1
|
Lei L, Li J, Liu Z, Zhang D, Liu Z, Wang Q, Gao Y, Mo B, Li J. Identification of diagnostic markers pyrodeath-related genes in non-alcoholic fatty liver disease based on machine learning and experiment validation. Sci Rep 2024; 14:25541. [PMID: 39462099 PMCID: PMC11513955 DOI: 10.1038/s41598-024-77409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a global health challenge. While pyroptosis is implicated in various diseases, its specific involvement in NAFLD remains unclear. Thus, our study aims to elucidate the role and mechanisms of pyroptosis in NAFLD. Utilizing data from the Gene Expression Omnibus (GEO) database, we analyzed the expression levels of pyroptosis-related genes (PRGs) in NAFLD and normal tissues using the R data package. We investigated protein interactions, correlations, and functional enrichment of these genes. Key genes were identified employing multiple machine learning techniques. Immunoinfiltration analyses were conducted to discern differences in immune cell populations between NAFLD patients and controls. Key gene expression was validated using a cell model. Analysis of GEO datasets, comprising 206 NAFLD samples and 10 controls, revealed two key PRGs (TIRAP, and GSDMD). Combining these genes yielded an area under the curve (AUC) of 0.996 for diagnosing NAFLD. In an external dataset, the AUC for the two key genes was 0.825. Nomogram, decision curve, and calibration curve analyses further validated their diagnostic efficacy. These genes were implicated in multiple pathways associated with NAFLD progression. Immunoinfiltration analysis showed significantly lower numbers of various immune cell types in NAFLD patient samples compared to controls. Single sample gene set enrichment analysis (ssGSEA) was employed to assess the immune microenvironment. Finally, the expression of the two key genes was validated in cell NAFLD model using qRT-PCR. We developed a prognostic model for NAFLD based on two PRGs, demonstrating robust predictive efficacy. Our findings enhance the understanding of pyroptosis in NAFLD and suggest potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Liping Lei
- Department of Geriatric Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jixue Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zirui Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dongdong Zhang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zihan Liu
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qing Wang
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yi Gao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541002, Guangxi, China.
| | - Jiangfa Li
- Division of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Li P, Wang T, Qiu H, Zhang R, Yu C, Wang J. 6-Gingerol Inhibits De Novo Lipogenesis by Targeting Stearoyl-CoA Desaturase to Alleviate Fructose-Induced Hepatic Steatosis. Int J Mol Sci 2024; 25:11289. [PMID: 39457074 PMCID: PMC11508832 DOI: 10.3390/ijms252011289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD), is a worldwide liver disease without definitive or widely used therapeutic drugs in clinical practice. In this study, we confirm that 6-gingerol (6-G), an active ingredient of ginger (Zingiber officinale Roscoe) in traditional Chinese medicine (TCM), can alleviate fructose-induced hepatic steatosis. It was found that 6-G significantly decreased hyperlipidemia caused by high-fructose diets (HFD) in rats, and reversed the increase in hepatic de novo lipogenesis (DNL) and triglyceride (TG) levels induced by HFD, both in vivo and in vitro. Mechanistically, chemical proteomics and cellular thermal shift assay (CETSA)-proteomics approaches revealed that stearoyl-CoA desaturase (SCD) is a direct binding target of 6-G, which was confirmed by further CETSA assay and molecular docking. Meanwhile, it was found that 6-G could not alter SCD expression (in either mRNA or protein levels), but inhibited SCD activity (decreasing the desaturation levels of fatty acids) in HFD-fed rats. Furthermore, SCD deficiency mimicked the ability of 6-G to reduce lipid accumulation in HF-induced HepG2 cells, and impaired the improvement in hepatic steatosis brought about by 6-G treatment in HFD supplemented with oleic acid diet-induced SCD1 knockout mice. Taken together, our present study demonstrated that 6-G inhibits DNL by targeting SCD to alleviate fructose diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Tingting Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
3
|
Li J, Yin M, Tian M, Fang J, Xu H. Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease. Pharmaceutics 2024; 16:1303. [PMID: 39458632 PMCID: PMC11510375 DOI: 10.3390/pharmaceutics16101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most abundant flavonoid in vine tea, has been shown to be hepatoprotective. Its application was limited by low bioavailability in vivo; Methods: In order to improve the bioavailability of DMY and achieve liver-targeted delivery, we designed a DMY-loaded stiff-soft hybrid biomimetic nano drug delivery system (DMY-hNE). The in vivo absorption, distribution, pharmacokinetic profiles, and anti-NAFLD efficacy of DMY-hNE were studied; Results: DMY-hNE was composed of a stiff core and soft shell, which led to enhanced uptake by gastrointestinal epithelial cells and increased penetration of the mucus barrier, thus improving the in vivo absorption, plasma DMY concentration, and liver distribution versus free DMY. In an early NAFLD mouse model, DMY-hNE effectively ameliorated fatty lesions accompanied with reduced lipid levels and liver tissue inflammation; Conclusions: These findings suggested that DMY-hNE is a promising platform for liver drug delivery and treatment of hepatopathy.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingxing Yin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maoxian Tian
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hanlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
4
|
Liu C, Chu X, Biao Y, Jin Q, Zhang Y, Gao Y, Feng S, Ma J, Zhang Y. Association between lipid-lowering agents with intervertebral disc degeneration, sciatica and low back pain: a drug-targeted mendelian randomized study and cross-sectional observation. Lipids Health Dis 2024; 23:327. [PMID: 39358768 PMCID: PMC11445963 DOI: 10.1186/s12944-024-02311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Abnormal lipid metabolism is linked to intervertebral disc degeneration (IVDD), sciatica, and low back pain (LBP), but it remains unclear whether targeted interventions can prevent these issues. This study investigated the causal effects of lipid-lowering drug use on IVDD, sciatica, and LBP development. METHODS Single-nucleotide polymorphisms (SNPs) linked to total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C) were obtained from the Global Lipids Genetics Consortium's genome-wide association study (GWAS). Genes near HMGCR, PCSK9, and NPC1L1 were selected to represent therapeutic inhibition targets. Using Mendelian randomization (MR) focusing on these drug targets, we identified causal effects of PCSK9, HMGCR, and NPC1L1 on the risk of developing IVDD, sciatica, and LBP, with coronary heart disease risk serving as a positive control. Using summary data from Mendelian randomization (SMR) analysis, we evaluated potential therapeutic targets for IVDD, sciatica, and LBP through protein quantitative trait loci (pQTL). The genetic associations with IVDD, sciatica, LBP, and coronary heart disease were derived from FinnGen (discovery) and UK Biobank (replication). Additionally, a cross-sectional observational study was performed using data from the National Health and Nutrition Examination Survey (NHANES) to further investigate the connection between LBP and statin use, with a sample size of 4343 participants. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to assess the outcomes. RESULTS The NHANES-based cross-sectional study indicated that non-statin use was associated with an increased risk of developing LBP (OR = 1.29, 95% CI [1.04, 1.59], P = 0.019). Moreover, Inverse-variance weighting (IVW) analysis revealed that NPC1L1-mediated reductions in TC, LDL-C, and non-HDL-C concentrations were associated with a decreased risk of developing IVDD (P = 9.956E-03; P = 3.516E-02; P = 1.253E-04). Similarly, PCSK9-mediated reductions in LDL-C and TC concentrations were linked to a lower risk of developing sciatica (P = 3.825E-02; P = 2.709E-02). Sensitivity analysis confirmed the stability and reliability of the MR results. MST1 (macrophage stimulating 1) levels was inversely associated with IVDD, sciatica, and LBP risks. CONCLUSION The results of cross-sectional study suggested that non-use of statins was positively correlated with LBP. The results of Mendelian randomization study suggest that NPC1L1 could lower the risk of developing IVDD by reducing TC, LDL-C, and non-HDL-C levels. Additionally, PCSK9 may reduce the risk of developing sciatica by lowering LDL-C and TC levels. In contrast, HMGCR appears to have no significant effect on IVDD, sciatica, or LBP development. Nonetheless, further research is needed to verify these preliminary results. MST1 warrants further exploration as a potential therapeutic target. It is necessary to do further research to validate these findings.
Collapse
Affiliation(s)
- Chenxu Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xinqiao Chu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China
| | - Yaning Biao
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China
| | - Yufang Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Ya Gao
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China
| | - Shuo Feng
- Guang'anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jizheng Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixian Pavilion, Xicheng District, Beijing, 100053, China.
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, 326 New Shinan Road, Qiaoxi District, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
5
|
Li M, Cui M, Li G, Liu Y, Xu Y, Eftekhar SP, Ala M. The Pathophysiological Associations Between Obesity, NAFLD, and Atherosclerotic Cardiovascular Diseases. Horm Metab Res 2024; 56:683-696. [PMID: 38471571 DOI: 10.1055/a-2266-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Man Cui
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxia Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueqiu Liu
- Clinical Specialty of Integrated Chinese and Western Medicine, The First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Moein Ala
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Cui XS, Li HZ, Li L, Xie CZ, Gao JM, Chen YY, Zhang HY, Hao W, Fu JH, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2024. [PMID: 39322221 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao-Shan Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Zheng Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng-Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Ming Gao
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan-Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Hua Fu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Guo
- Safety Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
8
|
Sancar G, Birkenfeld AL. The role of adipose tissue dysfunction in hepatic insulin resistance and T2D. J Endocrinol 2024; 262:e240115. [PMID: 38967989 PMCID: PMC11378142 DOI: 10.1530/joe-24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction, particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review, we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function. A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
Collapse
Affiliation(s)
- Gencer Sancar
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Topal GG, Sevim S, Gumus D, Balaban HY, Karçaaltıncaba M, Kizil M. Are dietary factors associated with cardiometabolic risk factors in patients with non-alcoholic fatty liver disease? PeerJ 2024; 12:e17810. [PMID: 39099651 PMCID: PMC11296304 DOI: 10.7717/peerj.17810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is intricately linked with dietary patterns and metabolic homeostasis. Therefore, the present study focused to investigate the relation between dietary patterns and cardiometabolic risk factors related to fatty liver in NAFLD patients. Methods This cross-sectional study included 117 individuals whose body mass index (BMI) threshold of 25 or above diagnosed with NAFLD by magnetic resonance imaging. The hospital database was used to review the patients' medical records such as lipid parameters, and fasting blood sugar. Anthropometric measurements and body composition were measured by researchers. Likewise, data from 24-h dietary recalls of individuals were collected to analyze their energy and nutrient intakes besides calculating dietary insulin index (DII), dietary insulin load (DIL), dietary glycemic index (DGI), and dietary glycemic load (DGL). Results Participants consuming diets with distinct levels of DII, DIL, DGI, and DGL exhibited variations in dietary energy and nutrient intake. Specifically, differences were noted in carbohydrate intake across quartiles of DII, DIL, DGI, and DGL, while fructose consumption showed variability in DGL quartiles (p ≤ 0.05). Moreover, sucrose intake demonstrated distinctions in both DII and DGL quartiles (p ≤ 0.05). No statistical difference was found in biochemical parameters and the fatty liver index among different levels of DII, DIL, DGI, and DGL (p > 0.05). After adjusting for potential confounders, participants with a higher DGI had four times greater odds of developing metabolic syndrome compared to those in the bottom quartile (OR, 4.32; 95% CI [1.42-13.11]). Conclusion This study provides initial evidence of the intricate association between dietary factors and NAFLD, emphasizing the necessity for further research including prospective designs with larger sample sizes, to garner additional insights.
Collapse
Affiliation(s)
- Gulsum Gizem Topal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Sumeyra Sevim
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Damla Gumus
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Hatice Yasemin Balaban
- Department of Gastroenterology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Mevlude Kizil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Liou CJ, Wu SJ, Yang HC, Fang LW, Cheng SC, Huang WC. Licochalcone D ameliorates lipid metabolism in hepatocytes by modulating lipogenesis and autophagy. Eur J Pharmacol 2024; 975:176644. [PMID: 38754535 DOI: 10.1016/j.ejphar.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid β-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33303, Taiwan
| | - Hui-Chi Yang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, No.8, Yida Rd. Yanchao Dist., Kaohsiung City, Taiwan
| | - Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 33303, Taiwan.
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 33303, Taiwan; Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City, 33303, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, 23656, Taiwan.
| |
Collapse
|
11
|
Reis-Costa A, Belew GD, Viegas I, Tavares LC, Meneses MJ, Patrício B, Gastaldelli A, Macedo MP, Jones JG. The Effects of Long-Term High Fat and/or High Sugar Feeding on Sources of Postprandial Hepatic Glycogen and Triglyceride Synthesis in Mice. Nutrients 2024; 16:2186. [PMID: 39064628 PMCID: PMC11279633 DOI: 10.3390/nu16142186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In MASLD (formerly called NAFLD) mouse models, oversupply of dietary fat and sugar is more lipogenic than either nutrient alone. Fatty acids suppress de novo lipogenesis (DNL) from sugars, while DNL inhibits fatty acid oxidation. How such factors interact to impact hepatic triglyceride levels are incompletely understood. METHODS Using deuterated water, we measured DNL in mice fed 18-weeks with standard chow (SC), SC supplemented with 55/45-fructose/glucose in the drinking water at 30% (w/v) (HS), high-fat chow (HF), and HF with HS supplementation (HFHS). Liver glycogen levels and its sources were also measured. For HS and HFHS mice, pentose phosphate (PP) fluxes and fructose contributions to DNL and glycogen were measured using [U-13C]fructose. RESULTS The lipogenic diets caused significantly higher liver triglyceride levels compared to SC. DNL rates were suppressed in HF compared to SC and were partially restored in HFHS but supplied a minority of the additional triglyceride in HFHS compared to HF. Fructose contributed a significantly greater fraction of newly synthesized saturated fatty acids compared to oleic acid in both HS and HFHS. Glycogen levels were not different between diets, but significant differences in Direct and Indirect pathway contributions to glycogen synthesis were found. PP fluxes were similar in HS and HFHS mice and were insufficient to account for DNL reducing equivalents. CONCLUSIONS Despite amplifying the lipogenic effects of fat, the fact that sugar-activated DNL per se barely contributes suggests that its role is likely more relevant in the inhibition of fatty acid oxidation. Fructose promotes lipogenesis of saturated over unsaturated fatty acids and contributes to maintenance of glycogen levels. PP fluxes associated with sugar conversion to fat account for a minor fraction of DNL reducing equivalents.
Collapse
Affiliation(s)
- Ana Reis-Costa
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (A.R.-C.); (G.D.B.)
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Grupo de Estudos de Investigação Fundamental e Translacional (GIFT) da Sociedade Portuguesa de Diabetologia, 1250-198 Lisboa, Portugal
| | - Getachew D. Belew
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (A.R.-C.); (G.D.B.)
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Ivan Viegas
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3030-790 Coimbra, Portugal;
| | - Ludgero C. Tavares
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Maria João Meneses
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
| | - Bárbara Patrício
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Amalia Gastaldelli
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (M.J.M.); (B.P.); (M.P.M.)
- APDP-Diabetes Portugal Education and Research Center (APDP-ERC), 1250-203 Lisboa, Portugal
| | - John G. Jones
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Grupo de Estudos de Investigação Fundamental e Translacional (GIFT) da Sociedade Portuguesa de Diabetologia, 1250-198 Lisboa, Portugal
| |
Collapse
|
12
|
Vesković M, Pejović M, Šutulović N, Hrnčić D, Rašić-Marković A, Stanojlović O, Mladenović D. Exploring Fibrosis Pathophysiology in Lean and Obese Metabolic-Associated Fatty Liver Disease: An In-Depth Comparison. Int J Mol Sci 2024; 25:7405. [PMID: 39000518 PMCID: PMC11242866 DOI: 10.3390/ijms25137405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
While obesity-related nonalcoholic fatty liver disease (NAFLD) is linked with metabolic dysfunctions such as insulin resistance and adipose tissue inflammation, lean NAFLD more often progresses to liver fibrosis even in the absence of metabolic syndrome. This review aims to summarize the current knowledge regarding the mechanisms of liver fibrosis in lean NAFLD. The most commonly used lean NAFLD models include a methionine/choline-deficient (MCD) diet, a high-fat diet with carbon tetrachloride (CCl4), and a high-fructose and high-cholesterol diet. The major pro-fibrogenic mechanisms in lean NAFLD models include increased activation of the extracellular signal-regulated kinase (ERK) pathway, elevated expression of α-smooth muscle actin (α-SMA), collagen type I, and TGF-β, and modulation of fibrogenic markers such as tenascin-X and metalloproteinase inhibitors. Additionally, activation of macrophage signaling pathways promoting hepatic stellate cell (HSC) activation further contributes to fibrosis development. Animal models cannot cover all clinical features that are evident in patients with lean or obese NAFLD, implicating the need for novel models, as well as for deeper comparisons of clinical and experimental studies. Having in mind the prevalence of fibrosis in lean NAFLD patients, by addressing specific pathways, clinical studies can reveal new targeted therapies along with novel biomarkers for early detection and enhancement of clinical management for lean NAFLD patients.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | - Milka Pejović
- Primary Health Center “Vračar”, Velimira Bate Živojinovića 16, 11000 Belgrade, Serbia
| | - Nikola Šutulović
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Aleksandra Rašić-Marković
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Wang J, Jia B, Miao J, Li D, Wang Y, Han L, Yuan Y, Zhang Y, Wang Y, Guo L, Jia J, Zheng F, Lai S, Niu K, Li W, Bian Y, Wang Y. An novel effective and safe model for the diagnosis of nonalcoholic fatty liver disease in China: gene excavations, clinical validations, and mechanism elucidation. J Transl Med 2024; 22:624. [PMID: 38965537 PMCID: PMC11225259 DOI: 10.1186/s12967-024-05315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).
Collapse
Affiliation(s)
- Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Miao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liying Guo
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sizhen Lai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Kaijun Niu
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yaogang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
14
|
Qi Z, LE S, Cheng R, DU X, Zhao C, Zhang Z, Zhang X, Feng L, Schumann M, Mao L, Cheng S. Responses of the Serum Lipid Profile to Exercise and Diet Interventions in Nonalcoholic Fatty Liver Disease. Med Sci Sports Exerc 2024; 56:1036-1045. [PMID: 38247038 DOI: 10.1249/mss.0000000000003388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND This study aimed to assess the response patterns of circulating lipids to exercise and diet interventions in nonalcoholic fatty liver disease (NAFLD). METHODS The 8.6-month four-arm randomized controlled study comprised 115 NAFLD patients with prediabetes who were assigned to aerobic exercise (AEx; n = 29), low-carbohydrate diet (Diet; n = 28), AEx plus low-carbohydrate diet (AED; n = 29), and nonintervention (NI, n = 29) groups. Hepatic fat content (HFC) was quantified by proton magnetic resonance spectroscopy. Serum lipidomic analytes were measured using liquid chromatography-mass spectrometry. RESULTS After intervention, the total level of phosphatidylcholine (PC) increased significantly in the AEx group ( P = 0.043), whereas phosphatidylethanolamine (PE) and triacylglycerol decreased significantly in the AED group ( P = 0.046 and P = 0.036, respectively), and phosphatidylserine decreased in the NI group ( P = 0.002). Changes of 21 lipid metabolites were significantly associated with changes of HFC, among which half belonged to PC. Most of the molecules related to insulin sensitivity belonged to sphingomyelin (40 of 79). Controlling for the change of visceral fat, the significant associations between lipid metabolites and HFC remained. In addition, baseline serum lipids could predict the response of HFC to exercise and/or diet interventions (PE15:0/18:0 for AED, area under the curve (AUC) = 0.97; PE22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0 for AEx, AUC = 0.90; and PC14:1(9Z)/19:1(9Z) for Diet, AUC = 0.92). CONCLUSIONS Changes of lipidome after exercise and/or diet interventions were associated with HFC reductions, which are independent of visceral fat reduction, particularly in metabolites belonging to PC. Importantly, baseline PE could predict the HFC response to exercise, and PC predicted the response to diet. These results indicate that a circulating metabolomics panel can be used to facilitate clinical implementation of lifestyle interventions for NAFLD management.
Collapse
Affiliation(s)
- Zhen Qi
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Runtan Cheng
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Xiaming DU
- Department of Orthopedic, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, CHINA
| | - Can Zhao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, CHINA
| | - Zhengyun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, CHINA
| | - Xiaobo Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, CHINA
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Lijuan Mao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, CHINA
| | | |
Collapse
|
15
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
16
|
Chen P, Zhu Z, Geng H, Cui X, Han Y, Wang L, Zhang Y, Lu H, Wang X, Zhang Y, Sun C. Integrated spatial metabolomics and transcriptomics decipher the hepatoprotection mechanisms of wedelolactone and demethylwedelolactone on non-alcoholic fatty liver disease. J Pharm Anal 2024; 14:100910. [PMID: 38655398 PMCID: PMC11035064 DOI: 10.1016/j.jpha.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 04/26/2024] Open
Abstract
Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaoqing Cui
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Heng Lu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Chenglong Sun
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
17
|
Mouskeftara T, Deda O, Papadopoulos G, Chatzigeorgiou A, Gika H. Lipidomic Analysis of Liver and Adipose Tissue in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice Model Reveals Alterations in Lipid Metabolism by Weight Loss and Aerobic Exercise. Molecules 2024; 29:1494. [PMID: 38611773 PMCID: PMC11013466 DOI: 10.3390/molecules29071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Detailed investigation of the lipidome remodeling upon normal weight conditions, obesity, or weight loss, as well as the influence of physical activity, can help to understand the mechanisms underlying dyslipidemia in metabolic conditions correlated to the emergence and progression of non-alcoholic fatty liver disease (NAFLD). C57BL/6 male mice were fed a normal diet (ND) or a high-fat diet (HFD) for 20 weeks. Subgroups within the high-fat diet (HFD) group underwent different interventions: some engaged in exercise (HFDex), others were subjected to weight loss (WL) by changing from the HFD to ND, and some underwent a combination of weight loss and exercise (WLex) during the final 8 weeks of the 20-week feeding period. To support our understanding, not only tissue-specific lipid remodeling mechanisms but also the cross-talk between different tissues and their impact on the systemic regulation of lipid metabolism are essential. Exercise and weight loss-induced specific adaptations in the liver and visceral adipose tissue lipidomes of mice were explored by the UPLC-TOF-MS/MS untargeted lipidomics methodology. Lipidomic signatures of ND and HFD-fed mice undergoing weight loss were compared with animals with and without physical exercise. Several lipid classes were identified as contributing factors in the discrimination of the groups by multivariate analysis models, such as glycerolipids, glycerophospholipids, sphingolipids, and fatty acids, with respect to liver samples, whereas triglycerides were the only lipid class identified in visceral adipose tissue. Lipids found to be dysregulated in HFD animals are related to well-established pathways involved in the biosynthesis of PC, PE, and TG metabolism. These show a reversing trend back to basic levels of ND when animals change to a normal diet after 12 weeks, whereas the impact of exercise, though in some cases it slightly enhances the reversing trend, is not clear.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
18
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
19
|
Cheng SC, Liou CJ, Wu YX, Yeh KW, Chen LC, Huang WC. Gypenoside XIII regulates lipid metabolism in HepG2 hepatocytes and ameliorates nonalcoholic steatohepatitis in mice. Kaohsiung J Med Sci 2024; 40:280-290. [PMID: 38294255 DOI: 10.1002/kjm2.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024] Open
Abstract
Gypenoside XIII is isolated from Gynostemma pentaphyllum (Thunb.) Makino. In mice, G. pentaphyllum extract and gypenoside LXXV have been shown to improve non-alcoholic steatohepatitis (NASH). This study investigated whether gypenoside XIII can regulate lipid accumulation in fatty liver cells or attenuate NASH in mice. We used HepG2 hepatocytes to establish a fatty liver cell model using 0.5 mM oleic acid. Fatty liver cells were treated with different concentrations of gypenoside XIII to evaluate the molecular mechanisms of lipid metabolism. In addition, a methionine/choline-deficient diet induced NASH in C57BL/6 mice, which were given 10 mg/kg gypenoside XIII by intraperitoneal injection. In fatty liver cells, gypenoside XIII effectively suppressed lipid accumulation and lipid peroxidation. Furthermore, gypenoside XIII significantly increased SIRT1 and AMPK phosphorylation to decrease acetyl-CoA carboxylase phosphorylation, reducing fatty acid synthesis activity. Gypenoside XIII also decreased lipogenesis by suppressing sterol regulatory element-binding protein 1c and fatty acid synthase production. Gypenoside XIII also increased lipolysis and fatty acid β-oxidation by promoting adipose triglyceride lipase and carnitine palmitoyltransferase 1, respectively. In an animal model of NASH, gypenoside XIII effectively decreased the lipid vacuole size and number and reduced liver fibrosis and inflammation. These findings suggest that gypenoside XIII can regulate lipid metabolism in fatty liver cells and improve liver fibrosis in NASH mice. Therefore, gypenoside XIII has potential as a novel agent for the treatment of NASH.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Ya-Xuan Wu
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, Taiwan
| |
Collapse
|
20
|
Ohene-Marfo P, Nguyen HVM, Mohammed S, Thadathil N, Tran A, Nicklas EH, Wang D, Selvarani R, Farriester JW, Varshney R, Kinter M, Richardson A, Rudolph MC, Deepa SS. Non-Necroptotic Roles of MLKL in Diet-Induced Obesity, Liver Pathology, and Insulin Sensitivity: Insights from a High-Fat, High-Fructose, High-Cholesterol Diet Mouse Model. Int J Mol Sci 2024; 25:2813. [PMID: 38474061 PMCID: PMC10931720 DOI: 10.3390/ijms25052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.
Collapse
Affiliation(s)
- Phoebe Ohene-Marfo
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Hoang Van M. Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Albert Tran
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Evan H. Nicklas
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Dawei Wang
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Ramasamy Selvarani
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sathyaseelan S. Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (P.O.-M.); (N.T.); (A.T.); (E.H.N.); (D.W.); (R.S.); (J.W.F.); (R.V.); (A.R.); (M.C.R.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| |
Collapse
|
21
|
Ohene-Marfo P, Nguyen HVM, Mohammed S, Thadathil N, Tran A, Nicklas EH, Wang D, Selvarani R, Farriester J, Varshney R, Kinter M, Richardson A, Rudolph M, Deepa SS. Non-Necroptotic Roles of MLKL in Diet-Induced Obesity, Liver Pathology, and Insulin Sensitivity: Insights from a High Fat, High Fructose, High Cholesterol Diet Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575102. [PMID: 38260537 PMCID: PMC10802562 DOI: 10.1101/2024.01.10.575102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD mouse model. Despite HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl -/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl +/- mice showed significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl -/- and Mlkl +/- mice on HFHFrHC diet resisted diet-induced obesity, attributed to increased beiging, enhanced oxygen consumption and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue specific effects of MLKL on the liver and adipose tissue, and suggest a dose-dependent effect of MLKL on liver pathology.
Collapse
|
22
|
Ali H, Shahzil M, Moond V, Shahzad M, Thandavaram A, Sehar A, Waseem H, Siddiqui T, Dahiya DS, Patel P, Tillmann H. Non-Pharmacological Approach to Diet and Exercise in Metabolic-Associated Fatty Liver Disease: Bridging the Gap between Research and Clinical Practice. J Pers Med 2024; 14:61. [PMID: 38248762 PMCID: PMC10817352 DOI: 10.3390/jpm14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review provides a practical and comprehensive overview of non-pharmacological interventions for metabolic-associated fatty liver disease (MASLD), focusing on dietary and exercise strategies. It highlights the effectiveness of coffee consumption, intermittent fasting, and Mediterranean and ketogenic diets in improving metabolic and liver health. The review emphasizes the importance of combining aerobic and resistance training as a critical approach to reducing liver fat and increasing insulin sensitivity. Additionally, it discusses the synergy between diet and exercise in enhancing liver parameters and the role of gut microbiota in MASLD. The paper underscores the need for a holistic, individualized approach, integrating diet, exercise, gut health, and patient motivation. It also highlights the long-term benefits and minimal risks of lifestyle interventions compared to the side effects of pharmacological and surgical options. The review calls for personalized treatment strategies, continuous patient education, and further research to optimize therapeutic outcomes in MASLD management.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC 27834, USA
| | - Muhammad Shahzil
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Vishali Moond
- Department of Internal Medicine, Saint Peter’s University Hospital, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Maria Shahzad
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abhay Thandavaram
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad 500068, Telangana, India
| | - Alina Sehar
- Department of Internal Medicine, University of Alabama at Birmingham-Huntsville Campus, Huntsville, AL 35801, USA
| | - Haniya Waseem
- Department of Internal Medicine, Advent Health Tampa, Tampa, FL 33613, USA
| | - Taha Siddiqui
- Department of Internal Medicine, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA;
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66103, USA
| | - Pratik Patel
- Department of Gastroenterology, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA
| | - Hans Tillmann
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
| |
Collapse
|
23
|
Xu C, Fu F, She Y, Xu C. NPC1L1 Plays a Novel Role in Nonalcoholic Fatty Liver Disease. ACS OMEGA 2023; 8:48586-48589. [PMID: 38162748 PMCID: PMC10753569 DOI: 10.1021/acsomega.3c07337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Niemann-Pick C1-Like 1 (NPC1L1) is a key protein in the transport of cholesterol, which exists in the brush marginal membrane of the intestinal epithelial cells and the timid duct membrane of the liver. It affects cholesterol absorption and plasma low-density lipoprotein levels. Cholesterol is both an important component of the cell membrane and a precursor of bile acid and steroid hormone synthesis. Abnormal cholesterol metabolism is closely related to nonalcoholic steatohepatitis (NASH). NASH can progress to fibrosis and cirrhosis, with serious consequences. NPC1L1 is involved in the regulation of cholesterol and lipid metabolism and plays an important role in maintaining the balance of cholesterol metabolism in the body. It also plays an important role in some metabolic diseases such as nonalcoholic fatty liver disease, obesity, and hypercholesterolemia. Therefore, it is necessary to elucidate the molecular pathological mechanism of NPC1L1 in the regulation of cholesterol metabolism and the occurrence and development of NASH, which can provide a target for the development of novel drugs for the treatment of NASH and other diseases. More importantly, it helps to accelerate the development of drugs that regulate lipid metabolism at multiple levels and reduce liver steatosis, which is extremely important for the prevention and treatment of NASH and related severe metabolic diseases.
Collapse
Affiliation(s)
- ChongLi Xu
- College
of Medical Technology, Chongqing Medical
and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China
| | - Fengyang Fu
- College
of Medical Technology, Chongqing Medical
and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China
| | - Yuhan She
- College
of Medical Technology, Chongqing Medical
and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China
| | - ChongBo Xu
- School
of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| |
Collapse
|
24
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. What Does Sarcopenia Have to Do with Nonalcoholic Fatty Liver Disease? Life (Basel) 2023; 14:37. [PMID: 38255652 PMCID: PMC10820621 DOI: 10.3390/life14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are global problems. The pathophysiological mechanisms that link the two entities of the disease are insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin, or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be bidirectional, so the main objective of the review was to determine the cause-and-effect relationship between the two diseases.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
25
|
Ndhlala AR, Kavaz Yüksel A, Çelebi N, Doğan HÖ. A General Review of Methodologies Used in the Determination of Cholesterol (C 27H 46O) Levels in Foods. Foods 2023; 12:4424. [PMID: 38137228 PMCID: PMC10742886 DOI: 10.3390/foods12244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol (C27H46O) is a lipid-derived substance found in lipoproteins and cell membranes. It is also one of the main sources for the production of bile acids, vitamin D, and steroid hormones. Today, foods are evaluated by consumers not only according to their taste and nutritional content but also according to their effects on consumer health. For example, many consumers choose foods according to their cholesterol level. The cholesterol in the food can directly affect the blood cholesterol level when consumed, which can lead to cardiovascular diseases. High levels of cholesterol can lead to diet-related human diseases such as cardiac arrest, paralysis, type II diabetes, and cerebral hemorrhage. In societies with high living standards, interest in and consumption of foods that lower or have low cholesterol levels have increased recently. Accordingly, efforts to increase the variety of foods with reduced cholesterol levels are on the rise. This has indirectly led to the accurate measurement of cholesterol levels in blood and food being of great importance. Classical chemical, enzymatic, colorimetric, polarographic, chromatographic, and spectrophotometric methods; enzymatic, nonenzymatic, and electrochemical sensors; and biosensors are used for the determination of cholesterol in foods. The purpose of this review is to reveal and explore current and future trends in cholesterol detection methods in foods. This review will summarize the most appropriate and standard methods for measuring cholesterol in biological components and foods.
Collapse
Affiliation(s)
- Ashwell R. Ndhlala
- Green Biotechnologies Research Centre, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Arzu Kavaz Yüksel
- Department of Food Technology, Technical Sciences Vocational School, Atatürk University, Erzurum 25030, Turkey
| | - Neslihan Çelebi
- Department of Chemical Technology, Vocational School of Technical Sciences, Ataturk University, Erzurum 25030, Turkey; (N.Ç.); (H.Ö.D.)
| | - Hülya Öztürk Doğan
- Department of Chemical Technology, Vocational School of Technical Sciences, Ataturk University, Erzurum 25030, Turkey; (N.Ç.); (H.Ö.D.)
| |
Collapse
|
26
|
Pereira ENGDS, de Araujo BP, Rodrigues KL, Silvares RR, Guimarães FV, Martins CSM, Flores EEI, Silva PMRE, Daliry A. Cholesterol Exacerbates the Pathophysiology of Non-Alcoholic Steatohepatitis by Upregulating Hypoxia-Inducible Factor 1 and Modulating Microcirculatory Dysfunction. Nutrients 2023; 15:5034. [PMID: 38140293 PMCID: PMC10745917 DOI: 10.3390/nu15245034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a pivotal lipotoxic molecule that contributes to the progression of Non-Alcoholic Steatohepatitis NASH). Additionally, microcirculatory changes are critical components of Non-Alcoholic Fatty Liver Disease (NAFLD) pathogenesis. This study aimed to investigate the role of cholesterol as an insult that modulates microcirculatory damage in NAFLD and the underlying mechanisms. The experimental model was established in male C57BL/6 mice fed a high-fat high-carbohydrate (HFHC) diet for 39 weeks. Between weeks 31-39, 2% cholesterol was added to the HFHC diet in a subgroup of mice. Leukocyte recruitment and hepatic stellate cells (HSC) activation in microcirculation were assessed using intravital microscopy. The hepatic microvascular blood flow (HMBF) was measured using laser speckle flowmetry. High cholesterol levels exacerbated hepatomegaly, hepatic steatosis, inflammation, fibrosis, and leukocyte recruitment compared to the HFHC group. In addition, cholesterol decreased the HMBF-cholesterol-induced activation of HSC and increased HIF1A expression in the liver. Furthermore, cholesterol promoted a pro-inflammatory cytokine profile with a Th1-type immune response (IFN-γ/IL-4). These findings suggest cholesterol exacerbates NAFLD progression through microcirculatory dysfunction and HIF1A upregulation through hypoxia and inflammation. This study highlights the importance of cholesterol-induced lipotoxicity, which causes microcirculatory dysfunction associated with NAFLD pathology, thus reinforcing the potential of lipotoxicity and microcirculation as therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Evelyn Nunes Goulart da Silva Pereira
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Beatriz Peres de Araujo
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Karine Lino Rodrigues
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Raquel Rangel Silvares
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Fernanda Verdini Guimarães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Souza Machado Martins
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Edgar Eduardo Ilaquita Flores
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | | | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| |
Collapse
|
27
|
Al Jadani JM, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Esculeogenin A, a Glycan from Tomato, Alleviates Nonalcoholic Fatty Liver Disease in Rats through Hypolipidemic, Antioxidant, and Anti-Inflammatory Effects. Nutrients 2023; 15:4755. [PMID: 38004149 PMCID: PMC10675668 DOI: 10.3390/nu15224755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the preventative effects of esculeogenin A (ESGA), a newly discovered glycan from tomato, on liver damage and hepatic steatosis in high-fat-diet (HFD)-fed male rats. The animals were divided into six groups (each of eight rats): a control group fed a normal diet, control + ESGA (200 mg/kg), HFD, and HFD + ESAG in 3 doses (50, 100, and 200 mg/kg). Feeding and treatments were conducted for 12 weeks. Treatment with ESGA did not affect gains in the body or fat weight nor increases in fasting glucose, insulin, and HOMA-IR or serum levels of free fatty acids (FFAs), tumor-necrosis factor-α, and interleukin-6 (IL-6). On the contrary, it significantly reduced the serum levels of gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein cholesterol (LDL-c) in the HFD-fed rats. In addition, it improved the liver structure, attenuating the increase in fat vacuoles; reduced levels of TGs and CHOL, and the mRNA levels of SREBP1 and acetyl CoA carboxylase (ACC); and upregulated the mRNA levels of proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase I (CPT I) in HFD-fed rats. These effects were concomitant with increases in the mRNA, cytoplasmic, and nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO); a reduction in the nuclear activity of nuclear factor-kappa beta (NF-κB); and inhibition of the activity of nuclear factor kappa B kinase subunit beta (IKKβ). All of these effects were dose-dependent effects in which a normal liver structure and normal levels of all measured parameters were seen in HFD + ESGA (200 mg/kg)-treated rats. In conclusion, ESGA prevents NAFLD in HFD-fed rats by attenuating hyperlipidemia, hepatic steatosis, oxidative stress, and inflammation by acting locally on Nrf2, NF-κB, SREBP1, and PPARα transcription factors.
Collapse
Affiliation(s)
- Jwharah M. Al Jadani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Soheir A. Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| |
Collapse
|
28
|
Choi KJ, Yoon MY, Kim JE, Yoon SS. Gut commensal Kineothrix alysoides mitigates liver dysfunction by restoring lipid metabolism and gut microbial balance. Sci Rep 2023; 13:14668. [PMID: 37674003 PMCID: PMC10482948 DOI: 10.1038/s41598-023-41160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease, is a widespread liver condition characterized by excessive fat buildup in hepatocytes without significant alcohol consumption. Manipulation of the gut microbiome has been considered to prevent and improve the occurrence and progression of MASLD, particularly through the gut-liver axis. This study aimed to investigate the correlation between the gut microbiome and liver function and determine whether the gut microbiome can ameliorate MASLD. We comparatively analyzed the gut microbiome composition between mice fed normal chow and those fed a high-fat diet and observed that the abundance of Kineothrix alysoides decreased in the high-fat group. Further analysis showed that treatment with K. alysoides in the high-fat diet group led to decreased weight loss, and MASLD attenuation. Importantly, K. alysoides treatment attenuated MASLD in mice fed a high-fat, high-fructose diet (HFHF), which can cause advanced liver damage. Furthermore, administration of K. alysoides altered the gut microbial composition in the HFHF diet group and improved MASLD. Overall, these findings demonstrate the potential of K. alysoides in restoring gut health and facilitating lipid metabolism to prevent and treat MASLD.
Collapse
Affiliation(s)
- Kyoung Jin Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Eun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
- BioMe Inc., Seoul, South Korea.
| |
Collapse
|
29
|
Chen D, Xiong J, Chen G, Zhang Z, Liu Y, Xu J, Xu H. Comparing the Influences of Metformin and Berberine on the Intestinal Microbiota of Rats With Nonalcoholic Steatohepatitis. In Vivo 2023; 37:2105-2127. [PMID: 37652508 PMCID: PMC10500488 DOI: 10.21873/invivo.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM High-fat diets induce shifts in the gut microbial community structure in patients or animals with non-alcoholic steatohepatitis (NASH). The objective of this study was to investigate the influence of metformin (MET) and berberine (BER) on the intestinal microbiota of rats with NASH. MATERIALS AND METHODS Forty specific pathogen-free male Sprague-Dawley rats were randomized into 4 groups. Model rats were fed high-fat diets to create NASH models. MET or BER rats were administrated MET or BER, respectively, at the onset of induction of NASH. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides were examined. Plasma endotoxin levels were measured using the turbidimetric endotoxin assay. The incidence of bacterial translocation describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. Hematoxylin and eosin and oil red O staining were used for histopathological analysis. High throughput 16S rRNA sequencing was carried out for analyzing the composition of intestinal microbiota. RESULTS High-fat diets caused NASH after 16-week induction. Administration of MET and BER ameliorated NASH by attenuating hepatic steatosis and inflammation and decreasing the plasma levels of endotoxin. MET and BER restored the composition of the intestinal microbiota disrupted by NASH. Both MET and BER altered the abundance of Atopobiaceae, Brevibacterium, Christensenellaceae, Coriobacteriales, Papillibacter, Pygmaiobacter, and Rikenellaceae RC9 in rats with NASH. The screened intestinal microbiota may be responsible for the improvement in fat accumulation and glucose metabolism. CONCLUSION MET and BER demonstrated beneficial effects on the intestinal microbiota, which was disturbed in NASH. This finding may explain the functional mechanism of MET and BER in NASH.
Collapse
Affiliation(s)
- Dongya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jianjun Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China;
| |
Collapse
|
30
|
Chen G, Zhao X, Dankovskyy M, Ansah-Zame A, Alghamdi U, Liu D, Wei R, Zhao J, Zhou A. A novel role of RNase L in the development of nonalcoholic steatohepatitis. FASEB J 2023; 37:e23158. [PMID: 37615181 PMCID: PMC10715709 DOI: 10.1096/fj.202300621r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. NAFLD has the potential to cause significant liver damage in many patients because it can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis, which substantially increases disease morbidity and mortality. Despite the key role of innate immunity in the disease progression, the underlying molecular and pathogenic mechanisms remain to be elucidated. RNase L is a key enzyme in interferon action against viral infection and displays pleiotropic biological functions such as control of cell proliferation, apoptosis, and autophagy. Recent studies have demonstrated that RNase L is involved in innate immunity. In this study, we revealed that RNase L contributed to the development of NAFLD, which further progressed to NASH in a time-dependent fashion after RNase L wild-type (WT) and knockout mice were fed with a high-fat and high-cholesterol diet. RNase L WT mice showed significantly more severe NASH, evidenced by widespread macro-vesicular steatosis, hepatocyte ballooning degeneration, inflammation, and fibrosis, although physiological and biochemical data indicated that both types of mice developed obesity, hyperglycemia, hypercholesterolemia, dysfunction of the liver, and systemic inflammation at different extents. Further investigation demonstrated that RNase L was responsible for the expression of some key genes in lipid metabolism, inflammation, and fibrosis signaling. Taken together, our results suggest that a novel therapeutic intervention for NAFLD may be developed based on regulating the expression and activity of RNase L.
Collapse
Affiliation(s)
- Guanmin Chen
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Maksym Dankovskyy
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Abigail Ansah-Zame
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Uthman Alghamdi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Danting Liu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Ruhan Wei
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
31
|
Horakova O, Sistilli G, Kalendova V, Bardova K, Mitrovic M, Cajka T, Irodenko I, Janovska P, Lackner K, Kopecky J, Rossmeisl M. Thermoneutral housing promotes hepatic steatosis in standard diet-fed C57BL/6N mice, with a less pronounced effect on NAFLD progression upon high-fat feeding. Front Endocrinol (Lausanne) 2023; 14:1205703. [PMID: 37501785 PMCID: PMC10369058 DOI: 10.3389/fendo.2023.1205703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) can progress to more severe stages, such as steatohepatitis and fibrosis. Thermoneutral housing together with high-fat diet promoted NAFLD progression in C57BL/6J mice. Due to possible differences in steatohepatitis development between different C57BL/6 substrains, we examined how thermoneutrality affects NAFLD progression in C57BL/6N mice. Methods Male mice were fed standard or high-fat diet for 24 weeks and housed under standard (22°C) or thermoneutral (30°C) conditions. Results High-fat feeding promoted weight gain and hepatic steatosis, but the effect of thermoneutral environment was not evident. Liver expression of inflammatory markers was increased, with a modest and inconsistent effect of thermoneutral housing; however, histological scores of inflammation and fibrosis were generally low (<1.0), regardless of ambient temperature. In standard diet-fed mice, thermoneutrality increased weight gain, adiposity, and hepatic steatosis, accompanied by elevated de novo lipogenesis and changes in liver metabolome characterized by complex decreases in phospholipids and metabolites involved in urea cycle and oxidative stress defense. Conclusion Thermoneutrality appears to promote NAFLD-associated phenotypes depending on the C57BL/6 substrain and/or the amount of dietary fat.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Kalendova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
32
|
Gorbachev V, Nikitin I, Velina D, Zhuchenko N, Kosenkov AN, Sokolov A, Zavalishin I, Stolyarova A, Nikulchev E. The Impact of Social Well-Being on Population Diet Nutritional Value and Antiradical Status. Foods 2023; 12:2619. [PMID: 37444358 DOI: 10.3390/foods12132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The paper presents the result of assessing the antiradical status of consumers (in the context of Russia) in connection with their well-being. This approach is based on a multistage study, in which the results of sociological surveys were applied, as well as estimates of the antiradical potential (ARP) of diets obtained using neural networks, bootstrapping the chemical composition of diets, and calculating reference values using mathematical models. The paper presents data collected from residents living in the territories of at least 21 regions and cities of Russia: Magadan, Saint Petersburg, Moscow, Krasnodar, Lipetsk, Vladivostok, Novosibirsk, Omsk, Voronezh, etc. A total of 1001 people were interviewed, which, according to our calculations, gives a margin of error in value of approximately 3.1%. To calculate the lack of vitamins in the diets of residents of the Russian Federation, data on the chemical composition of food products from the FNDDS database were used. The assessment of dietary habits showed a lack of vitamins below the recommended level in 73% of Russians for vitamin D, 59% for retinol, 38% for β-carotenes, 13% for vitamin E, and 6% for ascorbic acid. The study showed that at least 36% of the Russian population has a low antiradical status, while it was found that "poor" consumers are more likely to consume economically more expensive foods (in terms of their nutritional value). The "poor" segments of the population consume 180-305% more canned food and 38-68% more sweet carbonated drinks than other social groups, but their consumption of vegetables is 23-48% lower. On the contrary, "wealthy" consumers consume 17-25% more complex (varied) dishes, 10-68% more fresh vegetables, and 8-39% more fish. From the obtained values it follows that consumers with low levels of ARP in their diets are in a group with an increased probability of a number of "excess" diseases (diseases of the cardiovascular system, obesity, etc.). In general, the ARP values of food consumed for low-income segments of the population were 2.3 times lower (the ratio was calculated as the percentage of consumers below the level of 11,067 equivalents necessary for the disposal of free radicals generated in the human body per day) than for those who can afford expensive food (consumers with high income). A simple increase in consumption of unbalanced foods, in our opinion, will only contribute to the entry of these consumers into the "average diet trap". All this makes it imperative to develop comprehensive measures to create a new concept of public catering; otherwise, we can expect a reduction in both the health of the population and the performance of the economy of the whole country.
Collapse
Affiliation(s)
- Victor Gorbachev
- Research Laboratory of Nutritional Systems Biotechnology, The Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Igor Nikitin
- Research Laboratory of Nutritional Systems Biotechnology, The Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
- Department of Biotechnology of Food Products from Plant and Animal Raw Materials, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
| | - Daria Velina
- Research Laboratory of Nutritional Systems Biotechnology, The Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
- Department of Biotechnology of Food Products from Plant and Animal Raw Materials, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
| | - Natalia Zhuchenko
- Department of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119435 Moscow, Russia
| | - Alexander N Kosenkov
- Department of Hospital Surgery, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119435 Moscow, Russia
| | - Andrey Sokolov
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, 2 Zagorodnoe Shosse, 117152 Moscow, Russia
| | - Igor Zavalishin
- Higher School of Public Administration, Financial University under the Government of the Russian Federation, 49 Leningradsky Prospekt, 125167 Moscow, Russia
| | - Alla Stolyarova
- Department of Management and Economics, State University of Humanities and Social Studies, 30 St. Zelenaya, 140400 Kolomna, Russia
| | - Evgeny Nikulchev
- Department of Digital Data Processing Technologies, MIREA-Russian Technological University, 78 Vernadsky Avenue, 119454 Moscow, Russia
| |
Collapse
|
33
|
Xin Y, Li X, Zhu X, Lin X, Luo M, Xiao Y, Ruan Y, Guo H. Stigmasterol Protects Against Steatohepatitis Induced by High-Fat and High-Cholesterol Diet in Mice by Enhancing the Alternative Bile Acid Synthesis Pathway. J Nutr 2023; 153:1903-1914. [PMID: 37269906 DOI: 10.1016/j.tjnut.2023.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Hepatic cholesterol accumulation is a significant risk factor in the progression of nonalcoholic fatty liver disease (NAFLD) to steatohepatitis. However, the precise mechanism by which stigmasterol (STG) mitigates this process remains unclear. OBJECTIVES This study aimed to investigate the potential mechanism underlying the protective effect of STG in mice with NAFLD progressing to steatohepatitis while being fed a high-fat and high-cholesterol (HFHC) diet. METHODS Male C57BL/6 mice were fed an HFHC diet for 16 wk to establish the NAFLD model. Subsequently, the mice received STG or a vehicle via oral gavage while continuing the HFHC diet for an additional 10 wk. The study evaluated hepatic lipid deposition and inflammation as well as the expression of key rate-limiting enzymes involved in the bile acid (BA) synthesis pathways. BAs in the colonic contents were quantified using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS Compared with the vehicle control group, STG significantly reduced hepatic cholesterol accumulation (P < 0.01) and suppressed the gene expression of NLRP3 inflammasome and interleukin-18 (P < 0.05) in the livers of HFHC diet-fed mice. The total fecal BA content in the STG group was nearly double that of the vehicle control group. Additionally, the administration of STG increased the concentrations of representative hydrophilic BAs in the colonic contents (P < 0.05) along with the upregulation of gene and protein expression of CYP7B1 (P < 0.01). Furthermore, STG enhanced the α-diversity of the gut microbiota and partially reversed the alterations in the relative abundance of the gut microbiota induced by the HFHC diet. CONCLUSIONS STG mitigates steatohepatitis by enhancing the alternative pathway for BA synthesis.
Collapse
Affiliation(s)
- Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China; Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dongguan, Guangdong Medical University, Dongguan, China
| | - Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Yunjun Xiao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongdui Ruan
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dongguan, Guangdong Medical University, Dongguan, China.
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
34
|
Zhen D, Ding L, Wang B, Wang X, Hou Y, Ding W, Portha B, Liu J. Oral administration of kynurenic acid delays the onset of type 2 diabetes in Goto-Kakizaki rats. Heliyon 2023; 9:e17733. [PMID: 37424591 PMCID: PMC10328841 DOI: 10.1016/j.heliyon.2023.e17733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous catabolite of tryptophan that has been found to demonstrate neuroprotective properties in psychiatric disorders. Recently, accumulating data have suggested that KYNA may also play a significant role in various metabolic diseases by stimulating energy metabolism in adipose tissue and muscle. However, whether KYNA can serves as an anti-diabetes agent has yet to be studied. In this study, we investigated the potential anti-diabetic effects of administering KYNA orally through drinking water in pre-diabetic Goto-Kakizaki rats and examined how this treatment may influence energy metabolism regulation within the liver. We found that hyperglycemic Goto-Kakizaki rats showed lower plasmatic KYNA levels compared to normal rats. Oral administration of KYNA significantly delayed the onset of diabetes in Goto-Kakizaki rats compared to untreated animals. Moreover, we found that KYNA treatment significantly increased respiration exchange ratio and promoted the energy expenditure by stimulating the expression of uncoupling protein (UCP). We confirmed that KYNA stimulated the UCP expression in HepG2 cells and mouse hepatocytes at mRNA and protein levels. Our study reveals that KYNA could potentially act as an anti-diabetic agent and KYNA-induced UCP upregulation is closely associated with the regulation of energy metabolism. These results provide further evidence for the therapeutic potential of KYNA in diabetes.
Collapse
Affiliation(s)
- Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yanli Hou
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
35
|
Lee J, Kim H, Kang YW, Kim Y, Park MY, Song JH, Jo Y, Dao T, Ryu D, Lee J, Oh CM, Park S. LY6D is crucial for lipid accumulation and inflammation in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1479-1491. [PMID: 37394588 PMCID: PMC10394021 DOI: 10.1038/s12276-023-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious metabolic disorder characterized by excess fat accumulation in the liver. Over the past decade, NAFLD prevalence and incidence have risen globally. There are currently no effective licensed drugs for its treatment. Thus, further study is required to identify new targets for NAFLD prevention and treatment. In this study, we fed C57BL6/J mice one of three diets, a standard chow diet, high-sucrose diet, or high-fat diet, and then characterized them. The mice fed a high-sucrose diet had more severely compacted macrovesicular and microvesicular lipid droplets than those in the other groups. Mouse liver transcriptome analysis identified lymphocyte antigen 6 family member D (Ly6d) as a key regulator of hepatic steatosis and the inflammatory response. Data from the Genotype-Tissue Expression project database showed that individuals with high liver Ly6d expression had more severe NAFLD histology than those with low liver Ly6d expression. In AML12 mouse hepatocytes, Ly6d overexpression increased lipid accumulation, while Ly6d knockdown decreased lipid accumulation. Inhibition of Ly6d ameliorated hepatic steatosis in a diet-induced NAFLD mouse model. Western blot analysis showed that Ly6d phosphorylated and activated ATP citrate lyase, which is a key enzyme in de novo lipogenesis. In addition, RNA- and ATAC-sequencing analyses revealed that Ly6d drives NAFLD progression by causing genetic and epigenetic changes. In conclusion, Ly6d is responsible for the regulation of lipid metabolism, and inhibiting Ly6d can prevent diet-induced steatosis in the liver. These findings highlight Ly6d as a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yun-Won Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Moon-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji-Hong Song
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Junguee Lee
- Department of Pathology, St Mary's Hospital, the Catholic University of Korea, Daejeon, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | - Sangkyu Park
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, Korea.
| |
Collapse
|
36
|
Zhang S, Li H, Meng G, Zhang Q, Liu L, Wu H, Gu Y, Zhang T, Wang X, Zhang J, Dong J, Zheng X, Cao Z, Zhang X, Dong X, Sun S, Wang X, Zhou M, Jia Q, Song K, Borné Y, Sonestedt E, Qi L, Niu K. Added sugar intake and its forms and sources in relation to risk of non-alcoholic fatty liver disease: results from the Tianjin Chronic Low-grade Systemic Inflammation and Health cohort study. Br J Nutr 2023; 129:2094-2101. [PMID: 36156191 DOI: 10.1017/s000711452200277x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid v. solid) and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15 538 participants, free of NAFLD, other liver diseases, CVD, cancer or diabetes at baseline (2013-2018 years). Added sugar intake was estimated from a validated 100-item FFQ. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazard ratios (HR) and corresponding 95 % CI for NAFLD risk with added sugar intake. During a median follow-up of 4·2 years, 3476 incident NAFLD cases were documented. After adjusting for age, sex, BMI and its change from baseline to follow-up, lifestyle factors, personal and family medical history and overall diet quality, the multivariable HR of NAFLD risk were 1·18 (95 % CI 1·06, 1·32) for total added sugars, 1·20 (95 % CI 1·08, 1·33) for liquid added sugars and 0·96 (95 % CI 0·86, 1·07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yeqing Gu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Juanjuan Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jun Dong
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaoxi Zheng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhixia Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xu Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xinrong Dong
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yan Borné
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kaijun Niu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Cheng F, Li W, Ji Z, Li J, Hu W, Zhao M, Yu D, Simayijiang H, Yan J. Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm. Forensic Sci Int Genet 2023; 66:102910. [PMID: 37406538 DOI: 10.1016/j.fsigen.2023.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Estimating the time that bloodstains are left at a crime scene can provide invaluable evidence for law enforcement investigations, including determining the time of the crime, linking the perpetrator to the crime scene, narrowing the pool of possible suspects, and verifying witness statements. There have been some attempts to estimate the time since deposition of bloodstains, i.e., how much time has passed since the bloodstain was left at a crime scene. However, most studies focus on the time interval of days. As far as we know, previous study have been conducted to estimate the deposition time of blood within a 24-h day-night cycle. To date, there is a lack of studies on whether rhythmic mRNA of blood is suitable for bloodstain samples. In this study, we estimated the bloodstain deposition time within a 24-h day-night cycle based on the expression of messenger RNAs (mRNAs) by real-time quantitative polymerase chain reaction. Bloodstain samples were prepared from eight individuals at eight time points under real and uncontrolled conditions. Four mRNAs expressed rhythmically and were used to construct a regression model using the k-nearest neighbor (KNN) algorithm, resulting in a mean absolute error of 3.92 h. Overall, using the rhythmic mRNAs, a machine learning model was developed which has allowed us to predict the deposition time of bloodstains within the 24-h day-night cycle in East Asian populations. This study demonstrates that mRNA biomarkers can be used to estimate the bloodstain deposition time within a 24-h period. Furthermore, rhythmic mRNA biomarkers provide a potential method and perspective for estimating the deposition time of forensic traces in forensic investigation. Case samples in forensic analysis are usually limited or degraded, so the stability and sensitivity of rhythmic biomarkers need to be further investigated.
Collapse
Affiliation(s)
- Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Zhimin Ji
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Junli Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Wenjing Hu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Mengyang Zhao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030009, Shanxi, PR China.
| |
Collapse
|
38
|
Alabdulaali B, Al-rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D, Williams MR, Blériot C, Ahmad R, Alzaid F. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1195699. [PMID: 37377968 PMCID: PMC10291618 DOI: 10.3389/fimmu.2023.1195699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.
Collapse
Affiliation(s)
- Bader Alabdulaali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Joanna Razafiarison
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Dorothy Tonui
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | | | - Camille Blériot
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
- Inserm U1015, Gustave Roussy, Villejuif, France
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
39
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Aljahdali BA, Bajaber AS, Al-Nouri DM, Al-Khalifah AS, Arzoo S, Alasmari AA. The Development of Nonalcoholic Fatty Liver Disease and Metabolic Syndromes in Diet-Induced Rodent Models. Life (Basel) 2023; 13:1336. [PMID: 37374119 DOI: 10.3390/life13061336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary macronutrients are essential for metabolic regulation and insulin function. The present study examined the effects of different high-fat diets (HFDs) and high-carbohydrate diets (HCDs) on the development of non-alcoholic fatty liver disease and metabolic syndrome indices in healthy adult male Wistar albino rats. Forty-two rats were distributed into six groups (n = 7), which were fed the following for 22 weeks: (1) a control diet; (2) a high-carbohydrate, low-fat diet (HCD-LFD); (3) high-saturated-fat, low-carbohydrate diet (HSF-LCD); (4) a high-monounsaturated-fat diet (HMUSF); (5) a high medium-chain fat diet (HMCF); and a (6) a high-carbohydrate, high-fiber diet (HCHF). In comparison to the control, the body weight increased in all the groups. The HSF-LCD group showed the highest levels of cholesterol, triglyceride, low-density lipoprotein, hepatic enzyme, insulin resistance, and Homeostatic Model Assessment for Insulin Resistance. A liver histology analysis of the HSF-LCD group showed macrovesicular hepatic steatosis associated with large hepatic vacuolation. Additionally, it showed marked periportal fibrosis, especially around the blood vessels and blood capillaries. The lowest levels of fasting glycemia, insulin, and HOMA-IR were observed in the HCHF group. In conclusion, these findings show that dietary saturated fat and cholesterol are principal components in the development and progression of non-alcoholic fatty liver disease in rats, while fiber showed the greatest improvement in glycemic control.
Collapse
Affiliation(s)
- Bayan Abdulhafid Aljahdali
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Adnan Salem Bajaber
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Doha M Al-Nouri
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Shaista Arzoo
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abeer Abdullah Alasmari
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| |
Collapse
|
41
|
Lee YS, Seki E. In Vivo and In Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cell Mol Gastroenterol Hepatol 2023; 16:355-367. [PMID: 37270060 PMCID: PMC10444957 DOI: 10.1016/j.jcmgh.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Liver fibrosis is a common result of liver injury owing to various kinds of chronic liver diseases. A deeper understanding of the pathophysiology of liver fibrosis and identifying potential therapeutic targets of liver fibrosis is important because liver fibrosis may progress to advanced liver diseases, such as cirrhosis and hepatocellular carcinoma. Despite numerous studies, the underlying mechanisms of liver fibrosis remain unclear. Mechanisms of the development and progression of liver fibrosis differ according to etiologies. Therefore, appropriate liver fibrosis models should be selected according to the purpose of the study and the type of underlying disease. Many in vivo animal and in vitro models have been developed to study liver fibrosis. However, there are no perfect preclinical models for liver fibrosis. In this review, we summarize the current in vivo and in vitro models for studying liver fibrosis and highlight emerging in vitro models, including organoids and liver-on-a-chip models. In addition, we discuss the mechanisms and limitations of each model.
Collapse
Affiliation(s)
- Young-Sun Lee
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
42
|
Zhang Q, Jin Y, Xin X, An Z, Hu YY, Li Y, Feng Q. A high-trans fat, high-carbohydrate, high-cholesterol, high-cholate diet-induced nonalcoholic steatohepatitis mouse model and its hepatic immune response. Nutr Metab (Lond) 2023; 20:28. [PMID: 37244987 DOI: 10.1186/s12986-023-00749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive disease that can progress to non-alcoholic steatohepatitis (NASH). Animal models are important tools for basic NASH research. Immune activation plays a key role in liver inflammation in patients with NASH. We established a high-trans fat, high-carbohydrate, and high-cholesterol, high-cholate diet-induced (HFHCCC) mouse model. C57BL/6 mice were fed a normal or HFHCCC diet for 24 weeks, and the immune response characteristics of this model were evaluated. The proportion of immune cells in mouse liver tissues was detected by immunohistochemistry and flow cytometry, Multiplex bead immunoassay and Luminex technology was used to detecte the expression of cytokines in mouse liver tissues. The results showed that mice treated with HFHCCC diet exhibited remarkably increased hepatic triglycerides (TG) content, and the increase in plasma transaminases resulted in hepatocyte injury. Biochemical results showed that HFHCCC induced elevated hepatic lipids, blood glucose, insulin; marked hepatocyte steatosis, ballooning, inflammation, and fibrosis. The proportion of innate immunity-related cells, including Kupffer cells (KCs), neutrophils, dendritic cells (DCs), natural killer T cells (NKT), and adaptive immunity-related CD3+ T cells increased; interleukin-1α (IL-1α), IL-1β, IL-2, IL-6, IL-9, and chemokines, including CCL2, CCL3, and macrophage colony stimulating factor (G-CSF) increased. The constructed model closely approximated the characteristics of human NASH and evaluation of its immune response signature, showed that the innate immune response was more pronounced than adaptive immunity. Its use as an experimental tool for understanding innate immune responses in NASH is recommended.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Jin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
43
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
44
|
Limonin mitigates cardiometabolic complications in rats with metabolic syndrome through regulation of the IRS-1/GLUT4 signalling pathway. Biomed Pharmacother 2023; 161:114448. [PMID: 36857910 DOI: 10.1016/j.biopha.2023.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Limonin is a natural triterpenoid isolated from citrus fruit. In the present study, we examined the effects of limonin on cardiometabolic alterations in diet-induced metabolic syndrome. Metabolic syndrome was induced in rats by feeding them a high-fat (HF) diet plus 15% fructose in drinking water for 16 weeks. They were treated with limonin (50 or 100 mg/kg) (n = 8/group) for the final 4 weeks. Increases in body weight (BW), fasting blood glucose (FBG), serum insulin, total cholesterol (TC), blood pressure (BP), liver fat accumulation, and adipocyte hypertrophy, as well as oral glucose tolerance in rats with metabolic syndrome were alleviated by limonin treatment (p < 0.05). Limonin improved ejection fraction and left ventricular (LV) hypertrophy, and reduced angiotensin converting enzyme (ACE) activity and angiotensin II (Ang II) concentration in rats with metabolic syndrome (p < 0.05). It also reduced plasma tumour necrosis factor (TNF)-α, interleukin (IL)- 6, leptin, malonaldehyde (MDA), and superoxide generation, and increased catalase activity in rats with metabolic syndrome compared to controls (p < 0.05). Downregulation of insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expression in epididymal fat pads and cardiac, liver, and gastrocnemius tissues was present in metabolic syndrome, and these were restored by limonin treatment (p < 0.05). In conclusion, limonin shows a potential effect in alleviating symptoms and improving cardiometabolic disorders. These beneficial effects are linked to the reduction of the renin-angiotensin system, inflammation, oxidative stress, and improvement of IRS-1/GLUT4 protein expression in the target tissue.
Collapse
|
45
|
Benegiamo G, von Alvensleben GV, Rodríguez-López S, Goeminne LJ, Bachmann AM, Morel JD, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J Exp Med 2023; 220:213867. [PMID: 36787127 PMCID: PMC9960245 DOI: 10.1084/jem.20221738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Giorgia Benegiamo:
| | | | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ludger J.E. Goeminne
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis M. Bachmann
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ellen Broeckx
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | - Jing Ying Ma
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | - Nabil Azhar
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | | | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Correspondence to Johan Auwerx:
| |
Collapse
|
46
|
Tian H, Fang Y, Liu W, Wang J, Zhao J, Tang H, Yin Y, Hu Y, Peng J. Inhibition on XBP1s-driven lipogenesis by Qushi Huayu Decoction contributes to amelioration of hepatic steatosis induced by fructose. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115806. [PMID: 36216198 DOI: 10.1016/j.jep.2022.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qushi Huayu Decoction (QHD) is a traditional Chinese medicine formula consisting of five herbs, which has been used for non-alcoholic fatty liver disease (NAFLD) treatment in clinic for decades in China and validated in several NAFLD animal models. The hepatic de novo lipogenesis (DNL) is enhanced greatly to contribute to steatosis in NAFLD. The spliced form of X-box binding protein 1 (XBP1s) initiates DNL independently of sterol regulatory element-binding protein (SREBP) and carbohydrate-responsive element-binding protein (ChREBP). AIM OF THE STUDY To disclose the mechanism of inhibition on hepatic DNL by QHD and the responsible compounds. METHODS The effects of QHD on hepatic DNL were evaluated in mice induced by high-fructose diet (HFru). The effects of the serum-absorbed compounds of QHD on XBP1s were evaluated in HepG2 cells induced by tunicamycin. Hepatic histology, triglyceride (TG) and nonesterified fatty acids were observed. Hepatic apolipoprotein B100 and very low-density lipoprotein were measured to reflect lipid out-transport. The mRNA expression of XBP1s and its target genes were detected by real-time polymerase chain reaction. The protein expression of TG synthetases and DNL enzymes, and inositol requirement enzyme 1 alpha (IRE1α), phosphorylated IRE1α and XBP1s were detected in liver tissue and HepG2 cells by western-blot. The binding activity of SREBP1, protein expression of ChREBP and XBP1s were detected in the nuclear extracts of liver tissue. RESULTS Dynamical observing suggested feeding with HFru for 2 weeks was sufficient to induce hepatic lipogenesis and XBP1s. QHD ameliorated liver steatosis without enhancing out-transport of lipids, accompanied with more inhibitory effects on DNL enzymes than TG synthetases. QHD inhibits the nuclear XBP1s without affecting ChREBP and SREBP1. In QHD, chlorogenic acid, geniposide and polydatin inhibit lipogenesis initiated by XPB1s. CONCLUSION QHD probably decreases hepatic DNL by inhibiting XBP1s independent of SREBP1 and ChREBP. Chlorogenic acid, geniposide and polydatin are the potential responsible compounds.
Collapse
Affiliation(s)
- Huajie Tian
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yi Fang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Wei Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jun Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Hao Tang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yixiao Yin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
47
|
Combinatorial therapy with BAR502 and UDCA resets FXR and GPBAR1 signaling and reverses liver histopathology in a model of NASH. Sci Rep 2023; 13:1602. [PMID: 36709356 PMCID: PMC9884292 DOI: 10.1038/s41598-023-28647-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Non-alcoholic steatosis (NAFLD) and steatohepatitis (NASH) are two highly prevalent human disorders for which therapy remains suboptimal. Bile acids are signaling molecules acting on two main receptors the Farnesoid-x-receptor (FXR) and G protein coupled receptor GPB AR1. Clinical trials have shown that FXR agonism might result in side effects along with lack of efficacy in restoring liver histopathology. For these reasons a multi-targets therapy combined FXR agonists with agent targeting additional molecular mechanisms might have improved efficacy over selective FXR agonists. In the present study we have compared the effects of BAR502, a dual FXR/GPBAR1 ligand) alone or in combination with ursodeoxycholic acid (UDCA) in a model of NAFLD/NASH induced by feeding mice with a Western diet for 10 weeks. The results demonstrated that while BAR502 and UDCA partially protected against liver damage caused by Western diet, the combination of the two, reversed the pro-atherogenic lipid profile and completely reversed the histopathology damage, attenuating liver steatosis, ballooning, inflammation and fibrosis. Additionally, while both agents increased insulin sensitivity and bile acid signaling, the combination of the two, modulated up top 85 genes in comparison of mice feed a Western diet, strongly reducing expression of inflammatory markers such as chemokines and cytokines. Additionally, the combination of the two agents redirected the bile acid metabolism toward bile acid species that are GPBAR1 agonist while reduced liver bile acid content and increased fecal excretion. Together, these data, highlight the potential role for a combinatorial therapy based on BAR502 and UDCA in treating of NAFLD.
Collapse
|
48
|
Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E. The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021788. [PMID: 36675301 PMCID: PMC9866517 DOI: 10.3390/ijms24021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Snezhanna Saydakova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Ksenia Morozova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga Snytnikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Maryana Morozova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Lidiya Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Elena Kiseleva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
49
|
Reolizo L, Matsuda M, Seki E. Experimental Workflow for Preclinical Studies of Human Antifibrotic Therapies. Methods Mol Biol 2023; 2669:285-306. [PMID: 37247068 DOI: 10.1007/978-1-0716-3207-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chronic liver diseases accompanied by liver fibrosis have caused significant morbidity and mortality in the world with increasing prevalence. Nonetheless, there are no approved antifibrotic therapies. Although numerous preclinical studies showed satisfactory results in targeting fibrotic pathways, these animal studies have not led to success in humans. In this chapter, we summarize the experimental approaches currently available, including in vitro cell culture models, in vivo animal models, and new experimental tools relevant to humans, and discuss how we translate laboratory results to clinical trials. We will also address the obstacles in transitioning promising therapies from preclinical studies to human antifibrotic treatments.
Collapse
Affiliation(s)
- Lien Reolizo
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Suriano F, Vieira-Silva S, Falony G, de Wouters d'Oplinter A, Paone P, Delzenne NM, Everard A, Raes J, Van Hul M, Cani PD. Fat and not sugar as the determining factor for gut microbiota changes, obesity, and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 2023; 324:E85-E96. [PMID: 36516223 DOI: 10.1152/ajpendo.00141.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet-induced obesity contributes to the development of type 2 diabetes, insulin resistance, metabolic inflammation, oxidative and endoplasmic reticulum (ER) stress. Overall, obesity is associated with deviations in the composition and functionality of the gut microbiota. There are many divergent findings regarding the link between the excessive intake of certain dietary components (i.e., fat and sugar) and obesity development. We therefore investigated the effect of specific diets, with a different content of sugar and fat, in promoting obesity and related comorbidities as well as their impact on microbial load and gut microbiota composition/diversity. C57BL/6J mice were fed either a low-sugar, low-fat control diet (CT), a high-sugar diet (HS), a high-fat, high-sugar diet (HF/HS), or a high-fat diet (HF) for 8 wk. The impact of the different diets on obesity, glucose metabolism, inflammation, and oxidative and ER stress was determined. Diet-induced changes in the gut microbiota composition and density were also analyzed. HF diet-fed mice showed the highest body weight and fat mass gains and displayed the most impaired glucose and insulin profiles. HS, HF/HS, and HF diets differently affected hepatic cholesterol content and mRNA expression of several markers associated with immune cells, inflammation, oxidative and ER stress in several organs/tissues. In addition, HF diet feeding resulted in a decreased microbial load at the end of the experiment. When analyzing the gut microbiota composition, we found that HS, HF/HS, and HF diets induced specific changes in the abundance of certain bacterial taxa. This was not associated with a specific change in systemic inflammatory markers, but HS mice exhibited higher FGF21 plasma levels compared with HF diet-fed mice. Taken together, our results highlight that dietary intake of different macronutrients distinctively impacts the development of an obese/diabetic state and the regulation of metabolic inflammation in specific organs. We propose that these differences are not only obesity-driven but that changes in the gut microbiota composition may play a key role in this context.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that dietary macronutrients (i.e., sugar and fat) have an impact on fecal bacterial cell counting and quantitative microbiome profiling in mice. Yet, we demonstrate that dietary fat is the determining factor to promote obesity and diabetes progression, and local inflammation in different body sites. These observations can help to disentangle the conundrum of the detrimental effects of fat and sugar in our dietary habits.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
| | - Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, University of Leuven, Leuven, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|