as a health supplement marketed for its stress and anxiety reducing effects. Withaferin A is one of the most studied withanolides extracted from Withania somnifera that has gained great attention for its anticancer, anti-inflammatory, metabolic, and pro-apoptotic effects. Extensive in vivo and in vitro studies have depicted Withaferin A’s interactions with key role players in cancerous activity of the cell to exert its pro-apoptotic effects. Withaferin A interactions with NF-κB, STAT, Hsp90, ER-α, p53, and TGF-β have noted inhibition in cancer cell proliferation and cell cycle arrest in G2/M stage, ultimately leading to apoptosis or cell death. This review highlights pro-apoptotic properties of Withaferin A including generation of reactive oxidative species, Par-4 activation, endoplasmic reticulum stress (ER) induction, and p53 activation. Analysis of Withaferin A’s involvement in various oncogenic pathways leading to malignant neoplasm and its pharmacologic activity in conjunction with various cancer drugs provides promising evidence in therapeutic potential of Withaferin A as a cancer treatment.
Collapse
|
35
|
Meghalatha TS, Muninathan N. Antitumor activity of withaferin-A and propolis in benz (a) pyrene-induced breast cancer. Bioinformation 2022; 18:841-844. [PMID: 37426503 PMCID: PMC10326326 DOI: 10.6026/97320630018841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 09/28/2024] Open
Abstract
Female breast cancer is the leading malignancy surpassing lung cancer recently, and its incidence is continued to rise in many countries. The existing anticancer drugs have limitations like drug resistance and adverse effects leading to poor clinical outcomes. The natural compounds withaferin-A and propolis have been individually reported for their anticancer activity in preclinical models. However, the combined effect of these compounds has not been studied especially in breast cancer models. Therefore, it is of interest to evaluate the effect of Withaferin-A and propolis on Benz(a)pyrene-induced breast cancer. Wistar rats of female gender were treated with saline (normal control), Benz(a)pyrene (disease control), Benz(a)pyrene+ Withaferin-A or Propolis, Benz(a)pyrene+ Withaferin-A+ Propolis. At the end of the treatment, the plasma levels of carcino embryonic antigen (CEA) were measured. We observed a decrease in carcino embryonic antigen (CEA) levels in rats received withaferin-A and propolis combination rather than individual compounds indicating their beneficial role in breast cancer. Results of the present study show that propolis, when combined with withaferin A, exhibits better anti tumor activity than its individual effect in Benz (a) pyrene-induced mammary carcinogenesis.
Collapse
Affiliation(s)
- Thazhathuputhenpurayil Sadhasivan Meghalatha
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram Tamil Nadu, India – 631552
| | - Natarajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram Tamil Nadu, India – 631552
| |
Collapse
|
36
|
Bayless RL, Sheats MK, Jones SL. Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis. Front Vet Sci 2022; 9:900453. [PMID: 35782542 PMCID: PMC9247543 DOI: 10.3389/fvets.2022.900453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a major role in many equine conditions, including equine asthma, laminitis, and intestinal ischemia and reperfusion injury, and therefore represent an attractive target for innovative therapeutic approaches. Novel strategies for reducing neutrophilic inflammation include modulation of neutrophil functions and lifespan. Withaferin A (WFA) is a phytochemical with well-established in vitro and in vivo anti-inflammatory properties, but its direct effects on neutrophils are largely unknown. We hypothesized that WFA would inhibit adhesion, migration, and respiratory burst by equine neutrophils and promote timely apoptosis of primed equine neutrophils. Consistent with this hypothesis, our data show that WFA causes a significant, concentration-dependent inhibition of equine neutrophil adhesion, migration, and respiratory burst in response to diverse stimuli. Further, WFA treatment increased apoptosis of equine neutrophils exposed to GM-CSF for 24 h. This pro-apoptotic effect of WFA was not observed in unprimed neutrophils, nor at the 2-h time point relevant to our functional neutrophil experiments. Our data demonstrate that WFA may reduce neutrophil-mediated inflammation through multiple mechanisms, including suppression of inflammatory responses and promotion of apoptosis. Additional research is needed to elucidate the molecular mechanisms for these effects and evaluate the potential clinical use of WFA in veterinary and human patients.
Collapse
Affiliation(s)
- Rosemary L Bayless
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
37
|
Abd El-Aziz NM, Khalifa I, Darwish AMG, Badr AN, Aljumayi H, Hafez ES, Shehata MG. Docking Analysis of Some Bioactive Compounds from Traditional Plants against SARS-CoV-2 Target Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092662. [PMID: 35566014 PMCID: PMC9100219 DOI: 10.3390/molecules27092662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of -8.63, -7.85, and -7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of -7.80, -7.80, and -7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with -7.62, -6.81, and -6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski's Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Nourhan M. Abd El-Aziz
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
- Correspondence:
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Benha 13736, Egypt;
| | - Amira M. G. Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
| | - Ahmed N. Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Huda Aljumayi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - El-Sayed Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed G. Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| |
Collapse
|
38
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
39
|
Oxidative Stress and AKT-Associated Angiogenesis in a Zebrafish Model and Its Potential Application for Withanolides. Cells 2022; 11:cells11060961. [PMID: 35326412 PMCID: PMC8946239 DOI: 10.3390/cells11060961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the AKT serine/threonine kinase (AKT) signaling pathway are essential regulators in cellular migration, metastasis, and angiogenesis. More than 300 withanolides were discovered from the plant family Solanaceae, exhibiting diverse functions. Notably, the relationship between oxidative stress, AKT signaling, and angiogenesis in withanolide treatments lacks comprehensive understanding. Here, we summarize connecting evidence related to oxidative stress, AKT signaling, and angiogenesis in the zebrafish model. A convenient vertebrate model monitored the in vivo effects of developmental and tumor xenograft angiogenesis using zebrafish embryos. The oxidative stress and AKT-signaling-modulating abilities of withanolides were highlighted in cancer treatments, which indicated that further assessments of their angiogenesis-modulating potential are necessary in the future. Moreover, targeting AKT for inhibiting AKT and its AKT signaling shows the potential for anti-migration and anti-angiogenesis purposes for future application to withanolides. This particularly holds for investigating the anti-angiogenetic effects mediated by the oxidative stress and AKT signaling pathways in withanolide-based cancer therapy in the future.
Collapse
|
40
|
Leitão SG, Leitão GG, de Oliveira DR. Saracura-Mirá, a Proposed Brazilian Amazonian Adaptogen from Ampelozizyphus amazonicus. PLANTS (BASEL, SWITZERLAND) 2022; 11:191. [PMID: 35050079 PMCID: PMC8781190 DOI: 10.3390/plants11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The Amazon Forest is known all over the world for its diversity and exuberance, and for sheltering several indigenous groups and other traditional communities. There, as well as in several other countries, in traditional medical systems, weakness, fatigue and debility are seen as limiting health conditions where medicinal plants are often used in a non-specific way to improve body functions. This review brings together literature data on Ampelozizyphus amazonicus, commonly known in Brazil as "saracura-mirá" and/or "cerveja de índio", as an Amazonian adaptogen, including some contributions from the authors based on their ethnographic and laboratory experiences. Topics such as botany, chemistry, ethnopharmacological and pharmacological aspects that support the adaptogen character of this plant, as well as cultivation, market status and supply chain aspects are discussed, and the gaps to establish "saracura-mirá" as an ingredient for the pharmaceutical purposes identified. The revised data presented good scientific evidence supporting the use of this Amazonian plant as a new adaptogen. Literature data also reveal that a detailed survey on natural populations of this plant is needed, as well as agronomical studies that could furnish A. amazonicus bark as a raw material. Another important issue is the lack of developed quality control methods to assure its quality assessment.
Collapse
Affiliation(s)
- Suzana Guimarães Leitão
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Rio de Janeiro 21941-902, Brazil;
| | - Danilo Ribeiro de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
41
|
Xiao W, Huang J, Wang J, Chen Y, Hu N, Cao S. Occupational exposure to organic solvents and breast cancer risk: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1605-1618. [PMID: 34686960 DOI: 10.1007/s11356-021-17100-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Breast cancer is the most common cancer worldwide. Recent studies suggest that organic solvent exposure could be closely related to breast cancer, although the evidence remains controversial. Thus, we evaluated existing epidemiological evidence for the association between occupational solvent exposure and breast cancer. PubMed, Embase, and Cochrane Library were searched to identify published case-control and cohort studies that addressed occupational exposure to organic solvents and breast cancer, up to April, 2021. Meta-analyses using random-effects models were conducted to obtain the pooled odds ratios (OR) and 95% confidence intervals (CI) on the incidence of breast cancer in relation to occupational exposure. The pooled OR of breast cancer among workers exposed to organic solvents overall was 1.18 (95%CI, 1.11 ~ 1.25; I2 = 76.3%; 24 studies), compared to those with no exposure. After stratification by menopause and study location, it was revealed that the association between occupational exposure to organic solvents and the risk of breast cancer in postmenopausal women (OR, 1.35; 95% CI, 1.09 ~ 1.67; I2 = 73.4%; 7 studies) was significant, and there was also a clear association in workers in Europe (OR, 1.21; 95% CI, 1.12 ~ 1.32; I2 = 82.9%; 13 studies). We observed a significant association between occupational exposure to organic solvents and breast cancer in both cohort and case-control studies.
Collapse
Affiliation(s)
- Wenxuan Xiao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinglong Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianing Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youli Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan Hu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
42
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
43
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
44
|
A Perspective on Withania somnifera Modulating Antitumor Immunity in Targeting Prostate Cancer. J Immunol Res 2021; 2021:9483433. [PMID: 34485538 PMCID: PMC8413038 DOI: 10.1155/2021/9483433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 01/07/2023] Open
Abstract
Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.
Collapse
|
45
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
46
|
Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021; 26:3696. [PMID: 34204308 PMCID: PMC8234716 DOI: 10.3390/molecules26123696] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aβ) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | | |
Collapse
|
47
|
Halder T, Ghosh B. Cytological, genetical and phytochemically stable meta-Topolin (mT) - induced mass propagation of underutilized Physalis minima L. for production of withaferin A. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases. Molecules 2021; 26:molecules26092407. [PMID: 33919088 PMCID: PMC8122412 DOI: 10.3390/molecules26092407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Withaferin A (WFA) was identified as the most active phytocompound of the plant Withania somnifera (WS) and as having multiple therapeutic/ameliorating properties (anticancer, antiangiogenic, anti-invasive, anti-inflammatory, proapoptotic, etc.) in case of various diseases. In drug chemistry, WFA in silico approaches have identified favorite biological targets, stimulating and accelerating research to evaluate its pharmacological activity—numerous anticancer effects manifested in various organs (breast, pancreas, skin, colon, etc.), antivirals, anti-infective, etc., which are not yet sufficiently explored. This paper is a synthesis of the most relevant specialized papers in the field that are focused on the use of WFA in dermatological diseases, describing its mechanism of action while providing, at the same time, details about the results of its testing in in vitro/in vivo studies.
Collapse
|
49
|
Pharmacological Studies on Traditional Plant-Based Remedies. Biomedicines 2021; 9:biomedicines9030315. [PMID: 33808651 PMCID: PMC8003496 DOI: 10.3390/biomedicines9030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
For years, plant-based remedies have been used as a traditional practice to treat and prevent a broad range of diseases [...].
Collapse
|
50
|
Borchelt DR. Building a Case for Withaferin A as a Treatment for FTD/ALS Syndromes. Neurotherapeutics 2021; 18:284-285. [PMID: 33398802 PMCID: PMC8116393 DOI: 10.1007/s13311-020-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- David R Borchelt
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|