1
|
Vidman S, Ma YHE, Fullenkamp N, Plant GW. Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury. Neural Regen Res 2025; 20:3063-3075. [PMID: 39715081 DOI: 10.4103/nrr.nrr-d-24-00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024] Open
Abstract
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons. While embryonic stem cells demonstrated great potential in treating central nervous system pathologies, ethical and technical concerns remained. These barriers, along with the clear necessity for this type of treatment, ultimately prompted the advent of induced pluripotent stem cells. The advantage of pluripotent cells in central nervous system regeneration is multifaceted, permitting differentiation into neural stem cells, neural progenitor cells, glia, and various neuronal subpopulations. The precise spatiotemporal application of extrinsic growth factors in vitro, in addition to microenvironmental signaling in vivo, influences the efficiency of this directed differentiation. While the pluri- or multipotency of these cells is appealing, it also poses the risk of unregulated differentiation and teratoma formation. Cells of the neuroectodermal lineage, such as neuronal subpopulations and glia, have been explored with varying degrees of success. Although the risk of cancer or teratoma formation is greatly reduced, each subpopulation varies in effectiveness and is influenced by a myriad of factors, such as the timing of the transplant, pathology type, and the ratio of accompanying progenitor cells. Furthermore, successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration. Lastly, host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression. Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes. This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
Collapse
Affiliation(s)
- Stephen Vidman
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
2
|
Bose R, Posada-Pérez M, Karvela E, Skandik M, Keane L, Falk A, Spulber S, Joseph B, Ceccatelli S. Bi-allelic NRXN1α deletion in microglia derived from iPSC of an autistic patient increases interleukin-6 production and impairs supporting function on neuronal networking. Brain Behav Immun 2025; 123:28-42. [PMID: 39243986 DOI: 10.1016/j.bbi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental conditions, with a highly diverse genetic hereditary component, including altered neuronal circuits, that has an impact on communication skills and behaviours of the affected individuals. Beside the recognised role of neuronal alterations, perturbations of microglia and the associated neuroinflammatory processes have emerged as credible contributors to aetiology and physiopathology of ASD. Mutations in NRXN1, a member of the neurexin family of cell-surface receptors that bind neuroligin, have been associated to ASD. NRXN1 is known to be expressed by neurons where it facilitates synaptic contacts, but it has also been identified in glial cells including microglia. Asserting the impact of ASD-related genes on neuronal versus microglia functions has been challenging. Here, we present an ASD subject-derived induced pluripotent stem cells (iPSC)-based in vitro system to characterise the effects of the ASD-associated NRXN1 gene deletion on neurons and microglia, as well as on the ability of microglia to support neuronal circuit formation and function. Using this approach, we demonstrated that NRXN1 deletion, impacting on the expression of the alpha isoform (NRXN1α), in microglia leads to microglial alterations and release of IL6, a pro-inflammatory interleukin associated with ASD. Moreover, microglia bearing the NRXN1α-deletion, lost the ability to support the formation of functional neuronal networks. The use of recombinant IL6 protein on control microglia-neuron co-cultures or neutralizing antibody to IL6 on their NRXN1α-deficient counterparts, supported a direct contribution of IL6 to the observed neuronal phenotype. Altogether, our data suggest that, in addition to neurons, microglia are also negatively affected by NRXN1α-deletion, and this significantly contributes to the observed neuronal circuit aberrations.
Collapse
Affiliation(s)
- Raj Bose
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Eleni Karvela
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Skandik
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong; Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong.
| |
Collapse
|
3
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Chiu R, Zhang Y, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. Brain Behav Immun 2025; 123:1127-1146. [PMID: 39500415 PMCID: PMC11753195 DOI: 10.1016/j.bbi.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024] Open
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated and mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the)
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the); Department of Psychiatry, Radboud UMC, Nijmegen, Netherlands (the)
| |
Collapse
|
4
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
5
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Couch ACM, Brown AM, Raimundo C, Solomon S, Taylor M, Sichlinger L, Matuleviciute R, Srivastava DP, Vernon AC. Transcriptional and cellular response of hiPSC-derived microglia-neural progenitor co-cultures exposed to IL-6. Brain Behav Immun 2024; 122:27-43. [PMID: 39098436 DOI: 10.1016/j.bbi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Amelia M Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Catarina Raimundo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Morgan Taylor
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
7
|
Di Stefano J, Garcia-Pupo L, Di Marco F, Motaln H, Govaerts J, Van Breedam E, Mateiu LM, Van Calster S, Ricciardi L, Quarta A, Verstraelen P, De Vos WH, Rogelj B, Cicalini I, De Laurenzi V, Del Boccio P, FitzGerald U, Vanden Berghe W, Verhoye M, Pieragostino D, Ponsaerts P. Transcriptomic and proteomic profiling of bi-partite and tri-partite murine iPSC-derived neurospheroids under steady-state and inflammatory condition. Brain Behav Immun 2024; 121:1-12. [PMID: 39002812 DOI: 10.1016/j.bbi.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1β + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium
| | - Laura Garcia-Pupo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Jonas Govaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Ligia Monica Mateiu
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Leonardo Ricciardi
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter Verstraelen
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Winnok H De Vos
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland; Galway Neuroscience Centre, University of Galway, Ireland
| | - Wim Vanden Berghe
- Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
8
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2024:10.1038/s41577-024-01081-x. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Wu YC, Lehtonen Š, Trontti K, Kauppinen R, Kettunen P, Leinonen V, Laakso M, Kuusisto J, Hiltunen M, Hovatta I, Freude K, Dhungana H, Koistinaho J, Rolova T. Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. Fluids Barriers CNS 2024; 21:78. [PMID: 39334385 PMCID: PMC11438249 DOI: 10.1186/s12987-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated. METHODS To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups. RESULTS Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization. CONCLUSIONS Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Riitta Kauppinen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Pinja Kettunen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Leinonen
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland.
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
10
|
Oliva MK, Bourke J, Kornienko D, Mattei C, Mao M, Kuanyshbek A, Ovchinnikov D, Bryson A, Karle TJ, Maljevic S, Petrou S. Standardizing a method for functional assessment of neural networks in brain organoids. J Neurosci Methods 2024; 409:110178. [PMID: 38825241 DOI: 10.1016/j.jneumeth.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
During the last decade brain organoids have emerged as an attractive model system, allowing stem cells to be differentiated into complex 3D models, recapitulating many aspects of human brain development. Whilst many studies have analysed anatomical and cytoarchitectural characteristics of organoids, their functional characterisation has been limited, and highly variable between studies. Standardised, consistent methods for recording functional activity are critical to providing a functional understanding of neuronal networks at the synaptic and network level that can yield useful information about functional network phenotypes in disease and healthy states. In this study we outline a detailed methodology for calcium imaging and Multi-Electrode Array (MEA) recordings in brain organoids. To illustrate the utility of these functional interrogation techniques in uncovering induced differences in neural network activity we applied various stimulating media protocols. We demonstrate overlapping information from the two modalities, with comparable numbers of active cells in the four treatment groups and an increase in synchronous behaviour in BrainPhys treated groups. Further development of analysis pipelines to reveal network level changes in brain organoids will enrich our understanding of network formation and perturbation in these structures, and aid in the future development of drugs that target neurological disorders at the network level.
Collapse
Affiliation(s)
- M K Oliva
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - J Bourke
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - D Kornienko
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - C Mattei
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - M Mao
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - A Kuanyshbek
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - D Ovchinnikov
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - A Bryson
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - T J Karle
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - S Maljevic
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - S Petrou
- Ion Channels and Diseases Group, The Florey, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|
12
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
13
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Teo F, Kok CYL, Tan MJ, Je HS. Human pluripotent stem cell (hPSC)-derived microglia for the study of brain disorders. A comprehensive review of existing protocols. IBRO Neurosci Rep 2024; 16:497-508. [PMID: 38655500 PMCID: PMC11035045 DOI: 10.1016/j.ibneur.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.
Collapse
Affiliation(s)
- Fionicca Teo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Catherine Yen Li Kok
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mao-Jia Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Advanced Bioimaging Centre, SingHealth, Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
15
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595814. [PMID: 38826204 PMCID: PMC11142229 DOI: 10.1101/2024.05.24.595814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ada J. Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haakon B. Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Han X, Cai C, Deng W, Shi Y, Li L, Wang C, Zhang J, Rong M, Liu J, Fang B, He H, Liu X, Deng C, He X, Cao X. Landscape of human organoids: Ideal model in clinics and research. Innovation (N Y) 2024; 5:100620. [PMID: 38706954 PMCID: PMC11066475 DOI: 10.1016/j.xinn.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.
Collapse
Affiliation(s)
- Xinxin Han
- Organ Regeneration X Lab, Lisheng East China Institute of Biotechnology, Peking University, Jiangsu 226200, China
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chunhui Cai
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Wei Deng
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yanghua Shi
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Lanyang Li
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chen Wang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jian Zhang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Mingjie Rong
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jiping Liu
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
17
|
Zeldich E, Rajkumar S. Identity and Maturity of iPSC-Derived Oligodendrocytes in 2D and Organoid Systems. Cells 2024; 13:674. [PMID: 38667289 PMCID: PMC11049552 DOI: 10.3390/cells13080674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oligodendrocytes originating in the brain and spinal cord as well as in the ventral and dorsal domains of the neural tube are transcriptomically and functionally distinct. These distinctions are also reflected in the ultrastructure of the produced myelin, and the susceptibility to myelin-related disorders, which highlights the significance of the choice of patterning protocols in the differentiation of induced pluripotent stem cells (iPSCs) into oligodendrocytes. Thus, our first goal was to survey the different approaches applied to the generation of iPSC-derived oligodendrocytes in 2D culture and in organoids, as well as reflect on how these approaches pertain to the regional and spatial fate of the generated oligodendrocyte progenitors and myelinating oligodendrocytes. This knowledge is increasingly important to disease modeling and future therapeutic strategies. Our second goal was to recap the recent advances in the development of oligodendrocyte-enriched organoids, as we explore their relevance to a regional specification alongside their duration, complexity, and maturation stages of oligodendrocytes and myelin biology. Finally, we discuss the shortcomings of the existing protocols and potential future explorations.
Collapse
Affiliation(s)
- Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Neurophotonics Center, Boston University, Boston, MA 02115, USA
| | - Sandeep Rajkumar
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
18
|
Maramraju S, Kowalczewski A, Kaza A, Liu X, Singaraju JP, Albert MV, Ma Z, Yang H. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med 2024; 9:e10641. [PMID: 38435826 PMCID: PMC10905559 DOI: 10.1002/btm2.10641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.
Collapse
Affiliation(s)
- Sudhiksha Maramraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Andrew Kowalczewski
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Anirudh Kaza
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Jathin Pranav Singaraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Mark V. Albert
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Department of Computer Science and EngineeringUniversity of North TexasDentonTexasUSA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Huaxiao Yang
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
| |
Collapse
|
19
|
Jäntti H, Jonk S, Gómez Budia M, Ohtonen S, Fagerlund I, Fazaludeen MF, Aakko-Saksa P, Pebay A, Lehtonen Š, Koistinaho J, Kanninen KM, Jalava PI, Malm T, Korhonen P. Particulate matter from car exhaust alters function of human iPSC-derived microglia. Part Fibre Toxicol 2024; 21:6. [PMID: 38360668 PMCID: PMC10870637 DOI: 10.1186/s12989-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steffi Jonk
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Gómez Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Alice Pebay
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
20
|
Haage V, Tuddenham JF, Comandante-Lou N, Bautista A, Monzel A, Chiu R, Fujita M, Garcia FG, Bhattarai P, Patel R, Buonfiglioli A, Idiarte J, Herman M, Rinderspacher A, Mela A, Zhao W, Argenziano MG, Furnari JL, Banu MA, Landry DW, Bruce JN, Canoll P, Zhang Y, Nuriel T, Kizil C, Sproul AA, de Witte LD, Sims PA, Menon V, Picard M, De Jager PL. A pharmacological toolkit for human microglia identifies Topoisomerase I inhibitors as immunomodulators for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579103. [PMID: 38370689 PMCID: PMC10871172 DOI: 10.1101/2024.02.06.579103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.
Collapse
Affiliation(s)
- Verena Haage
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - John F. Tuddenham
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Natacha Comandante-Lou
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alex Bautista
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Anna Monzel
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Frankie G. Garcia
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Prabesh Bhattarai
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ronak Patel
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Juan Idiarte
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mathieu Herman
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | | | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Tal Nuriel
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Caghan Kizil
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Lotje D. de Witte
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
21
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
22
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Avni L, Farag N, Ghosh B, Nachman I. Gastruloid optimization. Emerg Top Life Sci 2023; 7:409-415. [PMID: 37815089 PMCID: PMC10754328 DOI: 10.1042/etls20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
The young field of gastruloids brings promise to modeling and understanding early embryonic development. However, being a complex model, gastruloids are prone to variability at different levels. In this perspective, we define the different levels of gastruloid variability, and parameters over which it can be measured. We discuss potential sources for variability, and then propose methods to better control and reduce it. We provide an example from definitive endoderm progression in gastruloids, where we harness gastruloid-to-gastruloid variation in early parameters to identify key driving factors for endoderm morphology. We then devise interventions that steer morphological outcome. A better control over the developmental progression of gastruloids will enhance their utility in both basic research and biomedical applications.
Collapse
Affiliation(s)
- Lara Avni
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Naama Farag
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Binita Ghosh
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Ohtonen S, Giudice L, Jäntti H, Fazaludeen MF, Shakirzyanova A, Gómez-Budia M, Välimäki NN, Niskanen J, Korvenlaita N, Fagerlund I, Koistinaho J, Amiry-Moghaddam M, Savchenko E, Roybon L, Lehtonen Š, Korhonen P, Malm T. Human iPSC-derived microglia carrying the LRRK2-G2019S mutation show a Parkinson's disease related transcriptional profile and function. Sci Rep 2023; 13:22118. [PMID: 38092815 PMCID: PMC10719377 DOI: 10.1038/s41598-023-49294-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
LRRK2-G2019S is one of the most common Parkinson's disease (PD)-associated mutations and has been shown to alter microglial functionality. However, the impact of LRRK2-G2019S on transcriptional profile of human induced pluripotent stem cell-derived microglia-like cells (iMGLs) and how it corresponds to microglia in idiopathic PD brain is not known. Here we demonstrate that LRRK2-G2019S carrying iMGL recapitulate aspects of the transcriptional signature of human idiopathic PD midbrain microglia. LRRK2-G2019S induced subtle and donor-dependent alterations in iMGL mitochondrial respiration, phagocytosis and cytokine secretion. Investigation of microglial transcriptional state in the midbrains of PD patients revealed a subset of microglia with a transcriptional overlap between the in vitro PD-iMGL and human midbrain PD microglia. We conclude that LRRK2-G2019S iMGL serve as a model to study PD-related effects in human microglia.
Collapse
Affiliation(s)
- Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Sarieva K, Kagermeier T, Khakipoor S, Atay E, Yentür Z, Becker K, Mayer S. Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. Mol Psychiatry 2023; 28:5077-5089. [PMID: 36878967 PMCID: PMC9986664 DOI: 10.1038/s41380-023-01997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Maternal immune activation (MIA) during critical windows of gestation is correlated with long-term neurodevelopmental deficits in the offspring, including increased risk for autism spectrum disorder (ASD) in humans. Interleukin 6 (IL-6) derived from the gestational parent is one of the major molecular mediators by which MIA alters the developing brain. In this study, we establish a human three-dimensional (3D) in vitro model of MIA by treating induced pluripotent stem cell-derived dorsal forebrain organoids with a constitutively active form of IL-6, Hyper-IL-6. We validate our model by showing that dorsal forebrain organoids express the molecular machinery necessary for responding to Hyper-IL-6 and activate STAT signaling upon Hyper-IL-6 treatment. RNA sequencing analysis reveals the upregulation of major histocompatibility complex class I (MHCI) genes in response to Hyper-IL-6 exposure, which have been implicated with ASD. We find a small increase in the proportion of radial glia cells after Hyper-IL-6 treatment through immunohistochemistry and single-cell RNA-sequencing. We further show that radial glia cells are the cell type with the highest number of differentially expressed genes, and Hyper-IL-6 treatment leads to the downregulation of genes related to protein translation in line with a mouse model of MIA. Additionally, we identify differentially expressed genes not found in mouse models of MIA, which might drive species-specific responses to MIA. Finally, we show abnormal cortical layering as a long-term consequence of Hyper-IL-6 treatment. In summary, we establish a human 3D model of MIA, which can be used to study the cellular and molecular mechanisms underlying the increased risk for developing disorders such as ASD.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Shokoufeh Khakipoor
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ezgi Atay
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany.
| |
Collapse
|
26
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Matuleviciute R, Akinluyi ET, Muntslag TAO, Dewing JM, Long KR, Vernon AC, Tremblay ME, Menassa DA. Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathol 2023; 146:663-683. [PMID: 37656188 PMCID: PMC10564830 DOI: 10.1007/s00401-023-02629-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elizabeth T Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado Ekiti, Nigeria
| | - Tim A O Muntslag
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Katherine R Long
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - David A Menassa
- Department of Neuropathology & The Queen's College, University of Oxford, Oxford, UK.
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
28
|
Park DS, Kozaki T, Tiwari SK, Moreira M, Khalilnezhad A, Torta F, Olivié N, Thiam CH, Liani O, Silvin A, Phoo WW, Gao L, Triebl A, Tham WK, Gonçalves L, Kong WT, Raman S, Zhang XM, Dunsmore G, Dutertre CA, Lee S, Ong JM, Balachander A, Khalilnezhad S, Lum J, Duan K, Lim ZM, Tan L, Low I, Utami KH, Yeo XY, Di Tommaso S, Dupuy JW, Varga B, Karadottir RT, Madathummal MC, Bonne I, Malleret B, Binte ZY, Wei Da N, Tan Y, Wong WJ, Zhang J, Chen J, Sobota RM, Howland SW, Ng LG, Saltel F, Castel D, Grill J, Minard V, Albani S, Chan JKY, Thion MS, Jung SY, Wenk MR, Pouladi MA, Pasqualini C, Angeli V, Cexus ONF, Ginhoux F. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature 2023; 623:397-405. [PMID: 37914940 DOI: 10.1038/s41586-023-06713-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.
Collapse
Affiliation(s)
- Dong Shin Park
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Marco Moreira
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Nicolas Olivié
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Chung Hwee Thiam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oniko Liani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liang Gao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wai Kin Tham
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sethi Raman
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Salanne Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jia Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ze Ming Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Balazs Varga
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thora Karadottir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mufeeda Changaramvally Madathummal
- A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Isabelle Bonne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zainab Yasin Binte
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Ngan Wei Da
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu Zhang
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - David Castel
- INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Sang Yong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Veronique Angeli
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivier N F Cexus
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, Rimessi A, Pinton P, Giorgi C. The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models. Biomedicines 2023; 11:2825. [PMID: 37893198 PMCID: PMC10604217 DOI: 10.3390/biomedicines11102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide. Indeed, NLRP3, one of the most well-studied inflammasomes, is involved in the generation of epileptic seizures, events that characterize this pathological condition. In this context, several pieces of evidence have shown that the NLRP3 inflammasome plays a central role in the pathophysiology of mesial temporal lobe epilepsy (mTLE). Based on an extensive review of the literature on the role of NLRP3-dependent inflammation in epilepsy, in this review we discuss our current understanding of the connection between NLRP3 inflammasome activation and progressive neurodegeneration in epilepsy. The goal of the review is to cover as many of the various known epilepsy models as possible, providing a broad overview of the current literature. Lastly, we also propose some of the present therapeutic strategies targeting NLRP3, aiming to provide potential insights for future studies.
Collapse
Affiliation(s)
- Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
30
|
Stöberl N, Maguire E, Salis E, Shaw B, Hall-Roberts H. Human iPSC-derived glia models for the study of neuroinflammation. J Neuroinflammation 2023; 20:231. [PMID: 37817184 PMCID: PMC10566197 DOI: 10.1186/s12974-023-02919-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Neuroinflammation is a complex biological process that plays a significant role in various brain disorders. Microglia and astrocytes are the key cell types involved in inflammatory responses in the central nervous system. Neuroinflammation results in increased levels of secreted inflammatory factors, such as cytokines, chemokines, and reactive oxygen species. To model neuroinflammation in vitro, various human induced pluripotent stem cell (iPSC)-based models have been utilized, including monocultures, transfer of conditioned media between cell types, co-culturing multiple cell types, neural organoids, and xenotransplantation of cells into the mouse brain. To induce neuroinflammatory responses in vitro, several stimuli have been established that can induce responses in either microglia, astrocytes, or both. Here, we describe and critically evaluate the different types of iPSC models that can be used to study neuroinflammation and highlight how neuroinflammation has been induced and measured in these cultures.
Collapse
Affiliation(s)
- Nina Stöberl
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Elisa Salis
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Bethany Shaw
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff, CF10 3AT UK
| |
Collapse
|
31
|
Pomeshchik Y, Velasquez E, Gil J, Klementieva O, Gidlöf R, Sydoff M, Bagnoli S, Nacmias B, Sorbi S, Westergren-Thorsson G, Gouras GK, Rezeli M, Roybon L. Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2023; 11:150. [PMID: 37715247 PMCID: PMC10504768 DOI: 10.1186/s40478-023-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Medical Micro-Spectroscopy, Department of Experimental Medical Science, BMC B10, Lund University, 22184, Lund, Sweden
| | - Ritha Gidlöf
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Marie Sydoff
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Silvia Bagnoli
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Sorbi
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, BMC C12, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, 22184, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, 22184, Lund, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
32
|
Cerneckis J, Bu G, Shi Y. Pushing the boundaries of brain organoids to study Alzheimer's disease. Trends Mol Med 2023; 29:659-672. [PMID: 37353408 PMCID: PMC10374393 DOI: 10.1016/j.molmed.2023.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Progression of Alzheimer's disease (AD) entails deterioration or aberrant function of multiple brain cell types, eventually leading to neurodegeneration and cognitive decline. Defining how complex cell-cell interactions become dysregulated in AD requires novel human cell-based in vitro platforms that could recapitulate the intricate cytoarchitecture and cell diversity of the human brain. Brain organoids (BOs) are 3D self-organizing tissues that partially resemble the human brain architecture and can recapitulate AD-relevant pathology. In this review, we highlight the versatile applications of different types of BOs to model AD pathogenesis, including amyloid-β and tau aggregation, neuroinflammation, myelin breakdown, vascular dysfunction, and other phenotypes, as well as to accelerate therapeutic development for AD.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
33
|
Dolan MJ, Therrien M, Jereb S, Kamath T, Gazestani V, Atkeson T, Marsh SE, Goeva A, Lojek NM, Murphy S, White CM, Joung J, Liu B, Limone F, Eggan K, Hacohen N, Bernstein BE, Glass CK, Leinonen V, Blurton-Jones M, Zhang F, Epstein CB, Macosko EZ, Stevens B. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro. Nat Immunol 2023; 24:1382-1390. [PMID: 37500887 PMCID: PMC10382323 DOI: 10.1038/s41590-023-01558-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.
Collapse
Affiliation(s)
- Michael-John Dolan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Martine Therrien
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Saša Jereb
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Vahid Gazestani
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Trevor Atkeson
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aleksandrina Goeva
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neal M Lojek
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Murphy
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | | | - Julia Joung
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
| | - Francesco Limone
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, Sue and Bill Gross Stem Cell Research Center, UCI Institute for Memory Impairments and Neurological Disorders, Institute for Immunology, University of California, Irvine, CA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
| | | | - Evan Z Macosko
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| | - Beth Stevens
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
34
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
35
|
Analysis of Aβ-induced neurotoxicity and microglial responses in simple two- and three-dimensional human iPSC-derived cortical culture systems. Tissue Cell 2023; 81:102023. [PMID: 36709697 DOI: 10.1016/j.tice.2023.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The extracellular accumulation of amyloid-β (Aβ) in plaques and associated neurodegeneration are the pathological hallmarks of Alzheimer's disease (AD). These plaques are surrounded by microglia-the resident tissue macrophages of the brain parenchyma that originate from primitive macrophages from the embryonic yolk sac. Microglia, including a unique subpopulation called "disease-associated microglia" (DAM), are strongly implicated in AD pathology; however, their exact function and physiology remain largely unknown. Notably, simple cell and tissue culture systems that adequately recreate the brain microenvironment and can simulate critical aspects of AD pathology could fundamentally contribute to elucidating microglial function in disease development and progression. Thus, we added human-induced pluripotent stem cell (hiPSC)-induced primitive macrophages (hiMacs) to hiPSC-induced cortical neurons (cell model) and cortical organoids (tissue model). The treatment of these culture systems with the O-acyl isopeptide of Aβ1-42, which reverts to natural extracellular Aβ1-42 at neutral pH and starts self-aggregation, caused the degeneration of hiPSC-induced cortical neurons in 2D culture and within cortical organoid cultures. Notably, the hiMacs phagocytosed extracellular Aβ and exhibited a DAM-like phenotype. In both cell and tissue organoid culture systems, neurodegeneration was attenuated by the addition of hiMacs. Moreover, in cortical organoids, Aβ plaques formed more circular and fewer hotspot-like morphological structures in the vicinity of hiMacs. These findings demonstrate the utility of simple hiPSC-induced cortical cell and tissue culture systems supplemented with hiMacs for elucidating critical aspects of AD pathology, such as microglial function and physiology. Adopting such systems in routine research practice may lead to the development of novel therapeutic strategies for AD.
Collapse
|
36
|
Garcia-Epelboim A, Christian KM. Modeling neuro-immune interactions using human pluripotent stem cells. Curr Opin Neurobiol 2023; 79:102672. [PMID: 36634408 DOI: 10.1016/j.conb.2022.102672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cells can be differentiated into cell types that are representative of the central nervous system. Under specific culture conditions, these cells can be induced to self-organize into 3D organoids that are reminiscent of the developing brain. Microglia are the resident immune cells of the brain but are derived from a different lineage than neural cells, which presents a challenge to modeling neuroimmune interactions. Although human microglia-like cells can be differentiated from pluripotent stem cells, important considerations include ensuring the identity of microglia, which can be influenced by both the lineage and the local environment, and developing culture methods that promote the integration and survival of diverse cell types in a physiologically relevant model. Recently, several strategies to generate neural organoids with integrated microglia have been demonstrated and provide new opportunities to interrogate interactions among microglia and neurons during development and in response to injury and disease.
Collapse
Affiliation(s)
- Alan Garcia-Epelboim
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kimberly M Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
38
|
Wenzel TJ, Le J, He J, Alcorn J, Mousseau DD. Fundamental Neurochemistry Review: Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. J Neurochem 2023; 164:560-582. [PMID: 36517959 DOI: 10.1111/jnc.15741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Brain organoids have the potential to improve clinical translation, with the added benefit of reducing any extraneous use of experimental animals. As brain organoids are three-dimensional in vitro constructs that emulate the human brain, they bridge in vitro and in vivo studies more appropriately than monocultures. Although many factors contribute to the failure of extrapolating monoculture-based information to animal-based experiments and clinical trials, for the purpose of this review, we will focus on glia (non-neuronal brain cells), whose functions and transcriptome are particularly abnormal in monocultures. As discussed herein, glia require signals from-and contact with-other cell types to exist in their homeostatic state, which likely contributes to some of the differences between data derived from monocultures and data derived from brain organoids and even two-dimensional co-cultures. Furthermore, we highlight transcriptomic differences between humans and mice in regard to aging and Alzheimer's disease, emphasizing need for a model using the human genome-again, a benefit of brain organoids-to complement data derived from animals. We also identify an urgency for guidelines to improve the reporting and transparency of research using organoids. The lack of reporting standards creates challenges for the comparison and discussion of data from different articles. Importantly, brain organoids mark the first human model enabling the study of brain cytoarchitecture and development.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
39
|
Cuní-López C, Stewart R, White AR, Quek H. 3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. J Neuroimmunol 2023; 375:578017. [PMID: 36657374 DOI: 10.1016/j.jneuroim.2023.578017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Microglia have an increasingly well-recognised role in the pathogenesis of neurodegenerative diseases, thereby becoming attractive therapeutic targets. However, the development of microglia-targeted therapeutics for neurodegeneration has had limited success. This stems partly from the lack of clinically relevant microglia model systems. To circumvent this translational gap, patient-derived microglial cell models established using conventional 2D in vitro techniques have emerged. Though promising, these models lack the microenvironment and multicellular interactions of the brain needed to maintain microglial homeostasis. In this review, we discuss the use of 3D in vitro platforms to improve microglia modelling and their potential benefits to fast-track drug development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Romal Stewart
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane 4059, QLD, Australia.
| |
Collapse
|
40
|
Campbell NB, Patel Y, Moore TL, Medalla M, Zeldich E. Extracellular Vesicle Treatment Alleviates Neurodevelopmental and Neurodegenerative Pathology in Cortical Spheroid Model of Down Syndrome. Int J Mol Sci 2023; 24:3477. [PMID: 36834891 PMCID: PMC9960302 DOI: 10.3390/ijms24043477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is manifested in a variety of anatomical and cellular abnormalities resulting in intellectual deficits and early onset of Alzheimer's disease (AD) with no effective treatments available to alleviate the pathologies associated with the disorder. The therapeutic potential of extracellular vesicles (EVs) has emerged recently in relation to various neurological conditions. We have previously demonstrated the therapeutic efficacy of mesenchymal stromal cell-derived EVs (MSC-EVs) in cellular and functional recovery in a rhesus monkey model of cortical injury. In the current study, we evaluated the therapeutic effect of MSC-EVs in a cortical spheroid (CS) model of DS generated from patient-derived induced pluripotent stem cells (iPSCs). Compared to euploid controls, trisomic CS display smaller size, deficient neurogenesis, and AD-related pathological features, such as enhanced cell death and depositions of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). EV-treated trisomic CS demonstrated preserved size, partial rescue in the production of neurons, significantly decreased levels of Aβ and p-tau, and a reduction in the extent of cell death as compared to the untreated trisomic CS. Together, these results show the efficacy of EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human CS.
Collapse
Affiliation(s)
- Natalie Baker Campbell
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Yesha Patel
- Commonwealth Honors College, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| |
Collapse
|
41
|
Zhang W, Jiang J, Xu Z, Yan H, Tang B, Liu C, Chen C, Meng Q. Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry 2023; 28:96-107. [PMID: 36474001 PMCID: PMC9734443 DOI: 10.1038/s41380-022-01892-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Microglia are resident immune cells in the central nervous system, playing critical roles in brain development and homeostasis. Increasing evidence has implicated microglia dysfunction in the pathogenesis of various brain disorders ranging from psychiatric disorders to neurodegenerative diseases. Using a human cell-based model to illuminate the functional mechanisms of microglia will promote pathological studies and drug development. The recently developed microglia-containing human brain organoids (MC-HBOs), in-vitro three-dimensional cell cultures that recapitulate key features of the human brain, have provided a new avenue to model brain development and pathology. However, MC-HBOs generated from different methods differ in the origin, proportion, and fidelity of microglia within the organoids, and may have produced inconsistent results. To help researchers to develop a robust and reproducible model that recapitulates in-vivo signatures of human microglia to study brain development and pathology, this review summarized the current methods used to generate MC-HBOs and provided opinions on the use of MC-HBOs for disease modeling and functional studies.
Collapse
Affiliation(s)
- Wendiao Zhang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Jiamei Jiang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Zhenhong Xu
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Hongye Yan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| | - Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
42
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
44
|
Cakir B, Kiral FR, Park IH. Advanced in vitro models: Microglia in action. Neuron 2022; 110:3444-3457. [PMID: 36327894 DOI: 10.1016/j.neuron.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
In the central nervous system (CNS), microglia carry out multiple tasks related to brain development, maintenance of brain homeostasis, and function of the CNS. Recent advanced in vitro model systems allow us to perform more detailed and specific analyses of microglial functions in the CNS. The development of human pluripotent stem cells (hPSCs)-based 2D and 3D cell culture methods, particularly advancements in brain organoid models, offers a better platform to dissect microglial function in various contexts. Despite the improvement of these methods, there are still definite restrictions. Understanding their drawbacks and benefits ensures their proper use. In this primer, we review current developments regarding in vitro microglial production and characterization and their use to address fundamental questions about microglial function in healthy and diseased states, and we discuss potential future improvements with a particular emphasis on brain organoid models.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
46
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
47
|
Barragán-Álvarez CP, Flores-Fernandez JM, Hernández-Pérez OR, Ávila-Gónzalez D, Díaz NF, Padilla-Camberos E, Dublan-García O, Gómez-Oliván LM, Diaz-Martinez NE. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Front Cell Dev Biol 2022; 10:947769. [PMID: 36120556 PMCID: PMC9479146 DOI: 10.3389/fcell.2022.947769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.
Collapse
Affiliation(s)
- Carla Patricia Barragán-Álvarez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - José Miguel Flores-Fernandez
- Departamento de Investigación e Innovación, Universidad Tecnológica de Oriental, Oriental, Mexico
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Daniela Ávila-Gónzalez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Nestor Fabian Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Eduardo Padilla-Camberos
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - Octavio Dublan-García
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Nestor Emmanuel Diaz-Martinez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
48
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
49
|
Guan A, Wang S, Huang A, Qiu C, Li Y, Li X, Wang J, Wang Q, Deng B. The role of gamma oscillations in central nervous system diseases: Mechanism and treatment. Front Cell Neurosci 2022; 16:962957. [PMID: 35966207 PMCID: PMC9374274 DOI: 10.3389/fncel.2022.962957] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma oscillation is the synchronization with a frequency of 30–90 Hz of neural oscillations, which are rhythmic electric processes of neuron groups in the brain. The inhibitory interneuron network is necessary for the production of gamma oscillations, but certain disruptions such as brain inflammation, oxidative stress, and metabolic imbalances can cause this network to malfunction. Gamma oscillations specifically control the connectivity between different brain regions, which is crucial for perception, movement, memory, and emotion. Studies have linked abnormal gamma oscillations to conditions of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Evidence suggests that gamma entrainment using sensory stimuli (GENUS) provides significant neuroprotection. This review discusses the function of gamma oscillations in advanced brain activities from both a physiological and pathological standpoint, and it emphasizes gamma entrainment as a potential therapeutic approach for a range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ao Guan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Shaoshuang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ailing Huang
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenyue Qiu
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yansong Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuying Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jinfei Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qiang Wang,
| | - Bin Deng
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Bin Deng,
| |
Collapse
|
50
|
Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. Int J Mol Sci 2022; 23:ijms23137140. [PMID: 35806146 PMCID: PMC9266337 DOI: 10.3390/ijms23137140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although stroke is one of the world’s leading causes of death and disability, and more than a thousand candidate neuroprotective drugs have been proposed based on extensive in vitro and animal-based research, an effective neuroprotective/restorative therapy for ischaemic stroke patients is still missing. In particular, the high attrition rate of neuroprotective compounds in clinical studies should make us question the ability of in vitro models currently used for ischaemic stroke research to recapitulate human ischaemic responses with sufficient fidelity. The ischaemic stroke field would greatly benefit from the implementation of more complex in vitro models with improved physiological relevance, next to traditional in vitro and in vivo models in preclinical studies, to more accurately predict clinical outcomes. In this review, we discuss current in vitro models used in ischaemic stroke research and describe the main factors determining the predictive value of in vitro models for modelling human ischaemic stroke. In light of this, human-based 3D models consisting of multiple cell types, either with or without the use of microfluidics technology, may better recapitulate human ischaemic responses and possess the potential to bridge the translational gap between animal-based in vitro and in vivo models, and human patients in clinical trials.
Collapse
|