1
|
Kurowska P, Wyroba J, Pich K, Respekta-Długosz N, Szkraba O, Greggio A, Kochan J, Rak A. New aspect on the regulation of in vitro oocyte maturation: role of the obesity, neuropeptides and adipokines. J Assist Reprod Genet 2024:10.1007/s10815-024-03345-w. [PMID: 39671071 DOI: 10.1007/s10815-024-03345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Oocyte quality determinants and nuclear and cytoplasmic maturation establish essential processes for fertilization and further development of the conceptus. Moreover, female fertility is strongly dependent on the metabolic status of the organism. Numerous sources indicate that obesity impairs ovarian function including oocyte physiology by inhibiting nuclear maturation, stimulating lipotoxicity and inflammation, enabling cumulus cells apoptosis, promoting reactive oxygen species formation and ultimately imposing pathogenic effects on mitochondria leading to infertility. Whereas, the number of overweight and obese individuals has reached alarming levels over the past decades, what is more, by 2030, the prevalence of overweight and obesity might reach 65.3% in adults in China and 78% in the USA. Thus, relationships between reproduction and metabolism are being intensively studied to prevent obesity-induced infertility. The metabolic markers of oocyte condition and function are adipokines and neuropeptides, which regulate food intake, lipid and glucose metabolism, insulin resistance and impart significant influences on reproduction. Thus, in this review, we focus on interrelationships between obesity, oocyte maturation and the role of selected neuropeptides and adipokines including leptin, adiponectin, kisspeptin, nesfatin-1, phoenixin, visfatin, chemerin and vaspin.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland.
| | - Jakub Wyroba
- Malopolski Institute of Fertility Diagnostics and Treatment, 30-118, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Joanna Kochan
- Malopolski Institute of Fertility Diagnostics and Treatment, 30-118, Krakow, Poland
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, 30-059, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| |
Collapse
|
2
|
Okagawa S, Sakaguchi M, Okubo Y, Takekuma Y, Igata M, Kondo T, Takeda N, Araki K, Brandao BB, Qian WJ, Tseng YH, Kulkarni RN, Kubota N, Kahn CR, Araki E. Hepatic SerpinA1 improves energy and glucose metabolism through regulation of preadipocyte proliferation and UCP1 expression. Nat Commun 2024; 15:9585. [PMID: 39532838 PMCID: PMC11557585 DOI: 10.1038/s41467-024-53835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Lipodystrophy and obesity are associated with insulin resistance and metabolic syndrome accompanied by fat tissue dysregulation. Here, we show that serine protease inhibitor A1 (SerpinA1) expression in the liver is increased during recovery from lipodystrophy caused by the adipocyte-specific loss of insulin signaling in mice. SerpinA1 induces the proliferation of white and brown preadipocytes and increases the expression of uncoupling protein 1 (UCP1) to promote mitochondrial activation in mature white and brown adipocytes. Liver-specific SerpinA1 transgenic mice exhibit increased browning of adipose tissues, leading to increased energy expenditure, reduced adiposity and improved glucose tolerance. Conversely, SerpinA1 knockout mice exhibit decreased adipocyte mitochondrial function, impaired thermogenesis, obesity, and systemic insulin resistance. SerpinA1 forms a complex with the Eph receptor B2 and regulates its downstream signaling in adipocytes. These results demonstrate that SerpinA1 is an important hepatokine that improves obesity, energy expenditure and glucose metabolism by promoting preadipocyte proliferation and activating mitochondrial UCP1 expression in adipocytes.
Collapse
Affiliation(s)
- Shota Okagawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan.
| | - Yuma Okubo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Yuri Takekuma
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Bruna Brasil Brandao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, BIDMC and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| |
Collapse
|
3
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Karampatsou SI, Paltoglou G, Genitsaridi SM, Kassari P, Charmandari E. The Effect of a Multidisciplinary Lifestyle Intervention Program on Apelin-12, Vaspin and Resistin Concentrations in Children and Adolescents with Overweight and Obesity. Nutrients 2024; 16:3646. [PMID: 39519480 PMCID: PMC11547676 DOI: 10.3390/nu16213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Obesity in childhood and adolescence has reached epidemic proportions in recent decades. Methods: In the present study, we determined the concentrations of apelin-12, vaspin and resistin in 106 children and adolescents with overweight or obesity before and after the implementation of a multidisciplinary, personalized lifestyle intervention program of diet, sleep and exercise for 1 year. All subjects attended our Center for the Prevention and Management of Overweight and Obesity in Childhood and Adolescence. Results: Following the lifestyle intervention, there were significant decreases in BMI (p < 0.01), apelin-12 (p < 0.05) and resistin (p < 0.01) concentrations, and an increase in vaspin (p < 0.01) concentration. Glucose was the best positive predictor of apelin-12 (b = 0.236, p < 0.05), and osteopontin was the best negative predictor of changes in apelin-12 (b = -0.299, p < 0.05). Vaspin correlated positively with adiponectin (b = 0.29, p < 0.05), while vitamin D (b = 0.621, p < 0.05) was the best positive predictor of vaspin. BMI z score (b = -0.794, p < 0.05), HDL (b = -0.284, p < 0.05) and HbA1C (b = -0.262, p < 0.05) were the best negative predictors of changes in vaspin. BMI z score was the best positive predictor of resistin (b = 0.437, p < 0.05). Conclusions: These findings suggest that apelin-12, vaspin and resistin correlate with indices of obesity, glucose, lipids and bone metabolism, while interaction with other proteins, such as osteopontin and adiponectin, was also noted. Therefore, apelin-12, vaspin and resistin may be used as biomarkers in children and adolescents with overweight and obesity.
Collapse
Affiliation(s)
- Sofia I. Karampatsou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (G.P.); (S.M.G.); (P.K.)
- Department of Pediatrics, National and Kapodistrian University of Athens Nursing School, “P. and A. Kyriakou” Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (G.P.); (S.M.G.); (P.K.)
- Second Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “P. and A. Kyriakou” Children’s Hospital, 11527 Athens, Greece
| | - Sofia M. Genitsaridi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (G.P.); (S.M.G.); (P.K.)
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (G.P.); (S.M.G.); (P.K.)
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (G.P.); (S.M.G.); (P.K.)
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Kaya HK, Demirtas B. The effect of hydrophilic statins on adiponectin, leptin, visfatin, and vaspin levels in streptozocin-induced diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03517-6. [PMID: 39382680 DOI: 10.1007/s00210-024-03517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Statins may affect glucose metabolism through adipokines. The aim of this study was to measure the effects of hydrophilic statins on the levels of several adipokines in diabetic rats. Wistar albino rats were divided into four groups: healthy control, untreated diabetic, diabetic treated with pravastatin, and diabetic treated with rosuvastatin. Diabetes was induced by intraperitoneal injection of STZ. Thereafter, 20 mg/kg/day doses of either pravastatin or rosuvastatin were administered to the treated diabetic rats for 8 weeks. At the end of the experiment, the body weights, fasting blood glucose levels, serum insulin levels, and insulin resistance, as well as the serum adiponectin, leptin, visfatin, and vaspin levels, were measured. Fasting blood glucose and insulin resistance levels were significantly higher, whereas insulin levels and body weight were significantly lower in the untreated diabetic group than in the control group. Diabetes caused significant decreases in adiponectin, leptin, and vaspin levels but a significant increase in visfatin levels. Pravastatin treatment significantly increased body weight and decreased fasting blood glucose levels, whereas rosuvastatin decreased body weight but did not affect fasting blood glucose levels. Pravastatin caused significant increases in both adiponectin and vaspin levels. However, rosuvastatin did not affect the adiponectin level but caused a significant decrease in the vaspin levels. Both pravastatin and rosuvastatin treatments decreased the leptin and visfatin levels. In conclusion, pravastatin is more effective at improving fasting blood glucose levels and body weight in diabetic rats, probably by increasing adiponectin and vaspin levels.
Collapse
Affiliation(s)
- Hacer Kayhan Kaya
- Department of Physiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Berjan Demirtas
- Equine and Training Program, Plant and Animal Production Department, Vocational School of Veterinary Medicine, İstanbul University-Cerahpaşa, İstanbul, Turkey.
| |
Collapse
|
6
|
Yang H, Kong P, Hou S, Dong X, Abula I, Yan D. Potential prognostic biomarker SERPINA12: implications for hepatocellular carcinoma. Clin Transl Oncol 2024:10.1007/s12094-024-03689-w. [PMID: 39235554 DOI: 10.1007/s12094-024-03689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant tumors, exhibiting a high morbidity and mortality rate. The mechanism of its occurrence and development requires further study. The objective of this study was to investigate the role of SERPINA12 in the diagnosis, prognosis prediction and biological function within HCC. METHODS The Cancer Genome Atlas (TCGA) data were employed to analyze the relationship between clinical features and SERPINA12 expression in HCC. Kaplan-Meier curves were utilized to analyze the correlation between SERPINA12 expression and prognosis in HCC. The function of SERPINA12 was determined by enrichment analysis, and the relationship between SERPINA12 expression and immune cell infiltration was investigated. The expression of SERPINA12 was examined in 75 patients with HCC using RT-qPCR and immunohistochemistry, and survival analysis was performed. RESULTS The expression of SERPINA12 from TCGA database was found to be significantly higher in HCC tissues than in normal tissues and carried a poor prognosis. ROC curve demonstrated the diagnostic potential of SERPINA12 for HCC. The multivariate Cox regression analysis showed that pathologic T stage, tumor status, and SERPINA12 expression were independently associated with patient survival. The SERPINA12 expression was found to correlate with immune cell infiltration. Our RT-qPCR and immunohistochemical analysis revealed high expression of SERPINA12 in tumor tissues. Survival analysis indicated its association with poor prognosis. CONCLUSION SERPINA12 is a promising biomarker for diagnosis and prognosis, and it is associated with immune cell infiltration.
Collapse
Affiliation(s)
- Huan Yang
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Panpan Kong
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Songyu Hou
- The Department of Daily Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, UrumqiXinjiang, 830011, China
| | - Xiaogang Dong
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Imamumaimaitijiang Abula
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Dong Yan
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
7
|
Tariq S, Jabbar S, Ahmad A, Tariq S. Bridging the Gap: A narrative review of osteoporosis disability, adipokines, and the role of AI in postmenopausal women. Pak J Med Sci 2024; 40:1572-1577. [PMID: 39092029 PMCID: PMC11255809 DOI: 10.12669/pjms.40.7.9072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 08/04/2024] Open
Abstract
Osteoporosis is a global health concern characterized by reduced bone density and compromised bone quality, resulting in an increased risk of fractures, particularly in postmenopausal women. The assessment of bone mineral density (BMD) plays a pivotal role in diagnosing osteoporosis, as it accounts for approximately 70% of overall bone strength. The World Health Organization (WHO) has endorsed BMD measurement as a reliable method for diagnosing this condition. In Pakistan, the incidence of bone fractures is on the rise, largely attributable to an aging population and a range of contributing factors. Understanding the global and local prevalence of osteoporosis, its impact on morbidity and mortality, and the contributing factors is vital for developing effective preventive and therapeutic strategies. The role of adipokines, including chemerin, vaspin, and omentin-1, in bone metabolism is an emerging area of investigation. These adipokines play diverse roles in physiology, ranging from inflammation and metabolic regulation to cardiovascular health. Understanding their potential impact on bone health is a topic of ongoing research. The intricate relationship between bone density, bone quality, and overall bone strength is central to understanding the diagnosis and management of osteoporosis. Current innovation in machine learning and predictive model can bring revolution in the field of bone health and osteoporosis. Early identification of people with osteoporosis or risk of fracture through machine learning can prevent disability and improve the quality of life.
Collapse
Affiliation(s)
- Saba Tariq
- Saba Tariq, Department of Pharmacology & Therapeutics, University Medical and Dental College, The University of Faisalabad, Post-doctoral Fellow, University of Birmingham, England, UK
| | - Sohail Jabbar
- Sohail Jabbar, Department of Computer Science, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Awais Ahmad
- Awais Ahmad, Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sundus Tariq
- Sundus Tariq, Department of Physiology, International School of Medicine, Istanbul Medipol University, Research Institute for Health, Sciences and Technologies (SABITA), Turkey
| |
Collapse
|
8
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
9
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
10
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
11
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
12
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
13
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
14
|
Cai X, Song S, Hu J, Zhu Q, Yang W, Hong J, Luo Q, Yao X, Li N. Body roundness index improves the predictive value of cardiovascular disease risk in hypertensive patients with obstructive sleep apnea: a cohort study. Clin Exp Hypertens 2023; 45:2259132. [PMID: 37805984 DOI: 10.1080/10641963.2023.2259132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Obesity, especially visceral obesity, plays an important role in the progression of cardiovascular disease (CVD). The body roundness index (BRI) is a new measure of obesity that is considered to reflect visceral obesity more comprehensively than other measures. This study aims to evaluate the relationship between BRI and CVD risk in hypertensive patients with obstructive sleep apnea (OSA) and explore its superiority in predicting CVD. METHODS The Cox proportional hazards model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for incident CVD. The area under the curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to assess which measures of obesity had the best predictive value for CVD risk. RESULTS During a median follow-up period of 6.8 years, 324 participants suffered a CVD event. After multivariable adjustment, compared with the reference group (the first tertile), the HRs (95% CI) of CVD were 1.25 (95% CI, 0.93-1.70) and 1.74 (95% CI, 1.30-2.33) for subjects in the tertile 2 and tertile 3 groups, respectively. Compared with other measurement indicators, BRI has the highest predictive value for CVD risk [AUC: 0.627, 95% CI: 0.593-0.661]. The addition of the BRI to the fully adjusted multivariate model improved the predictive power for CVD, which was validated in the continuous NRI and the IDI (all P < .05). CONCLUSIONS BRI was significantly associated with the risk of CVD in hypertensive patients with OSA. Furthermore, BRI may improve CVD risk prediction in hypertensive patients with OSA.
Collapse
Affiliation(s)
- Xintian Cai
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Shuaiwei Song
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Junli Hu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Wenbo Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Xiaoguang Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
16
|
Zhou B, Liu Y, Ren Y, Yan X, Fan J, Tang L, Wen M. Serum Vaspin Levels in Gestational Diabetes Mellitus: A Meta-Analysis. Metab Syndr Relat Disord 2023; 21:535-544. [PMID: 37883666 DOI: 10.1089/met.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to evaluate the potential relationship between serum vaspin levels and gestational diabetes mellitus (GDM). The PubMed, EBSCO, Web of Science, the Cochrane Library, and the China National Knowledge Infrastructure (CNKI) database were searched for articles published before December 2022. The publication language was restricted to English and Chinese. A meta-analysis was conducted by combining all studies that met the inclusion and exclusion criteria. Twenty-two studies (1990 women with GDM and 1597 pregnant women without GDM) were ultimately included in this meta-analysis. The meta-analysis showed that the serum vaspin levels are significantly higher in GDM compared with the controls (standardized mean difference: 0.720, 95% confidence interval: 0.440-1.000, Z = 5.041, P < 0.001). Subgroup analyses by stage of pregnancy and body mass index showed results similar to the overall outcome. No publication bias was identified, and the sensitivity analysis confirmed the robustness of the final result. Our results show that the serum vaspin levels are significantly higher in GDM. These findings suggest that high vaspin concentration is closely related to GDM and the serum vaspin levels might be a potential biomarker to indicate risk of GDM, more randomized control trials comparing the expression levels of vaspin between early and standard diagnosis of GDM are needed to strengthen our findings.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yibu Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yibing Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xuehui Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Judi Fan
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
18
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
19
|
Pietrzyk D, Tkacz P, Kozłowski M, Kwiatkowski S, Rychlicka M, Pius-Sadowska E, Machaliński B, Cymbaluk-Płoska A. Could Vaspin Be a Potential Diagnostic Marker in Endometrial Cancer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4999. [PMID: 36981906 PMCID: PMC10049014 DOI: 10.3390/ijerph20064999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Obesity and being overweight are risk factors for many types of cancer, including endometrial cancer. Adipose tissue is thought to be an endocrine organ that produces various hormones, including one known as vaspin. Insulin resistance, metabolic syndrome and type 2 diabetes are all associated with higher vaspin levels. A total of 127 patients divided into study (endometrial cancer) and control groups (non-cancerous) participated in this research. Serum vaspin levels were measured for all patients. The analysis was performed while taking into account grading and staging. In order to assess the usefulness of the tested protein as a new diagnostic marker, we used the plotting of a curve (ROC) and the calculation of the AUC curve to characterize the sensitivity and specificity of the parameters tested. We concluded that there were significantly lower vaspin levels in patients with endometrial cancer compared to patients with benign endometrial lesions. Vaspin may be a useful diagnostic marker in separating benign lesions from endometrial cancer.
Collapse
Affiliation(s)
- Dominika Pietrzyk
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Piotr Tkacz
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | | | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Pilarski Ł, Pelczyńska M, Koperska A, Seraszek-Jaros A, Szulińska M, Bogdański P. Association of Serum Vaspin Concentration with Metabolic Disorders in Obese Individuals. Biomolecules 2023; 13:biom13030508. [PMID: 36979443 PMCID: PMC10046748 DOI: 10.3390/biom13030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Vaspin, a molecule produced in visceral adipose tissue, seems to participate in the pathogenesis of metabolic disorders. The study aimed to determine the association of vaspin concentration with metabolic disorders in obese individuals. Forty obese patients and twenty normal-weight subjects underwent biochemical (fasting glucose, insulin, lipid profile, interleukin-6, hs-CRP, vaspin concentration), blood pressure, and anthropometric measurements. The HOMA-IR index was calculated. Serum vaspin concentrations in the obese group were significantly higher than in the control group (0.82 ± 0.62 vs. 0.43 ± 0.59; p < 0.001). Among the entire population, vaspin concentration was positively correlated with body weight, BMI, WHR, and the percentage and mass of adipose tissue. Positive correlations between vaspin concentration and triglyceride level, insulin concentration, and HOMA-IR value were found. Vaspin concentration was positively correlated with hs-CRP and IL-6 levels. In obese patients, positive correlations between vaspin concentration and the percentage of adipose tissue and hs-CRP level were demonstrated. Logistic regression analysis showed that increased BMI was the biggest factor stimulating vaspin concentrations (OR = 8.5; 95% CI: 1.18–61.35; p = 0.0338). An elevated vaspin level may imply its compensatory role against metabolic disorders in obese patients. Thus, vaspin appears to be a useful diagnostic parameter for new therapeutic approaches in obesity-related complications. Nevertheless, due to the small sample size, further studies are needed to confirm our results.
Collapse
Affiliation(s)
- Łukasz Pilarski
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
- Correspondence: ; Tel.: +48-693-049-981
| | - Anna Koperska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Bukowska 70 Street, 60-812 Poznań, Poland
| | - Monika Szulińska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| |
Collapse
|
21
|
Ji N, Xiang L, Zhou B, Lu Y, Zhang M. Hepatic gene expression profiles during fed-fasted-refed state in mice. Front Genet 2023; 14:1145769. [PMID: 36936413 PMCID: PMC10020372 DOI: 10.3389/fgene.2023.1145769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Regulation of nutrient status during fasting and refeeding plays an important role in maintaining metabolic homeostasis in the liver. Thus, we investigated the impact of the physiological Fed-Fast-Refed cycle on hepatic gene expression in nutrient-sensitive mice. Methods: We performed transcriptomic analysis of liver samples in fed, fasted and refed groups of mice. Through mRNA-sequencing (RNA-Seq) and miRNA-Seq, we compared fasted and fed states (fasted versus fed cohort) as well as refed and fasted states (refed versus fasted cohort) to detect dynamic alterations of hepatic mRNA-miRNA expression during the fed-fasted-refed cycle. Results: We found dozens of dysregulated mRNAs-miRNAs in the transition from fed to fasted and from fasted to refed states. Gene set enrichment analysis showed that gene expression of the two cohorts shared common pathways of regulation, especially for lipid and protein metabolism. We identified eight significant mRNA and three miRNA clusters that were up-downregulated or down-upregulated during the Fed-Fast-Refed cycle. A protein-protein interaction network of dysregulated mRNAs was constructed and clustered into 22 key modules. The regulation between miRNAs and target mRNAs was presented in a network. Up to 42 miRNA-mRNA-pathway pairs were identified to be involved in metabolism. In lipid metabolism, there were significant correlations between mmu-miR-296-5p and Cyp2u1 and between mmu-miR-novel-chr19_16777 and Acsl3. Conclusion: Collectively, our data provide a valuable resource for the molecular characterization of the physiological Fed-Fast-Refed cycle in the liver.
Collapse
Affiliation(s)
- Nana Ji
- Department of Endocrinology and Metabolism, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, China
| | - Liping Xiang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhou
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Endocrinology and Metabolism, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, China
- *Correspondence: Min Zhang,
| |
Collapse
|
22
|
Evaluation of Tissue Expression of Vaspin and Serum Vaspin Concentration as a Prognostic and Risk Factor in Endometrial Cancer. Cells 2022; 11:cells11203196. [PMID: 36291064 PMCID: PMC9600625 DOI: 10.3390/cells11203196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is a multifunctional endocrine organ. One of the biologically active substances is vaspin, which is part of the serpin family. The purpose of the following study is to determine the possibility of using vaspin as a prognostic and risk factor in endometrial cancer. The study included 127 patients with abnormal uterine bleeding. To determine the value of adipokine, the study used Kaplan-Meier curves to estimate patients survival. Univariate and multivariate analyses were performed simultaneously using the Cox regression model. Tissue expression of vaspin was assessed in patients from the study group (endometrial cancer) and the control group (non-cancerous). We found that higher levels of vaspin are found in obese people, with lower staging (FIGO I and II), lower grading (G1), no LVSI metastases and no lymph node metastases. Higher serum vaspin levels are an independent protective factor for endometrial cancer. We concluded that endometrial cancer patients with serum vaspin concentrations above the median have longer DFS compared to patients with concentrations below the median. Considering multivariate analysis, vaspin concentrations above the median are independent favourable prognostic factors for endometrial cancer. Tissue expression of vaspin cannot be a histological marker to distinguish between cancer and non-cancerous lesions and between different grading levels.
Collapse
|
23
|
Expression of Serum Omentin, CTRP9, and Vaspin in Patients with Polycystic Ovary Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1862404. [PMID: 36034953 PMCID: PMC9402309 DOI: 10.1155/2022/1862404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Objective To explore the relationship between serum omentin, C1q/tumor necrosis factor-related protein-9 (CTRP9), and visceral fat-specific serine protease inhibitor (vaspin) levels in different phenotypes in patients with polycystic ovary syndrome (PCOS). Methods One hundred PCOS patients treated at our hospital's clinic of reproductive medicine were chosen and included into the research group, and 100 healthy women who came for physical examination during the same time period were included into the control group. According to the definition of obesity by the WHO (body mass index (BMI) ≥25 kg/m2), 100 patients with PCOS were equally divided into obese (study group A) and nonobese (study group B) groups. 100 healthy women were also divided into obese (control group A) and nonobese (control group B) groups with 50 patients each. Comparison among the 4 groups was performed in factors/indicators including the serum omentin, CTRP9, and vaspin levels and biochemical indexes (triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), fasting insulin (FINS), total testosterone, and homeostasis model assessment of insulin resistance (HOMA-IR) levels), and the correlation analysis was conducted with omentin, CTRP9, and vaspin. Results There was no significant difference in age, TG, TC, and LDL-C among the 4 groups (P > 0.05). The BMI, WHR, HDL-C, and omentin of the obese phenotype were significantly different from those of the nonobese phenotype (P < 0.05). Among the four groups, FINS, HOMA-IR, and vaspin in group A (obesity) was the highest, and the control group B (nonobese) was the lowest. There was no significant difference in the levels of study group B (nonobese) and control group A (obesity). The level of CTRP9 in the study group was significantly lower than that in the control group (P < 0.05). Taking serum omentin, CTRP9, and vaspin levels of patients in the study group as dependent variables, Pearson correlation analysis showed that the omentin level was negatively correlated with BMI, WHR, FINS, TG, TC, LDL-C, HOMA-IR, and TT levels (P < 0.05) and was positively correlated with the HDL-C level (P < 0.05); CTRP9 level was negatively correlated with BMI, TC, and HOMA-IR (P < 0.05) and was not correlated with age, WHR, FINS, TG, HDL-C, LDL-C, HOMA-IR, and TT levels. The vaspin level was positively correlated with BMI, WHR, FINS, TG, TC, LDL-C, HOMA-IR, and TT levels (P < 0.05) and negatively correlated with HDL-C levels (P < 0.05) and was not correlated with age. Conclusion When compared with healthy people, PCOS patients have higher serum vaspin levels and lower CTRP9 levels; BMI, TC, LDL-C, FINS, TG, total testosterone, HDL-C levels, waist-to-hip ratio, and HOMA-IR are all closely related to serum vaspin and CTRP9 levels; increasing serum CTRP9 levels and decreasing vaspin levels help to slow progress and promote prognosis of the disease. Serum omentin level is connected with the obesity index but not with PCOS.
Collapse
|
24
|
Vaspin Alleviates Sepsis-Induced Cardiac Injury and Cardiac Inflammation by Inhibiting Kallikrein 7 in Mice. Mediators Inflamm 2022; 2022:1149582. [PMID: 35873711 PMCID: PMC9307398 DOI: 10.1155/2022/1149582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Vaspin is an important adipokine that is involved in cardiovascular diseases. This study is aimed at investigating whether vaspin participates in sepsis-induced cardiac injury and explored the possible mechanism. Methods First, cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) were used to establish a mouse model of sepsis, and cardiac vaspin expression was examined. In addition, after pretreatment with vaspin or phosphate-buffered saline (PBS), wild-type (WT) mice underwent CLP to establish a septic model and received sham as a control. Finally, WT mice and kallikrein 7 (KLK7-/-) mice were underwent CLP with or without vaspin pretreatment. Results Mice that underwent CLP and were administered LPS exhibited increased vaspin expression in both the heart and serum compared with sham- or saline-treated mice. In CLP mice, pretreatment with vaspin reduced mortality and alleviated the expression of cardiac injury markers and cardiac dysfunction. In addition, vaspin reduced the cardiac levels of CD45+ cells and CD68+ cells, alleviated the cardiac inflammatory response, and reduced cardiomyocyte apoptosis. The protective effects of vaspin on CLP mice were masked by the deletion of KLK7, which was demonstrated to be a downstream signal of vaspin. Conclusions Vaspin alleviates cardiac inflammation and plays a protective role in sepsis-induced cardiac injury by reducing KLK7 expression.
Collapse
|
25
|
Zhu Y, Ke Y, Hu Y, Wu K, Liu S, Hu J. Association of circulating vaspin levels and patients with metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:57. [PMID: 35780150 PMCID: PMC9250748 DOI: 10.1186/s12944-022-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background The incidence rate of metabolic-associated fatty liver disease (MAFLD) is increasing annually; however, there are still no effective methods for establishing an early diagnosis and conducting real-time tracing. Vaspin can affect the metabolic processes in the body, and it is closely associated with many metabolic diseases. Many previous studies have speculated on the association between vaspin and MAFLD, but the results of these studies have not been conclusive. This meta-analysis examined the differences in circulating vaspin levels between patients with MAFLD and healthy individuals. Methods Six databases and other sources were searched with free terms and Medical Subject Headings terms, and a total of 13 articles were included (900 cases and 669 controls). RevMan 5.3 and Stata 16 were used for analysis. The standardised mean difference (SMD) and 95% confidence interval (CI) were used to assess the overall outcomes. Cohen’s kappa coefficient was applied to examine the differences between the two authors in the selection of studies and in the evaluation of the quality of evidence for the studies. Results The results demonstrated that there was no significant difference in the circulating vaspin levels between the MAFLD group and healthy group (SMD = 0.46, 95% CI: [− 0.12, 1.04]). The subgroup analysis suggested that area and body mass index (BMI) may be the sources of heterogeneity, and the results of univariate meta-regression analysis were consistent with those of the subgroup analysis (P = 0.005 and P < 0.001, respectively). Furthermore, BMI may better explain the source of heterogeneity (P = 0.032) in the multivariate meta-regression analysis. Conclusion In summary, no significant correlation was observed between the circulating vaspin levels and MAFLD. BMI may be an important factor affecting this correlation, which may provide a reference for further studies on mechanism and diagnosis of MAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01658-2.
Collapse
Affiliation(s)
- Yuqing Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Yani Ke
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Yijie Hu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Kaihan Wu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
26
|
Organokines in Rheumatoid Arthritis: A Critical Review. Int J Mol Sci 2022; 23:ijms23116193. [PMID: 35682868 PMCID: PMC9180954 DOI: 10.3390/ijms23116193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. Organokines can produce beneficial or harmful effects in this condition. Among RA patients, organokines have been associated with increased inflammation and cartilage degradation due to augmented cytokines and metalloproteinases production, respectively. This study aimed to perform a review to investigate the role of adipokines, osteokines, myokines, and hepatokines on RA progression. PubMed, Embase, Google Scholar, and Cochrane were searched, and 18 studies were selected, comprising more than 17,000 RA patients. Changes in the pattern of organokines secretion were identified, and these could directly or indirectly contribute to aggravating RA, promoting articular alterations, and predicting the disease activity. In addition, organokines have been implicated in higher radiographic damage, immune dysregulation, and angiogenesis. These can also act as RA potent regulators of cells proliferation, differentiation, and apoptosis, controlling osteoclasts, chondrocytes, and fibroblasts as well as immune cells chemotaxis to RA sites. Although much is already known, much more is still unknown, principally about the roles of organokines in the occurrence of RA extra-articular manifestations.
Collapse
|
27
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
28
|
Chyra M, Roczniak W, Świętochowska E, Dudzińska M, Oświęcimska J. The Effect of the Ketogenic Diet on Adiponectin, Omentin and Vaspin in Children with Drug-Resistant Epilepsy. Nutrients 2022; 14:nu14030479. [PMID: 35276837 PMCID: PMC8839826 DOI: 10.3390/nu14030479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Changes in adipokine secretion may be involved in the anti-epileptic effect of a ketogenic diet (KD) in drug-resistant epilepsy (DRE). Objectives: The assessment of the influence of KD on serum adiponectin, omentin-1, and vaspin in children with DRE. Methods: Anthropometric measurements (weight, height, BMI, and waist-to-hip circumference ratio) were performed in 72 children aged 3–9 years, divided into 3 groups: 24 children with DRE treated with KD, 26—treated with valproic acid (VPA), and a control group of 22 children. Biochemical tests included fasting glucose, insulin, beta-hydroxybutyric acid, lipid profile, aminotransferases activities, and blood gasometry. Serum levels of adiponectin, omentin-1 and vaspin were assayed using commercially available ELISA tests. Results: Serum levels of adiponectin and omentin-1 in the KD group were significantly higher and vaspin—lower in comparison to patients receiving VPA and the control group. In all examined children, serum adiponectin and omentin-1 correlated negatively with WHR and serum triglycerides, insulin, fasting glucose, and HOMA-IR. Vaspin levels correlated negatively with serum triglycerides and positively with body weight, BMI, fasting glucose, insulin, and HOMA-IR. Conclusion: One of the potential mechanisms of KD in children with drug-resistant epilepsy may be a modulation of metabolically beneficial and anti-inflammatory adipokine levels.
Collapse
Affiliation(s)
- Marcin Chyra
- Department of Paediatric Neurology, Independent Public Healthcare Centre—Municipal Hospital Complex, ul. Władysława Truchana 7, 41-500 Chorzow, Poland;
- Correspondence: ; Tel.: +48-32-349-00-85; Fax: +48-32-349-01-50
| | - Wojciech Roczniak
- Institute of Medicine, Jan Grodek State University in Sanok, ul. Mickiewicza 21, 38-500 Sanok, Poland; (W.R.); (J.O.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Magdalena Dudzińska
- Department of Paediatric Neurology, Independent Public Healthcare Centre—Municipal Hospital Complex, ul. Władysława Truchana 7, 41-500 Chorzow, Poland;
| | - Joanna Oświęcimska
- Institute of Medicine, Jan Grodek State University in Sanok, ul. Mickiewicza 21, 38-500 Sanok, Poland; (W.R.); (J.O.)
| |
Collapse
|
29
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
30
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|